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On the distortion of turbulen
e by a progressive

surfa
e wave

By M. A. C. TEIXEIRA y

AND S. E. BELCHER

Department of Meteorology, University of Reading,

Earley Gate, PO Box 243, Reading RG6 6BB, UK

(Re
eived ?? and in revised form ??)

A rapid-distortion model is developed to investigate the intera
tion of weak turbulen
e with a

mono
hromati
 irrotational surfa
e water wave. The model is appli
able when the orbital velo
ity

of the wave is larger than the turbulen
e intensity, and when the slope of the wave is suÆ
iently

high that the straining of the turbulen
e by the wave dominates over the straining of the turbulen
e

by itself. The turbulen
e su�ers two distortions. Firstly, vorti
ity in the turbulen
e is modulated

by the wave orbital motions, whi
h leads to the streamwise Reynolds stress attaining maxima at

the wave 
rests and minima at the wave troughs; the Reynolds stress normal to the free surfa
e

develops minima at the wave 
rests and maxima at the troughs. Se
ondly, over several wave


y
les the Stokes drift asso
iated with the wave tilts verti
al vorti
ity into the horizontal dire
tion,

subsequently stret
hing it into elongated streamwise vorti
es, whi
h 
ome to dominate the 
ow.

These results are shown to be strikingly di�erent from turbulen
e distorted by a mean shear 
ow,

when `streaky stru
tures' of high and low streamwise velo
ity 
u
tuations develop. It is shown

that, in the 
ase of distortion by a mean shear 
ow, the tenden
y for the mean shear to produ
e

streamwise vorti
es by distortion of the turbulent vorti
ity is largely 
an
elled by a distortion of

the mean vorti
ity by the turbulent 
u
tuations. This latter pro
ess is absent in distortion by

Stokes drift, sin
e there is then no mean vorti
ity.

The 
omponents of the Reynolds stress and the integral length s
ales 
omputed from turbulen
e
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distorted by Stokes drift show the same behaviour as in the simulations of Langmuir turbulen
e

reported by M
Williams, Sullivan & Moeng (1997). Hen
e we suggest that turbulent vorti
ity in

the upper o
ean, su
h as produ
ed by breaking waves, may help to provide the initial seeds for

Langmuir 
ir
ulations, thereby 
omplementing the shear-
ow instability me
hanism developed by

Craik & Leibovi
h (1976).

The tilting of the verti
al vorti
ity into the horizontal by the Stokes drift tends also to produ
e

a shear stress that does work against the mean straining asso
iated with the wave orbital motions.

The turbulent kineti
 energy then in
reases at the expense of energy in the wave. Hen
e the wave

de
ays. An expression for the wave attenuation rate is obtained by s
aling the equation for the

wave energy, and is found to be broadly 
onsistent with available laboratory data.

1. Introdu
tion

The uppermost layer of the o
ean has three intera
ting dynami
al 
omponents, namely a wind-

driven mean shear 
urrent, surfa
e waves and turbulen
e. This potent mixture produ
es a variety

of intriguing phenomena that do not o

ur in the atmospheri
 boundary layer. Observations in the

o
ean mixed layer by Faller & Auer (1988) have revealed elongated streamwise vorti
es, identi�ed

as Langmuir 
ir
ulations, with a wide range of s
ales, whi
h 
an therefore be seen as a type of

turbulen
e, named Langmuir turbulen
e by M
Williams, Sullivan & Moeng (1997). Furthermore,

re
ent observations show that breaking waves are a surprisingly potent sour
e of turbulen
e in

the upper few metres of the mixed layer (Agrawal et al. 1992; Terray et al. 1996). Given the


omplexity of this system it is helpful to 
onsider intera
tions between pairs of these 
omponents.

Su
h idealised 
al
ulations are presented in this paper.

Turbulen
e and surfa
e waves 
an intera
t in a variety of ways. Turbulent pressure 
u
tuations

and turbulent shear stresses are responsible for both the initiation of surfa
e waves (Phillips 1957;

Teixeira 2000) and their subsequent ampli�
ation by a sheltering me
hanism (Bel
her & Hunt 1993,

1998). Turbulen
e in the water 
an s
atter surfa
e waves (Phillips 1959), distort surfa
e waves

(Longuet-Higgins 1996) and dissipate surfa
e waves (Kitaigorodskii & Lumley 1983). Conversely,
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breaking waves, often visible as white
aps (Melville 1996), shear 
urrents indu
ed by the wind,

and thermal 
onve
tion all generate turbulen
e in the o
ean surfa
e layer, whi
h is subsequently

distorted by orbital motions asso
iated with the surfa
e waves (Thais & Magnaudet 1996). More

idealised intera
tions between waves and turbulen
e have been investigated experimentally by

Green, Medwin & Paquin (1972),

�

Olmez & Milgram (1992), Nepf et al. (1995) and Thais &

Magnaudet (1996). But a systemati
 theoreti
al treatment of this situation is la
king.

Distortion of turbulen
e by surfa
e waves is of two types: on the one hand, there is the di-

re
t e�e
t of the orbital motions, of �rst order in the wave slope, whi
h has a straining rate of

O(a

w

k

w

�

w

), where a

w

, k

w

and �

w

are, respe
tively, the amplitude, wavenumber and angular fre-

quen
y of the waves. This e�e
t is relatively weak, be
ause the wave motions are periodi
 and

the total strain never ex
eeds O(a

w

k

w

), whi
h is small. On the other hand, there is the e�e
t

of the Stokes drift, of se
ond order in the wave slope, whose straining rate 
an be estimated as

O(a

2

w

k

2

w

�

w

). Although this straining rate is even smaller, its e�e
t is 
umulative, and the total

strain is of O(a

2

w

k

2

w

�

w

t), where t is time. So, this se
ond order e�e
t is bound to a�e
t turbulen
e

appre
iably after a suÆ
ient number of wave 
y
les.

Intera
tion between the wind-driven mean shear 
urrent and the Stokes drift is at the heart

of 
urrent explanations of the generation of Langmuir 
ir
ulations in the o
ean (Leibovi
h 1983).

Langmuir 
ir
ulations are intense, elongated vorti
es, with their axes of rotation roughly aligned

with the wind and the dominant surfa
e waves. Craik & Leibovi
h (1976) propose two me
hanisms

for the produ
tion of Langmuir 
ir
ulations based on instability of the mean shear 
urrent under

the a
tion of the wave motions. The �rst, known as CL1 or the dire
t drive me
hanism, involves

intera
tion between the mean shear 
urrent in the water and the Stokes drift asso
iated with waves

propagating at an angle to this mean 
urrent. The se
ond me
hanism for produ
tion of Langmuir


ir
ulations analysed by Craik & Leibovi
h (1976), known as the CL2 me
hanism, involves tilting

and stret
hing of verti
al vorti
ity into the horizontal by the Stokes drift asso
iated with surfa
e

waves propagating in the same dire
tion as the mean shear 
urrent. In the Craik-Leibovi
h formu-

lation the verti
al vorti
ity is assumed to arise from in�nitesimal spanwise variations in the mean

shear 
urrent.
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The me
hanisms for generation of Langmuir 
ir
ulations developed by Craik & Leibovi
h (1976)

treat expli
itly intera
tions between the mean shear 
ow and the Stokes drift. The role of tur-

bulen
e is represented by an eddy vis
osity, thereby relegating turbulen
e to a me
hanism for

dissipating the Langmuir 
ir
ulations. But there is eviden
e that turbulen
e may 
ontribute to the

generation of Langmuir 
ir
ulations (Nepf et al. 1995). Hen
e one aim of the present study is to

quantify the e�e
ts of Stokes drift on turbulen
e in the water 
ow.

We fo
us here on two idealised model problems that aim at 
larifying the intera
tions in the upper

o
ean. Firstly, the bulk of the paper is 
on
erned with the distortion of turbulen
e by the passage

of a surfa
e wave; the mean shear 
ow is negle
ted. This distortion is tra
ed from the periodi


straining of the wave, through to the 
umulative distortion of the turbulen
e by the Stokes drift, to

de
ay of waves as energy is transferred to the turbulen
e. Se
ondly, we present results of distortion

of turbulen
e by a mean shear 
ow; the e�e
ts of the surfa
e waves are negle
ted. Comparison

of the results of these two analyses graphi
ally shows the important role played by Stokes drift in

shaping the turbulen
e and o�ers 
lues to an additional sour
e of Langmuir 
ir
ulations.

The remainder of this paper is organised as follows: in x2, the theoreti
al model of wave-

turbulen
e intera
tion is presented. Se
tion 3 presents the resulting time evolution of the Reynolds

stresses and the integral length s
ales of the turbulen
e, �rstly over a single wave 
y
le and se
-

ondly over several wave 
y
les, when the Stokes drift be
omes important. These latter results are


ompared with turbulen
e distortion by a mean shear. The overall budgets of kineti
 energy in

the turbulen
e and the wave motions are then analysed to show how the waves de
ay. The paper

ends with the main 
on
lusions, in x4.

2. Theoreti
al model

Consider a semi-in�nite water mass bounded above by a free surfa
e on whi
h a progressive,

mono
hromati
, surfa
e wave is propagating. The wave is irrotational and has relatively low

slope. Here we analyse how turbulen
e beneath the free surfa
e is distorted by the orbital motions

asso
iated with the wave. To ta
kle this idealised problem, the rapid-distortion theory (RDT) of

Bat
helor & Proudman (1954) and Hunt (1973) will be used.
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The total velo
ity �eld U

i

is split into a mean part, U

i

, and a turbulent part, u

i

, namely

U

i

= U

i

(x) + u

i

(x; t); i = 1; 2; 3: (2.1)

The mean velo
ity 
orresponds to the wave orbital motion expressed in a 
oordinate system trav-

elling with the wave 
rests: hen
e U

i

is stationary. The wave is taken to propagate in the positive

x

1

dire
tion and, sin
e the wave is also mono
hromati
, U

i

is slab-symmetri
 and does not depend

on x

2

. The turbulen
e is assumed to be statisti
ally stationary, homogeneous and isotropi
 far

from the surfa
e. At the initial time, the turbulen
e is assumed to be homogeneous and isotropi


throughout the depth of the water 
olumn at a parti
ular point of the wave phase. The turbulen
e

is also assumed to be of a mu
h smaller s
ale than the wave, so that the initial integral length s
ale

of the turbulen
e l satis�es l � �

w

, where �

w

is the wavelength of the wave. The idea is then to

analyse the evolution of the turbulen
e statisti
s following a water par
el as the wave propagates

over the turbulen
e.

This idealised model approximates two physi
al situations: the �rst is a laboratory arrangement

where me
hani
ally generated surfa
e waves propagate over a region of turbulen
e 
reated by an

os
illating grid, as in the experiments of

�

Olmez and Milgram (1992) and Milgram (1998). The

se
ond situation is where turbulen
e is inje
ted into the water by breaking surfa
e waves at a

parti
ular time and lo
ation, being then distorted by subsequent waves. Of 
ourse, in the se
ond


ase, the initial turbulen
e is not perfe
tly homogeneous and isotropi
, but it is reasonably isotropi


(Rapp & Melville 1990) and its integral length s
ale is generally 
onsiderably smaller than the

wavelength of the dominant waves, sin
e wave breaking is a highly lo
alised pro
ess. Hen
e the


ondition l � �

w

is probably satis�ed.

In the formulation adopted by Hunt (1973), RDT is based on the invis
id equations of motion,

linearised with respe
t to the turbulen
e. For example, the linearised vorti
ity equation 
an be

written

�!

i

�t

+ U

j

�!

i

�x

j

+ u

j

�


i

�x

j

= 


j

�u

i

�x

j

+ !

j

�U

i

�x

j

; (2.2)

where 
 = r�U is the vorti
ity of the mean 
ow and ! = r�u is the vorti
ity of the turbulen
e.

In the present 
ase, U

i

is the velo
ity asso
iated with an irrotational surfa
e wave, so 


i

= 0. If

u is de�ned as the initial root-mean-square (RMS) velo
ity of the turbulen
e, U as the typi
al
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velo
ity s
ale of the mean 
ow and L as the typi
al length s
ale over whi
h the mean 
ow varies,

the 
onditions for the validity of (2.2) are that the turbulent velo
ity is suÆ
iently weak 
ompared

with the mean velo
ity, u � U , and that the strain rate of the mean 
ow is higher than that

asso
iated with the intera
tion of the turbulen
e with itself, u=l � U=L. The �rst 
ondition is

immediately satis�ed if, additionally to the se
ond, l� L is also satis�ed. It will be seen later that

this last 
ondition on the length s
ales is 
onvenient if the equations of motion are to be simpli�ed

by being expressed in a 
urvilinear 
oordinate system aligned with the mean 
ow (Durbin & Hunt

1980). In that 
ase, the 
urvature terms in the equations are of O(l=L) and 
an be negle
ted, i.e.

the equations take at leading order the same form as in a Cartesian 
oordinate system.

For the parti
ular 
ow under 
onsideration, the length s
ale of the mean 
ow is the wavelength

of the wave, �

w

, and the strain rate asso
iated with the wave is of O(a

w

k

w

�

w

), so the 
onditions

for whi
h the linear RDT model is valid are

l� �

w

; a

w

k

w

�

u

l�

w

: (2.3)

Hen
e, the turbulen
e has to be of relatively small s
ale and the steepness of the wave 
annot be

too small.

