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Abstract

Using data from the Health and Retirement Survey and the Assets and Health Dy-

namics of the Oldest Old survey, this paper presents estimates of the stochastic process

that determines both the distribution and dynamics of health care costs. We find that

the data generating process for log health costs is well represented as the sum of a white

noise process and a highly persistent AR(1) process. We also find that the innovations

to this process can be modelled with a normal distribution that has been adjusted to

capture the risk of catastrophic health care costs. Simulating this model, we find that in

any given year, 0.1% of households receive a health cost shock with a present value of at

least $125,000.
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1 Introduction

The way in which uncertain health care costs affect saving and labor supply is a topic of

much debate.1 Moreover, health care costs, in and of themselves, are of great interest to many

policymakers, including those considering changes to the United States’ Medicare program.

Despite this interest, there are relatively few estimates of the stochastic process for health

care costs. In this paper, we provide new evidence on both the cross-sectional distribution

and the intertemporal persistence of health care costs, using panel data from the Health and

Retirement Survey (HRS) and the Assets and Health Dynamics of the Oldest Old (AHEAD)

survey.

We find that the stochastic process for log health costs is well modelled as the sum of a

white noise process and a highly persistent AR(1) process. We also find that the innovations

to this process can be modelled with a normal distribution, but the variance of this innovation

distribution, as well as the mean for the overall process, should be adjusted—in a way made

precise below—to better capture the risk of catastrophic health cost shocks. Using this model

to simulate a large number of health cost histories, we find that our preferred model generates

more lifetime health cost risk than models found in earlier studies.

The only fully parameterized model of the health cost process currently available is the

one of Feenberg and Skinner (1994), who find that log health costs are well represented by

an ARMA(1,1) process. In this paper, we extend Feenberg and Skinner’s results in several

directions. First, our data are 20 years more recent than theirs. Second, Feenberg and Skinner

observe medical costs only for those who deduct medical expenses on their taxes. Although

they develop a sophisticated econometric procedure to address this selection problem, we

avoid it completely, because we observe medical expenses for virtually all members of our

sample. Third, our econometric approach allows us to use unbalanced panel data. This

allows us to include people who die, who tend to incur high medical expenses.

Feenberg and Skinner assume that the cross-sectional distribution of health care costs is

lognormal. Eichner et al. (1998), in contrast, model the cross section non-parametrically,

and conclude that health cost shocks are “not approximated well by any analytic solution.”

However, they do not test their non-parametric model against a parametric alternative. Rust

1Recent papers include studies of saving by Hubbard et al. (1994, 1995), Palumbo (1999), and Dynan et
al. (2002), and studies of retirement by Rust and Phelan (1997), Blau and Gilleskie (2001) and French and
Jones (2003).
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and Phelan (1997) argue that the right tail of the health cost distribution is better repre-

sented by a Pareto distribution. A Pareto distribution has a fatter right tail than a lognormal

distribution, generating a higher probability of catastrophic health care costs at any variance.

Because the extremely risk-averse may be particularly concerned about catastrophic shocks,

the Pareto specification may be one of the reasons why Rust and Phelan find that health

insurance has large effects on retirement behavior.2 However, Rust and Phelan do not for-

mally test their Pareto specification against a lognormal alternative, nor do they account

for the persistence of health costs. Because the lifetime effect of health cost shocks depend

as much on their duration as on their size, it is important to consider cross-sectional and

times series properties jointly. While Eichner et al. do consider persistence, their sample has

an extremely short time horizon, and, moreover, consists only of insured individuals from a

single firm.3

We begin our analysis by examining the time series properties of health costs. To do this,

we employ a commonly-used error components methodology that works well with short panels

and imposes no distributional assumptions. We find that log health costs are reasonably well

represented by the sum of an AR(1) component and a white noise component. The AR(1)

component is quite persistent, so that health cost shocks can have a large impact on lifetime

wealth. Because this sum can be rewritten as an ARMA(1,1) process, our results comport

with Feenberg and Skinner’s findings.

We then consider the cross-sectional distribution. Using the likelihood ratio test developed

by Vuong (1989), we conclude that in most cases, the (truncated) lognormal and Pareto

specifications fit the upper tail of the distribution (i.e., the top decile) equally well. Moving

on to our primary goal of matching the overall cross-sectional distribution, we conclude that

the lognormal distribution is the better model. The lognormal distribution that best fits

the overall cross section, however, understates the upper tail of the distribution, and thus

understates the risk of catastrophic shocks. Fortunately, we find that a useful analytical

approximation is the “fitted” lognormal distribution that matches the mean and the 99.5th

percentile of the empirical distribution. This approximation captures two of the most salient

features of the health cost distribution: the overall average cost, and the magnitude of a

2Rust and Phelan also rule out the possibility that households self-insure by saving.
3Palumbo (1999) conditions health costs on a persistent health state variable, but provides little description

of the residual distribution.
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“catastrophic shock”. Using these health cost distributions to estimate the welfare losses

from health cost uncertainty, we find that the fitted distribution outperforms the “standard”

lognormal distribution, which tends to understate the losses.

To complete our model of the stochastic process for health care costs, we need the distri-

bution of health cost innovations. Because the sum of an AR(1) and a white noise process

is not a Markov process, we cannot use our time series model to back out an empirical

distribution of log health cost innovations. We are left to infer the innovation distribution

from the cross-sectional distribution. In this respect, the lognormal performs particularly

well: a Gaussian ARMA process for log health costs generates a lognormal cross-sectional

distribution for health costs.

Our preferred model of the health cost process is thus the combination of our two-

component time series model with our lognormal approximation of the cross section. Using

this model to simulate health cost histories, we find that in any given year 0.1% of households

receive a health cost shock that exceeds $125,000 in present value. This is much more risk

than is generated by Feenberg and Skinner’s estimates.

The rest of the paper is organized as follows. In Section 2, we describe the health cost

data contained in the HRS and AHEAD surveys. In Section 3, we examine the correlation of

health care costs across time, and in Section 4, we examine the cross-sectional distribution.

In Section 5, we estimate lifetime health cost risk by simulating our preferred health cost

model. We conclude in Section 6.

2 Data

We use data from the HRS and AHEAD surveys. These data contain detailed information

on health care costs, health insurance, and demographics.

The HRS is a sample of individuals that were non-institutionalized and aged 51-61 in

1992. Spouses of these individuals were also interviewed, regardless of their age. The HRS

includes a nationally representative core sample, and additional samples of blacks, Hispanics,

and Florida residents. A total of 12,652 individuals in 7,608 households were interviewed in

1992. These individuals were again interviewed in 1994, 1996, 1998, and 2000, creating up to

five separate responses for each individual.

The AHEAD is a nationally representative sample of individuals that were non-institutionalized
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and aged 70 or older in 1993. Because the same researchers at the University of Michigan

collect both the HRS and the AHEAD data, the two data sets have similar sample designs.

A total of 8,222 individuals in 6,047 households were interviewed for the AHEAD survey in

1993. These individuals were again interviewed in 1995,4 1998, and 2000, creating up to four

separate responses for each individual.

In 1998 and 2000 all individuals in the HRS and AHEAD (as well as an additional sample

of older individuals) were asked the same questions. In the HRS and AHEAD waves before

1998, many of the questions asked were the same across the two datasets, allowing us to

merge them together. Because the health insurance and health cost data are incomplete in

wave 1 of both datasets, we use waves 2 through 5 in the analyses below.

Table 1 presents means and standard deviations of variables that measure health care

costs, health insurance coverage, health care utilization, and demographic features. All of

the variables are measured at the household level. To annualize the data, we divide the health

cost and health care utilization measures by the number of years since the individual was

last interviewed—which on average is two—or by two if the individual was never previously

interviewed.

Virtually all Americans aged 65 and older (as well as those eligible for government-

provided disability insurance) are eligible for insurance through the government’s Medicare

program. We therefore split the sample between those younger than 65 and those older than

65. Note that after age 65, nearly everyone has some form of insurance, although the fraction

of individuals with employer-provided coverage falls, as many workers lose some or all of their

employer-provided coverage when they leave their job and/or become eligible for Medicare.

The other major form of publicly-provided health insurance is Medicaid, which is available to

individuals with low income and very few assets. Those who report not having any insurance

are assigned to the “none” category.5

The central variable of interest in this study is the total amount of health care costs paid

4 Throughout our analysis, we include the 1995 wave of the AHEAD with the 1994 wave of the HRS. We
also tried including the 1995 wave of the AHEAD with the 1996 wave of the HRS, which had only a small
effect on the results.

5Many individuals have multiple forms of insurance. We assigned respondents to health insurance type
according to the following heirarchy: employer-provided coverage (this category includes insurance to current
or former government employees); Medicaid; privately-purchased but not employer-provided; and Medicare.
We classify married households on the basis of the husband’s insurance. See French and Kamboj (2002) for a
fuller description of the construction of all of these variables.
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Age < 65 Age ≥ 65
Variable Mean Std. Dev. Mean Std. Dev.
Annual health care costs (in 1998 dollars) 2, 365 (4, 271) 2, 805 (6, 072)
Male head of household 0.64 (0.48) 0.51 (0.50)
Married 0.48 (0.50) 0.37 (0.48)
Age 58.5 (3.6) 76.9 (8.1)
No insurance (none) 0.15 (0.36) 0.01 (0.11)
Employer-provided insurance 0.61 (0.49) 0.28 (0.45)
Privately-purchased insurance 0.10 (0.31) 0.25 (0.43)
Medicaid 0.09 (0.28) 0.15 (0.36)
Medicare 0.05 (0.22) 0.31 (0.46)
Income (in 000s of 1998 dollars) 49.8 (100.5) 29.6 (45.5)
Assets (in 000s of 1998 dollars) 249.8 (756.9) 298.0 (1, 113)
Annual doctor visits 6.2 (10.3) 7.2 (9.9)
Annual nursing home nights 0.7 (14.9) 8.0 (48.6)
Annual hospital nights 1.2 (4.9) 2.1 (6.8)

N = 15, 990 N = 18, 903

Table 1: Sample Statistics

by the household. Health care costs are the sum of what the household spends on insurance

premia, drug costs, and costs for hospital, nursing home care, doctor visits, dental visits, and

outpatient care. For our sample, mean household health care costs for those younger than 65

are $2,365 and mean health care costs for those aged 65 and older are $2,805. This compares

to the US per capita average of $2,832 for households headed by a non-institutionalized

individual aged 65 or older (Federal Interagency Forum on Aging-Related Statistics, 2000).

