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Abstract. Differential cryptanalysis is a method of attacking iterated 
mappings which has been applied with varying success to a number of 
product ciphers and hash functions 11, 21. Let p : 2,' x ZF + 2," be a 
mapping that consists of c 'control' bits and m 'data' bits. The mapping 
p mapping contains 2" m-bit permutations a; : Z r  -+ ZF, 0 5 i 5 
2" - 1, one of which is selected (multiplexed) by the control bits, and 
a substitution is then performed on the data bits using the selected 
permutation. Such mappings will be called composite permutation8. The 
S-boxes of DES are composite permutations of the form Si : 2: x 2; + 

2: with 2 control bits and 4 data bits. 
In differential cryptanalysis the attacker is interested in the largest entry 
in a given XOR table, and the fraction of the XOR table that is zero. In 
this paper we determine the distribution of characteristics in the XOR 
tables of composite permutations, which leads to approximations for the 
largest entry in the XOR table and the density of zero entries. 
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1 Introduction and Results 

Differential cryptanalysis is a statistical attack popularized by Biham and Shamir 
[l, 21 that  has been applied to a wide range of iterated mappings including LU- 
CIFER, DES, FEAL, REDOC, Kahfre [3, 4, 8, 9, 12, 131. As explained below, 
the attack is based on a quantity f2 called a characterist ic,  which has some 
probability p" of giving information about the secret key used in the mapping. 
The attack is universal in that characteristics L? will always exist for any iter- 
ated mapping, though p" may be very smallLu? and possibly less likely than the 
probability of guessing the secret key at random. 

An r-round charactcristic f2 is an (r+l)-tuple of differences A X ,  AYl, . . . , AY, 
; the probability p" is defined as the fraction of plaintext pairs X, X' for which 
X + X' = AX and AX is the difference1 of the encryption of X and X' after 
i rounds for all 1 5 i _< T .  If 0 incorrectly predicts an intermediate difference 
AX for a plaintext pair X, X' satisfying X + X' = A X ,  then X ,  X '  is said to 
be a wrong pa i r  with respect to  the characteristic. The probability of the dif- 
ferences AY, being correctly predicted will typically depend on the distribution 
of differences in the auxiliary tables used by the iterated mapping. The X O R  
table of a mapping p : 2; --+ Zy shows the number of input pairs of difference 
A X  E 22 that map to outputs of difference AY E Zr. In the case of DES, these 
auxiliary tables are known as S-boxes, and a study of the corresponding XOR 
tables by Biham and Shamir [l] yielded the following information: (i)  the most 
likely input/output difference pair for any one S-box occurs with probability $ 
; (ii) approximately 70-80% of the entries in the XOR tables are zero ; (iii) 
it is conjectured that if L? is an r-round characteristic then extending f2 by an 
additional 2 rounds will decrease p a  by a factor of a t  least where p FT 1/234. 

Each S-box in DES is a union of 4 permutations of the integers {0,1,. . . ,15} 
where 2 of the 6 input bits select the permutation that will be used as the cur- 
rent substitution. We will call such mappings composite permuta t ions .  The design 
criteria of employing composite permutations in DES has not been adequately 
explained, but the experimental work of Dawson and Tavares [S]  indicates that 
composite permutations have better XOR table distributions than single permu- 
tations 7r : 2,- --t 2,- (.y well as being close to  optimal with respect to  several 
other design criteria for S-boxes). In this paper we complement this experimental 
work by showing that  for large m composite permutations yield XOR tables that 
are optimized against at least two properties that facilitate differential attacks. 

E x a m p l e l .  T h e  S-boxes of DES are mappings of t he  form Si : Zi x 2; 4 224 
with 2 'control '  bits and 4 'data'  bits. FOT example,  S3 m a y  be w r i t t e n  as t he  
following 4 x 16 table, where the control bits select th,e TOW, and the  data bits 
select  t he  column.  