Turbulen
e generated by a grid in laboratory experiments (Brumley and Jirka 1987; Kit, Strang

& Fernando 1997) or asso
iated with a wind-indu
ed shear 
urrent (Melville, Shear & Veron 1998)

generally has an integral length s
ale of O(1
m) or larger. Turbulen
e generated by breaking

waves is likely to be even larger (see table V of Kitaigorodskii et al. 1983). Sin
e the transition

between the gravity and 
apillary regimes of surfa
e waves o

urs at a wavelength � 1:7
m, the

�rst 
ondition of (2.3) is typi
ally satis�ed if the wave that distorts the turbulen
e is a gravity

wave. Then, if it is noted that, in the deep-water gravity wave regime, the dispersion relation

gives �

w

= (2�g=�

w

)

1

2

, the se
ond equation of (2.3) may also be expressed as a 
ondition on the

wavelength, and (2.3) takes the more 
ompa
t form

l � �

w

� 2�g

�

l

u

a

w

k

w

�

2

: (2.4)

Taking the reasonable values l = 5
m, u = 1
m s

�1

, a

w

k

w

= 0:1, and g = 9:8m s

�1

, the following
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estimate for the range of appli
ability of the model is obtained:

5
m� �

w

� 15:4m: (2.5)

This 
ondition is easily satis�ed for laboratory waves, and for an important fra
tion of the gravity

waves existing in the o
ean. The s
alings of Bel
her et al. (1994) 
on�rm that the RDT assumption

is valid in the water 
ow in most situations, ex
ept very near the interfa
e.

2.1. Mathemati
al formulation

In applying RDT to mean 
ows as 
omplex as a progressive surfa
e wave, it is 
onvenient to

express the vorti
ity equation (2.2) in the intrinsi
ally Lagrangian form due to Cau
hy (Bat
helor

& Proudman 1954),

!

i

(x; t) =

�x

i

�a

j

!

j

(a; 0); (2.6)

where

x

i

(a; t) = a

i

+

Z

t

0

U

i

(x; t

0

)dt

0

(2.7)

is the position at time t of a 
uid par
el with initial position a

i

. �x

i

=�a

j

is the strain tensor, whi
h

gives the ratio of the separations, along the 3 
oordinate dire
tions, of two in�nitesimally distant

material parti
les at a given time, following the 
uid motion, and at the initial time. In (2.6), the

Cau
hy equation is already linearised, like (2.2), be
ause that is the form relevant for the present

RDT problem, and 


i

= 0 has been assumed, be
ause the wave is irrotational. If the mean 
ow

was not irrotational, (2.6) would have to in
lude 


i

as well, and the strain tensor would in
lude the

distortion of the mean vorti
ity by the turbulent velo
ity, as pointed out re
ently by Nazarenko,

Kevlahan & Dubrulle (1999). This would make the 
al
ulations mu
h more 
ompli
ated.

Given the initial turbulent velo
ity �eld u

i

(a; 0), the initial turbulent vorti
ity ! = r � u is

obtained by taking the 
url and, on
e the strain tensor is known, the �nal velo
ity �eld may be

re
overed from the �nal vorti
ity obtained from (2.6) by solving the equation

r

2

u = �r� !; (2.8)

whi
h results from taking the 
url of the de�nition of turbulent vorti
ity. The remaining problem,

therefore, is determining �x

i

=�a

j

as a fun
tion of the mean velo
ity �eld.

Durbin (1978) noted that the form taken by the strain tensor is 
onsiderably simpli�ed if the
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RDT problem is formulated in a streamline 
oordinate system. In fa
t, su
h formulation is not only

advantageous for simplifying the form taken by the equations of motion but also for simplifying

the boundary 
onditions, whi
h would otherwise be awkward to impose. Therefore, in the present

model, a 
urvilinear 
oordinate system is adopted, where x

1

(the dire
tion along whi
h the wave

propagates) is repla
ed by �, the velo
ity potential of the wave motion, x

2

remains as the 
ross-

stream horizontal 
oordinate and x

3

(the verti
al 
oordinate) is repla
ed by  , the streamfun
tion.

The new 
urvilinear 
oordinates are de�ned by the relations

U

1

=

��

�x

1

=

� 

�x

3

; U

3

=

��

�x

3

= �

� 

�x

1

: (2.9)

The spatial 
oordinates and 
omponents of ve
tors in the new 
urvilinear system retain the sub-

s
ripts 1, 2 and 3, respe
tively, for the dire
tion along the streamlines, horizontally a
ross the

streamlines and along lines of 
onstant potential, but are distinguished from their Cartesian 
oun-

terparts by a tilde. The in�nitesimal length element in the dire
tion along the streamlines is

~

U

�1

1

d�, where

~

U

1

= (U

2

1

+ U

2

3

)

1

2

and the length element along the lines of 
onstant potential is

~

U

�1

1

d . The spatial derivatives along the 3 new 
oordinate dire
tions are then de�ned as

�

�~x

1

=

~

U

1

�

��

;

�

�~x

2

=

�

�x

2

;

�

�~x

3

=

~

U

1

�

� 

: (2.10)

The 
ow 
on�guration and 
oordinate systems for a surfa
e wave propagating in the positive x

1

dire
tion are presented s
hemati
ally in �gure 1. Note that the orientation of the 
urvilinear


oordinates is approximately in the opposite dire
tion to the Cartesian 
oordinates (ex
ept for

~x

2

), with ~x

1

pointing to the left and ~x

3

pointing downwards.

In the 
urvilinear 
oordinate system, the linearised Cau
hy equation takes a form analogous to

(2.6), but the strain tensor is 
onsiderably simpler than when expressed in a Cartesian 
oordinate

system, namely

�
~
x

�
~
a

=

0

B

B

B

B

B

B

�

~

U

1

=

~

U

10

0

~

U

1

��

0

=�~a

3

�

~

U

10

��=�~x

3

0 1 0

0 0

~

U

10

=

~

U

1

1

C

C

C

C

C

C

A

; (2.11)

where the subs
ript 0 denotes variables evaluated at the initial time, before any turbulen
e distor-
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x3

x1

2aw

=const.ψ

φ =const.

x1

x3

~

~

wλ

Figure 1. S
hemati
 diagram of the model problem in a frame of referen
e travelling with the wave,

showing the streamlines (solid) and lines of 
onstant potential (dotted), and the Cartesian and 
urvilinear


oordinate systems.

tion has taken pla
e, and � is the travel time of a 
uid par
el, de�ned as

� =

Z

�

d�

0

~

U

2

1

: (2.12)

For turbulen
e 
owing around a blu� body the `initial position', where the turbulen
e is undis-

torted, is in�nitely upstream of the body, so U

10

is the free-stream velo
ity, whi
h is assumed


onstant (Hunt 1973; Durbin 1981). As a 
onsequen
e, ��

0

=�~a

3

= 0 and (2.11) simpli�es further.

If the mean 
ow is a periodi
 wave, however, there is no obvious 
hoi
e for the initial position,

whi
h has to be imposed more arbitrarily.

~

U

10

and ��

0

=�~a

3

then depend on the lo
ation of the

initial position relative to the phase of the wave and must be retained in (2.11). This dependen
e

of the model on the initial position will be explored in x3. In the 
ase of turbulen
e generated by

a breaking wave, it is perhaps to be expe
ted that the turbulen
e is inje
ted at the forward slope

of the wave (Rapp & Melville 1990), and as a result, most of the 
al
ulations presented in x3 use

this as the initial position.

2.2. The mean velo
ity �eld

The mean velo
ity �eld 
onsidered in the present model is that asso
iated with a relatively small-

amplitude, mono
hromati
 surfa
e wave, expressed in a frame of referen
e travelling with the

phase velo
ity of the wave 


w

= �

w

=k

w

. Following Longuet-Higgins (1984), the wave motion is

expressed here as a fun
tion of the 
urvilinear 
oordinates � and  , but only the �rst term in the


orresponding series expansion (his equation (4.4)) is 
onsidered. This is a good approximation
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for low wave slopes. The horizontal and verti
al velo
ity 
omponents are

U

1

= 


w

�

a

w

k

w

e

�k

w

 =


w


os(k

w

�=


w

)� 1

�

U

3

= �


w

a

w

k

w

e

�k

w

 =


w

sin(k

w

�=


w

); (2.13)

whi
h satisfy 
ontinuity and irrotationality, and lead to

~

U

1

= 


w

�

1 + a

2

w

k

2

w

e

�2k

w

 =


w

� 2a

w

k

w

e

�k

w

 =


w


os(k

w

�=


w

)

�

1

2

: (2.14)

The advantage of this pe
uliar formulation of the wave motion is that it enables an analyti
al

evaluation of the travel time fun
tion � . On performing the integration over �

0

in (2.12), the result

is

�(�;  ) =

2




w

k

w

1

1� a

2

w

k

2

w

e

�2k

w

 =


w

�

ar
tan

�

1 + a

w

k

w

e

�k

w

 =


w

1� a

w

k

w

e

�k

w

 =


w

tan

�

k

w

�

2


w

��

+�Int

�

k

w

�=


w

+ �

2�

��

+ f( ); (2.15)

where f is an arbitrary fun
tion and Int denotes `integer part'. The se
ond term between square

bra
kets has to be introdu
ed in order for � to be a monotoni
ally in
reasing fun
tion of the

velo
ity potential, be
ause the ar
tan fun
tion is limited to take values in the interval (��=2; �=2).

It 
an be shown from (2.15) that the travel time fun
tion is approximately equal to �=


2

w

+ f( )

for very low wave slopes, but deviates systemati
ally towards higher values for larger a

w

k

w

. This

is a manifestation of the Stokes drift of the wave. The 
onne
tion between the Stokes drift of a

surfa
e wave and the so-
alled `Darwin drift' (whi
h is 
losely related to the travel time fun
tion)

has been noted re
ently by Eames & M
Intyre (1999), although they did not 
al
ulate � expli
itly.

From (2.11), (2.14) and (2.15), it follows that the strain tensor is spe
i�ed 
ompletely as a

fun
tion of � and  , �

0

and  

0

. Therefore, to obtain the evolution of the turbulen
e along the

wave pro�le, values for �

0

and  

0

must be 
hosen to spe
ify the initial position, and then the

relevant turbulent quantities may be 
al
ulated along a streamline ( =  

0

), for di�erent values of

� (this is done below). However, it would be 
onvenient to express the results as a fun
tion of more

physi
ally signi�
ant variables like time or spa
e. A rigorous relation between the Cartesian and

the 
urvilinear 
oordinates requires the numeri
al resolution of impli
it equations, but a simple

approximation, valid for low wave slopes, is readily available. Equations (2.9) and (2.13) show

that, to zeroth order in the wave slope, � � �


w

x

1

and �

0

� �


w

a

1

. Now, to the same order of
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approximation, it follows from (2.7) that x

1

� a

1

� 


w

t. Then, subtra
ting the initial from the

�nal potential, �� �

0

= �


w

(x

1

� a

1

) = 


2

w

t, so that �nally

t � (�� �

0

)=


2

w

: (2.16)

This shows that the Eulerian time 
an be approximately related to the potential fun
tion. When

the turbulen
e statisti
s are plotted as a fun
tion of time, in x3, t will always be de�ned a

ording

to (2.16), so it must be re
alled, when interpreting the results, that (2.16) is only an approximate

equality.

2.3. Solution in terms of Fourier modes

Far from the free surfa
e, the turbulen
e is not a�e
ted by the wave nor dire
tly by the boundary,

and remains homogeneous, isotropi
 and stationary. Now, by assumption the s
ale over whi
h the

motion asso
iated with the wave varies, �

w

, is mu
h larger than the initial integral length s
ale

of the turbulen
e (see the �rst equation of (2.3)), and so at distan
es from the free surfa
e in

the range l < ~x

3

< �

w

, the turbulen
e is distorted by the wave motion but not dire
tly by the

boundary. In this region the turbulen
e is lo
ally homogeneous, in the sense that it varies over

a length s
ale that is mu
h larger than its integral s
ale l. So, for depths greater than l, it is

justi�ed to represent the turbulent velo
ity as a three-dimensional Fourier integral, with spa
e and

time dependent wavenumbers that vary over the length s
ale �

w

, in order to a

ount for the slight

inhomogeneity of the mean 
ow. This is the slow-variation approximation, also used by Durbin

(1981). In the 
urvilinear 
oordinate system, the turbulent velo
ity is thus

~u

(H)

i

(
~
x; t) =

ZZZ

^

~u

(H)

i

(

~

k;
~
x; t)e

i

~

k �
~
x

d

~

k

1

d

~

k

2

d

~

k

3

; (2.17)

where

~

k(
~
x; t) = (

~

k

1

;

~

k

2

;

~

k

3

) is the wavenumber ve
tor, and the spatial 
oordinates in the plane of

the wave motion 
an be approximated lo
ally as ~x

1

= �=

~

U

1

, ~x

3

=  =

~

U

1

. The vorti
ity of the

turbulen
e may be expressed in a formally similar way:

~!

(H)

i

(
~
x; t) =

ZZZ

^

~!

(H)

i

(

~

k;
~
x; t)e

i

~

k �
~
x

d

~

k

1

d

~

k

2

d

~

k

3

: (2.18)

Invoking the slow-variation approximation, it is now possible to relate the Fourier amplitudes of

the turbulent velo
ity and of the turbulent vorti
ity through an algebrai
 relation, in exa
tly the
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same way as in a Cartesian 
oordinate system, namely

^

~!