Note that even though most individuals in our sample are insured, there is a great deal of

variation in health care costs. The standard deviation of health care costs is $4,271 and

$6,072 for those younger and older than 65, respectively. This is not surprising, as most

health insurance plans have deductible and/or co-pay provisions. Moreover, many insurance

plans (such as Medicare) do not cover prescription drugs.

One important reason why average health care costs in the HRS/AHEAD data are below

the national average is that individuals in the HRS/AHEAD spend far fewer nights in a

nursing home.6 In our sample, individuals aged 65 or older spent 8.0 nights per year in a

nursing home per year, as opposed to the national average of 15.8 nights (National Center

for Health Statistics, 1999). Because the HRS/AHEAD sample was initially drawn from

6Selden et al. (2001) find that 9% of total aggregate health costs and 13% of costs paid out-of-pocket arise
from nursing home visits. Because of the skewness of nights spent in a nursing home, Palumbo (1999) argues
that nursing homes are a significant source of health cost uncertainty for the elderly.
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the non-institutionalized population—which excludes individuals in nursing homes—it is not

surprising that its members spend relatively fewer nights in a nursing home. HRS/AHEAD

members who enter a nursing home after the initial interview, however, are retained in the

sample, and re-interviewed. By the later waves, many HRS/AHEAD members have entered

a nursing home. In wave 5, individuals aged 65 or older spent 12.7 nights in a nursing home,

which is much closer to the aggregate value.7

3 The Persistence of Health Care Costs

We construct the health cost process in two steps, first finding its autocorrelation struc-

ture, and then finding its innovation distribution. Feenberg and Skinner (1994) find that

autocorrelation structure of logged health costs is well represented by an ARMA(1,1) process.

To re-examine their findings, we evaluate several time series models with a commonly-used

error components methodology.8 This approach works well with short panels, and it requires

no distributional assumptions.

We estimate the following error components model:

lnhcit = X ′
itβ +Rit, (1)

Rit = fi + ait + uit, (2)

ait = ρait−1 + εit, (3)

uit = ψit + φψit−1, (4)

where X ′
itβ is the expectation of health costs conditional on the covariate vector Xit, and Rit

is the residual, which can be decomposed into: fi, a permanent person-specific component;

ait, an autoregressive component; and uit, a moving average component. Note that t denotes

a two-year period.

The estimation procedure has two stages. In the first stage, we estimate the parameter

vector β in equation (1) by regressing log health costs on demographic and health insurance

7For nights spent in a hospital, the HRS/AHEAD matches the national statistics rather well. For individuals
older than 65, average nights in a hospital are 2.1 in the HRS/AHEAD, as opposed to the national average of
2.3 (National Center for Health Statistics, 1999).

8See Abowd and Card (1989), Pischke (1995) and Baker (1997) for similar approaches.
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variables that households can use to forecast future health costs.9 Table 2 presents the

parameter estimates. We use the OLS estimates throughout the paper, but the GLS estimates

are very similar.10

Of particular interest is the coefficient on log income of 0.179.11 Households have some

control over the quality of care they receive; ideally, the variation induced by this choice

should be omitted from our measure of health cost risk.12 Most of the remaining parameter

estimates are of the expected sign. The one surprising finding is that those with no health

insurance have lower health care costs than those with employer-provided insurance. This

is particularly surprising given that these estimates exclude employer expenditures, which

average over $2,700 per employee (Employee Benefit Research Institute, 1999). As French and

Kamboj (2002) show, one reason for this is that those with employer-provided insurance are

more likely to obtain health care services. Households receiving Medicaid spend significantly

less. Given that the government provides Medicaid for free to those with low income and

assets, this is hardly surprising.

In the second stage of the estimation procedure, we estimate the covariance matrix of the

residuals from the first step regression, and fit to it the model described in equations (2)−(4).

For tractability, we assume that ait is a stationary process (|ρ| < 1 and εit is homoskedastic)

and that the components in equations (1)−(4) are mutually orthogonal.13 We also assume

9In all the analyses that follow, health care costs below $250 (including reports of no expenditures) were
recoded to $250. For more interpretation of these low cost reports, see French and Kamboj (2002). One alter-
native bottom-coding scheme is the one employed by Hubbard et al. (1994), who drop zero-cost observations,
but recode none of the others. Applying their rule would lead us to drop about 10% of our observations.

10The reported GLS estimates use the empirical covariance matrix reported in Table 3, although we also
estimated GLS coefficients using the estimated covariance matrix implied by the model in column 2 of 4 for
the weighting matrix.

11Feenberg and Skinner find an elasticity of around 0.38. See Cutler and Zeckhauser (2000) for other
estimates of income elasticities.

12Moreover, health insurance coverage is not completely exogenous. This could lead to inconsistent estimates
of β and the health cost risk that individuals face. On the one hand, individuals may purchase health insurance
in response to a health shock. On the other hand, negative health shocks could cause the loss of a job and
the health insurance associated with that job. The latter effect seems to be more important. Of individuals
aged 65 or younger with no private health insurance in the previous wave, only 5.0% of those whose health
got worse purchased private health insurance, whereas 6.3% of those whose health did not change obtained
private health insurance and 5.8% of those whose health improved purchased private health insurance. Of
individuals aged 65 or younger with no employer-provided insurance in the previous wave, only 8.6% of those
whose health got worse obtained employer provided health insurance, whereas 13.5% of those whose health did
not change obtained employer provided health insurance and 14.2% of those whose health improved obtained
employer-provided health insurance.

13Specifically, we assume E(XitRit) = E(fiait) = E(fiuit) = E(aituit) = E(ait−1εit) = E(ψitψit−1) = 0.
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OLS Estimates GLS Estimates
Variable Coefficient (Robust S.E.) Coefficient (S.E.)
Male −0.121 (0.020) −0.106 (0.019)
Married 0.729 (0.020) 0.718 (0.019)
Age 0.0451 (0.009) 0.062 (0.008)
Age2 −0.00020 (0.00006) −0.00032 (0.00005)
Employer-provided × (age < 65) 0.227 (0.026) 0.269 (0.023)
Privately-purchased × (age < 65) 1.34 (0.035) 1.18 (0.031)
Medicaid × (age < 65) −0.309 (0.039) −0.281 (0.034)
None or Medicare × (age ≥65) −0.019 (0.033) −0.043 (0.029)
Employer-provided × (age ≥ 65) 0.186 (0.033) 0.201 (0.030)
Privately-purchased × (age ≥ 65) 0.972 (0.034) 0.844 (0.031)
Medicaid × (age ≥ 65) −0.481 (0.037) −0.438 (0.033)
Log income 0.179 (0.009) 0.155 (0.008)
Wave dummies included
N = 34, 893 R2 = 0.30, σ = 1.05 R2 = 0.30, σ = 1.05

Table 2: Least Squares Regressions of Log Health Costs

that the permanent person-specific effect fi is unchanging over time, so that:

V ar(fi) = σ2
f ; V ar(ait) = σ2

a; V ar(εit) = σ2
ε . (5)

Note that σ2
ε = σ2

a(1−ρ2). We allow for heteroskedasticity, however, in the innovation to the

MA(1) component:

V ar(ψit) = σ2
ψt. (6)

The variances and autocovariances implied by the model are:

V ar(Rit) =
(
σ2
f + σ2

a + σ2
ψt + φ2σ2

ψt−1

)
, for all t, (7)

Cov(Rit, Ri,t+1) =
(
σ2
f + ρσ2

a + φσ2
ψt

)
, for all t, (8)

Cov(Rit, Ri,t+k) =
(
σ2
f + ρkσ2

a

)
, for all k > 1, t. (9)

Table 3 shows the empirical covariance matrix. Covariances appear below the diagonal

of this matrix, variances appear along the diagonal, and autocorrelations appear above it.

Standard errors are in parentheses. Because the data are unbalanced, Table 3 also shows

the number of observations in each cell (in brackets).14 The covariance matrix gives us 10

14Wave 3 has very few observations because AHEAD respondents were not interviewed in wave 3. See
footnote 4. The number of households increases across waves for two reasons. First, fewer observations are
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moment conditions to match.15

Wave 2 Wave 3 Wave 4 Wave 5
Wave 2 1.1257 0.3854 0.3221 0.3082

(0.0185)
[7, 935]

Wave 3 0.4386 1.1504 0.4113 0.3281
(0.0220) (0.0286)
[2, 804] [3, 938]

Wave 4 0.3552 0.4585 1.0806 0.4139
(0.0171) (0.0214) (0.0168)
[5, 358] [3, 037] [10, 826]

Wave 5 0.3391 0.3649 0.4462 1.0754
(0.0160) (0.0196) (0.0138) (0.0157)
[5, 809] [3, 164] [8, 489] [12, 194]

Covariances lie below the diagonal, correlations above
Standard errors in parentheses
Sample sizes in brackets

Table 3: Empirical Covariance Matrix

Using a minimum distance estimator, we fit several variants of the error components

model to this covariance matrix. Details of the estimation procedure are in appendix B; the

underlying asymptotic theory can be found in Chamberlain (1984). Table 4 shows parameter

estimates and values of the overidentification test statistic.16 When the model is true, this

statistic will converge to a χ2 distribution, with degrees of freedom equal to the number of

moment conditions less the number of parameters.