In this paper the difference operator + will refer to addition in the vector space zr, 
though it is possible to d e h e  other difference operators. 
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0 1 4  7 1 1 1 0  4 1 3  1 5 8 1 2  6 9 3  2 1 5  ' 

15 1 8 1 4  6 1 1  3 4 9 7  2 1 3 1 2 0  5 1 0  
3 1 3  4 7 1 5  2 8 1 4 1 2 0  1 1 0  6 9 1 1  5 

13 8 1 0  1 3 1 5  4 2 1 1 6  7 1 2  0 5 1 4  9 1 0 

s 3 =  [ 
Let p : 2.j x Z r  -+ 2,- be a mapping that consists of c control bits and m 
data  bits. The mapping p mapping contains 2c m-bit permutations 7ri : 2,- 4 
27, 0 5 i 5 2" - 1, one of which is selected (or basically multiplexed) by the 
control bits, and a substitution is then performed on the data bits using the 
selected permutation2. Let c be bound as 1 5 c 5 m. Assume that for an input 
X E Zi+m the first c bits (the c most significant bits) are the control bits, which 
we will refer to as the contrd prefiz of X .  Then for X E the expression [&I will extract the control prefix of X .  A zero control prefix is one for which 
161 = 0; all other control prefixes will be called nonzero. 

In the XOR table for p, let A,(AX*, AY)  be the entry for the input difference 
AX* and the output difference AY. We will show that the distribution of the 
random variable A,(AX*,AY) for the composite mapping p : Z,C+, + Z r  
when AX* has a nonzero control prefix takes the form 

2E-' 

Pr(A,(AX*,AY) = 2k) = 
pi Spa t . . . + P 2 c - l  = k  i=l 

Pi t o  

We will prove that the &(m) are independent identically distributed (i.i.d.) 
random variables, described by the following probability distribution 

Pr(X(m) = k) = - 2"! - ( 2 k i ) *  ( 2 " - k ) ! . ( 1 + 0 (  e 
(2" - k)! )). (2) 

This distribution is derived from the number of fixed points in an m-bit permu- 
tation (see Theorem 1). On the other hand, when AX* has a zero control prefix 
it will be shown that 

2c 

Pr(A,(AX*,AY) = 2k) = n P r ( A T i ( A X , A Y )  = 2pi) ( 3 )  
P I + P ~ + . . . + P ~ C = ~  i=l 

P i  20 

where ATi(AX,AY)  is the XOR table entry for dX,AY in 7ri and A X  are 
the m data  bits of AX*. Again these random variables are i.i.d. In this case, 
O'Connor [lo, 111 has shown that ATi(AX,AY) is described by the following 
probability distribution 

In this paper let p denote a composite permutation and let a denote a permutation. 
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where 

Examining the work of Biham and Shamir [l] on DES indicates that the differ- 
ential cryptanalyst is interested in two properties related to the individual XOR 
tables: (u)  the largest entry in the XOR table; ( b )  the fraction of the XOR table 
that is zero. The value of (u)  will influence the probability of the most likely 
characteristic, while the value ( b )  will influence the signal-to-noise ratio in the 
experiments to  determine the key (see [l] for definitions and details). The system 
designer should then attempt to minimize the quantity in (a )  and maximize the 
quantity in ( b ) .  Our basic result is that composite permutations are well-suited 
to  this min-max problem. 

We will model an XOR table by assuming that each entry of the table is 
distributed according to either eq. (1) or eq. (3), and further assume that the 
entries are independent. Using this model we are able to show that the number of 
zero entries in an XOR table for a composite permutation is well-approximated 
by the expression 

2 2 y 2 c  - 1 )  ( 2 m  - 1 )  ' [ 2 + e-zC-l ' (2m - 1 )  ] + 
eZE-' * 

( 5 )  

By considering the cases where AX = 0 or AY = 0 it is easily shown that every 
XOR table will have at least 2m+1 - 2 entries that are zero, From eq. ( 5 )  we see 
that  as c approaches m, the fraction of zero entries in the XOR table approaches 
2"'+' - 2, the leart number possible (see the computational results in Table 1). 

From eqs. (1) and (3) we see that d , (AX,AY)  is a sum of i.i.d. random 
variables. We will use the law of large numbers to show that as c is increased 
the expected value of Ap(AX,  A Y )  approaches 2". It then follows that the prob- 
ability of a Characteristic for which both AX and AY are not equal to  zero is 
approximately 2 - m .  

2 Some notation 

If a difference X+X' E ZiSm is written aa bAX, then let b be the control prefix, 
ie. [(bAX)/Zrn] = b .  The set of all bijective mappings 7r : 2,- 4 27 is known as 
the symmetric group on 2" objects and is denoted as SZm. Let [-] be a boolean 
predicate that evaluates to 0 or 1 such as [n is prime]. 

