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Abstract 

Differential cryptanalysis is a method of attacking iterated mappings which has 
been applied with varying success to a number of product ciphers and hash func- 
tions [ l ,  31. The attack is based on predicting a series of differences AY1, AYz,. . . , 
AY, known as a characteristic R. Partial information about the key can be derived 
when the differences are correctly predicted. The probability of a given character- 

istic R correctly predicting differences is derived from the XOR tables associated 
with the iterated mapping. 

Even though differential cryptanalysis has been applied successfully to  a number 

of specific iterated mappings such as DES, FEAL and LOKI, the effectiveness of the 

attack against an arbitrary iterated mapping has not been considered. In this paper 

we derive the exact distribution of characteristics in XOR tables, and determine 
an upper bound on the probability of the most likely characteristic n in a product 
cipher constructed from randomly selected S-boxes that are bijective mappings. 
From this upper bound we are then able to  construct product ciphers for which all 

characteristics R occur with low probability. 

Keywords: Differential cryptanalysis, i terated mapping, product cipher. 

1 Introduction and Results 

Differential cryptanalysis is a statistical a t tack  popularized by  Biham and  Shamir in a 

series of well-known papers [ l ,  2, 31. The a t tack  has been applied t o  a wide range of 

iterated mappings includiug LUCIFER, DES, FEAL, REDOC, Kallfre [4, 5, 12, 13, 17, 

191. As explained below, the  a t tack  is based on a quant i ty  R called a characteristic, which 

has some probability pR of giving information about  the secret key used in the  mapping. 

The a t tack  is universal in that characteristics R will always exist for any i terated mapping; 
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however pn may be very small, and possibly less likely to furnish information concerning 

the key than the success of guessing the secret key at random. For this reason, differential 
cryptanalysis has had varying success against the iterated mappings it has been applied 

to, and little is known about how useful the attack is expected to be against an arbitrary 
iterated mapping. 

In Figure 1 we present the basic substitution-transposition network (ST-network) [6]: 

each round consists of several small substitutions S (S-boxes) followed by a transposition 
T (anagram) of the current ciphertext. This model is generally acknowledged [6,  9, 181 

as being a practical realization of product ciphers originally proposed by Shannon [16]. 

Most product ciphers such as LUCIFER, DES and IDEA are variations or extensions 
of the basic ST-network. The main result of this paper is to determine how well dif- 
ferential cryptanalysis is expected to perform against randomly generated instances of 

ST-networks. 

We will give a brief description of differential cryptanalysis with reference to product 
ciphers, though any iterated mapping would suffice. For a product cipher E that consists 

of R rounds, let E , ( X ,  It') be the encryption of the plaintext X under the key IC for r 
rounds, 1 5 I' 5 R. Note that E R ( X , K )  = E ( X , K )  = C is the ciphertext for X .  
Let AC(t.) 1- E,(X,  K )  i- E,(X', It') be the difference between the ciphertexts of two 
plaintexts X, X' after I' rounds where 1 5 r 5 R. For our purposes the difference operator 
+ will refer to addition in the vector space ZT. An wound characteristic is defined as 

an ( r  + 1)-tuple %(AX, AY1, A h , .  . . , A X )  where A X  is a plaintext difference, and the 
AX are Ciphertext differences. A plaintext pair X, X' of difference A X  = X + X '  is called 

Figure 1: The ST-network product cipher 

a right pair with respect to a key K and a characteristic R,(AX, AX,  A K ,  . . . , AX) if 
when X and X' are encrypted, AC(i) = AX for 1 5 i 5 r. That is, X,X'  is a right 

pair if the characteristic correctly predicts the ciphertext differences at each round. The 
characteristic R, has probability pRr if a fraction p " ~  of the plaintext pairs of difference 
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AX are right pairs. On the other hand, if X,X' such that A X  = X + X' is not a 

right pair, then it is said to be a wrong pair (with respect to the characteristic and the 

key). A table which records the number of pairs of difference AX that give the output 
difference AY for a mapping A is called the XOR table distribution of A. A characteristic 
AX, AY is said to be impossible for A if its corresponding XOR table entry is zero. Also 
a characteristic will be called nonzero if w(AX), w(AY) > 0, where w(.) is the-Hamming 

weight function. Using a characteristic of appropriate length it is then possible to 

devise a statistical experiment which when repeated a sufficient number of times will 
yield the subkey of the last round (see [l] for details). 