The first column of Table 4 shows the results for a simple stationary AR(1) model, where

σ2
ψt = σ2

f = 0. This model is overwhelmingly rejected by the data; the overidentification test

statistic is 394.9, with a p-value of 0. The reason for this failure can be seen in Table 3,

which shows that while there is a large decline from the variance to the first autocovariance,

the decline between the first and second (and between the second and third) autocovariances

is much smaller.17 An AR(1) model, which generates a geometrically declining series of

dropped in later waves because of missing information. Second, the HRS/AHEAD added new households in
wave 4.

15Although combining moment conditions across waves would be more efficient under stationarity, matching
wave-specific moments allows us to consider non-stationary models.

16The standard errors shown here have not been adjusted to reflect uncertainty in the estimate of β.
17The average variance is 1.11, the average first autocovariance is 0.45, and the second autocovariance is 0.34.
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autocovariances, cannot replicate this progression.

Model
Parameter 1 2 3 4 5 6
σ2
a 1.046 0.522 0.574 0.395 0.519 0.399

(0.010) (0.019) (0.453) (0.043) (0.020) (0.044)
σ2
ε 0.825 0.145 0.552 0.039 0.141 0.041

(0.014) (0.047) (0.513) (0.115) (0.049) (0.114)
ρ 0.459 0.849 0.197 0.949 0.854 0.948

(0.009) (0.018) (0.186) (0.043) (0.018) (0.042)
σ2
ut 0.575 0.189 0.702 0.589 0.672

(0.019) (0.470) (0.059) (0.027) (0.070)
σ2
ψt 0.575 0.189 0.694 0.589 0.659

(0.019) (0.470) (0.039) (0.027) (.049)
φ 0.104 0.102

(0.031) (0.031)
σ2
f 0.334

(0.022)
χ2-statistic 394.9 18.1 10.9 10.9 7.3 0.2
Degrees of freedom 8 7 6 6 4 2
p-value 0.000 0.012 0.091 0.091 0.120 0.909
Standard errors in parentheses
σ2
a = variance of autoregressive component of log health costs
σ2
ε = innovation variance of the autoregressive component
ρ = autoregressive coefficient of log health costs
σ2
ut = variance of moving average component
σ2
ψt = innovation variance of the moving average component

In models 5 and 6, σ2
ut and σ2

ψt report averages across waves
φ = moving average coefficient of log health costs
σ2
f = variance of permanent person-specific component

Table 4: Parameter Estimates of Error Components Models

The above reasoning suggests adding a moving average component to the AR(1) model.

We begin with the simplest case, setting φ = 0, so that the moving average component is

white noise, and assuming that this white noise component is homoskedastic across waves:

σ2
ut = σ2

ψt = σ2
ψ. The sum of these two processes is equivalent to the ARMA(1,1) process

studied by Feenberg and Skinner.18 Estimates from this model are reported in the second

column of Table 4. The overidentification test statistic is 18.1, implying a considerably better

fit than the AR(1). Given that we have only 7 degrees of freedom, however, the model is still

strongly rejected.

18See Hamilton (1994, p. 393) for a derivation.
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A common error components model of wages (see Abowd and Card, 1989, and Baker,

1997, for example) includes a permanent person-specific effect, fi, and allows the moving

average component of wages to follow an MA(1) process instead of white noise.19 Columns

3 and 4 of Table 4 show the effects of these two changes. These models fit the data better

than the AR(1) with white noise, although they are still rejected at the 10% level.20

What also improves goodness of fit is allowing the variance of the white noise component,

ψit, to differ across waves.21 Such heteroskedasticity could reflect variation in the survey

questions used to generate the health cost measure, as the questions differ from wave to

wave. Results from this model are shown in column 5 of Table 4.22 Given that the empirical

variance of health costs changes significantly from wave to wave, allowing for heteroskedas-

ticity significantly improves the fit; the χ2 statistic falls to 7.3. This model is not rejected at

the 10% level. The variances and covariances of the fitted model are shown in Table 5.

Model Predicted Covariances of the Residuals
of log Health Costs, Waves 2-5

Wave 2 Wave 3 Wave 4 Wave 5
Wave 2 1.1279
Wave 3 0.4427 1.1481
Wave 4 0.3779 0.4427 1.0823
Wave 5 0.3226 0.3779 0.4427 1.0730

Table 5: Covariance Matrix Implied by AR(1) plus Heteroskedastic White Noise

One last attempt to improve the fit of the model is to allow the moving average component

of health costs to be an MA(1) with heteroskedastic innovations. Estimates are in column 6.

The model does fit the data better, but introduces two additional parameters, leaving us with

only two degrees of freedom. Fortunately, the parameters ρ, σ2
a, and σ2

ut seem reasonably

stable across models 2, 4, 5 and 6. This means that even though the AR(1)-plus-white-noise

model is rejected in favor of more complicated models, all of the models have similar time

series implications. We return to these implications in our discussion of lifetime health cost

19Note that σ2
ut = σ2

ψt + φ2σ2
ψt−1, which means that σ2

u = (1 + φ2)σ2
ψ when ψ is homoskedastic.

20We also tried estimating a model with an AR(1), MA(1) and a permanent person specific effect. This
model fit the data no better (p-value of 10.9) than either model 3 or model 4, and the parameters were very
imprecisely estimated.

21We did not estimate a model with heteroskedasticity in εit for two reasons. First, there is more variability
in the variances across waves than there is in the autocovarinaces, suggesting that heteroskedasticity in εit
would not likely help the fit very much. Second, classical measurement error that varies across waves would
cause heteroskedasticity in ψit but not in εit.

22The reported estimates and standard errors for σ2
ψt and σ2

ut are averages across waves.
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risk in Section 5.

4 Cross-Sectional Distribution

For the risk-averse, the possibility of catastrophic health care costs may be a matter of

great concern. This means that in modeling the cross-sectional distribution of health care

costs, special attention must be given to fitting the far right tail. Moreover, even if one prefers

to estimate the distribution nonparametrically, the scarce data of the upper tail might require

a parametric model. We thus proceed in two steps, considering first the upper tail, and then

the entire distribution.

4.1 The Upper Tail

Previous studies have identified two statistical models for the upper tail of the health cost

distribution. Feenberg and Skinner (1994) use the lognormal distribution.23 This implies

that the density function for large health costs, f(.), is

f(lnhc| lnhc ≥ lnhcL) =
1

1 − Φ([lnhcL − µ]/σ)
φ([lnhc− µ]/σ)

1
σ
, (10)

where Φ and φ are the standard normal cdf and pdf, respectively; µ and σ are the mean and

standard deviation, respectively, of the untruncated distribution; and hcL is the truncation

point used to define the upper tail. Rust and Phelan (1997) use the Pareto distribution,

which has the density

g̃(hc|hc ≥ hcL) = γhcγLhc
−(1+γ). (11)

A change of variables shows that if hc follows a Pareto distribution, its logarithm follows an

exponential distribution:

g(lnhc| lnhc ≥ lnhcL) = γe−γ[lnhc−lnhcL]. (12)

Choosing between the two models boils down to seeing whether the right tail of the log

health cost distribution is better modeled with a truncated normal or with an exponential

23By assuming that log health costs follow a stationary Gaussian ARMA process, Feenberg and Skinner’s
approach implies that the upper tail of the cross-sectional distribution is truncated lognormal.
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distribution.

The two models can be compared formally with the likelihood ratio test developed by

Vuong (1989) and extended by Rivers and Vuong (2002). Consider a sample of log health

costs of size N . Let LN (µ̂N , σ̂2
N ) and LN (γ̂N ) denote the maximized sample log-likelihoods for

the truncated normal and exponential models, respectively. Suppose that 1
N ω̂

2
N consistently

estimates the variance of 1
N [LN (µ̂N , σ̂2

N )−LN (γ̂N )], the mean log-likelihood difference. Since

the two models in question are strictly non-nested, it follows from Vuong (Theorem 5.1) and

Rivers and Vuong (Theorems 1 and 3) that the adjusted statistic24

DN ≡ N−1/2

(
1
ω̂N

[LN (µ̂N , σ̂2
N ) − LN (γ̂N )] − 1

)
(13)

will converge in distribution to a standard normal variable if the two models are equivalent.

On the other hand, if the truncated normal model better represents the data generating

process for log health costs, DN will converge to infinity, and if the exponential model is

better, DN will converge to negative infinity.

To perform the Vuong test, we assemble our health cost data into a “pseudo” cross

section, and compute DN for the N observations in the top decile. Although a household’s

health care costs are correlated across waves, we can calculate the likelihood values as if

the observations were independent—the Vuong test is valid even if both of the competing

models are misspecified. The variance estimate ω̂2
N must be adjusted, however, to reflect any

correlation; in practice, this adjustment is generally quite small.25

We account for the effects of age, gender, marital status, income, wave, and health insur-

ance type in two ways. The first approach is to repeat the linear regresssion shown in Table 2,

compute the residuals, and add back the mean. The first line of Table 6 presents parame-

ter estimates, log-likelihoods, and p-values of the Vuong statistic DN for this modified cross

section. Given the way DN has been constructed, a low p-value should be taken as evidence

in support of the normal specification, and a high p-value should be taken as evidence in

support of the exponential specification. The p-value of 0.266 shown in the first line of Table

24The −1 term is a variant of the Akaike correction factor.
25Letting mi(lnhci; µ̂N , σ̂

2
N , γ̂N ) = ln f(lnhci; µ̂N , σ̂

2
N )− ln g(lnhci; γ̂N ) denote the estimated log-likelihood

difference for observation i, it follows that 1
N
ω̂2
N is the estimated variance of 1

N

∑N
i=1mi(lnhci; µ̂N , σ̂

2
N , γ̂N ).

Our approach for finding ω̂2
N is analagous to the procedure for finding the matrix Ŝ, which we describe in

Appendix A (equation (24)).
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6 suggests that the two models are roughly equivalent. The second line of Table 6 presents

results for the wave 5 data alone—recall that these data potentially do a better job of cap-

turing nursing home costs, which could skew the health cost distribution the right. Perhaps

not surprisingly, the fatter-tailed exponential model better fits the wave 5 data, although the

difference is not significant at standard confidence levels.