(H)

i

= "

ijk

i

~

k

j

^

~u

(H)

k

; (2.19)

where terms of higher order in the parameter (l=�

w

) have been ignored. Taking the external

produ
t of the wavenumber ve
tor with this expression, an equation equivalent to (2.8) in the

spe
tral domain is obtained,

^

~u

(H)

i

= "

ijk

i

~

k

j

k

2

^

~!

(H)

k

; (2.20)

where k = (

~

k

2

1

+

~

k

2

2

+

~

k

2

3

)

1

2

is the wavenumber magnitude.

The Cau
hy equation 
an be expressed in terms of Fourier amplitudes by using (2.6) (with tildes

in the 
urvilinear 
oordinate system) and (2.18), yielding

^

~!

(H)

i

(

~

k;
~
x; t) =

�~x

i

�~a

j

e

i(

~

k

0

�
~
a�

~

k �
~
x)

^

~!

(H)

j

(

~

k

0

;
~
a; 0);

~

k

i

(
~
x; t) =

�~a

j

�~x

i

~

k

0j

; (2.21)

where

~

k

0

= (

~

k

01

;

~

k

02

;

~

k

03

) =

~

k(
~
a; 0) is the wavenumber ve
tor at the initial time. These two

equations give the Lagrangian temporal evolution of, respe
tively, the Fourier amplitude of the

turbulent vorti
ity and the wavenumber ve
tor. Applying (2.19) to obtain the initial vorti
ity am-

plitude in (2.21) as a fun
tion of the velo
ity amplitude and inserting the �nal vorti
ity amplitude

given by (2.21) into (2.20) yields

^

~u

(H)

i

(

~

k;
~
x; t) = �"

ijk

"

lmn

~

k

j

~

k

0m

k

2

�~x

k

�~a

l

e

i(

~

k

0

�
~
a�

~

k �
~
x)

^

~u

(H)

n

(

~

k

0

;
~
a; 0); (2.22)

whi
h, together with (2.11), the se
ond equation of (2.21) and (2.17), 
ompletely de�nes the �nal

distorted turbulent velo
ity �eld as a fun
tion of the initial undistorted turbulent velo
ity �eld.

2.4. Blo
king e�e
t of the boundary

At distan
es from the free surfa
e of O(l) or shorter, the turbulen
e is no longer lo
ally homoge-

neous, sin
e it is for
ed to adjust to the boundary. For the turbulen
e with low Froude and Weber

numbers 
onsidered here, the e�e
t of the boundary is primarily blo
king (Bro

hini & Peregrine

2000), so that the normal velo
ity 
omponent redu
es to zero at the boundary. This e�e
t is

in
luded in the model by adding an irrotational 
orre
tion to the turbulent velo
ity �eld (Hunt &

Graham 1978). Equation (2.2) ensures that, for an irrotational mean 
ow, an initially irrotational
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velo
ity remains irrotational at all subsequent times. The total velo
ity �eld thus be
omes

~u

i

= ~u

(H)

i

+

��

(S)

�~x

i

; i = 1; 2; 3; (2.23)

where �

(S)

(
~
x; t) is a velo
ity potential satisfying

r

2

�

(S)

= 0; (2.24)

subje
t to boundary 
onditions that ensure that the turbulent velo
ity is zero at the boundary and

vanishes far from it:

��

(S)

�~x

3

(~x

3

= 0) = �~u

(H)

3

(~x

3

= 0) and �

(S)

(~x

3

!1) = 0: (2.25)

Although the velo
ity potential �

(S)

de
ays rapidly to zero for ~x

3

> l, it remains lo
ally ho-

mogeneous along the other two 
oordinate dire
tions, so it 
an be expressed as a two-dimensional

Fourier integral as follows:

�

(S)

(
~
x; t) =

ZZ

^

�

(S)

(

~

k

1

;

~

k

2

;
~
x; t)e

i(

~

k

1

~x

1

+

~

k

2

~x

2

)

d

~

k

1

d

~

k

2

: (2.26)

Invoking again the slow-variation approximation, the solution of (2.24) whi
h 
an be expressed in

the form (2.26) and satis�es the boundary 
onditions (2.25), is formally identi
al to that found by

Hunt & Graham (1978) for turbulen
e near a 
at wall, namely

^

�

(S)

(

~

k

1

;

~

k

2

;
~
x; t) =

Z

^

~u

(H)

3

(

~

k;
~
x; t)

~

k

12

e

�

~

k

12

~x

3

d

~

k

3

; (2.27)

where

~

k

12

= (

~

k

2

1

+

~

k

2

2

)

1

2

. This expression di�ers only from the solution obtained by by Hunt

& Graham in that the turbulen
e is not perfe
tly homogeneous along the ~x

1

and ~x

2

dire
tions,

be
ause the straining by the wave motion varies with ~x

1

and ~x

2

, so that both the wavenumber

~

k

and

^

~u

(H)

3

vary slowly in spa
e and time.

2.5. Complete solution

From (2.17), (2.23) and (2.26), it follows that the total turbulent velo
ity �eld must be given by a

two-dimensional Fourier integral in the form

~u

i

(
~
x; t) =

ZZ

^

~u

i

(

~

k

1

;

~

k

2

;
~
x; t)e

i(

~

k

1

~x

1

+

~

k

2

~x

2

)

d

~

k

1

d

~

k

2

; (2.28)

where the Fourier amplitude is de�ned by

^

~u

i

=

Z

^

~u

(H)

i

e

i

~

k

3

~x

3

d

~

k

3

+ i

~

k

i

^

�

(S)

; i = 1; 2;
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^

~u

3

=

Z

^

~u

(H)

3

e

i

~

k

3

~x

3

d

~

k

3

+

�

^

�

(S)

�~x

3

: (2.29)

Taking into a

ount (2.22), (2.27) and (2.29), the Fourier amplitude of the total distorted turbu-

lent velo
ity (in
luding the e�e
ts of distortion by the wave and by the boundary) may be related

to the initial undistorted amplitude through

^

~u

i

(

~

k

1

;

~

k

2

;
~
x; t) =

Z

~

M

ij

(

~

k;
~
x; t)

^

~u

(H)

j

(

~

k

0

;
~
a; 0)d

~

k

3

; (2.30)

where the elements of the matrix

~

M

ij


an be seen as `transfer fun
tions' (Hunt 1973). As was just

seen, the blo
king e�e
t of the boundary may be taken into a

ount by applying the 
hanges due

to blo
king to the wave-distorted turbulen
e. Hen
e the fun
tions

~

M

ij

may be de
omposed as

~

M

ij

(

~

k;
~
x; t) =

~

B

ik

(

~

k;
~
x; t)

~

W

kj

(

~

k;
~
x; t); (2.31)

where the matrix

~

B

ik

a

ounts for blo
king and the matrix

~

W

ik

a

ounts for distortion by the

wave.

The e�e
t of the wave is dedu
ed from (2.22), and leads to

~

W

in

= �"

ijk

"

lmn

~

k

j

~

k

0m

k

2

�~x

k

�~a

l

e

i(

~

k

0

�
~
a�

~

k �
~
x)

; (2.32)

while the e�e
t of blo
king is dedu
ed from (2.27) and (2.29), yielding

~

B

ii

= e

i

~

k

3

~x

3

;

~

B

i3

= i

~

k

i

~

k

12

e

�

~

k

12

~x

3

; i = 1; 2;

~

B

33

= e

i

~

k

3

~x

3

� e

�

~

k

12

~x

3

; (2.33)

with the remaining elements of

~

B

ij

being equal to zero.

The turbulent velo
ity distorted by both the wave orbital motion and by the boundary is thus


ompletely de�ned as a fun
tion of the undistorted turbulent velo
ity. It remains to pres
ribe the


hara
teristi
s of the undistorted turbulen
e and to 
al
ulate statisti
s of the turbulen
e at various

stages of distortion.

2.6. Statisti
s of the turbulent velo
ity �eld

In order to analyse the stru
ture of the turbulen
e, statisti
s of the turbulent velo
ity �eld are re-

quired. The intensity and 
orrelation of the velo
ity 
u
tuations are 
hara
terised by the Reynolds
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stresses. These may be 
al
ulated from the Fourier amplitudes of the turbulent velo
ity using

~u

i

~u

j

=

ZZZZ

^

~u

�

i

(

~

k

1

;

~

k

2

)

^

~u

j

(

~

k

0

1

;

~

k

0

2

)d

~

k

1

d

~

k

2

d

~

k

0

1

d

~

k

0

2

; (2.34)

where the asterisk denotes 
omplex 
onjugation and the overbar denotes ensemble averaging. Equa-

tion (2.30) implies that

^

~u

�

i

(

~

k

1

;

~

k

2

)

^

~u

j

(

~

k

0

1

;

~

k

0

2

) =

ZZ

~

M

�

ik

(

~

k)

~

M

jl

(

~

k

0

)

^

~u

(H)�

k

(

~

k

0

)

^

~u

(H)

l

(

~

k

0

0

)d

~

k

3

d

~

k

0

3

: (2.35)

Now, the three-dimensional spe
trum of the initial undistorted turbulent velo
ity,

~

�

(H)

ij

, is de�ned

as

^

~u

(H)�

i

(

~

k

0

)

^

~u

(H)

j

(

~

k

0

0

) =

~

�

(H)

ij

(

~

k

0

)Æ(

~

k

0

�

~

k

0

0

); (2.36)

hen
e (2.34) and (2.35) 
an be used to obtain a simpli�ed expression for the Reynolds stresses:

~u

i

~u

j

=

ZZZ

~

M

�

ik

~

M

jl

~

�

(H)

kl

d

~

k

1

d

~

k

2

d

~

k

3

: (2.37)

The spatial stru
ture of the turbulent velo
ity 
u
tuations is 
hara
terised by the integral length

s
ales of the turbulen
e. For the velo
ity 
u
tuations ~u

i

and ~u

j

and along the dire
tion ~x

l

these

are de�ned by

~

L

(l)

ij

= �

~

�

(l)

ij

(

~

k

l

= 0)

~u

i

~u

j

; (2.38)

where

~

�

(l)

ij

is the one-dimensional wavenumber spe
trum, along the ~x

l

dire
tion, of the velo
ity


u
tuations ~u

i

and ~u

j

. Hen
e

~

L

(l)

ij

is interpreted as the length over whi
h the ~u

i

and the ~u

j

velo
ity


u
tuations are 
orrelated in the dire
tion ~x

l

. The one-dimensional spe
trum along ~x

1

is de�ned

in terms of

~

�

(H)

kl

as

~

�

(1)

ij

(

~

k

1

; ~x

3

; t) =

ZZ

~

M

�

ik

~

M

jl

~

�

(H)

kl

d

~

k

2

d

~

k

3

; (2.39)

and an analogous de�nition is valid for the spe
trum along ~x

2

.

The undistorted turbulen
e is assumed to be isotropi
, so its three-dimensional spe
trum is

related to the energy spe
trum in the following way:

~

�

(H)

ij

(

~

k

0

) =

 

Æ

ij

�

~

k

0i

~

k

0j

k

2

0

!

E(k

0

)

4�k

2

0

; (2.40)

whereE(k

0

) is the energy spe
trum and k

0

= (

~

k

2

01

+

~

k

2

02

+

~

k

2

03

)

1

2

is the initial wavenumber magnitude.

Following Hunt & Graham (1978), the well-known von K�arm�an energy spe
trum, whi
h mimi
s
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an inertial subrange at high wavenumbers, is adopted here,

E(k

0

) = u

2

l

g

2

(k

0

l)

4

(g

1

+ (k

0

l)

2

)

17

6

; (2.41)

where g

1

= 0:558 and g

2

= 1:196 are dimensionless 
onstants. In this equation and hereafter, the

length s
ale of the turbulen
e l is de�ned as the initial longitudinal integral length s
ale of any

velo
ity 
omponent, i.e. l =

~

L

(i)

ii

(t = 0), for i = 1; 2; 3.

All the statisti
s derived in this subse
tion are expressed in the 
urvilinear 
oordinate system

aligned with the streamlines. However, these 
an readily be 
ompared with statisti
s measured in

a Cartesian 
oordinate system, be
ause the two 
oordinate systems are approximately equivalent

for waves of low slope, and in fa
t 
oin
ide exa
tly at the wave 
rests and at the wave troughs.