3 Characteristics in Composite Permutations 

Initially consider the case where c = 1 and p consists of two permutations TO 
and TI ,  from which we will directly generalize to the cases where c > 1. Consider 
determining the pairs XOR table distribution for p. Let AX* = OAX E Z?+l 
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where AX E ZT such that A X *  has a zero control prefix. Let A X * ,  AY E ZF 
be a characteristic for p. We then have that 

A, (AX* ,AYj  = C [ p ( X )  + p(X')  = AY] 
X,X',Z~+l 

C 
x,x'ezp 

X+X'=AX* 

= [ro(X)  + ro(X')  = A Y ]  + [ t 1 ( X )  + ri(X') = A Y ]  

X+X'=AX 

= &,(AX, A Y )  + A,, ( A X ,  AY).  

Then for a zero control prefix, the probability of the characteristic A X * , A Y  
will be the average of the probabilities for the characteristic A X ,  A Y  in ?TO and 
tl. On the other hand, consider the case where AX* = IAX E Zr. Then we 
have that  

A,(AX*,  A Y )  = [ p ( X )  + p(X')  = AY] 
X.X'EZ;"+' 
X+X'=AX' 

X<X', X,X'€Z;"+' 
X+X'=AX* 

X<X', X,X'€Z;"+l 
X+X'=AX* 

(6) 
dLf - 2-A(m). 

In the theorem below we prove that  the expected value of A(m) approaches unity. 

Theorem 1. Assuming that t o  and t 1  are selected independently and uniformly 
from L3-p 

Proof. From eq. (6) we have that 

.X+X'=AX 

X<X', X.X'EZ;"+I 
X+X'=PX 

AY = a) (7) 

since this conditional probability in eq. (7) is either 1 or 0 for all X,X'. Notice 
that  all choices for 7r1 are equivalent in that there is a unique solution to  t l ( X ' ) +  
A Y  = a for any fixed X' and AY. Then without loss of generality assume that 
7r1 is the identity permutation, T~(u) = a, a E ZT. Also since T O  and 7r1 are 
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independent, then without loss of generality assume that A X  = AY = 0. It 
then follows that 

~ ( m )  = C 
X<X'. X,X'EZ;+' 

Pr(.rro (x) = (Y I TI (x') = a)  

x+x'=ax 

= C Pr(.rro(X) = X' 1 .rr1(x') = XI) 
X<X', X,X'EZ;"+' 

X+X'=AX 

= [xo (X)  = X ' ]  
X<X', X.X'EZa"+l 

X+X'=AX 

where the last two simplifications follow from the fact that X = X' since A X  = 
0, and x1 is the identity permutation. It then follows that A(m) is equivalent 
t o  the number of fixed points rO(u) = a for a E Z r .  A permutation that has 
no fixed points is called a derangement. It is well-known [7] that the number of 
m-bit permutations ?r that are derangements D, is given as 

2m 

L), =2"!.C- (- 1)' - - 
Z! e 

i = O  

It then follows that for large m 

which simplifies to  

1 
e k! 

1 
e 

k=O k = O  

The simplification in eq. (8) follows from the fact that the summands Eilo k!.(2rnek)! 1 

are unimodal and symmetric. 13 

Corollary 3.1 Pr(X(m) = 0)  = e - l +  o(1). 
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Proof. From the previous theorem, the probability that  A(m) is zero is equal 
to  the probability that an m-bit permutation is a derangement, which is e-' + 
0 (A). 
We have now computed the exact distribution of an entry in the XOR table 
corresponding to  a characteristic with a nonzero control prefi  when c = 1. It 
follows that 

E[A, (AX* ,  A Y ) ]  = 2 * E[A(m)] 
Pr(A,(AX*, A Y )  = 0) = e - l +  o(1) 

since Pr(2. A(m) = 0) = Pr(X(m) = O / 2 )  = Pr(X(m) = 0). 
We are able to  generalize our results for c > 1. Let p consist of 2" per- 

mutations selected independently and uniformly from S a m .  Let A X m  = bAX, 
b # 0 E 2;. By definition we have that 

X , X ' € Z F  a+o'=b,EZc 

X + X ' = A X  b A X s ; A X *  

= C C ~ - [ T , ( X ) + ' I F ~ ~ ( X ' )  = A Y ]  

k=l 

where A X *  = i and AY = j .  For fixed i , j  in the range 1 5 i, j 5 2m - 1 and 
1 5 k I 2'-l, the A,,j,k(m) are independent and are distributed identically as 
A(m) from eq. (6 ) .  When A X *  has a zero control prefix it follows that 

X + X ' = A X  

Z C - l  

= A T i ( A X , A Y ) .  