The second way in which we account for the conditioning variables is to break the data

into cells by age, marital status, and health insurance type.26 The bottom 24 lines of Table

6 show the results for cells with 30 or more observations. At a 5% (two-sided) significance

level, the truncated normal model dominates (p < 0.025) in two cells, and the exponential

model dominates in one cell. At a 10% significance level, the exponential dominates in one

additional cell, and at 20%, the truncated normal dominates in four more cells.27 But this

leaves 16 cells where neither model clearly dominates. Taken as a whole, the two models fit

equally well.

The cell-by-cell results also show that the p-values tend to be somewhat higher for those

with employer-provided or privately-purchased insurance. This is somewhat surprising, but

consistent with Rust and Phelan’s (1997) finding that insurance does not completely remove

the risk of catastrophic costs.

26We controlled for gender, income, and wave with a standard partial regression approach. Using OLS
regression, we first found the components of gender, income and wave that were orthogonal to the other
explanatory variables. We then linearly regressed log health costs on these orthogonal components, and
computed the residuals. Omitting these adjustments does not change our qualitative results.

27In some of these cells, the truncated normal distribution was difficult to estimate; the likelihood function
was too irregular to yield the exact maximum implied by first-order conditions. A look at the underlying
data suggests that the difficulties often arose because those data were in fact better approximated by the
exponential model.
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Subsample lnhc0.9 N µ̂N σ̂2
N LN (µ̂N , σ̂2

N ) γ̂N LN (γ̂N ) p(DN )
Entire Sample 8.41 3490 −24.13 21.70 −1938.2 1.56 −1938.7 0.2664
Wave 5 8.47 1220 −24.29 22.31 −707.8 1.52 −707.4 0.7925

Age < 65, Unmarried
Employer-provided 8.03 446 −16.31 12.02 −112.5 2.11 −112.4 0.6306
Privately-purchased 8.67 83 −17.81 14.66 −30.8 1.87 −30.8 0.4682
No insurance 7.61 147 −29.41 29.03 −105.6 1.33 −105.6 0.4851
Medicaid 7.34 119 6.46 1.55 −79.7 1.36 −82.3 0.0933
Medicare 8.42 47 7.27 2.12 −37.3 1.21 −38.2 0.0641

Ages 65-79, Unmarried
Employer-provided 8.10 182 −21.28 17.54 −80.6 1.75 −80.4 0.8327
Privately-purchased 8.50 142 −12.57 8.99 −15.1 2.46 −14.2 0.9983
Medicaid 7.48 122 4.54 3.34 −89.6 1.29 −90.6 0.1864
Medicare 8.03 207 −25.13 22.33 −117.7 1.54 −117.7 0.5373

Age > 79, Unmarried
Employer-provided 8.68 107 8.92 1.08 −91.9 1.08 −98.7 0.0081
Privately-purchased 8.80 141 8.40 1.36 −104.6 1.25 −109.2 0.0531
Medicaid 7.80 115 6.95 2.20 −102.8 1.08 −105.7 0.0549
Medicare 8.38 173 7.50 2.06 −146.4 1.14 −150.5 0.0192

Age < 65, Married
Employer-provided 8.77 537 0.19 4.56 −142.6 2.08 −143.1 0.3150
Privately-purchased 9.65 84 8.63 0.46 18.7 3.37 18.0 0.2439
No insurance 8.42 93 4.89 2.41 −34.1 1.88 −34.5 0.3723
Medicare 8.90 32 2.87 3.59 −10.6 1.95 −10.6 0.3580

Ages 65-79, Married
Employer-provided 8.83 201 −15.73 12.27 −53.2 2.09 −53.0 0.8810
Privately-purchased 9.21 146 −9.34 7.01 2.6 2.77 2.9 0.8654
Medicaid 8.55 34 5.45 2.53 −16.7 1.66 −16.8 0.3111
Medicare 8.73 163 −19.10 15.79 −64.1 1.84 −63.9 0.9566

Age > 79, Married
Employer-provided 9.02 41 −14.10 10.85 −8.2 2.23 −8.1 0.7952
Privately-purchased 9.39 47 −11.66 9.11 −5.9 2.40 −5.9 0.6462
Medicare 8.82 47 4.35 4.60 −35.0 1.28 −35.3 0.3882
lnhc0.9 = the 90th percentile of log health costs
N = the number of observations in the top decile
µ̂N , σ̂

2
N , γ̂N = estimated likelihood parameters defined in the text

LN (µ̂N , σ̂2
N ), LN (γ̂N ) = estimated log-likelihoods

p(DN ) = p-value of the Vuong test statistic DN

Table 6: Parameter Estimates and Log-Likelihood Values for the Top Decile
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4.2 The Entire Cross Section

Although the Pareto and lognormal models fit the upper tail of the empirical health cost

distribution equally well, the overall cross section provides more discrimination. Figure 1

shows the cross-sectional distribution for the entire sample. Once the effects of the condi-

tioning variables have been removed, the empirical distribution is fairly close to lognormal.

Figure 1: Distribution of Health Care Costs

Even in those subsamples where the Pareto distribution best fits the cross section, there

are two additional problems. First, the Pareto models that are estimated on entire cross

sections generally do much worse at fitting the upper tail than the lognormal models estimated

on entire cross sections. Second, in almost all cases, the estimates of γ that are found with

the entire cross section are less than 1, which implies that expected health care costs, γ
γ−1hcL,

are unbounded. This is completely at odds with the estimates from the upper tail shown in

Table 6.

Finally, even if we could somehow extend the Pareto models of the top decile to the

entire health cost distribution, we would have difficulty combining them with the time series
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models estimated in Section 3.28 While a stationary ARMA process with normal innovations

(that is common across households) will generate a normally-distributed cross section, to our

knowledge there is no closed-form innovation distribution for log health costs that generates

an exponential cross section.29 These concerns lead us to abandon the Pareto as an model of

the overall cross section.

Figure 2: Conditional Distribution of the Top Decile of Health Care Costs

Unfortunately, the lognormal distribution that best fits the overall cross section does not

fit the upper tail very well, even if it outperforms the Pareto. Figure 2 shows the conditional

distribution for the top decile of the health cost data shown in Figure 1. While the Pareto

and truncated lognormal models that were estimated from the top decile fit closely, the upper

tail implied by the “standard” lognormal model is too thin. This conclusion can be reinforced

28Although Rust and Phelan (1997) fit a Pareto distribution to the upper tail of their data, they use a
discrete approximation to model the rest of the distribution. Because they assume health care costs are
independent across time, this bifurcated model does not hinder their structural estimation.

29A comparison of characteristic functions shows that the exponential distribution does not belong to the
class of stable distributions, which are preserved under unweighted summation. It can also be shown for many
cases that ARMA processes with stable innovations have stable unconditional distributions. (See Billingsley,
1979; Brockwell and Davis, 1991; and McCulloch, 1996.) All of this suggests that there is no closed-form
innovation distribution that yields an exponential cross section. We have not considered non-normal stable
distributions in this paper, because, as is well known (see, e.g., Tsionas, 1999), in many applications they are
difficult to use.
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by comparing the log-likelihoods shown in the first column of Table 7 with the log-likelihoods

shown in Table 6: in most cases, the standard lognormal fits the top decile much less closely.

This consideration leads us to an alternative estimate. We find the mean and variance of

the lognormal distribution that matches both the mean and 99.5th percentile of health costs.

In particular, we pick values µ̃ and σ̃2 such that

eµ̃+σ̃2/2 = Ê(hc), (14)

Φ
( ln ĥc0.995 − µ̃

σ̃

)
= 0.995, (15)

where Ê(hc) and ĥc0.995 are the mean and the 99.5th percentile of the empirical cross sec-

tion.30 Table 8 shows the parameters of this “fitted” distribution, along with the parameters

of the standard lognormal distribution, and standard errors for both sets of parameters. (Ap-

pendix A describes how the standard errors for the fitted parameters are calculated.) Given

that they rely on the far upper tail of the data distribution, where the data are more sparse, it

is not surprising that the parameter estimates for the fitted lognormal model are less precise.

30Defining z0.995 = Φ−1(0.995) to be the 99.5th percentile of the standard normal distribution, we can solve
equations (14) and (15) to find

σ̃ = z0.995 −
√
z2
0.995 − 2[ln ĥc0.995 − ln(Ê(hc))],

µ̃ = ln ĥc0.995 − σ̃z0.995.