Product ciphers such as LUCIFER, DES, FEAL and IDEA are iterated mappings 

that use a fixed mapping G at each round, For example, in DES the function G at round 
i ,  1 5 i 5 16 is defined as 

where o denotes string concatenation, E is a 32-to-48-bit expansion, S is a substitution 

by 8x6-to-4-bit S-boxes, and P is a 32-element transposition. When the components of 
G are fixed, which for DES are the E,S and P mappings, we observe that an r-round 
characteristic is simply the concatenation of r 1-round, or single round, characteristics 

defined on the inapping G. For an r-round characteristic R,(AX, A h ,  A&, . . . , AK) we 
have 

r-I 

p"' = Pr(AC(i)=AY,, 1s i <  r I X + X ' = A X )  5 n pw' (1) 
i=O 

where AY, = A X  and wi is the single round characteristic AX, AX+, for 0 5 i 5 r - 1 

defined on G. It  then follows that the probability of the r-round characteristic Rr can 
be bound as p"' 5 (p")' where p" is the probability of the most likely (nonzero) single 
round characteristic. 

At present there are no general bounds known for p"; indeed it is difficult to give 
a definition of a 'geiieral' iterated mapping which can be used for deriving bounds on 

p". What can be said with certainty is that a product cipher E which claims to be 
useful must be bijective (plaintexts are taken to distinct ciphertexts). This suggests that 
the XOR properties of bijective mappings should be examined. If this examination is 
successful, then we may apply these results to the ST-networks of Figure 1 where the 
S-boxes theinselves are bijective so as to ensure that the inapping itself is bijective. 

Let A : Zin --t Z r  be a bijective mapping, referred to as an rn-bit permutation. 
The set of all m-bit permutations is known as the symmetric group on 2'" objects and 
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is denoted as S p .  Let A,(AX,AY) be the value of the XOR table entry of the pair 
AX, AY E Z r  for the permutation T E S p .  Assuming the uniform distribution on the 
set . S p  we prove (Theorem 2.1) that  

We are then able to  show (Corollary 3.1) that for large n, the expected probability of the 

most likely nonzero characteristic for an m-bit permutation is a t  most fi. Equivalently, 
the expected maximum entry in the XOR table for nonzero characteristics is at most 2m 

for large m. The result of Corollary 3.1 can used to estimate the probability of the most 
likely 1-round characteristic p" in an iterated mapping based on n - b i t  permutations. 

Consider a 16-round 64-bit product cipher E for which the round mapping consists of 8 x 

&bit permutations followed by a 64-bit transposition. Then to predict the input difference 
to  the 16th round requires a 15-round characteristic Rls where the input difference to  

each of the first 15 rounds is nonzero. Let us assume that the permutations are selected 
uniformly from Sp and that a t  each round there is only one S-box which has a nonzero 

input difference. It then follows from Corollary 3.1 that 

8 IS 
pRls 5 (p")I5 5 (!.) = 0.86736 x lo-'' = 2-". 

Further, if 0 1 s  has nonzero input differences to two 5'-boxes at  7 out of the 15 rounds 
then 

Corollary 3.1 indicates that  the individual entries of a n  XOR table are expected to  be 
distributed in the  interval [0,2,. . . ,2m]. At this point we are not able to  determine the 

exact distribution of entries within this interval, but we are able to  prove that  most 
XOR table entries are in fact zero. We prove (Theorem 3.2) that the expected fraction 
of the XOR table for nonzero characteristics that is zero approaches e-k = 0.60653. In 
another way, approximately 60% of the entries for nonzero characteristics will be zero for 
a permutation selected uniformly. 

The full proofs of the theorems to follow are ommitted since the final version of this 
paper has been accepted for publication in the Journal of Cryptology. 

1.1 Notation 

We will now fornialize some of the notation given in the introduction. Let [.] be a 

boolean predicate that evaluates to 0 or 1 such as [n  is prime]. For a given x E Szm, 

define &(AX, AY) as 
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h,(AX,AY)  = [ A ( X )  + T ( X ' )  = AY].  (2) 
X , X ' € Z ?  

O X O X + X '  

Thus 2-"' . h,(AX,AY) is a random variable giving the probability that the difference 

in the output of the mapping II is AY when the difference of the input pair X, X' is A x .  
For all B E S z m ,  observe that when AX = 0 or AY = 0 it follows that A,(AX, AY) = 0 ,  

unless AX = AY = 0 whereupon A,(AX, A Y )  = 2". The distribution of A,(AX, AY)  
taken over all possible A X ,  AY E ZF is known as the  pairs XOR distribution table for  

T ,  or simply the XOR table for A. 

