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On the Distribution of Computation for 
Sequential Decoding Using 

the Stack Algorithm 
ROLF JOHANNESSON, MEMBER, IEEE 

Aktme-An amlytlad pmcedwe ls presented for generating the corn- 
putational dfstributfon for the Zigimgiw-Jefinek Hawk algorithm. Multi- 

type-- are employed to develop a procedwe for estfmat- 
lng sequential decodhg cmputatlon, without the need for simulation, but 
with suffident acuwacy to be a valid design tool. At bhrmatio~~ rates 
about the cutoff rate & the adaWed computational performance is 
vbtually identical to that obtahed by time consuming simulations.’ 

I. INTRODUCTION 

A LTHOUGH sequential decoding demonstrates an 
inherent inability to deal effectively with severe 

bursts of noise, sequential decoding techniques are 
routinely employed in space communication systems. 
Jacobs and Berlekamp [I], Savage [2], and Jelinek [3] have 
shown that the behavior of systems using sequential de- 
coding is limited by a computational distribution (condi- 
tioned on correct decoding) which is essentially Pareto. 
More specifically, Jacobs and Berlekamp showed that the 
computation required to decode the first A branches of 
the code tree C(A) has a distribution satisfying 

P[ C(A) >N] av-c-=), (1) 

where O(V%% ) is an asymptotically unimportant term 
and the Pareto _exponent p is the solution of R = E(p)/p. 
The function E,,(p) is the smallest convex n function 
greater than or equal to E,(p) defined by Gallager [4] and 
R is the code rate. Upper bounds on the computational 
distribution were given by Savage for integer values of p 
and by Jelinek for all real values of p. The latter bounds 
together with the lower bound (1) prove that the decoding 
effort random variables are asymptotically Paretean. 
Asymptotically (for large values of N), the lower bound (1) 
gives an accurate description of the computational distrib- 
ution for a practical sequential decoder [5]. In this paper 
we develop a method for estimating the sequential decod- 
ing computation for small values of N, without the need 
for simulation. Hence our method should be a useful 
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complement to the Pareto asymptote for the design of 
future sequential decoding systems. 

Our method for analyzing the computational dynamics 
of one of the principal forms of sequential decoding, the 
stack algorithm [6], relies heavily on the theory of multi- 
type branching processes [7]-[9]. In Section II of this 
paper we give a brief review of tree codes and sequential 
decoding. In Section III we present some basic relations 
for the appropriate model for the analysis of the tree 
codes described in Section II, viz., the multitype branch- 
ing process. Next, in Section IV, we employ the multitype 
branching process technique to determine the distribution 
of the minimum of the cumulative metrics along the 
transmitted path in the code tree, which is a first step 
towards our goal, viz., the determination of the computa- 
tional distribution over the region where the ,Pareto dis- 
tribution is not useful. In Section V we determine the 
distribution of the number of computations made by the 
decoder in order to decode the first branch in the tree. 
This random variable, which we denote by C,, can be 
used as an approximation of the average number of com- 
putations per decoded branch C,,. The numerical results 
are discussed and comparisons with simulations are made 
in Section VI. As an outcome of theses comparisons, we 
conclude that the computational distribution can be 
estimated with sufficient accuracy to warrant the use of 
our procedure as a design tool, and that multitype branch- 
ing processes are very useful in studying sequential decod- 
ing. 

II. TREE CODES AND SEQUENTIAL DECODING 

Without loss of generality we shall restrict our attention 
to binary (semi-infinite) tree codes of rate R = l/2. 

A binary tree code of rate R = l/2 (see Fig. 1) is formed 
by assigning two channel input symbols to each branch of 
a rooted tree, in which two branches stem from the root 
node and from each successive node. To encode a binary 
information sequence, we follow the upper or lower 
branch depending on whether the information symbol is 0 
or 1. 