We find ln ĥc0.995 with a GAUSS function that interpolates between data points to get the exact percentile.
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LLH: Top Decile LLH: Full Sample Ê(hc) hc0.995 (in 000s)
Subsample Std Ftd Std Ftd Std Ftd Std Ftd
Entire Sample −2224.1 −1997.0 −51125 −55385 2036 2300 17.5 33.8
Wave 5 −836.3 −737.4 −17722 −19788 2250 2558 18.9 40.5

Age < 65, Unmarried
Employer-provided −121.3 −120.6 −6261 −6314 1283 1376 10.0 12.7
Privately-purchased −32.8 −32.1 −1150 −1162 3379 3276 25.8 28.7
No insurance −156.2 −107.5 −2039 −2389 751 1044 5.8 18.3
Medicaid −141.4 −80.2 −1474 −1757 536 711 3.3 10.2
Medicare −41.8 −37.6 −770 −791 1868 2316 21.6 37.7

Ages 65-79, Unmarried
Employer-provided −92.4 −86.2 −2599 −2737 1540 1685 12.6 21.0
Privately-purchased −28.7 −27.2 −1711 −1722 2707 2777 15.8 18.4
Medicaid −148.0 −89.8 −1603 −2021 622 886 4.3 16.6
Medicare −139.2 −122.8 −3062 −3432 1191 1463 10.5 25.1

Age > 79, Unmarried
Employer-provided −106.7 −98.6 −1779 −1791 2659 3142 32.3 45.4
Privately-purchased −130.7 −108.0 −1966 −2087 3797 4030 29.5 48.7
Medicaid −149.4 −104.0 −1715 −1930 848 1294 7.7 24.5
Medicare −175.9 −147.3 −2803 −2985 1645 2266 18.4 42.4

Age < 65, Married
Employer-provided −148.7 −147.5 −8086 −8088 3075 3020 28.2 26.8
Privately-purchased 10.4 18.5 −1068 −1231 9154 8399 58.9 32.9
No insurance −34.4 −34.5 −1438 −1441 1698 1866 16.9 20.6
Medicare −11.0 −10.8 −477 −478 4121 3814 39.8 33.1

Ages 65-79, Married
Employer-provided −59.0 −59.1 −2983 −2986 3447 3373 30.7 31.1
Privately-purchased −2.7 −2.9 −1706 −1712 5787 5630 32.0 33.1
Medicaid −16.8 −16.8 −547 −550 1871 2170 21.8 29.4
Medicare −70.3 −70.8 −2479 −2535 3046 3126 28.9 38.3

Age > 79, Married
Employer-provided −10.5 −9.5 −646 −669 3794 3618 41.3 28.9
Privately-purchased −7.0 −6.9 −596 −598 6937 6572 45.4 39.4
Medicare −37.4 −36.6 −759 −760 3654 3988 41.4 47.2
“Std” refers to standard lognormal estimates, “Ftd” to fitted estimates
Log-likelihoods (“LLH”) calculated with log health costs

Table 7: Summary Statistics Generated by Different Lognormal Distributions
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Standard Lognormal “Fitted” Lognormal
Subsample µ̂ σ̂2 µ̃ σ̃2

Entire Sample 7.07 (0.0056) 1.10 (0.0083) 6.69 (0.032) 2.11 (0.072)
Wave 5 7.18 (0.0094) 1.07 (0.0137) 6.69 (0.069) 2.32 (0.157)

Age < 65, Unmarried
Employer-provided 6.67 (0.0148) 0.97 (0.0206) 6.62 (0.040) 1.21 (0.074)
Privately-purchased 7.65 (0.0338) 0.95 (0.0465) 7.53 (0.068) 1.12 (0.067)
No insurance 6.15 (0.0255) 0.95 (0.0352) 5.64 (0.193) 2.63 (0.413)
Medicaid 5.93 (0.0245) 0.71 (0.0292) 5.54 (0.131) 2.05 (0.187)
Medicare 6.74 (0.0582) 1.58 (0.1034) 6.55 (0.228) 2.40 (0.266)

Ages 65-79, Unmarried
Employer-provided 6.83 (0.0238) 1.03 (0.0342) 6.57 (0.070) 1.73 (0.137)
Privately-purchased 7.57 (0.0217) 0.66 (0.0250) 7.54 (0.058) 0.79 (0.034)
Medicaid 6.02 (0.0261) 0.82 (0.0335) 5.35 (0.241) 2.87 (0.302)
Medicare 6.51 (0.0235) 1.14 (0.0354) 6.00 (0.110) 2.57 (0.151)

Age > 79, Unmarried
Employer-provided 7.05 (0.0397) 1.67 (0.0727) 7.02 (0.159) 2.07 (0.176)
Privately-purchased 7.76 (0.0263) 0.97 (0.0366) 7.47 (0.075) 1.67 (0.088)
Medicaid 6.15 (0.0322) 1.18 (0.0495) 5.70 (0.366) 2.92 (0.779)
Medicare 6.65 (0.0297) 1.52 (0.0516) 6.29 (0.268) 2.87 (0.586)

Age < 65, Married
Employer-provided 7.44 (0.0149) 1.19 (0.0230) 7.44 (0.093) 1.14 (0.206)
Privately-purchased 8.74 (0.0301) 0.76 (0.0370) 8.86 (0.039) 0.36 (0.053)
No insurance 6.78 (0.0378) 1.32 (0.0614) 6.78 (0.141) 1.49 (0.300)
Medicare 7.69 (0.0640) 1.27 (0.1020) 7.69 (0.177) 1.11 (0.396)

Ages 65-79, Married
Employer-provided 7.57 (0.0239) 1.15 (0.0363) 7.52 (0.051) 1.20 (0.086)
Privately-purchased 8.36 (0.0206) 0.61 (0.0228) 8.30 (0.033) 0.67 (0.030)
Medicaid 6.73 (0.0695) 1.60 (0.1242) 6.73 (0.966) 1.91 (2.069)
Medicare 7.40 (0.0276) 1.24 (0.0435) 7.20 (0.085) 1.70 (0.073)

Age > 79, Married
Employer-provided 7.51 (0.0605) 1.47 (0.1037) 7.69 (0.120) 1.00 (0.121)
Privately-purchased 8.46 (0.0409) 0.77 (0.0509) 8.45 (0.157) 0.69 (0.334)
Medicare 7.43 (0.0577) 1.54 (0.1013) 7.48 (32.423) 1.62 (65.033)
Standard errors in parentheses

Table 8: Parameters for Lognormal Distributions
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Figure 2 shows that in addition to replicating average health costs, this “fitted” specifi-

cation fits the far upper tails of the data distribution fairly well. Figure 1 shows that one

weakness of this specification is that it can provide a poor fit of the distribution’s lower tail.

In practical terms, this is a relatively minor cost; at the lower tail of the distribution, large

differences in logged health costs lead to relatively small changes in health costs themselves.

Table 7 compares the standard and fitted lognormal distributions in more detail. The first

two columns of Table 7 show that in most cases, the fitted distribution better fits the upper

decile. The last four columns compare the two models’ predictions of mean health care costs

and the 99.5th percentile. While the fitted model matches these two statistics by construc-

tion, the standard lognormal model often misses by a large margin.31 For the full sample,

the standard lognormal implies a 99.5th percentile that is half of what is seen in the data.32

It is also useful to compare the parameter estimates in Table 8 to the lognormal estimates

for the top decile shown in Table 6. The lognormal parameters for the top decile are quite

different, and are unlikely to fit the overall distribution very well. For example, the lognormal

parameters shown on the first line of Table 6 imply that mean health care costs are less than

one cent. All of these factors suggest that in terms of simultaneously matching both the

overall distribution and its upper tail, the fitted lognormal provides the best approximation.

4.3 Welfare Effects of Health Cost Uncertainty

A good model of the health cost distribution should be able to accurately measure the

welfare losses associated with health cost uncertainty. These measures depend on the expec-

tation

E(V (A− elnhc)) =
∫
V (A− elnhc)f(lnhc) d lnhc, (16)

where V (.) is a value function, A is assets and f(.) is the pdf of log health costs. It follows

that a useful test of our fitted lognormal model is to see whether the integral calculated with

this distribution has the same welfare implications as the sample mean 1
N

∑N
i=1 V (A−elnhci).

31The mean implied by the fitted distribution, $2,300, is below the raw data mean of $2,600, because the
fitted distribution is estimated with data that have been purged of income, wave and demographic effects.
Because this filtering reduced the variance of log health costs without changing their mean, health costs
themselves are lower.

32When the data are bottom-coded with Hubbard et al.’s rules (see footnote 9), the standard lognormal
model fits the upper tail much better, and, moreover, is very close to the alternative model we develop here.
Our alternative model, however, is estimated mostly from the upper tail, and does not rely on bottom-coding
decisions.
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To conduct this experiment, we specialize the value function as

V (A− hc) =
1

1 − ζ
[max{A− hc,Amin}]1−ζ , ζ ≥ 0, ζ �= 1, (17)

which combines a CRRA function with an asset floor given by Amin; this is similar to, if

more stylized than, value functions used in Hubbard et al. (1994, 1995), Palumbo (1999),

and French and Jones (2002), where social insurance limits the effect of excessive health care

costs. In the figures shown below, the asset floor is fixed at $25,000 and ζ is set to 2 or 5.33 To

measure the welfare effects of health cost uncertainty, we compute the equivalent differential

(EQD), the decrease in assets that would leave a consumer facing no uncertainty no better

off than a consumer facing uncertainty:

V (APHC − EQD) ≡ E
(
V (max{A− hc,Amin})

)
, (18)

where APHC = 1
N

∑N
i=1max{A− hci, Amin} denotes the average post-health-cost asset bal-

ance.

One advantage of analytical distributions is that they allow the use of quadrature, where

the integral is computed by evaluating the value function at a small number of well-chosen

points (nodes) and taking a weighted average. For the case at hand, a promising approach is

Gauss-Hermite (GH) quadrature, where the nodes and weights are picked so that when f(.)

is the standard normal pdf and V (.) is a low-order polynomial in lnhc the approximation is

exact.34

Figure 3 plots the equivalent differential as a function of pre-health-cost assets, A. Figure 3

shows functions calculated with three different estimates of E(V (A − elnhc)): the sample

average; the integral found by combining the standard lognormal model with 10-node GH

quadrature; and the integral found by combining our fitted lognormal model with 7-node GH

quadrature. Although they have different numbers of nodes, the two quadrature techniques

take averages over the same interval of health costs, and are thus comparable.35 All of these

33The correct value of Amin is not obvious in such a stylized setting. We experimented with different values
of Amin and found similar qualitative results.