2.7. Important parameters

There are seven basi
 variables 
ontrolling the behaviour of the present model: three of them are

determined by the mean 
ow, in this 
ase a surfa
e wave. They are the amplitude a

w

, wavenumber

k

w

and phase velo
ity 


w

of the wave. Two further variables 
hara
terise the turbulen
e: the initial

RMS turbulent velo
ity u and the initial integral length s
ale l. The remaining two variables are

introdu
ed by the initial 
onditions and the duration of the intera
tion between the turbulen
e

and the wave: they are, respe
tively, the initial position relative to the wave phase, ~a

1

, whi
h may

be approximated as ~a

1

� �

0

=


w

, and time t, whi
h as was seen in x2.2 is t � (� � �

0

)=


2

w

. From

these variables, it is possible to 
onstru
t �ve independent dimensionless parameters:

a

w

k

w

; k

w

~a

1

; k

w




w

t = �

w

t; u=


w

; k

w

l: (2.42)

It turns out that the statisti
s of the velo
ity �eld do not depend on parameter u=


w

. This ratio

only in
uen
es the speed of the distortion of the turbulen
e by the wave, whi
h determines, for

example, the pressure. So, in the following se
tion, the sensitivity of the model results to the

4 remaining parameters will be tested. Graphs of the normalised Reynolds stresses ~u

i

~u

j

=u

2

and

integral length s
ales

~

L

(k)

ij

=l will be plotted as fun
tions of t=T , where T = 2�=�

w

is the wave

period, for di�erent values of a

w

k

w

, k

w

~a

1

and k

w

l. A few pro�les of the Reynolds stresses as a

fun
tion of ~x

3

=l will also be presented, for 
hosen values of a

w

k

w

, k

w

~a

1

, k

w

l and t=T .
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3. Results

Results for the distortion of turbulen
e during a single wave 
y
le will be shown in x3.1 and x3.2.

In x3.3, the distortion of the turbulen
e by the Stokes drift of the wave will be addressed, with

the presentation of results for the Reynolds stresses, turbulent kineti
 energy and integral length

s
ales of the turbulen
e. In both subse
tions, the blo
king e�e
t of the boundary is ignored. This

would 
orrespond in pra
ti
e to taking measurements at a depth ~x

3

� l. In x3.4, the blo
king

e�e
t of the boundary is brie
y examined, and found to lead to 
hanges to the results similar to

those predi
ted by Hunt & Graham (1978). In x3.5, some results for turbulen
e distorted by a

uniform shear are reprodu
ed, and 
ompared with the results obtained for turbulen
e distorted by

a wave. Finally, in x3.6 and x3.7, s
aling analyses of the energy equations are performed, in order

to estimate the energy transfer taking pla
e between the wave and the turbulen
e, and its e�e
t

on ea
h 
omponent of the 
ow. This allows quanti�
ation of the wave attenuation pro
ess due to

turbulen
e �rst identi�ed by Phillips (1959).

3.1. Turbulen
e modulation in a wave 
y
le

Figures 2{5 show graphs of the diagonal 
omponents of the Reynolds stress tensor (velo
ity vari-

an
es), as a fun
tion of time normalised by the wave period, for di�erent initial positions and

di�erent wave slopes. In �gure 2, the initial position is at the forward slope of the wave, in �gure

3, it is at the wave 
rest. In �gure 4, the initial position is at the ba
kward slope of the wave and

in �gure 5 it is at the wave trough.

Figures 2{5 show that the modulation of the Reynolds stresses by the wave intensi�es as the

wave steepness in
reases, as would be expe
ted. This modulation is approximately sinusoidal at

the lowest slopes, but be
omes more asymmetri
 as a

w

k

w

in
reases. This is partly due to the


urvilinear 
oordinate system used be
ause � varies faster at the wave troughs than at the wave


rests and the de�nition of t is based on � (see (2.16)). For the highest slopes 
onsidered, the value

of the Reynolds stresses does not repeat itself after one 
omplete 
y
le. This is a manifestation of

the irreversible part of the distortion, whi
h is 
aused by the Stokes drift, and will be treated in

x3.3.

The Reynolds stress tangential to the free surfa
e in the streamwise dire
tion, ~u

2

1

, attains a
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Figure 2. Modulation of the Reynolds stresses during a wave 
y
le, for turbulen
e initially at the forward

slope of the wave, for ~x

3

= 0, k

w

l = 0:6. Solid line: a

w

k

w

= 0:05, dotted line: a

w

k

w

= 0:1, dashed line:

a

w

k

w

= 0:15, dash-dotted line: a

w

k

w

= 0:2, hat
hed pro�le: shape of the distorting wave (arbitrary s
ale).

(a) streamwise 
omponent, (b) spanwise 
omponent, (
) normal 
omponent.

maximum approximately at the wave 
rest and a minimum at the wave trough. The Reynolds

stress normal to the free surfa
e, ~u

2

3

, attains a maximum at the wave trough and a minimum at

the wave 
rest. The tangential Reynolds stress in the 
ross-stream or spanwise dire
tion, ~u

2

2

, �rst

in
reases and then de
reases, attaining a maximum approximately in the middle of the wave 
y
le,

independent of the initial position.

Experimental and theoreti
al support for an in
rease in the intensity of the verti
al velo
ity


u
tuations and a de
rease in the intensity of the streamwise velo
ity 
u
tuations at a hill 
rest

(here equivalent to a wave trough) is provided by the work of Britter, Hunt & Ri
hards (1981)

(their equation (3.3) and their �gure 4b). Further experimental support for the predi
ted Reynolds
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Figure 3. Same as �gure 2, but for turbulen
e initially at the wave 
rest.

stress modulation 
an be found in �gure 10 of Thais & Magnaudet (1996), where the streamwise

Reynolds stress is greater than the verti
al stress at the wave 
rest, while the reverse happens at

the wave trough.

The modulation of the streamwise and normal Reynolds stresses has a peak-to-peak amplitude

of � 0:2 for a wave slope of a

w

k

w

= 0:1 and � 0:4 for a

w

k

w

= 0:2, whereas the modulation of

the spanwise Reynolds stress has smaller amplitude, perhaps � 0:1 for a

w

k

w

= 0:1 and � 0:2 for

a

w

k

w

= 0:2. Although the data of Thais & Magnaudet (1996) are a�e
ted by a stronger turbulen
e

intensity at the wave trough, where the �xed probe almost tou
hes the free-surfa
e, it is possible to

estimate the peak to peak modulations of the streamwise and verti
al Reynolds stresses from their

�gure 10 by determining the value by whi
h the streamwise stress ex
eeds the verti
al stress at the

wave 
rest and the verti
al stress ex
eeds the streamwise stress at the wave trough. From visual
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Figure 4. Same as �gure 2, but for turbulen
e initially at the ba
kward slope of the wave.

inspe
tion, this is estimated as � 0:2� 0:3, for a wave slope of � 0:1, and is therefore 
onsistent

with the present results. These results will now be explained using a simpli�ed model.

3.2. Simpli�ed model for distortion over a wave 
y
le

To �rst order in the wave slope, the distorting e�e
t of a progressive surfa
e wave on turbulen
e


an be understood if the wave is des
ribed in a �xed Cartesian 
oordinate system, where the orbital

motion 
an be written

U

1

(x

1

; x

3

) = 


w

a

w

k

w

e

k

w

x

3


os(k

w

x

1

� �

w

t);

U

3

(x

1

; x

3

) = 


w

a

w

k

w

e

k

w

x

3

sin(k

w

x

1

� �

w

t) (3.1)

for a surfa
e elevation

� = a

w


os(k

w

x

1

� �

w

t): (3.2)
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Figure 5. Same as �gure 2, but for turbulen
e initially at the wave trough.

If (2.7) is di�erentiated with respe
t to the initial position, it is found that

�x

i

�a

j

= Æ

ij

+

Z

t

0

�U

i

�x

k

�x

k

�a

j

dt

0

: (3.3)

When the wave slope is suÆ
iently low, the distortion is relatively weak and the strain tensor

inside the integral may be approximated as �x

k

=�a

j

� Æ

kj

. On the other hand, the integration in

time may be 
hanged from an integration following the 
uid par
els to a time integration at a �xed

point. Then, di�erentiating the expressions (3.1) and inserting them into the integrals of (3.3), it

is found after integration that, for small a

w

k

w

, the following expressions are approximately valid:

�x

1

�a

1

= 1� a

w

k

w

e

k

w

x

3

[
os(k

w

x

1

� �

w

t)� 
os(k

w

x

1

)℄ ;

�x

1

�a

3

=

�x

3

�a

1

= �a

w

k

w

e

k

w

x

3

[sin(k

w

x

1

� �

w

t)� sin(k

w

x

1

)℄

�x

3

�a

3

= 1 + a

w

k

w

e

k

w

x

3

[
os(k

w

x

1

� �

w

t)� 
os(k

w

x

1

)℄
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�x

1

�a

2

=

�x

2

�a

1

=

�x

2

�a

3

=

�x

3

�a

2

= 0;

�x

2

�a

2

= 1: (3.4)

These expressions show that �x

1

=�a

1

is in phase opposition to the surfa
e elevation and thus attains

a maximum at the wave troughs and a minimum at the wave 
rests. This is best understood in

the 
oordinate system travelling with the wave as being the result of the a

eleration that the 
uid

su�ers as it moves from 
rest to trough. �x

3

=�a

3

, on the other hand, is in phase with the surfa
e

elevation and attains a maximum at the 
rests and a minimum at the troughs. This result follows

from the previous one by 
ontinuity: a 
uid par
el that is stret
hed in one dire
tion, must 
ontra
t

in the other.

The e�e
t of this distortion on the vorti
ity is shown s
hemati
ally in �gure 6. At the wave 
rests,

the 
uid par
els are stret
hed verti
ally and 
ompressed in the streamwise dire
tion, leading to

an intensi�
ation of the verti
al vorti
ity and a weakening of the streamwise vorti
ity. Conversely,

at the wave troughs the 
uid par
els are stret
hed in the streamwise dire
tion and 
ompressed in

the verti
al, leading to an ampli�
ation of the streamwise vorti
ity and a weakening of the verti
al

vorti
ity.

The streamwise vorti
ity has 
ontributions from the spanwise and verti
al velo
ity 
omponents

and the verti
al vorti
ity has 
ontributions from the streamwise and spanwise velo
ity. Therefore,

at the wave 
rests, the streamwise turbulen
e intensity should in
rease and the verti
al turbu-

len
e intensity should de
rease, while at the troughs, the streamwise turbulen
e intensity should

de
rease and the verti
al turbulen
e intensity should in
rease. This reasoning seems to explain the

qualitative behaviour of ~u

2

1

and ~u

2

3

over one wave 
y
le.

It 
an also be seen from (3.4) that �x

1

=�a

3

and �x

3

=�a

1

are both out of phase by �=2 relative

to the surfa
e elevation, attaining maxima at the ba
kward slope of the wave and minima at the

forward slope. These 
omponents of the strain tensor lead to additional irrotational tilting and

stret
hing of vorti
ity, whose e�e
ts on the Reynolds stresses are not as obvious as those asso
iated

with the diagonal 
omponents.

The diagonal 
omponents of the strain tensor are the extensions su�ered by the 
uid in the 3


oordinate dire
tions, de�ned as e

i

= �x

i

=�a

i

. For a slab-symmetri
 straining 
ow in the x

1

� x

3

plane with the prin
ipal axes aligned with the Cartesian 
oordinate system (Townsend 1976), these
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extensions have to satisfy

e

1

= �; e

2

= 1; e

3

= �

�1

(3.5)

due to 
ontinuity. In the present 
ase, it follows from (3.4) that

� � 1� a

w

k

w

e

k

w

x

3

[
os(k

w

x

1

� �

w

t)� 
os(k

w

x

1

)℄ : (3.6)

It is then possible to use equation (3.11.9) of Townsend (1976) to estimate the magnitude of the

Reynolds stress modulation attributable to the extensions in the wave velo
ity �eld. Townsend's

expressions state that, for � suÆ
iently 
lose to 1,

u

2

1

u

2

= 1�

4

5

� � �

�1

� + �

�1

u

2

2

u

2

= 1 +

8

35

(� � �

�1

)

2

u

2

3

u

2

= 1 +

4

5

� � �

�1

� + �

�1

: (3.7)

Substituting � using (3.6) and trun
ating to the lowest order with respe
t to the perturbation (in

this 
ase a

w

k

w

), (3.7) be
omes

u

2

1

u

2

= 1 +

4

5

a

w

k

w

e

k

w

x

3

[
os(k

w

x

1

� �

w

t)� 
os(k

w

x

1

)℄

u

2

2

u

2

= 1 +

32

35

a

2

w

k

2

w

e

2k

w

x

3

[
os(k

w

x

1

� �

w

t)� 
os(k

w

x

1

)℄

2

u

2

3

u

2

= 1�

4

5

a

w

k

w

e

k

w

x

3

[
os(k

w

x

1

� �

w

t)� 
os(k

w

x

1

)℄ : (3.8)

This 
on�rms that the existen
e of a maximum in the streamwise Reynolds stress at the 
rest

and a maximum in the normal Reynolds stress at the trough are due primarily to the extension and


ompression of the 
uid par
els. Equation (3.8) also explains why the spanwise Reynolds stress

always takes values above one independent of the initial position relative to the wave phase.

It is 
lear from (3.8) that both u

2

1

=u

2

and u

2

3

=u

2

are predi
ted to undergo os
illations of peak-

to-peak amplitude 8=5(a

w

k

w

). For a wave slope of a

w

k

w

= 0:2, this 
orresponds to � 0:32. On the

other hand, u

2

2

=u

2

is predi
ted to undergo os
illations of peak-to-peak amplitude 32=35(a

w

k

w

)

2

or

128=35(a

w

k

w

)

2

depending on the initial position relative to the wave phase. For a wave slope of

0.2, this 
orresponds to � 0:04 and 0:15 respe
tively. These results are roughly 
onsistent with

what is observed in �gures 2{5.