E x a m p l e  1.1 For an m-bit permutation T ,  let X O R  be the 2" x 2" matrix where 

XOR,(Z,j) = Ax(Z, j ) ,  0 5 i, j 5 2" - 1, where i, j are treated as 3-bit binary vectors. 
Observe that XOR,,(O, 0) = 8, and all other entries in the first row or column of XOR(T) 
are zero. For T = (7,2,4,1,5,6,3,0) the  corresponding XOR table is given as: 

XOR, = 

8 0 0 0 0 0 0 0  

0 0 0 4 0 4 0 0  

0 0 0 4 0 0 4 0  

0 0 0 0 0 4 4 0  

0 2 2 0 2 0 0 2  

0 2 2 0 2 0 0 2  
0 2 2 0 2 0 0 2  
0 2 2 0 2 0 0 2  

(3) 

Notice that if each entry in  the XOR table is divided by 2" then the resulting matrix 
will be doubly stochastic. 0 

The XOR table for an m-bit permutation H has the following general form: 

X O R  = ?2 [ ; ;, 1 .  (4) 

We are interested i n  the properties of the (2" - 1) x (2" - 1) submatrix A, = [a,,j], 1 5 
i , j  5 2" - 1, which corresponds to that  portion of the XOR table entries attributed to  
nonzero characteristics. In this paper we will show that  for large m,  approximately 60% 
of the entries in A, are zero and largest entry in A, is expected to be bounded by 2 m .  
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2 The Pairing Theorem 

Observe that a characteristic AX,  AY corresponds to a pairing of the inputs and outputs 

of a permutation 7r (namely the pairs X ,  X’ and Y, Y‘ where A X  = X + X‘ and AY = 
Y + Y’). For 4 : A B ,  let n,~. and l l B  be pairings on the sets A and B: respectively. 

Theorem 2.1 determines the number of functions 4 which take no pair of l l ~  to a pair in 

n,, and will be referred to as the Pairing Theorem. 

Theorem 2.1 (Pairing Theorem) Let A = { a l , a z , .  . . ,aid} and B = {b, ,  62, . . . , b z d }  

be sets of distinct elements. Let H A  C A x A and n B  E B x B be unordered pairs, 

such that ai(b;) occurs in one pair of nA(n,) for 1 5 z 5 2d. Then the number @ ( d )  of 

bijective functions 4 : A + B such that for V(a,,a,) E IIA, (qi(a;), d(a , ) )  $! IIB is 

d 
@(d)  = c (-1)k. (f)’. 2‘. k!. (2d - 2 k ) ! .  

k=O 
( 5 )  

Prooj. Order the elernents of n~ as (4,6”+,), 1 5 z 5 d. For 1 5 i 5 d define P ( ; )  as 

P(2) = dJ I ($(a), d(a’)) = (b:, b&+,), ( a ,  a’)  E n A  } 

which is the nuinber of functions q5 that  map some pair of n.4 to the pair (4  4+,) E II,. 
I t  follows that 

using the inclusion-exclusioii principle [8]. For 1 5 L 5 d define the integers 

P(i;,ii,. . . ,i;) = 1 n ~ ( i ; )  1 (7) 
1 9 S k  

and by symmetry P(1,2,. . . , k )  = f ( i i ,  i;, . . . ,zi) ef P ( d , k ) .  
follows that 

Froin eq. (6) it then 

I t  remains to determine P ( d , k )  for 1 5 k 5 d. To this end. order the pairs within n~ 
as (a: ,  ah+,) for 1 5 k 5 d. Then P ( d ,  k )  is the number of functions d for which there 
are k pairs ( a r , ~ i + ~ )  such that {4(ar),d(a;+,)} = { ( Y , b h + , ) } ,  1 5 i 5 k. There are ( i )  
ways to choose the k pairs (a:l,a:+,) from I IA,  k! ways of assigning the (a;,a:+,) to  the 

(b:,62+,), and 2k ways of assigning (ar,n&l+,) to a particular pair i n  II,. It then follows 

that 

P ( d ,  k )  = (3 . 2 k  . k! . ( 2 d  - 2 k ) !  (9) 
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where ( 2 d - 2 k ) !  is tlie number of ways to  assign the elements in A-{aY,  a$+, 1 1 5 2 I k}. 
We then have that 

d 

k=O 

d 

Q ( d )  = ( 2 d ) !  -t c ( - l ) k  . * P ( d ,  k) = c (-l)k . ' 2k . k! ' (2d - 2k)! 
k=1 

which completes the proof of the theorem. 0 

It is a simple matter to observe that for a fixed mapping K the expected value of each 

entry in the XOR table is 1 since there are 2" entries in each row which sum to 2". US- 
ing tlie Pairing Theorem we are now able to derive the exact distribution of the random 

variable Ar(AX, A Y ) .  