34Judd (1998) provides a nice review of Gauss-Hermite quadrature and numerical integration in general.
35GH quadrature nodes are points on the support of the standard normal distribution, with larger collections

of nodes having a wider range. As discussed below, we picked the number of nodes so that the highest
quadrature node matched the upper bound of the empirical distribution. The standard lognormal model
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estimates utilize the entire sample, the latter two using parameters from the first line of

Table 8.

For both values of ζ, the equivalent differential found by combining the fitted lognormal

distribution and 7-node GH quadrature, EQDF , closely matches the equivalent differential

generated by the data integral, EQDD. However, the equivalent differential of the standard

lognormal, EQDS , matches the data integral poorly. For most asset levels, the equivalent

differential implied by the standard lognormal is less than 1
10 as large as is implied by either

the fitted lognormal or the observed distribution. The welfare losses implied by the standard

lognormal are small. Never is the equivalent differential over $1,000, and it is usually less

than $10. In many cases EQDS is negative and falls off the graph. The mismatch occurs

both because the standard lognormal distribution does not match mean health care costs,

and because it fits the upper tail very poorly. To disentangle these two effects, Figure 4

shows equivalent differentials calculated with the “shifted” lognormal distribution, where σ̂2

is left unchanged, but µ̂ is adjusted to let the distribution match mean health costs. While

matching mean health costs greatly improves the fit, the inability to match the upper tail

leaves the shifted distribution an inferior alternative. In short, the fitted lognormal model

provides a better numerical approximation.

It turns out that the choice of 7 nodes is essential to the fitted lognormal’s good per-

formance. The reason for this is that the largest node in this quadrature scheme generates

a health cost roughly equivalent to the largest observed health expenditure, hcmax. When

households are highly risk-averse (e.g. ζ = 5), EQDD is driven by hcmax. While hcmax is

quite large (roughly $200,000), it is nonetheless finite, and the risk effects of it generates even-

tually shrink as pre-health-cost assets, A, continue to grow.36 By matching hcmax, EQDF is

able to match EQDD.

requires more of these nodes because it utilizes a smaller estimate of σ2, so that 1
σ
[lnhcmax − µ̂], where

lnhcmax is the largest observed health cost, is larger.
36Conversely, when A is small, many health cost realizations will be offset by the asset floor Amin. This

generates the result that EQDD initially increases in A; people with more assets have more to lose.
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Figure 3: Equivalent Differentials from Different Integration Methods
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Figure 4: Equivalent Differentials from the “Shifted” Lognormal Model

It can be shown that if one uses more than 7 nodes, thus increasing the upper bound on

health costs in the numerical approximation, EQDF will exceed EQDD at higher asset levels,

particularly when ζ = 5. This suggests that a finite sample with a finite largest element may

greatly understate the degree of health cost risk that wealthy agents actually face, unless

one can use a parametric model to extrapolate. On the other hand, if one believes that the

largest cost in our 35,000-observation sample accurately estimates the upper bound of health

cost distribution, the numerical methods one uses should be tailored to this extreme order

statistic. In essence, the fitted lognormal approximation requires estimates of not two but

three parameters: µ̃, σ̃2, and the number of nodes.37

37Another case of strong sensitivity to extreme order statistics is the estimation of search and matching
models (see, e.g., Christensen and Kiefer, 1997), where theory predicts a bounded support.

26



5 Lifetime Health Cost Risk

5.1 The Annual Stochastic Process

The stochastic process for log health costs can be found by combining the time series

model estimated in Section 3 with a model for the distribution of health cost innovations.

Unfortunately, the error components model that we estimate does not allow us to back out

an empirical distribution of log health cost innovations, because the sum of an AR(1) and

an MA process is not a Markov process. On the other hand, the lognormal model that we

find in Section 4 implies that the innovations are normal: if log health costs are normally

distributed in the cross-section and follow a stationary ARMA process, then the innovations

to that process must be normally distributed.38 Therefore, our preferred model of the health

cost process combines the time series model with the fitted lognormal approximation of the

cross section.

For the exercises below, we use the homoskedastic AR(1)-plus-white noise time series

model. Although the heteroskedastic model provides a better fit, much of this heteroskadis-

ticity reflects wave-specific differences in the wording of questions, rather than underlying

differences in health cost risk. The homoskedastic model is also more parsimonious, and is

more easily compared to other studies.

An important limitation of this model is that the health cost data which it fits consist of

two-year averages. In most studies of household decision-making, the relevant time period is

one year. We therefore fit an annual model of log health costs to the data, using the Method

of Simulated Moments. Specifically, for a given set of parameter values we simulate a panel

of annual health costs, where annual health costs are the exponentiated sum of an AR(1)

component, a white noise component, and a mean shifter. Taking two-year averages of the

simulated annual data yields data of the same form as the HRS/AHEAD data. We then find

the mean and 99.5th percentile of health costs, and the first three autocorrelations of the log

health cost residuals, of the simulated data, and compare them to the same statistics from

the HRS/AHEAD data. The parameters that minimize a GMM criterion function are our

38If households share a common stationary and ergodic health cost process, the unconditional health cost
distribution for an individual household must equal the cross-sectional distribution across the population. A
rigorous discussion of the necessary conditions for a stationary distribution can be found in Stokey and Lucas
(1989). (Although the discussion there is couched in terms of Markov processes, one can derive stationary
distributions for each component of our model, and then consider the sum.)
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estimated parameters. Appendix C describes the details of our approach. We refer to this

model as the “fitted lognormal” model in the discussion below, as it is analagous to the fitted

lognormal model derived in Section 4. We also compute a one-year analog to the standard

lognormal model, where we match mean log health costs, and the variance and first three

autocovariances of the log health cost residuals. Comparing the two models gives some sense

of how explicitly matching extreme health shocks affects the measurement of health cost risk.

Table 9 presents parameters for the annual health cost process estimated from the entire

data set. While the persistent component of the standard lognormal model is effectively

the persistent component of the two-year model with ρ rescaled to a one-year frequency, the

annual transitory component has twice the variance of its two-year counterpart, as it gets

averaged out in two-year data. As with the two-year data, the fitted estimates contain a

much higher level of variance than the standard estimates. The last column of Table 9 shows

overidentification test statistics, along with p-values. Although the one-year models do not

aggregate exactly into the two-year models we derived earlier, the fits they generate resemble

the ones shown in Table 4.39

Table 9 also includes estimates from Feenberg and Skinner (1994) and Hubbard et al.

(1994), both of which are measured at one-year frequencies. Feenberg and Skinner analyze

total household medical expenditures for tax filers who deduct medical expenditures, whereas

Hubbard et al. analyze total household medical expenses collected from survey data. We are

aware of no other study that presents estimates of these parameters.40

Feenberg and Skinner’s estimates of both σ2
a and σ2

u are much smaller than our estimates.

There are several potential reasons for this. First, their data are from 1968-1973, when

medical spending was lower and potentially less volatile. Second, they use a balanced panel

in their analysis whereas we use an unbalanced panel. Given that a major reason for attrition

in our analysis is death, and those who die likely have higher medical expenses, Feenberg and

39The overidentification statistics for the fitted and standard lognormal models should be compared to each
other and to the Table 4 statistics with some care, as they are calculated with different moment conditions.

40We decompose Feenberg and Skinner’s ARMA(1,1) process into AR(1) and white noise components by
utilizing the discussion in Hamilton (1994, p. 393). Neither Feenberg and Skinner or Hubbard et al. calculate
the analog to µ. It is worth noting that average health care costs (in 1998 dollars, adjusted with the BEA’s
consumption price index) are roughly $2,600 in our study ($2,650 after bottom-coding), $2,980 in Feenberg
and Skinner, and $3,030 in Hubbard et al. These differences reflect, among other things, differences in
demographics across the samples. In the simulations below, we set µ so that the latter two models generate
the same mean health costs as our fitted model.
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σ2
a σ2

u ρ µ χ2
10-statistic

HRS/AHEAD: Standard Lognormal 0.524 1.039 0.922 6.852 18.54
(0.0195) (0.0281) (0.0100) (0.0613) [0.0466]

HRS/AHEAD: Fitted Lognormal 0.909 1.819 0.925 6.366 24.05
(0.0485) (0.0746) (0.0034) (0.0709) [0.0075]

Feenberg and Skinner 0.269 0.100 0.896 N.A. N.A.
Hubbard et al. 0.930 0.220 0.901 N.A. N.A.
Standard errors in parentheses
p-values in brackets

Table 9: Parameter Estimates for One-year Health Cost Processes

Skinner likely underestimate the variance of health care costs.41 Third, their sample consists

only of individuals whose health care costs are high enough to be itemized on their income tax

returns. The adjustments they make for truncation might not recover all of the underlying

variance. Alternatively, this tax data could be less noisy than standard survey data. Note

that their estimate of σ2
u is much smaller than ours, in both absolute and relative terms,

and if measurement error is transitory, datasets with less measurement error will have lower

values of σ2
u.

Hubbard et al. (1994, 1995) use data from the 1977 National Health Care Expenditures

Survey and the 1977 National Nursing Home Survey to estimate the cross sectional variance

of health care costs. Their estimated cross-sectional variance, σ2
a + σ2

u, is smaller than our

standard lognormal estimate, to which it most closely compares. We are not sure what causes

this discrepancy, although their data are 20 years older than our data, and the variance of

health care costs has potentially grown over time. In addition, Hubbard et al. do not

explicitly match extreme health cost events, although their bottom-coding decisions largely

attenuate this problem.42 Because Hubbard et al. allocate the total variance between σ2
a and

σ2
u partly on the basis of Feenberg and Skinner’s estimates, they attribute much more of the

cross-sectional variance to the autoregressive component, ait, than we do.43

41The HRS/AHEAD survey utilizes follow-up interviews of the deceased’s survivors. When restricting our
sample to those who have non-missing health care costs in all waves, the variance of health costs drops by
10% and the 99.5th percentile drops by 6%.