To obtain theoretical results about tree codes, we must 
often restrict our consideration to the class of random free 
codes, in which each channel input symbol on the 
branches in the tree is chosen independently according to 
a specified probability distribution. However, a constant 
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Fig. 1. An example of a binary tree code of rate l/2 
channel. 

ronsmitted sequence 

nd incorrect subtree 

fst incorrect 

subtree 

for a binary input 
Fig. 2. An example of a complementary + random code tree which is 

partially explored by a sequential decoder. 

linear tree code, i.e., a constant convolutional code, is 
preferred in a practical system. 

In our analysis we shall consider the class of cowle- 
mentary + random tree codes, a fictitious entity that is 
shown by simulation results to be reasonably close to a 
good model for constant convolutional codes which have 
column distance do= 2 (the optimum value for all tree 
codes of rate R = l/2 [lo]). In a complementary + ran- 
dom tree code the channel input symbols on the branches 
on the transmitted path are all zeros, and the channel 
input symbols on the incorrect branches stemming from 
nodes on the correct path are all ones. For all other 
branches each channel symbol is chosen independently 
according to a specified probability distribution. An ex- 
ample of a complementary + random tree code is shown 
in Fig. 2. 

Let z be the Fano metric [ll] assigned to the branches 
in the tree. For memoryless channels the values of z are 
given by 

I (2) 

where xj is the jth channel input symbol on the particular 
branch, rj is the corresponding received symbol, and P[uj] 
is the a priori probability for the received symbol. Using 
the cumulative metrics for the explored paths in the tree, a 
sequential decoding algorithm makes early rejections of 
paths that are unlikely to be the transmitted one. Thus the 
sequential decoder explores the tree only partially. There 
exist two principal forms of sequential decoders that per- 
form this exploration in an efficient way, viz., the Fano 
algorithm [ 121 and the stack algorithm [6], [ 131. In Section 
V we shall analyze the stack algorithm. It can be de- 
scribed as follows. 

Step 0: Place the root node in the stack. 
Step 1: Delete (one of) the node(s) with the greatest 

node value, i.e., the greatest cumulative metric, from the 
stack and place its two successors into the stack. 

Step 2: Order the stack according to increasing node 
values with the greatest node value at the top. 

Step 3: If the topmost node is a node at the end of the 
tree, stop and choose the path leading to this node as the 
decoded information sequence. Otherwise go to step 1. 

We shall consider only semi-infinite code trees and 
hence ignore the stopping rule in step 3. 

III. MULTITYPE BRANCHING PROCESSES 

The theory of multitype branching processes is useful in 
the study of sequential decoding algorithms. In this sec- 
tion we present some fundamental results of multitype 
branching processes. Our presentation is based on Mode 

PI. 
Suppose we have a population of individuals of m 

different types. Each individual produces a random num- 
ber of offspring and each offspring is of a randomly 
determined type. The growth of this population is de- 
scribed by a multitype branching process. 

The offspring distribution can be expressed in a simple 
closed form if generating functions are used. For any 
vector r=(rl,r2; - - ,r,J with nonnegative integer compo- 
nents, let p,(r) be the probability that an individual of type 
i produces 5 offspring of typej, for all j = 1,2, * * * , m. For 
all m-dimensional vectors of complex numbers s = 

(S*J*, - * * ,s,J such that maxk ].r,J < 1, define 

J(s) = ~p,(r)s;~~~. - * Sk (3) 

to be the generating function of the probabilities p,(r). 
Let the m X m matrix (p& be the Markov transition 

matrix, i.e., pii is the probability that a given offspring 
produced by an individual of type i is of type j. Thus the 
probability distribution for the type of offspring from an 
individual of type i has the generating function 

g(i,s) = 2 pii+ 
j=l 

(4) 

If we let the random variable Hi represent the total 
number of offspring produced by an individual of type i, 
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we have 

hi(S)= ~~o~[H,=n]s”. 

tion by the nth generation given that the progenitor is of 
type i. Thus 

(5) qi(n)=PIZ(n)=O~Z(0)=ri]. (16) 

We obtain an explicit form for the offspring distribution 
We notice that 

by combining (4) and (5). Thus 4itn) <4itn + I> (17) 

A(S) = hi( dhs)) 

and that qi, the probability of eventual extinction, can be 
(6) obtained as the limit 

for all complex vectors s = (s,,+, . . . ,s,J such that maxk 
Is/J < 1. 