Corollary 2.1 For any fixed nonzero A?r,AY E ZT, assuming K is cliosen uniformly 

froin tlie set SZm, and 0 5 k 5 2"L-1 

0 

3 Two properties of XOR tables 

Recall that p" was defined in tlie introduction as the probability of the most likely single 

round characteristic for an iterated mapping. In this section we will derive bounds OD the 

expected value of p" assuming that the round mapping G is based on m-bit permutations 

selected uniformly from SZm. Let G consist of s S-boxes implementing n - b i t  permutations 

T I ,  KZ,. . . , T, such that G : ZT.s  * ZT.d where ?rl operates on the first block of s bits, 

TJ operates 011 the second block of s bits, and so on, as in Figure 1. For example, G 
niay operate on 48 bits of ciphertext which is used as the input to 8 x 6-bit permutations 

T I ,  ~ 2 , .  . . , ~ g .  Then define Ah as 

w ( A X ) , w ( A Y ) > O  

froni which it follows that $ is the probability of the most likely characteristic across 

all s perniutations i n  G'. Then for any nonzero r-round characteristic R, it follows that 

A:, 
P"' 5 (2"-') 

At present there are no known general bounds on A;. For a randomly selected set of 



367 

tn-bit permutatious {AI, ~ 2 , .  . . , n,} we may use the Pairing Theorem to determine an 

expected upper bound on A:. 

Theorem 3.1 Assuming that the S-boxes n, are selected uniformaly from the set 5'2m 

U 

Sketch of proof. For I 5 k 5 let Am,'k be the expected number of nonzero 

characteristics A.Y,AY for which A,(AX,AY) = 2k. Further let Pr(A, = 2k) be the 

probability that an ni-bit permutation has a nonzero characteristic AX, AY for which 

A,(A.Y, AY) = 2k. The proof rests on the following inequality: 

Pr(A:,, = %) < Pr(A, = '2k) 5 Am,2k. 

Using the Pairing Theorem it call be shown that 

The theorem follows from proving that &,,, 2k I Am,2k = o( 1). 0 

Corollary 3.1 For large tn and assuming the uniform distribution 011 the set SZ-, the 

expected probability of the most likely nonzero characteristic is bounded by $ki. 

Proof. The expected probability of the most likely nonzero characteristic is g. D 

Let pm-' -tn terms in the sum for 

E[AL]. Also let be an empirical estimate of E[AL] based on a sample of mp random 

permutations. Further, let min (max) be the smallest (largest) maximum XOR entry 

found across the mp permutations. Table 1 lists these quantities for 771 = 4,5,. . . , lo .  

We see that 2(m + 1 ) .  A,n,l(,n+l) is a good approximation of E, arid by 7 n  = 6 the tail 

of the summation for E[A;] beginning at  k = 2(m + 1) is negligibly small. 

= ~ ~ ~ ~ + 1  2k.h,,,,k be an upper bound on the 

The presence of impossible characteristics assists in discarding certain plaintext pairs 

which cannot give any probabilistic information concerning the key. It lias been observed 

that 20% -30% of the characteristics i n  the S-boxes of DES are impossible. Let Am,o be 

the expected number of nonzero characteristics AX, AY which have zero entries in the 

XOR table of a unifornily selected rn-bit permutation. We are able to compute Am,o as 

a direct application of the Pairing Theorem. 

Theorem 3.2 For any fixed nonzero AX, AY E ZF and assuming A is chosen uniformly 

from the set SZm 
(2"' - 1)' 

limA,n,o = 1 '  en l J 1 - 0 0  
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.76863 

25973 10,000 

7 I 22027 x lo-' I 23498 x10-I 1 5.126 1 4 I 8 I 10.000 I 

9 I .11818 x10-* I .I2438 xlO-' 16.190 I 6 I 8 1 1000 I 
10 I . a 4 7 0  ~ 1 0 - 3  1 24584 X ~ O - ~  1 6 . i O O  I 6 1 9 I 1000 I 

Table 1 : The distribution of characteristics. 

S e l c h  of proof. Recall from the Pairing Theorem that  @(2"'-1) will give the oumber of 

tn-bit permutations that A for which a given characteristic AX, A Y  is impossible. I t  can 

be shown that  the alteriiating sum in eq. (5) is dominated by its first term (k = 0), and 
that @ ( d )  - ( 2 d ! ) / e f .  0 

It now follows that approximately 60% of the entries of tlie A, subniatrix defined in 

eq. (4)  are zero since e-4 = 0.6065. 

4 Conclusion and Remarks 

Our results then show that a relatively simple design can produce product ciphers for 

which all characteristics R are expected to (correctly) predict differences with low prob- 
ability. We further note that random ~ n - b i t  permutations can be generated efficiently 

[15], and that the fraction of permutations that are with linear [7] or degenerate [14] i n  

any output bit is tending to  zero rapidly as a function of rn. On the other hand, Biham 

and Shamir [3] found that replacing the S-boxes of DES by random 4-bit permutations 

yielded systems that were far weaker than the original DES. The weakness of these s- 
boxes appears to be due to  the dimension of the permutation rather than tlie use of 

permutatioiis p e r  sc. 
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