42When we use Hubbard et al.’s bottom-coding rule (see footnote 9), the cross-sectional variance of the
standard lognormal model increases from 1.56 to 2.35.

43Background calculations graciously provided by Jonathan Skinner reveal that the allocation is not an
exact proportional rescaling.
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5.2 Simulation Estimates of Lifetime Health Cost Risk

Given both the distribution and dynamics of health care costs, we can estimate the lifetime

health cost risk that households face. Using the stochastic processes described in Table 9, we

simulate 30-year health cost sequences for 1 million households. Each household begins at age

64 with a draw of ai64 from the invariant distribution and then realizes a 30-year sequence of

innovations, {εit, uit}94
t=65. Adding µ to these sequences of shocks and exponentiating yields a

health cost history.44 To measure lifetime health care costs, we discount this sequence back

to age 65, using an annual interest rate of 3% and age- (but not health-) specific mortality

adjustments described in French (2003). Holding all other variables fixed, we then recompute

the sequence with one or both of the age-65 innovations, (εi65, ui65), set to zero. The difference

between the two discounted sequences gives the lifetime effects of the age-65 innovations.

Table 10 shows the effects of the age-65 innovations on age-65 and lifetime health care

costs, for the four models shown in Table 9. The first column shows results for the standard

lognormal process. When the AR(1) and white noise innovations are considered together, the

lifetime cost variation induced by the age-65 shocks has a standard deviation of $6,570. This

is considerably larger than the standard deviation of the age-65 variation, $3,630, indicating

that persistence in health care costs is important. Moreover, the variation induced by the

AR(1) innovation, εit, has a lifetime standard deviation of $5,580 and an age-65 standard

deviation of $1,190. Although transitory shocks generate most of the cross-sectional and

short-term variance, it is the persistent shocks (reflecting chronic conditions) that generate

most of the lifetime health cost risk. Turning to catastrophic shocks, we find that under our

standard lognormal model 1% of the population will receive an age-65 shock to lifetime health

costs of at least $23,900, and 0.1% will receive a shock of at least $54,700. Given that that

the standard lognormal model undershoots the upper tail, a better measure of catastrophic

risk appears in column 2, which shows results for our preferred model, the fitted lognormal.

The fitted model implies that the top 1% will receive a shock to lifetime expenses of at least

$43,500, and the top 0.1% will receive a shock of at least $124,700.

The amount of health cost risk implied by our estimates is considerably higher than

that found by Feenberg and Skinner (1994). Redoing the simulations with Feenberg and

44To restore the age effects that have been removed from the stochastic processes in Table 9, we let µ vary
by age, using the coefficients given in Table 2. We have not attempted to account for other differences within
or across individuals.

30



HRS/AHEAD: HRS/AHEAD: Feenberg- Hubbard
Standard Fitted Skinner et al.

Standard Deviation of Age-65 Health Care Costs (in $000s)
Due to εi65 1.19 2.84 0.61 1.59
Due to εi65 + ui65 3.63 7.99 1.01 2.29

Standard Deviation of Lifetime Health Care Costs (in $000s)
Due to εi65 5.58 10.44 3.74 8.70
Due to εi65 + ui65 6.57 12.87 3.82 8.86

Additional Lifetime Health Care Costs Due to εi65 + ui65 (in $000s)
99th percentile 23.9 43.5 11.8 31.7
99.9th percentile 54.7 124.7 19.9 71.1

Additional Lifetime Costs Given a $1 Increase in Age-65 Costs
Median ratio $1.55 $1.61 $3.01 $3.82

Table 10: Effects of Age-65 Shocks on Lifetime Health Care Costs

Skinner’s parameter values, we find that the lifetime cost effects have a standard deviation

of $3,820, of which $3,740 is attributable to the AR(1) innovation. When Hubbard et al.’s

(1994) parameter values are used, the standard deviations rise to $8,860 and $8,700, which fall

between the standard deviations implied by our two versions of the lognormal model. Because

Hubbard et al. attribute most of their model’s variance to its autoregressive component,

their model generates more lifetime health cost risk than the standard lognormal model, even

though it has a smaller cross-sectional variance.

Lastly, we compute the additional lifetime health care costs associated with an additional

$1 in health care costs at age 65. For each simulated household we divide the change in

lifetime costs generated by εi65 + ui65 by the change in age-65 costs caused by the same two

shocks. Taking the median of this ratio, we find that a $1 shock to current health care costs

leads to somewhere between $0.55 and $0.61 of future health care costs.45 Using Feenberg

and Skinner’s parameter values and our methodology, we find that a $1 health cost shock

today leads to $2.01 of future health costs.46 Using Hubbard et al.’s parameter values, the

corresponding figure is $2.82. Given that our estimates attribute a much smaller fraction

of the variance to the autoregressive component, it is not surprising that health cost shocks

45We report the median of this ratio across households because the combination of a positive (negative)
AR(1) innovation and a negative (positive) white noise innovation can lead to a large positive—or negative!—
ratio. The median will be more robust to these sorts of outliers.

46Feenberg and Skinner report that a $1 shock to current health care costs leads to $2.65 in future health
care costs. The discrepancy seems to come from the fact that they do not account for mortality in their
simulations. When using Feenberg and Skinner’s estimates and not accounting for mortality risk, we find that
a $1 shock to current health costs leads to a $2.62 increase in future health costs.
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have less persistent effects in our model.

6 Conclusion

Using data from the Health and Retirement Survey (HRS) and Assets and Health Dy-

namics of the Oldest Old (AHEAD), this paper presents estimates of the stochastic process

that determines the distribution and dynamics of health care costs. Similarly to Feenberg

and Skinner (1994), we find that the data generating process for log health costs is well

represented as the sum of an AR(1) and a white noise process, which can be rewritten as

an ARMA(1,1). Contrary to Feenberg and Skinner, however, we find that mostof the cross-

sectional variation in health care costs comes from transitory variation; the effects of a health

cost shock are much less persistent in our model.

We find that the innovations to the log health cost process can be modelled with a normal

distribution, but the variance of this innovation distribution, as well as the mean for the overall

process, should be adjusted so that the model matches the mean and the 99.5th percentile of

the empirical health cost distribution. This fitted lognormal distribution matches the upper

tail—the catastrophic portion—of the health cost distribution much better than the standard

lognormal model. Simulating this fitted distribution reveals significant catastrophic health

cost risk: in any given year 0.1% of households suffer a shock that costs at least $125,000

over their lifetimes. The risk implied by our model is considerably more than that implied

by previous estimates.

Before concluding, we note four important caveats to our analysis. First, there are non-

trivial measurement problems with our data. If some of the transitory variation in health

care costs is merely measurement error, we are overstating the variability of health care

costs. Alternatively, because the initial sample excluded those who were in nursing homes,

we may be understating health costs from this source, leading us to underestimate health

cost variability.

The remaining three problems are more conceptual, and they all suggest that our es-

timates overstate the amount of health cost uncertainty that households face. The second

problem is that the quantity of health care services consumed is to some extent a choice.

This means that households can reduce their health care costs by reducing medical services

they consume. Third, low income, low wealth households have access to Medicaid, making
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health care services very inexpensive. While we have conditioned our estimates on several

factors, including income and health insurance type, we might not have completely removed

these effects. Lastly, those with high health care costs often die shortly after their health

cost shock. Because they die so soon, people who suffer from massive health cost shocks face

little risk of being financially destitute (Pauly, 1990).

Appendix A: Distribution of the Fitted Lognormal Parameters

Our approach is to modify the standard GMM framework to incorporate quantiles; useful

background references include Buchinsky (1998) and Powell (1994). Suppose we have a sample

of size N . Let λ0 = (µ0, σ
2
0) denote the population parameter vector for the fitted lognormal

distribution and let λ̃ = (µ̃, σ̃2) denote the sample estimates. To find the standard errors of

λ̃, it is useful to rewrite equations (14) and (15) as:

Ê(h(hc; λ̃)) = 0, (19)

h(hc; λ̃) ≡
 hc− exp(µ̃+ σ̃2/2)

1{hc ≤ exp(σ̃z0.995 + µ̃)} − 0.995

 , (20)

where z0.995 = 2.5758 is the 99.5th percentile of the standard normal distribution, and 1{A}
is the 0 − 1 indicator function that returns 1 when event A occurs.

Noting that the elements of λ are exactly identified, it follows from standard arguments

(e.g., Newey and McFadden, 1994) that

√
N(λ̃− λ0)�D N(0,Σ), (21)

where

Σ = [D′S−1D]−1, (22)

D =
∂E(h(hc;λ0))

∂λ
, (23)

and S is a weighted sum of variances and autocovariances of h(hc;λ0).

Suppose the data consist of a panel, where each household appears up to J + 1 times,
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arranged into a pseudo cross section. S can be then estimated as

Ŝ = ÂC0 + ÂC1 + ÂC
′
1 + ...+ ÂCJ + ÂC

′
J , (24)

where ÂCj is an estimate of the autocovariance of h(hc; λ̃) with an observation j steps away

in the pseudo cross section. If the data are sorted by household and wave, for j > 0 ÂCj will

be a weighted average of the jth autocovariance for observations from the same household

and the jth autocovariance of uncorrelated observations from different households. In large

samples, this should be approximately the same as the jth autocovariance for observations

from the same household multiplied by the probability that observations j steps apart come

from the same household. It is straightforward to show that the latter quantity is the proper

input for calculating the variance of a sample mean. If observations for a household are not

necessarily consecutive, ÂCj will be a more complicated average, but again will be the proper

estimate of N× the variance of the sample mean of h(hc;λ).