The di�eren
es between the predi
tions of this simpli�ed model and those from the full model
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Figure 6. S
hemati
 diagram showing the vorti
ity stret
hing and 
ompression indu
ed by the orbital

motion at the 
rest and at the trough of a surfa
e wave, in a frame of referen
e travelling with the wave.

are due to two fa
tors: the negle
t of the non-diagonal 
omponents of the strain tensor at all wave

slopes, and the negle
t of the Stokes drift, parti
ularly at the higher slopes.

Equation (3.8) also helps to understand how the behaviour of the Reynolds stresses depends

on the initial 
onditions. Due to the way in whi
h the streamwise and normal Reynolds stresses

are modulated, when the initial position is, for example, at a 
rest (�gure 3a), the streamwise

Reynolds stress departs from a maximum value, whi
h 
an not be ex
eeded during its os
illation,

whereas the normal Reynolds stress departs from a minimum (�gure 3
). This 
orresponds to

setting k

w

x

1

= 0 in (3.8), whi
h implies indeed that u

2

1

=u

2

is never larger than 1 and u

2

3

=u

2

is

never smaller than 1. When the initial position is at a trough (k

w

x

1

= �), exa
tly the reverse

o

urs, as 
an be 
on�rmed in �gures 5(a,
).

Given the assumption of initial isotropy of the RDT model, it would seem that the most `natural'

initial positions are those in between 
rests and troughs, be
ause at those positions both the

streamwise and normal Reynolds stresses are in the middle of their os
illations, and the 
ow

appears as little distorted as possible. However, the same is still not true for the spanwise Reynolds

stress, u

2

2

, sin
e this stress always departs from a minimum. The problem, whi
h is 
lear inspe
ting

(3.4), is that there is no region in a mono
hromati
 surfa
e wave where the 
ow 
an be 
onsidered

naturally undistorted. Any possible 
hoi
e of initial position k

w

x

1

in (3.4) leads either the diagonal

or the o�-diagonal 
omponents of the strain tensor to os
illate asymmetri
ally with respe
t to the

initial state.
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3.3. E�e
t of the Stokes drift

The distortion of the turbulen
e by the Stokes drift be
omes 
lear after a 
onsiderable number of

wave 
y
les.

Figure 7 shows the evolution of the diagonal 
omponents of the Reynolds stress tensor during

10 wave 
y
les, for a wave slope of 0.2 and di�erent initial positions. The streamwise Reynolds

stress, ~u

2

1

, attains maxima at the wave 
rests; the normal Reynolds stress, ~u

2

3

, attains maxima at

the wave troughs. The spanwise Reynolds stress, ~u

2

2

, always in
reases initially irrespe
tive of the

phase relation to the wave, as observed in �gures 2(b), 3(b), 4(b) and 5(b). After a few periods it

be
omes phase-lo
ked to the normal stress, attaining maxima at the wave troughs.

More importantly, the magnitude of the streamwise Reynolds stress progressively de
reases,

while the magnitudes of both the spanwise and the normal Reynolds stress progressively in
rease

at a 
ommon rate. For the slope 
onsidered (a

w

k

w

= 0:2), ~u

2

1

be
omes approximately half of its

initial value after 10 wave 
y
les, while ~u

2

2

and ~u

2

3

in
rease by a fa
tor of about 4. This means

that the turbulen
e be
omes mu
h more intense in the dire
tions perpendi
ular to the dire
tion of

wave propagation. In other words: the turbulen
e be
omes dominated by vorti
es with their axes

of rotation aligned with the streamwise dire
tion, as is the 
ase in Langmuir 
ir
ulations.

These results should be 
ompared with those presented in �gure 6 of M
Williams et al. (1997),

from large-eddy simulations (LES) of turbulent 
ow in the o
ean surfa
e layer. Their �gure shows

pro�les of the Reynolds stresses for turbulen
e in a shear 
urrent (without the e�e
t of a Stokes

drift) and when both shear and a Stokes drift are present, with the Stokes drift presumably having

the dominant role (Langmuir turbulen
e). In the 
ase of Langmuir turbulen
e, the spanwise and

normal 
omponents of the Reynolds stress are distin
tly larger than the streamwise 
omponent.

This is 
onsistent with the results of �gure 7.

The physi
al me
hanism for the intensi�
ation of the streamwise vorti
es in the present model

is the same as me
hanism CL2 of Craik & Leibovi
h (1976) for the generation of Langmuir 
ir
u-

lations. It involves the tilting of verti
al vorti
ity by the Stokes drift of the wave and its ampli-

�
ation as streamwise vorti
ity (�gure 8). The di�eren
e is that the Craik-Leibovi
h formulation

departs from an in�nitesimal verti
al vorti
ity perturbation arising from transverse variations of
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Figure 7. Evolution of the Reynolds stresses over 10 wave 
y
les, for ~x

3

= 0, k

w

l = 0:6, a

w

k

w

= 0:2. Solid

line: streamwise 
omponent, dotted line: spanwise 
omponent, dashed line: normal 
omponent, hat
hed

pro�le: shape of the distorting wave (arbitrary s
ale). Turbulen
e initially at: (a) forward slope of wave,

(b) wave 
rest, (
) ba
kward slope of wave, (d) wave trough.

the wind-indu
ed shear 
urrent, whereas in the present model, there is initially a �nite and isotropi


distribution of vorti
ity, asso
iated with the turbulen
e. In both 
ases, the Stokes drift sele
tively

ampli�es the verti
al vorti
ity 
omponent as streamwise vorti
ity.

Figure 9 shows the time evolution of the Reynolds shear stress, ~u

1

~u

3

, during 10 wave 
y
les,

for the same 
onditions as �gure 7. Sin
e the turbulen
e is initially isotropi
, the shear stress

is initially zero. However, as the turbulen
e evolves, the shear stress grows to a negative value,

stabilising at � �0:7u

2

. Like the velo
ity varian
es, the shear stress also os
illates during a wave


y
le. At initial stages in the turbulen
e evolution, shear stress maxima (in absolute value) 
oin
ide
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ω ωStokes drift

cw

Figure 8. S
hemati
 diagram showing the tilting and stret
hing of the verti
al vorti
ity 
arried out by

the Stokes drift of a surfa
e wave over a number of wave 
y
les, in a �xed frame of referen
e.

with the ba
kward slopes of the waves, and shear stress minima with the forward slopes. After 10

wave 
y
les, as the shear stress appears to attain a stable mean value, the maxima o

ur instead

at the wave 
rests and the minima o

ur at the wave troughs.

Physi
ally, the existen
e of a non-zero shear stress in the turbulen
e is due to the skewing of the

velo
ity 
u
tuations 
arried out by the Stokes drift. As the vorti
ity is tilted from the verti
al to

an orientation sloping along the dire
tion of wave propagation, it is at the same time ampli�ed.

Then, positive streamwise velo
ity 
u
tuations tend to be asso
iated with negative normal velo
ity


u
tuations, thereby making ~u

1

~u

3

negative (see �gure 8). The existen
e of a non-zero shear stress

has important 
onsequen
es for the energy balan
e of the turbulen
e, as will be seen in x3.6.

Figure 10 shows the time evolution of the turbulent kineti
 energy (TKE), de�ned as E

K

=

1=2(~u

2

1

+ ~u

2

2

+ ~u

2

3

), during 10 wave 
y
les, for the same 
onditions as �gure 7. It 
an be seen

that the TKE is also modulated by the waves, displaying an os
illatory behaviour, and tends to

be
ome dominated by the spanwise and normal Reynolds stresses as time advan
es. The TKE

progressively in
reases and attains a value approximately 3 times higher than initially after 10

wave 
y
les, again 
f. M
Williams et al. (1997).

Figures 2{5 have shown that the modulation of the turbulen
e in a wave 
y
le is sensitive to

the initial 
onditions. Figures 7, 9 and 10 now show that not only the os
illatory behaviour but

also the overall growth rate of the Reynolds stresses due to the Stokes drift depends on the initial


onditions. For example, it is 
lear in �gure 9 that the shear stress is largest when the initial
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Figure 9. Evolution of the Reynolds stresses over 10 wave 
y
les, for ~x

3

= 0, k

w

l = 0:6, a

w

k

w

= 0:2.

Solid line: shear stress, hat
hed pro�le: shape of the distorting wave (arbitrary s
ale). Turbulen
e initially

at: (a) forward slope of wave, (b) wave 
rest, (
) ba
kward slope of wave, (d) wave trough.

position is at the wave trough (�gure 9d) and smallest when it is at the wave 
rest (�gure 9b).

Correspondingly, the TKE growth rate is fastest when the initial position is at the wave trough

(�gure 10d) and slowest when it is at the wave 
rest (�gure 10b). The remaining plots of �gures

9 and 10 show the same trend, suggesting a link between TKE growth and the shear stress. This

link will be 
on�rmed and further explored in x3.6.

The behaviour of the Reynolds stresses over several wave 
y
les is di�erent for di�erent initial


onditions be
ause the average values of the Reynolds stresses, over the �rst wave 
y
le, are also

di�erent. On a time s
ale longer than a wave 
y
le, varying the initial position of the turbulen
e

relative to the wave phase is thus approximately equivalent to varying the initial turbulen
e inten-

sity slightly. However, the importan
e of the initial 
onditions is limited, be
ause, as was seen in

x3.2, the fra
tional variation of the Reynolds stresses due to varying the initial position is, at most,
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Figure 10. Evolution of the TKE over 10 wave 
y
les, for ~x

3

= 0, k

w

l = 0:6, a

w

k

w

= 0:2. Solid

line: turbulent kineti
 energy, hat
hed pro�le: shape of the distorting wave (arbitrary s
ale). Turbulen
e

initially at: (a) forward slope of wave, (b) wave 
rest, (
) ba
kward slope of wave, (d) wave trough.

of O(a

w

k

w

), whi
h is small. That explains why the four graphs of �gures 7, 9 and 10 resemble

ea
h other very mu
h. For de�niteness, all future results will 
onsider an initial position at the

forward slope of the wave.

The intensity of the turbulent velo
ity 
u
tuations has been 
hara
terised in detail for turbulen
e

distorted by a surfa
e wave. The spatial stru
ture of the turbulent velo
ity 
u
tuations 
an now

be 
hara
terised by the integral length s
ales of the turbulen
e. These length s
ales are modulated

over a wave 
y
le, like the Reynolds stresses, but their evolution over several wave 
y
les is of

greater interest.

Figure 11 presents the time evolution of the streamwise and spanwise integral length s
ales
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Figure 11. Evolution of the integral length s
ales over 10 wave 
y
les, for ~x

3

= 0, k

w

l = 0:6, a

w

k

w

= 0:2.

Hat
hed pro�le: shape of the distorting wave (arbitrary s
ale). (a) streamwise length s
ales. Solid line:

~

L

(1)

11

, dotted line:

~

L

(1)

22

, dashed line:

~

L

(1)

33

. (b) spanwise length s
ales. Solid line:

~

L

(2)

11

, dotted line:

~

L

(2)

22

,

dashed line:

~

L

(2)

33

.

during 10 wave 
y
les, for a wave slope a

w

k

w

= 0:2. First of all, it should be noted that, at

t = 0 the turbulen
e is isotropi
, so the longitudinal integral length s
ales, L

(1)

11

and L

(2)

22

, are 2

times larger than the transverse integral length s
ales, L

(2)

11

, L

(1)

22

, L

(1)

33

and L

(2)

33

. This is typi
al of

isotropi
 turbulen
e. Therefore the anisotropy of the turbulent 
ow stru
ture 
an be evaluated by

how mu
h and in what way the integral length s
ales depart from these relative magnitudes.

In �gure 11(a), it 
an be seen that all the streamwise length s
ales in
rease in time. The

streamwise length s
ale of the ~u

1

velo
ity 
u
tuations,

~

L

(1)

11

, be
omes � 2:5 times larger than

initially after 10 wave 
y
les, while the 
orresponding ampli�
ation fa
tors for the integral length

s
ales of ~u

2

and ~u

3

,

~

L

(1)

22

and

~

L

(1)

33

, are � 2 and � 6, respe
tively. Figure 11(b) shows the time

evolution of the spanwise integral length s
ales. It 
an be seen that only the integral length s
ale

for the ~u

1

velo
ity 
omponent,

~

L

(2)

11

, in
reases in time, while the length s
ales for both ~u

2

and ~u

3

,

~

L

(2)

22

and

~

L

(2)

33

, de
rease in time. After 10 wave 
y
les,

~

L

(2)

11

,

~

L

(2)

22

and

~

L

(2)

33

be
ome respe
tively

� 2:5, � 0:25 and � 0:25 times their initial values.

These results imply that the anisotropy of the streamwise velo
ity 
u
tuations remains small,

whereas the spanwise and normal velo
ity 
u
tuations be
ome elongated in the streamwise dire
-

tion, with this elongation being espe
ially pronoun
ed for the normal velo
ity 
u
tuations. Hen
e,
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the streamwise vorti
es indu
ed by the Stokes drift in the present model not only have their axes

of rotation aligned with the streamwise dire
tion (as shown by the Reynolds stresses), but they are

also elongated in that dire
tion, a feature whi
h is 
ommonly observed in Langmuir 
ir
ulations

(Faller & Auer 1988).