4 Joint distributions 

Let the XOR table for p be denoted as A , ( i , j )  for 0 5 i < 2C+m, 0 5 j < 
2m, where i and j are interpreted as binary strings of length c + rn and m 
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respectively. We may then define the XOR table in terms of its characteristics 
AX* = i, AY = j as follows: 

where the distribution for A , ( i , j )  is given in eq. (4) and ~ ~ ~ 1 1  Xi,j,k(m) is 
defined in eq. (9). In analyzing properties of the XOR table for a composite 
permutation, we are concerned with the joint distribution of the A p ( i , j ) ,  which 
in turn, is the joint distribution of the Ai,j,k(m). Observe that for fixed i , j  
and varying k the A;,j,k(m) are independent,  but for varying i,j, k the Xi,j,k(m) 

are dependent.  However, for sake of analysis, we will assume  the X;,j,k(m) to be 
independently distributed. That is, we will assume that the individual XOR table 
entries are independently distributed. This assumption allows the probability of 
events for the XOR table, such as the size of the largest entry, to  be cast in terms 
of events for the individual table entries. Results obtained by experimentation 
presented below show that this assumption leads to only a small deviation from 
the actual value of an XOR entry (see Table 1). 

Theorem 2. Let the composite permutation p : ZF consist of 2' inde- 
pendently and uniformly selected m-bit permutations. Let Ap,o be the number 
of entries in the XOR table that are expected to be zero. Then 

Comparisons between Ap,0 as derived in Theorem 2 and the observed fraction 
A,,o of zero entries in the XOR table of mp random composite permutations p 
are given in Table 1. The table indicates that the estimates Ap,0 from Theorem 
2 are very accurate, which validates the assumption that the distribution of the 
Xi , j ,k (m)  is independent. 

Biham and Shamir [l] report that 20%-30% of the entries in the S-boxes 
of DES are zero. Theorem 2 yields that approximately 16% of the XOR table 
entries in a mapping with 4 data bits and 2 control bits are expected to be zero; 
further, a random sample of 10,000 such mappings has yielded an average of 
15.7% zero entries in the corresponding XOR tables. This suggests that the set 
of design criteria for the S-boxes has increased the expected density of zeroes in 
the XOR table. 

which are i.i.d. with mean E[Y] 

- 

The (strong) law of large number states that for random variables E , yZ, . . . , YN 
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Table 1. Estimates of Ap,O for composite permutations. 

for any E > 0 as N becomes large. That is, the sample mean approaches the 
expectation of the  random variable yi. Observe that  an individual entry of the 
XOR table for a multiple permutation is a sum of ii.d. random variables. If 
AX* = i ,AY = j then for characteristics with zero control prefix, the XOR 
entry is a sum of 2' random variables Ax& (i, j )  as defined in eq. (1 l), and when 
the control prefix is nonzero, the XOR entry is a $urn of 2'-' random variables 
X j , j , k ( m )  as defined in eq. (10). The mean of X;, j ,k(m) was proven to  be 1 +o(l)  
in Theorem 1. It can also be shown [ll] from eq. (4) that the mean of A x k ( i , j )  
is 1 +o(l) .  Both these o(1) terms dominate 2' 5 2" and the largest value in the 
table for large rn will be 2" + o(1) given our independence assumption. 

5 Conclusion 

Our analysis has shown that for sufficiently large c, a very small fraction of 
the XOR table wil l  be zero, and that the largest entry will be close to 2' + 
o(1). We note that  no special algorithms are required to  construct composite 
permutation p that  have these properties as they are a consequence of the law of 
large numbers. For this remon it appears that composite permutations provide 
are more resistant to differential attacks than most other mappings, including 
single permutations 7r. 
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