The first row of D is given by

[
D11 D12

]
= − exp(µ0 + σ2

0/2)
[

1 1
2

]
. (25)

To get the second row, rewrite the second element of E(h(hc;λ)) as

F (exp(
√
σ2

0z0.995 + µ0)) − 0.995 = 0, (26)

where F (.) is the true distribution function of hc. While F (.) must have a continuous density,

which we denote by f(.), it need not follow the lognormal distribution. It immediately follows

that

[
D21 D22

]
= f(exp(

√
σ2

0z0.995 + µ0)) exp(
√
σ2

0z0.995 + µ0)
[

1 z0.995
1
2σ

−1
0

]
. (27)

Simplifying, we get

D =

[
−E(hc) −1

2E(hc)

f(hc0.995)hc0.995 f(hc0.995)hc0.995z0.995 1
2σ

−1
0

]
. (28)

To estimate this matrix, we simply replace population quantities with their sample analogs.
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Unless we assume that F (.) is in fact a lognormal distribution, the density f(hc0.995) will

have to be estimated nonparametrically, using a kernel density estimator. We use a kernel

estimator for GAUSS written by Ruud Koning.

Appendix B: Distribution of Error Components Estimates

This appendix describes the estimation procedure for the error components model dis-

cussed in Section 3. The procedure is the same as the one in Abowd and Card (1989) or

Pischke (1995), except that it allows the data to be unbalanced.

Recall that we are interested in fitting a model to the covariance matrix of health cost

residuals, Rit, shown in Table 3. Defining T as the number of years of data, we have L =

T (T +1)/2 = 10 moment conditions, which are the unique elements of the covariance matrix

in Table 3.47 Define θ = (σ2
f , σ

2
a, σ

2
ψt, ρ, φ) as the parameter vector,48 and mit,t+k(θ) as the

contribution of household i to the moment condition that defines the covariance of medical

expenses in years t and t + k. This moment condition depends upon the medical expense

residuals Rit and Ri,t+k, and the parameter vector θ.

To incorporate unbalanced data, we simply omit missing observations from the appropri-

ate moment conditions. Let 1{Rit �= missing} be the indicator function that returns 1 when

Rit is observed for household i. Given the model in equations (2)−(4) and the restrictions in

equations (5) and (6), household i’s contributions to the moment conditions are:

mit,t(θ) =
[
R2
it −

(
σ2
f + σ2

a + σ2
ψt + φ2σ2

ψt−1

)] × 1{Rit �= missing}, t ∈ {1, 2, 3, 4}, (29)

mit,t+1(θ) =
[
RitRi,t+1 −

(
σ2
f + ρσ2

a + φσ2
ψt

)
,
] × 1{Rit, Ri,t+1 �= missing}, t ∈ {1, 2, 3},

(30)

mit,t+2(θ) =
[
RitRi,t+2 −

(
σ2
f + ρ2σ2

a

)] × 1{Rit, Ri,t+2 �= missing}, t ∈ {1, 2}, (31)

mit,t+3(θ) =
[
RitRi,t+3 −

(
σ2
f + ρ3σ2

a

)
,
] × 1{Rit, Ri,t+2 �= missing}, t = 1. (32)

Let N be the number of households observed in any year. The sample moment condition

47Note that we do not group all four variances together, all three first autocovariances together, or the
two second autocovariances together. If ψit is homoskedastic, this leads to inefficient estimates of the model
parameters. However, if ψit is not homoskedastic, grouping all the autocovariances together will result in a
misspecified model. Moreover, matching wave-specific moments gives us overindentification restrictions to test
the stationarity hypothesis.

48Recall that σ2
ut and σ2

ε can be written as functions of other parameters in θ.
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corresponding to equation (29) is

mNt,t(θ) =
1
N

N∑
i=1

[
R2
it −

(
σ2
f + σ2

a + σ2
ψt + φ2σ2

ψt−1

)] × 1{Rit �= missing}. (33)

Letting Nt,t+k denote the number of households observed in both years t and t + k, we can

rewrite equation (33) as

mNt,t(θ) =
Nt,t

N

( 1
Nt,t

∑
i:Rit �=missing

R2
it −

(
σ2
f − σ2

a + σ2
ψt + φ2σ2

ψt−1

))
. (34)

It is straightforward to derive mNt,t+k(θ) for k > 0.

Assume that the share Nt,t+k
N remains constant as N grows. Denoting mN (θ) as the L×1

vector of all sample moment conditions, we minimize

NmN (θ)′WNmN (θ), (35)

where WN is a weighting matrix. Denoting by θ̂ the estimated vector of coefficients and by

θ0 the true vector, the estimator has a sampling distribution given by

√
N(θ̂ − θ0)�D N(0, V ), (36)

V = (D′WD)−1D′WΦWD(D′WD)−1, (37)

D =
∂m(θ0)
∂θ

, (38)

where Φ is the fourth moment matrix of the data. We estimate Φ using its sample analogs.

For example, for a moment condition corresponding to a variance,

Φ̂(t,t),(t,t) =
1
N

∑
i:Rit �=missing

(
R2
it − Ê(R2

it)
)2
, (39)

where Ê(R2
it) is calculated as 1

Nt,t

∑
i:Rit �=missingR

2
it. We estimate D using D̂ = ∂m(θ̂)

∂θ . As-

suming that the model is properly specified, Newey (1985) shows that

Nm(θ̂)′Q−1m(θ̂) (40)
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is distributed χ2
L−rank(D), where in this case rank(D) equals the number of parameters, Q−1

is the generalized inverse of Q and

Q = PΦP ′, (41)

P = I −D(D′WD)−1D′W. (42)

Again, to estimate Q, we replace the objects in equation (41) with their sample analogs.

We use two different weighting schemes in our analysis. First, we use an “optimal”

weighting matrix, i.e. W = Φ−1.Under optimal weighting, V = (D′Φ−1D)−1 andQ−1 = Φ−1.

Although the optimal weighting matrix is asymptotically efficient, it can be severely biased

in small samples, with the bias most severe when the tails of the empirical distribution are fat

(see Altonji and Segal, 1996, for details). Second, we use a “diagonal” weighting matrix, as

suggested by Pischke (1995). The diagonal weighting scheme uses the inverse of the matrix

that is the same as Φ along the diagonal and has zeros off the diagonal of the matrix. Although

not asymptotically efficient, it likely has better small sample properties. In practice, however,

the choice of weighting matrix has only a small effect on the results, and we show only the

estimates found while using the optimal weighting matrix.

Appendix C: Distribution of One-year Parameters

The one-year model of health costs utilizes the parameter vector ξ = (σ2
a1, σ

2
u1, ρ1, µ1).

By simulating a large number of time series at a one-year frequency and aggregating them

into two-year data, we can find the summary statistics for two-year data implied by any set

of one-year parameters. We therefore estimate ξ by finding the parameter values that come

closest to replicating the summary statistics found in the two-year data sample.

We generate the simulated two-year data as follows. For individual i, we simulate a

sequence of one-year residuals,

R1is = a1is + u1is, s = 1, 2, ..., 8, (43)

where: u1is ∼ N(0, σ2
1u) is the simulated one-year white noise component; a1i1 ∼ N(0, σ2

1a)

and a1is = ρa1is−1 + ε1is, s = 2, 3, ..., 8, are the simulated one-year AR(1) components; and

ε1is ∼ N(0, σ2
1ε) is the simulated time-s+1 innovation to the AR(1) process. Taking averages,

37



we compute two-year health costs as

hci1 =
1
2
(exp(R1i1 + µ1) + exp(R1i2 + µ1)), (44)

hci2 =
1
2
(exp(R1i3 + µ1) + exp(R1i4 + µ1)), (45)

and so on. Repeating this sequence many times—in practice, we simulate 1 million histories—

yields a panel of simulated two-year data.

With the simulated data in hand it is straightforward to calculate the summary statis-

tics implied by the underlying one-year parameters. One can then combine these summary

statistics with the data sample to form moment conditions. We use two groups of moment

conditions. The first group converts the autocovariance conditions described in Appendix B

into autocorrelation conditions. For example, the moment variable mit,t+1(θ) defined in equa-

tion (30) becomes

m1
it,t+1(ξ) =

[ RitRi,t+1

σRt σRt+1
− CRt,t+1(ξ),

] × 1{Rit, Ri,t+1 �= missing}, t ∈ {2, 3}, (46)

where CRt,t+1(ξ) is the two-year residual autocorrelation implied by the one-year model,

calculated from simulated data, and σRt is the standard deviation of Rit, calculated from the

data sample. Equations (31) and (32) are modified in an analagous fashion. (Equation (29)

is dropped.)

The second group of moment conditions consists of the conditions described in Appendix A,

converted for convenience to fit a panel structure. In particular, each of the two conditions

in equation (20) is converted into 4 conditions, one for each wave of the two-year data.

The asymptotic distribution of ξ̂ is similar to the distribution of θ̂ that was discussed in

Appendix B, and thus we do not provide a detailed derivation. The only significant difference

is that moment conditions for the mean and 99.5th percentile are added. When computing

the gradient matrix D we add:

Nt

N

 −∂E∗
hc,t(ξ)

∂ξ

f(hc0.995,t)
∂hc∗0.995,t(ξ)

∂ξ

 , (47)

where E∗
hc,t(ξ) and hc∗0.995,t(ξ) denote the model-predicted mean and 99.5th percentile, re-

spectively, for wave t, and Nt denotes the number of non-missing observations. Equation (47)
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must be repeated for each wave. One final, lesser difference is that to account for simulation

error, the estimated variances must be multiplied by 1 + N
NS

, where NS is the number of

simulations utilized.
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