These results should be 
ompared with �gures 12(b{d) of M
Williams et al. (1997), where

horizontal 
ross-se
tions of the instantaneous velo
ity �eld near the surfa
e are displayed. While,

in these �gures, the streamwise velo
ity 
u
tuations display no appre
iable elongation in their

stru
ture, the spanwise and normal velo
ity 
omponents (shown in �gures 12b,
) have 
ontours

that are 
learly elongated in the streamwise dire
tion, with this elongation being more pronoun
ed

for the normal velo
ity. This is 
onsistent with the results of �gure 11, and provides eviden
e that

Langmuir turbulen
e in the simulations of M
Williams et al. (1997) resembles turbulen
e rapidly

distorted by a surfa
e wave in the present model.

The results presented until now have been 
al
ulated without taking into a

ount the e�e
t of

blo
king by the boundary on the turbulen
e. That e�e
t will be 
onsidered brie
y next.

3.4. Blo
king e�e
t of the boundary

As noted in x2.4, if at the initial time when the turbulen
e is undistorted by the wave, the blo
king

e�e
t of the free surfa
e is des
ribed by the theory of Hunt & Graham (1978), this blo
king e�e
t

remains purely kinemati
 at all subsequent times, and does not substantially alter the results

obtained in the pre
eding subse
tions (whi
h are essentially linked with vorti
ity distortion).

Sin
e Hunt & Graham's theory 
an be applied dire
tly to the turbulen
e distorted by the wave,

with the 
ompletely undistorted turbulen
e that formerly served as input being simply repla
ed by

slowly varying turbulen
e, many of their 
on
lusions remain valid, albeit with slight alterations.

For example, the result whi
h states that the TKE at the boundary has the same value as the

TKE far from the boundary is now reformulated as

(~u

2

1

+ ~u

2

2

)(~x

3

= 0) = (~u

2

1

+ ~u

2

2

+ ~u

2

3

)(~x

3

!1); when l! 0; �

w

!1: (3.9)

This means that the TKE value at the boundary taking blo
king into a

ount is equal to the TKE

value that would exist at the boundary if there was no blo
king or, alternatively, approximately

equal to the TKE immediately outside the layer dire
tly in
uen
ed by blo
king.
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Figure 12. Evolution of the tangential Reynolds stresses over 10 wave 
y
les, with and without blo
king,

for ~x

3

= 0, k

w

l = 0:6, a

w

k

w

= 0:2. Thi
k solid line: ~u

2

1

with blo
king, thin solid line: ~u

2

1

without blo
king,

thi
k dashed line: ~u

2

2

with blo
king, thin dashed line: ~u

2

2

without blo
king, hat
hed pro�le: shape of the

distorting wave (arbitrary s
ale).

Figure 12 shows the time evolution of the streamwise and spanwise Reynolds stresses, ~u

2

1

and

~u

2

2

, during 10 wave 
y
les, with and without blo
king. The 
urves relative to the blo
ked and

non-blo
ked 
ases only di�er in magnitude, and there are no appre
iable di�eren
es in shape. The

fa
tor by whi
h the 
urves with blo
king ex
eed those without blo
king in
reases from 1.5 at the

initial time (as predi
ted by Hunt & Graham 1978) to a higher value later. This is due to the fa
t

that, in the blo
ked 
ase, both ~u

2

2

(l� ~x

3

� �

w

) and ~u

2

3

(l � ~x

3

� �

w

) in
rease due to the Stokes

drift, but only ~u

2

1

(~x

3

= 0) and ~u

2

2

(~x

3

= 0) are not zero at the boundary (of whi
h ~u

2

1

(~x

3

= 0)

de
reases in time).

Figure 13 presents pro�les of the Reynolds stresses with and without blo
king, at t=T = 5, for

di�erent values of the dimensionless wavenumber k

w

l. It is found that k

w

l only in
uen
es the

shape of the Reynolds stresses in between the surfa
e and the region far from the surfa
e, leading

to a faster or slower de
ay of the pro�les due to the distorting e�e
t of the wave. Obviously,

the longer the wavelength (i.e., the smaller k

w

l), the deeper the distorting e�e
t of the wave 
an

penetrate. However, the value of the Reynolds stresses exa
tly at the boundary does not depend

on k

w

l, either when blo
king is 
onsidered or when it is not. This justi�es a posteriori why the

parameter k

w

l has not been varied in previous tests.

Figures 13(a,b) show that, in the blo
ked 
ase, ~u

2

1

and ~u

2

2

are ampli�ed at the boundary by a
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Figure 13. Pro�les of the Reynolds stresses, with and without blo
king, for a

w

k

w

= 0:2. Thi
k lines:

with blo
king, thin lines: without blo
king. Solid lines: at t=T = 0, long-dashed lines: at t=T = 5, with

k

w

l = 0:6, dashed lines: at t=T = 5 with k

w

l = 0:3, dash-dotted lines: at t=T = 5 with k

w

l = 0:15. (a)

streamwise 
omponent, (b) spanwise 
omponent, (
) normal 
omponent, (d) shear stress.

fa
tor greater than 1.5 relative to the unblo
ked 
ase, 
onsistent with �gure 12. The distortion


aused by the wave 
ountera
ts this ampli�
ation in �gure 13(a), so that ~u

2

1

at the boundary is

only slightly larger than far from the boundary, whereas in �gure 13(b), the distortion 
aused by

the wave reinfor
es the ampli�
ation of ~u

2

2

due to blo
king. In �gure 13(
), it 
an be seen that

~u

2

3

is for
ed to de
ay to zero towards the boundary over a length s
ale l, as expe
ted, retaining

nevertheless a value greater than 1 in the region l � ~x

3

� �

w

. When blo
king is 
onsidered, the

shear stress, ~u

1

~u

3

, also has to de
ay to zero towards the boundary as ~u

3

de
ays to zero (�gure

13d).
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3.5. Comparison with turbulen
e distortion by a mean shear 
ow

From a Lagrangian perspe
tive, the shear 
urrent indu
ed by the wind in the o
ean surfa
e layer

and the Stokes drift of a wave appear at �rst to be rather similar, sin
e both 
ows are 
hara
terised

by a transport that has a maximum at the surfa
e and de
ays with depth. These two types of 
ow

might be expe
ted to a�e
t the turbulen
e in a similar way. However, their fundamental dynami
s

are quite di�erent, as the numeri
al simulations of M
Williams et al. (1997) have made 
lear. One

aim of the present se
tion is to examine the extent to whi
h linear pro
esses that are a

ounted

for in RDT explain these di�eren
es.

To a �rst approximation, the intera
tion between turbulen
e and a shear 
urrent 
an be un-

derstood by using a model similar to that formulated by Durbin (1978) as an extension of the

original RDT model of Townsend (1970). This model in
orporates the e�e
ts of a mean shear with

a 
onstant shear rate and of a rigid boundary, and assumes initially homogeneous and isotropi


turbulen
e far from the boundary. Lee & Hunt (1989) and Mann (1994) have shown that this type

of model is able to des
ribe qualitatively the turbulen
e stru
ture in turbulent boundary layers.

Detailed te
hni
al des
riptions of the model 
an be found in Durbin (1978) and Mann (1994).

Durbin's model is used in this subse
tion to explain the di�eren
es between turbulen
e distortion

by a shear 
urrent and turbulen
e distortion by a Stokes drift. Only the behaviour of the turbulen
e

far from a boundary, whi
h is assumed to exist at x

3

= 0, is examined, for a shear 
ow aligned

with the x

1

dire
tion, having a shear rate �.

Figure 14 shows the time evolution of the diagonal 
omponents of the Reynolds stress tensor

indu
ed by mean shear far from the boundary. This �gure should be 
ompared with �gure 7, whi
h

shows similar quantities (albeit in the 
urvilinear 
oordinate system) for turbulen
e distorted by

a surfa
e wave. The behaviour of the stresses di�ers markedly between the two 
ases. While

in turbulen
e distorted by a wave, the streamwise stress de
reases and the spanwise and normal

stresses in
rease over a number of wave periods, in turbulen
e distorted by a shear the streamwise

and spanwise stresses, u

2

1

and u

2

2

, in
rease and the normal stress, u

2

3

, de
reases. And while in

turbulen
e distorted by a wave the spanwise and normal stresses be
ome mu
h larger than the

streamwise stress, in turbulen
e distorted by a shear u

2

1

be
omes larger than u

2

2

, whi
h in turn
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Figure 14. Evolution of the Reynolds stresses in a uniform shear 
ow, far from the boundary, as a

fun
tion of dimensionless time �t. Solid line: streamwise 
omponent u
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, dotted line: spanwise 
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Figure 15. S
hemati
 diagram showing the intera
tion between the mean and the turbulent vorti
ity in

turbulen
e distorted by a shear 
ow. The indu
ed 
ir
ulations lead to a tilting of the mean vorti
ity and

of the verti
al turbulent vorti
ity that favour a partial 
an
ellation of the spanwise and normal velo
ity


u
tuations (on the right).

be
omes larger than u

2

3

. Physi
ally, this behaviour is due to the existen
e of vorti
ity in the shear


ow, that does not exist in the Stokes drift. The 
ir
ulations indu
ed by the tilting of vorti
ity

of the mean 
ow by the turbulen
e, in the 
ase of the shear 
ow, 
ountera
t the 
ir
ulations

indu
ed by the tilting of turbulent vorti
ity by the mean 
ow, so that u

2

2

and u

2

3

are prevented

from be
oming dominant (see �gure 15).

Figure 14 should also be 
ompared with �gure 6 of M
Williams et al. (1997), where pro�les of the

Reynolds stresses in turbulen
e embedded in a shear 
urrent (without a Stokes drift) are denoted
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by the solid 
urves. These 
urves show that the streamwise stress is larger than the spanwise stress,

whi
h in turn is larger than the normal stress, near the surfa
e. Hen
e, the present 
onstant-shear

model is able to explain the anisotropy of the turbulent velo
ity 
u
tuations in a shear 
urrent.

Figure 16 displays the time evolution of the integral length s
ales of turbulen
e distorted by a

mean shear. Both the streamwise and the spanwise integral length s
ales of u

2

, L

(1)

22

and L

(2)

22

,

de
rease in time, and both the streamwise and the spanwise integral length s
ales of u

3

, L

(1)

33

and

L

(2)

33

, in
rease in time. Hen
e the stru
ture of these two velo
ity 
omponents remains approximately

isotropi
. However, the streamwise integral length s
ale of u

1

, L

(1)

11

, in
reases in time, while the

spanwise length s
ale of the same velo
ity 
omponent, L

(2)

11

, de
reases in time. This means that

the streamwise velo
ity 
u
tuations be
ome elongated in the streamwise dire
tion. Elongated

stru
tures in the streamwise turbulent velo
ity �eld are a well known feature of turbulent shear


ows, where su
h stru
tures are often 
alled streaky stru
tures (Kline et al. 1967). Good examples

of streaky stru
tures produ
ed in a turbulent boundary layer by DNS 
an be found, for example, in

�gures 5, 7 and 9 of Lee et al. (1990), where horizontal 
ross-se
tions of the streamwise turbulent

velo
ity are shown.

These results are in striking 
ontrast with those presented for turbulen
e distorted by a surfa
e

wave: 
ompare �gure 16 with �gure 11. In �gure 11 the stru
ture of the ~u

2

and ~u

3

velo
ity


u
tuations, as des
ribed by the integral length s
ales, be
omes elongated, whereas in �gure 16, it

is the stru
ture of u

1

that be
omes elongated. Hen
e the present 
al
ulations explain the 2 basi



ow regimes observed in the LES of M
Williams et al. (1997): shear turbulen
e and Langmuir

turbulen
e. Although, in M
Williams et al.'s simulations of Langmuir turbulen
e, shear is also

present, this shear appears to be suÆ
iently weak for the wave-turbulen
e intera
tion to dominate.

3.6. Estimation of the turbulent kineti
 energy growth

In the pre
eding subse
tions, rigorous RDT 
al
ulations have been 
arried out. The �nal part

of this paper is 
on
erned instead with order-of-magnitude estimates relevant for the problems of

streamwise vortex generation and surfa
e wave de
ay. Nevertheless, the rigorous results obtained

before will prove to be useful in guiding these estimates.

In x3.3, it was found that an in
rease in the TKE is predi
ted by the present model of turbulen
e
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Figure 16. Evolution of the integral length s
ales in a uniform shear 
ow, as a fun
tion of dimensionless

time �t. (a) streamwise length s
ales. Solid line: L

(1)

11

, dotted line: L

(1)

22

, dashed line: L

(1)

33

. (b) spanwise

length s
ales: Solid line: L

(2)

11

, dotted line: L

(2)

22

, dashed line: L

(2)

33

.

distortion by a wave, whi
h is related to the straining of the turbulen
e by the Stokes drift of

the wave. In order to estimate this in
rease, it is ne
essary to derive an equation for the TKE


ompatible with the assumptions of the model. The TKE equation is here derived in a Cartesian


oordinate system, for simpli
ity. But when the terms in that equation are estimated, the results

of the pre
eding se
tions, whi
h were found in the 
urvilinear 
oordinate system, will be used

dire
tly, sin
e the behaviour of the statisti
s, in either 
oordinate system, is approximately equal.