Next we shall use the offspring distribution generating 
for i= 1,2; - - ,m. 

function to obtain the distribution of the generation sizes. 
From (3) it follows that, if we interpret 0’ as 1, then 

The initial individual (the progenitor) is called the initial 4i(l) =f;.(O)* (1% 

generation, the offspring of the initial individual are called 
the first generation, the offspring of the members of the 

Let q(n) = (q1(n), . . . ,qJn)). It follows from (14) and (15) 
that, for n > 1, 

first generation are called the second generation, and so 
on. 4i(n)=h(4(n- ‘1) (20) 

Let the random variables q(n), j = 1,2,. . . , m, represent for i = 1,2, * * * ,m. Taking the limit as n-+oo we find that 

the number of individuals of type j in generation IZ and let the probability of extinction q = (q,, * . . , q,) is the smallest 

the number of individuals of various types in generation nonnegative root of the vector equation 

n=o, 1,2; * * be represented by a sequence of vector-val- 
ued random variables (Z(n)). If the initial individual is of 

4=AW (21) 

type i, we set 
IV. DISTRIBUTION OF THE MINIMUM OF THE 

Z(0) = Ei (7) CUMULATIVE METRICS 

where The distribution of the minimum of the cumulative 

ci=(81i,62i,* ” Y&i) (8) 
metrics for the correct path is fundamental in characteriz- 
ing the performance of a sequential decoder. 

and S, is a Kronecker delta. For generations n > 1 we have Let I& be the cumulative metric for the first k branches 

Z(n) = (z,(4,z,(n>,* * * ,Z&>). (9) 
of the correct path, i.e., 

For i=l,2;*- ,m and for any complex vector s = (22) 
( SI,S2,’ * * ,s,) with maxk ls,J < 1, let the generating func- 

Mk= j$, 'j 

tion for the probability distribution of the size of genera- 
tion n=0,1,2;*- be 

where zj is the branch metric for the jth branch. Let D,, 
k=O, 1,2; . + be the difference between the cumulative 

F,(i,s)= CPIZ(n)=rJ-Z(0)=~i]~;?(r;Z...~~. (10) 
metric and the smallest succeeding value, i.e., 

r Q=Ma%in,k (23) 
It follows immediately that where 

and 

If we set 

Fo( i, s) = si (11) 

p, (4 s) =“$(s>. (12) 

and 

Al,s)=(f,(s),...,f,(s>) (13) 

Aw>=(f,(An- 4s)); * * ,-M/p- Ls))), 

n>2 (14) 

then it follows that 

4:,(i,s)=.h(.An- 1,s)) (15) 

forn>2andi=l,2;-- ,m. We shall exploit the recursive- 
ness of (15) in Section V. 

Finally, we shall give some results regarding the proba- 
bility of extinction. Let qi(n) be the probability of extinc- 

Mmin,,=~n (Mk,M,+,,* * ’ }. (24) 

The nonnegative random variables Dk all have the same 
distribution since the metrics for the correct path stem- 
ming from the kth node have the same statistical char- 
acter for all k. 