The linearised momentum equation 
onsistent with (2.2) is

�u

i

�t

+ U

j

�u

i

�x

j

+ u

j

�U

i

�x

j

= �

1

�

�p

�x

i

; (3.10)

where � is the density and p is the turbulent pressure. The required TKE equation may be obtained

by multiplying (3.10) by u

i

, adding all the expressions for i = 1; 2; 3 and ensemble averaging. This

yields

dE

K

dt

= (u

2

3

� u

2

1

)

�U

1

�x

1

� 2u

1

u

3

�U

1

�x

3

�

1

�

�

�x

j

(pu

j

): (3.11)

The last term between square bra
kets in (3.11) appears in 
ux form and is asso
iated with the

redistribution of energy between di�erent regions of the turbulent 
ow through pressure for
es.

In turbulen
e that is slowly varying in spa
e, as 
onsidered here, this term has little importan
e,

and so is negle
ted in the following. The �rst two terms on the right-hand side are produ
tion of

turbulen
e by the mean 
ow, here the surfa
e wave. It is the 
orrelation between the wave strain
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rate and the Reynolds stresses in these terms that generates TKE. This 
orrelation is 
al
ulated

most naturally in a Lagrangian framework, that is, following the 
uid par
els. Hen
e this e�e
t


an be estimated by studying the evolution of the TKE along a streamline.

Now, the material time derivative on the left-hand side of (3.11) is equivalent to a derivative

with respe
t to the travel time � , whi
h (2.12) shows is de�ned in terms of the velo
ity potential,

and so in the frame of referen
e travelling with the wave, (3.11) may be expressed as

~

U

2

1

�E

K

��

� (u

2

3

� u

2

1

)

�U

1

�x

1

� 2u

1

u

3

�U

1

�x

3

: (3.12)

The Eulerian time, t, is related approximately to the wave potential by (2.16), and so the Eulerian

time variation of the TKE in a �xed frame of referen
e 
an be written

�E

K

�t

� (u

2

3

� u

2
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)




2

w

U
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1

+ U

2
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1
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2

w

U
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1

+ U

2
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�U

1

�x

3

; (3.13)

where the de�nition of

~

U

1

= (U

2

1

+ U

2

3

)

1

2

has been used.

Using (2.13) and (2.9), the wave strain rates in (3.13) be
ome, to leading order in the wave slope,
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: (3.14)

Both strain rates os
illate, the �rst with zero average and the se
ond with positive average. Their

time-averaged 
orrelation with the os
illating Reynolds stress yields net TKE generation. The

dominant 
ontribution 
omes from 


2

w

=(U

2

1

+ U

2

3

)�U

1

=�x

3

. Its mean value 
an be estimated from

the se
ond 
ontribution in (3.14), namely
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; (3.15)

where the Stokes drift velo
ity, u

s

, is de�ned in an analogous way to the de�nition given in Cartesian


oordinates, see equation (3.3.8) of Phillips (1977).

Now, the shear stress u

1

u

3

is negative, and so �2u

1

u

3

(


2

w

=U

2
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+ U

2
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)�U

1
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3

generates TKE.

Having in mind the estimates (3.14) and (3.15), the generation of TKE 
an be estimated by
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w

� �u

1

u

3

du

s

dx

3

(x

3

= 0): (3.16)

This estimate of TKE produ
tion has a similar form to the term involving the Stokes drift in the
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TKE equation (5.1) of M
Williams et al. (1997). It is as if there is a Stokes drift `shear' that

generates TKE.

The quantitative a

ura
y of this reasoning is tested by 
omparing the TKE growth rate from

this estimate with the growth rate 
al
ulated from the full RDT model. To 
ompare this estimate

more easily with the dimensionless growth rates available in �gure 10, it should be noted that

�=�t = (�

w

=2�)�=�(t=T ), hen
e (3.16) be
omes

�E

K

�(t=T )

� �4�

u

1

u

3

u

2

a

2

w

k

2

w

: (3.17)

Taking a

w

k

w

= 0:2 and �u

1

u

3

=u

2

� 0:7, as suggested by the �nal portions of �gure 9, it follows

that �=�(t=T )(E

K

=u

2

) = 0:35. This is in remarkable agreement with the value that 
an be

extra
ted dire
tly by inspe
tion from the slopes of the �nal portions of the 
urves in �gure 10.

It thus appears that the estimates made above and the 
onne
tion established between the TKE

in
rease and the Reynolds shear stress are well founded.

To obtain an idea of the time-s
ales involved in the development of the streamwise vorti
es

in the present model, a still rougher estimate may be 
arried out. Noting that u

i

= O(u) and

�u

1

u

3

= O(u

2

), (3.16) may be s
aled as

u

2

T

d

= u

2

a

2

w

k

2

w

�

w

; (3.18)

where T

d

is the development time s
ale. With minor rearranging, (3.18) be
omes

T

d

=

1

a

2

w

k

2

w

�

w

: (3.19)

Taking reasonable values for the variables, like a

w

k

w

= 0:1 and �

w

= 10s

�1

, it is found that

T

d

= 10s. Hen
e the streamwise vorti
es that 
ontain most of the TKE grow relatively fast.

3.7. Estimation of turbulen
e-indu
ed wave de
ay

The previous results have established how the TKE of turbulen
e beneath a surfa
e wave in
reases

due to the distortion of the turbulen
e by the Stokes drift. Although in the RDT model developed

here the turbulent 
ow has no feedba
k on the mean 
ow, whi
h is taken as �xed, in real situations

that is not the 
ase. If a mean 
ow and a turbulent 
ow 
oexist in a 
uid and the energy of

the turbulent 
ow in
reases, that energy has to 
ome from the mean 
ow, whi
h 
orrespondingly

weakens. In the present 
ase, the mean 
ow is asso
iated with a surfa
e wave, so the energy transfer
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taking pla
e to the turbulen
e as the wave distorts the turbulen
e is ne
essarily linked with a de
ay

of the wave. A me
hanism of wave de
ay due to the straining of turbulen
e by the Stokes drift

was �rst referred in the Introdu
tion of Phillips (1959), who 
alled it `eddy-vis
osity intera
tion'.

Although Phillips (1959) did not establish a 
onne
tion between the generation of streamwise

vorti
es (whi
h were in fa
t almost unknown at the time) and wave de
ay, that 
onne
tion is impli
it

in his qualitative arguments involving vorti
ity stret
hing. It will be shown in this subse
tion that

the energy transfer from the waves to the turbulen
e through this intera
tion 
an indeed a

ount

for the turbulen
e-indu
ed wave de
ay observed in the experimental studies of

�

Olmez & Milgram

(1992) and Green et al. (1972).

Consider the momentum equation for the mean 
ow in a Cartesian 
oordinate system, now

taking into a

ount the Reynolds stresses:

�U

i

�t

+ U

j

�U

i

�x

j

= �

1

�

�P

�x

i

�

�

�x

j

(u

i

u

j

); (3.20)

where P is the mean pressure. If this equation is multiplied by U

i

and the resulting expressions

for i = 1 and 3 are added (noting that the i = 2 
omponent is zero for the mono
hromati
 wave

under 
onsideration), an equation for the kineti
 energy of the wave is obtained, namely
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The last term on the right-hand side appears in 
ux form and is related to transport pro
esses,

whi
h do not 
hange the total kineti
 energy. The �rst two terms are identi
al to those found on

the right-hand side of the TKE budget (3.11), albeit with with the opposite signs. Clearly these

terms are asso
iated with the energy transfer from the wave motion to the turbulent motion.

Sin
e the growth rate of the TKE was estimated a

urately assuming it to be solely determined

by the produ
tion by `Stokes drift shear', it is reasonable to estimate the de
ay of the kineti


energy of the wave by the same pro
ess, whi
h yields

d

dt
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It remains to apply the same s
aling ideas leading to (3.18) to the right-hand side of (3.22), and

to note that the kineti
 energy of the wave is (U
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+ U

2
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)=2 = O(a

2

w
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w

). Then, (3.22) may be
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s
aled as
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whi
h implies that the wave amplitude de
ays exponentially in time due to the turbulen
e, with

an attenuation rate

�

t

= a

�

u




w

�

2

�

w

; (3.24)

where a is a dimensionless 
onstant of O(1).

The attenuation of surfa
e waves due to turbulen
e has been investigated, for example, by Skoda

(1972), Green et al. (1972), van Hoften & Karaki (1976) and Kitaigorodskii & Lumley (1983). In

their theoreti
al study, Kitaigorodskii & Lumley identi�ed a wave de
ay me
hanism involving the

transport of wave energy away from the surfa
e by the turbulent velo
ity �eld, and parameterised

that pro
ess in terms of the fri
tion velo
ity of the turbulen
e. However, they emphasised that this

pro
ess is only signi�
ant in a random wave �eld, and not for a periodi
 wave, be
ause it requires

a non-zero 
orrelation between the turbulent and the wave motions. Note how, in (3.22), what

is ne
essary for the wave energy to de
rease is a 
orrelation between the wave velo
ity and the

turbulent shear stress. The existen
e of this 
orrelation is provided by the modulation of the shear

stress over the wave 
y
le. Hen
e the present me
hanism 
omplements the me
hanism proposed

by Kitaigorodskii & Lumley.

Skoda (1972), Green et al. (1972) and van Hoften & Karaki (1976) performed experiments

where they measured the de
ay of approximately mono
hromati
, me
hani
ally generated waves,

due to turbulen
e indu
ed by rotating paddles, an os
illating grid and 
hannel bottom fri
tion,

respe
tively.

�

Olmez and Milgram (1992) studied the de
ay of periodi
 waves due to grid-generated

turbulen
e, and re-analysed the data of Skoda (1972). They present an extensive list of the

parameters of these experiments, in
luding the intensity and length s
ale of the turbulen
e. They

suggest an empiri
al formula for the temporal attenuation rate, whi
h in the present notation is

�

OM

t

= 0:103

u

l

1

3

�

2

3

w

: (3.25)

They adjusted the 
onstant 0.103 to �t their experimental data. We note that the integral length

s
ale of the turbulen
e, l, whi
h appears in (3.25) does not appear in the RDT s
aling (3.24)
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Figure 17. Comparison with experimental data of the temporal wave attenuation rate predi
ted by

theory. Solid line: equation (3.24) with a = 0:6, squares: data from

�

Olmez & Milgram (1992), 
rosses:

data from Skoda (1972) (taken from

�

Olmez & Milgram 1992).

be
ause, a

ording to the RDT model developed here, the integral length s
ale does not a�e
t the

distortion by the Stokes drift, only the blo
king of the turbulen
e by the boundary.

Figure 17 shows experimental data from

�

Olmez & Milgram (1992) and Skoda (1972) for the

temporal attenuation rate of surfa
e waves plotted as a fun
tion of (u=


w

)

2

�

w

. The straight line


orresponds to the formula (3.24) with a best �t value of a = 0:6. Figure 17 
ontains 2 data points

from Skoda, 
orresponding to the highest de
ay rates, that do not appear in �gure 11 of

�

Olmez &

Milgram (1992). We know of no reason to reje
t these points so they are in
luded here, although

they add 
onsiderably to the s
atter. The large s
atter in the data is not surprising sin
e measured

values of the attenuation rate due to turbulen
e are 
al
ulated as a residue of the wave de
ay due

to other pro
esses (e.g. geometri
 spreading in

�

Olmez & Milgram's axisymmetri
 experiments, or


hannel wall fri
tion in Skoda's experiments), and is thus subje
t to a large measurement error.

Another possible 
ause for the s
atter is that the data of

�

Olmez & Milgram and of Skoda

do not satisfy stri
tly the assumptions of RDT on whi
h the present s
aling is based. These

assumptions are that the wavelength is larger than the length s
ale of the turbulen
e and that

the strain asso
iated with the wave is larger than the strain by the turbulen
e itself, as expressed

mathemati
ally in (2.3). Ex
ept for one extreme measurement (whi
h has a

w

k

w

�

w

l=u = 0:399),

the data measured by

�

Olmez & Milgram (1992) have

4:36 <

�

w

l

< 7:10; and 0:583 <

a

w

k

w

�

w

u=l

< 2:663: (3.26)
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Hen
e the turbulen
e in the experiments is small s
ale, but the straining by the wave is not always

mu
h larger than the straining of the turbulen
e by itself. The data of Skoda (1972) yield

1:57 <

�

w

l

< 10:296; (3.27)

whi
h probably satis�es the 
ondition that the turbulen
e be small s
ale. We were unable to obtain

values of wave slope for Skoda's data.

Notwithstanding these un
ertainties, the great majority of the data points (40 in total) roughly

align with the theoreti
al line. The s
atter here is large, but is 
ertainly no worse than in �gure 11

of

�

Olmez & Milgram (1992). This gives some support for the theoreti
al RDT s
aling developed

here and its variation with both properties of the turbulen
e and the surfa
e wave, whi
h both

vary in the data shown in �gure 17.

We now further 
ompare the theoreti
al s
aling (3.24) with the data of Green et al. (1972),

who passed surfa
e waves of varying wavelengths over grid-generated turbulen
e and measured the

spatial attenuation of the wave amplitude. This 
omparison fo
uses then on the variation of wave

damping rate with the surfa
e wave properties.

To 
ompare the RDT s
aling with this data, the spatial attenuation rate is obtained from the

temporal attenuation rate using the group velo
ity, 


g

= d�

w

=dk

w

, to give

�

x

= �

t

=


g

: (3.28)

Using (3.28), (3.24) and the dispersion relation of free surfa
e gravity waves, �

2

w

= gk

w

, the spatial

attenuation rate takes the form
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= 2a
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w

= 2(2�)
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u

2

g

3

f

4

w

; (3.29)

where f

w

= 1=T = �

w

=2� is the frequen
y of the waves (in Hz). Hen
e, a

ording to (3.29), the

spatial de
ay rate is proportional to the fourth power of the frequen
y of gravity waves. We note

that the empiri
al 
orrelation suggested by

�

Olmez & Milgram, given in (3.25), yields �

x

/ f

7=3

w

, a

very di�erent dependen
e on wave frequen
y.

We estimate that for the Green et al. experiments the turbulent RMS velo
ity took the value

u = 1:2
ms

�1

. This value was 
hosen be
ause it is mentioned at the beginning of Green et al.'s

paper that the grid that generates the turbulen
e os
illates at a frequen
y of � 1Hz and produ
es
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eddies of � 1
m size. Figure 3 of Green et al. (1972) would suggest a mu
h higher value of u,

but that �gure is probably in error, sin
e Green et al. refer `serious problems asso
iated with

variations of the probe sensitivity with 
ow dire
tion'. A value u = O(1
m s

�1

) is 
orroborated

by other experiments using similar 
on�gurations of os
illating grids (e.g. Brumley & Jirka 1987;

�

Olmez & Milgram 1992; Kit et al. 1997).

Finally, the numeri
al values of the damping rates plotted in �gure 4 of Green et al. (1972) are

two orders of magnitude higher than the more re
ent results of Milgram (1998). This observation

suggests that the axis label in �gure 4 of Green et al. is in error and should be measured in m

�1

instead of the 
m

�1

written on the �gure. This mistake has been 
orre
ted in replotting their data

in �gure 18.

Figure 18 
ompares the RDT s
aling (3.29) and the data of Green et al. (1972). Green et

al. 
onsidered the de
ay of three wave types. Firstly, they performed experiments with no wind

and measured the attenuation of paddle-generated waves, 
onsisting of a fundamental mode and

bound harmoni
s. Se
ondly, they measured the spatial attenuation of wind-generated waves. The

data from the fundamental modes of paddle-generated waves, whi
h are denoted by �lled 
ir
les in

�gure 18, are 
losest to the 
onditions of the model developed here. Indeed the agreement between

the RDT s
aling with the same value of a = 0:6 and these data is en
ouraging. We note that the

empiri
al 
orrelation of

�

Olmez and Milgram (1992), (3.25), yields a spatial attenuation that varies

as f

7=3

w

, whi
h does not agree well with the data in �gure 18. The data obtained by Green et al.

for the bound harmoni
s and the wind-generated waves are also shown for 
ompleteness as 
rosses

and triangles, despite the obvious 
ompli
ations asso
iated with these data. These data too agree

in order of magnitude with the RDT s
aling. We 
on
lude that the RDT s
aling shows a variation

with wave properties that is 
onsistent with available data.

How does the magnitude of the present wave de
ay me
hanism 
ompare with the rate of growth

due to wind for
ing, whi
h has roughly the same form? These me
hanisms have been studied

extensively by Miles (1957), van Duin & Janssen (1992) and Bel
her & Hunt (1993), among others,

and 
an be en
apsulated in the formula of Plant (1982), whi
h when written in terms of the growth



On the distortion of turbulen
e by a progressive surfa
e wave 45

10
0

10
1

fw(Hz)

10
−3

10
−2

10
−1

β x(
m

−
1
)

Figure 18. Comparison with experimental data of the spatial wave attenuation rate predi
ted by theory.

Solid line: equation (3.29) with a = 0:6 and u = 1:2
m s

�1

, 
ir
les: paddle-generated fundamentals, 
rosses:

se
ond harmoni
s, triangles: wind generated waves.

rate of wave amplitude gives
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w
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�

w

; (3.30)

where �

a

is the density of air, �

w

is the density of water and u

�a

is the fri
tion velo
ity in the air.

Often it is the growth of wave energy that is quoted, whi
h has a growth rate twi
e that given in

(3.30). It should be noted that, sin
e it was obtained from the rate of 
hange of wave amplitude

with time, (3.30) not only re
e
ts the positive input of energy into the waves due to the wind, but

also any dissipative pro
esses present.

In order to 
ompare (3.24) with (3.30), it is ne
essary to relate the turbulen
e intensity in the

water, u, to the fri
tion velo
ity in the air. Experiments by Magnaudet & Masbernat (1990) and

Thais & Magnaudet (1996) suggest that the turbulent RMS velo
ity in water 
ontaining turbulen
e

and surfa
e waves is u � 3u

�w

near the surfa
e. On the other hand, Thais & Magnaudet (1996)

and Bel
her et al. (1994) have noted that the fri
tion velo
ity in the water is related to the fri
tion

velo
ity in the air by �

a

u

2

�a

= �

w

u

2

�w

due to 
ontinuity of the turbulent stress at the interfa
e.

With these two relations, and using also a = 0:6, (3.24) yields

�

t

� 5:4

�

a

�

w

�

u

�a




w

�

2

�

w

; (3.31)

showing, by 
omparison with (3.30), that the de
ay rate due to turbulen
e in the water is approx-

imately a fa
tor of 3 smaller than the amplitude growth rate due to for
ing by the wind. In their
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model of 
oupled turbulent air-water 
ow, Bel
her et al. (1994) evaluated the e�e
t of turbulen
e

in the water on the growth of surfa
e waves, 
on
luding that the growth rate 
ould be redu
ed

by a fa
tor of about 2. They 
onsidered that only the part of the 
ow within an `inner region',

where the turbulen
e is in a lo
al equilibrium (very near the boundary). The present 
al
ulation

shows that the `outer' part of the 
ow, where the turbulen
e is rapidly distorted, 
ontributes to a

non-negligible redu
tion of the wave growth rate.

Finally, the wave de
ay me
hanism estimated in this subse
tion is only important at wavenum-

bers for whi
h vis
ous dissipation does not dominate. Bearing in mind that the wave attenuation

rate due to vis
ous dissipation is 2�k

2

w

(Lamb 1932), where � is the kinemati
 vis
osity of the

water, the present me
hanism is relevant when

a

u

2




2

w

�

w

� 2�k

2

w

) u� (2��

w

=a)

1

2

: (3.32)

Taking �

w

= 1s

�1

and noting that � = 1� 10

�6

m

2

s

�1

and a = 0:6, it is 
on
luded that u must be


onsiderably larger than 2mms

�1

(not a diÆ
ult 
ondition to satisfy in the o
ean). Alternatively,

if u = 2
m s

�1

is assumed, gives �

w

� 100s

�1

, 
orresponding approximately to �

w

� 1:5
m.

Wavelengths outside this range would be ex
luded anyway be
ause of the 
ondition requiring the

s
ale of the wave to be mu
h larger than the s
ale of the turbulen
e (�rst equation of (2.3)). The

me
hanism addressed here is therefore primarily a wave attenuation me
hanism for gravity waves.

4. Con
lusions

Previous s
aling arguments, developed by Bel
her et al. (1994), have shown that turbulen
e below

a thin `inner region' in the o
ean surfa
e layer is subje
ted to rapid distortion by a surfa
e wave.

Hen
e in this paper we have developed a rapid-distortion model to investigate the intera
tions

between initially homogeneous, shear-free turbulen
e and a progressive, irrotational surfa
e wave.

The model is appli
able when the integral length s
ale of the turbulen
e is mu
h smaller than

the wavelength of the wave and the slope of the wave is suÆ
iently high that the straining of the

turbulen
e by the wave is stronger than the straining of the turbulen
e by itself.

The periodi
 orbital motion of the wave modulates the turbulen
e over a wave 
y
le su
h that

the streamwise Reynolds stress attains maxima at the wave 
rests and minima at the wave troughs,
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and the normal Reynolds stress attains maxima at the wave troughs and minima at the 
rests.

This behaviour is 
onsistent with the experimental results of Thais & Magnaudet (1996).

Over several wave 
y
les the turbulen
e is made strongly anisotropi
 as the Stokes drift asso
iated

with the wave tilts the verti
al 
omponent of the turbulent vorti
ity into the horizontal, and

subsequently ampli�es it as streamwise vorti
ity. As this pro
ess o

urs the streamwise Reynolds

stress de
reases, while the spanwise and normal Reynolds stresses in
rease over time at roughly the

same rate. The integral length s
ales of the turbulen
e indi
ate the stru
tures that develop under

the progressive a
tion of the Stokes drift. The streamwise velo
ity 
u
tuations remain isotropi


when viewed in horizontal planes parallel to the surfa
e, whereas normal velo
ity 
u
tuations

be
ome elongated in the streamwise dire
tion and so too do the spanwise velo
ity 
u
tuations,

although to a lesser extent than the normal 
u
tuations. These properties are summarised in table

1. We interpret these results as the statisti
al signature of elongated streamwise vorti
es in the


ow.

These results for turbulen
e distorted by Stokes drift are strikingly di�erent to the 
orresponding

results for turbulen
e distorted by a mean shear 
urrent (see table 1). When turbulen
e is distorted

by a mean shear the streamwise Reynolds stress be
omes the largest of the stresses and the stru
ture

of the streamwise velo
ity 
u
tuations be
omes elongated in the streamwise dire
tion. These are

the statisti
al signatures of `streaky stru
tures' whi
h have been identi�ed in, for example, the

DNS of Lee et al. (1990). We attribute the striking di�eren
es between the two sets of results to

the absen
e of mean vorti
ity in the distortion by Stokes drift. The mean shear 
ow has spanwise

mean vorti
ity whi
h is distorted by turbulent velo
ity 
u
tuations, whi
h then largely 
an
els the

streamwise vorti
ity generated by stret
hing turbulent vorti
ity by the mean shear 
ow. These

two pro
esses thus 
an
el any tenden
y to produ
e streamwise vorti
es in the shear 
ow (see �gure

15). When the turbulen
e is distorted by Stokes drift, however, there is no su
h 
an
ellation and

streamwise vorti
es emerge. This 
an
ellation idea probably explains why, in their LES simulations,

M
Williams et al. (1997) observe a 
ontinuous progression from shear turbulen
e to fully developed

Langmuir turbulen
e: as the Stokes drift is in
reased and the mean shear is less and less able to


an
el the tenden
y to produ
e streawise vorti
es.
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Stokes drift Shear 
ow

L

(1)

11

L

(2)

11

�

L

(1)

22

L

(2)

22

<

L

(1)

33

L

(2)

33

L

(1)

11

L

(2)

11

�

L

(1)

22

L

(2)

22

�

L

(1)

33

L

(2)

33

u

2

1

� u

2

2

� u

2

3

u

2

1

> u

2

2

> u

2

3

streamwise vorti
es streaky stru
tures

Table 1. Measures of the anisotropy of the 
ow stru
ture in turbulen
e distorted by the Stokes drift of a

wave and turbulen
e distorted by a mean shear 
ow.

It is interesting to 
ompare these results from linear rapid-distortion theory with results ob-

tained from fully nonlinear 
omputations, su
h as the LES of `Langmuir turbulen
e' performed

by M
Williams et al. (1997). It was perhaps intuitively 
lear that homogeneous turbulen
e dis-

torted by Stokes drift yields streamwise vorti
es (as dis
ussed in the introdu
tion to M
Williams

et al. 1997). The detailed 
al
ulations 
on�rm this expe
tation, but also give quantitative infor-

mation. In parti
ular, the RDT model produ
es the ordering of the 
omponents of the Reynolds

stress and integral length s
ales, whi
h are summarised in table 1. It is noteworthy that the

ordering of both the 
omponents of the Reynolds stress and the indi
ators of anisotropy in the

velo
ity 
u
tuations all agree with the orderings inferred from the LES 
al
ulations of M
Williams

et al. (1997). This suggests that in Langmuir turbulen
e, as simulated by M
Williams et al., the

wave-turbulen
e intera
tion dominates over the shear e�e
ts.

The generation of streamwise vorti
es by distortion of the turbulen
e by the Stokes drift also

generates a negative shear stress in the turbulen
e. This shear stress does work against the 
u
-

tuating strain asso
iated with the wave orbital motions leading to growth of the TKE. The time

s
ale for this growth, found from s
aling the TKE budget, is of O(1=(a

2

w

k

2

w

�

w

)). The energy going

into the TKE is lost at pre
isely the same rate by the wave, whi
h therefore de
ays in time. The
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amplitude of the waves de
ays exponentially with a temporal attenuation rate

�

t

= 0:6

�

u




w

�

2

�

w

: (4.1)

The de
ay of wave energy would be twi
e this value for the amplitude de
ay. This de
ay rate

was found to be 
onsistent with the laboratory data of

�

Olmez & Milgram (1992) and Green et al.

(1972). Hen
e we have established a de�nite 
onne
tion between de
ay of waves and growth of

turbulen
e.

This work raises the possibility that subsurfa
e turbulen
e in the o
ean, generated by break-

ing waves or shear instability, provides the verti
al vorti
ity from whi
h Stokes drift generates

streamwise vorti
es, i.e. Langmuir 
ir
ulations. This possibility 
omplements the CL2 instability

me
hanism (Craik & Leibovi
h 1976), where the initial verti
al vorti
ity is provided by spanwise

variations in the mean shear 
urrent. LES, whi
h 
an resolve all three 
omponents of the 
ow,

namely the mean shear 
ow, turbulen
e and Stokes drift, o�ers probably the best vehi
le for

establishing the relative 
ontributions of these two pro
esses.
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