We shall consider only memoryless channels with bi- 
nary output alphabets and thus a branch metric which 
adopts only three different values {a, - b, - c}, where 

O<a<b<c (25) 

and 

c=2b+a. (26) 

The generalization to larger output alphabets or soft deci- 
sion decoding is straightforward. Furthermore, since the 
metrics can be scaled and rounded into integers with any 
degree of accuracy, we shall consider only integer-valued 
metrics. 
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Let E,., i-0,1,2, be the event that exactly i of the two 
channel symbols on a branch are erroneous, and let 

PIEo]=P[zj=a]=po (274 

tion for the random variable Dk, then we have im- 
mediately from (32) 

P[E,]=P[zj=-b]=pl W’b) 

~,==[Dk=l]=e+l-q/+2. (34) 

In practice we can, often choose a = 1 with little loss of 

forj> 1. 

P[E2]=P[zj=-c]=p2 (27c) 

A multitype branching process can be used to de- 
termine the probabilities P[ Dk > i - 11, i = 1,2,. . . , m in the 
following way. Let the progenitor of the process corre- 
spond to the kth node on the correct path and be of type 
i, and let, in general, the individual of the nth generation 
correspond to the (k+ n)th node on the correct path. 
Individuals of type 1 have no offspring, i.e., type 1 is an 
absorbing state, while all other individuals have one 
offspring. Thus if we let the generating function h,(s) 
represent the distribution of the number of offspring, we 
have 

accuracy. For this special case Massey [14] noticed that 
the infinite sequence * + . ,Dk+ ,, Dk, Dk _ ,, * * - is a queuing 
process which is equivalent to a unit-decrement Markov 
chain. From any state i > 1 in this Markov chain there is a 
single transition of one step (a = 1) toward the origin state 
0 and two transitions (-b, -c) away from the origin 
state. From the fact that the unconditional drift for the 
Markov chain is zero, the stationary probabilities 

~O,~l,~~ITz,’ - * can be evaluated directly from 

i (~o)-~(~o- bp, - ~~219 j=O 

I 

(PO)-‘(1 -Pobo’o, j=l 

7Q= (Po)-‘~+ l<j<b 

(pO)-‘(~-l-Pl~-l-b)~ b<j<c 

(PO)-‘(.rri-I-P,~-1-b-P2~j-,--c), j >c. 

(35) 

hi(S) = ( b: i= 1, 
I<i<m. 

Suppose that the individual belonging to the nth genera- 
tion is of typej, l<j<m-a. Then, ifj+zk+n+l>l, let 
the offspring be of type j + zkfn+ i; otherwise, let it be of 
type 1. If we let g(j, s) be the generating function defined 
in (4) we have 

j=l 

b2+P*Z’+P&+.. 10’<l+b 

P2S1+P13-b+P#j+o, 

dj, s> = e l+b<j<l+c (29) 

PZ$-c+Pl$-b +P$j+a, 

l+c<j<m-a 

sjv m-a<j<m 

where the last row is added to give the required finite 
number of types. However, since we are interested only in 
the first part of the distribution function, the number of 
types m can be made large enough not to affect the 
results. 

From (6) and (28) it follows that 

A(‘)= ( i(i,s), 
i L 

‘.’ 1 <I Gm. (30) 

From the correspondence between branch metrics and 
types we have 

P[ Dk > i - 1 ] = P[ extinctionlZ(0) = ei] (31) 

where Z(0) is defined in Section III. From (16), (18), and 
(31) it follows that 

P[D,>i-l]=qi (32) 

where qi is the smallest nonnegative solution of 

4i =A(4)* (33) 

From (20) it is clear that (33) can be solved iteratively, 
and in practice the convergence qi(n)+qi is usually rapid. 
If we let 7r,, 1=0,1,2;--, denote the probability distribu- 

As an example we choose a binary symmetric channel 
(BSC) with crossover probability p = 0.045 which corre- 
sponds to transmission at the cutoff rate R,=0.50 [ 151. 
We have immediately 

po=(l -~)~=0.912, 

p, =2p(l -p)=O.O86, (36) 

p2 =p2= 0.002, 

and the Fano metric set is { + 1, - 4, - 9}. The probabili- 

ties %o, % 7T2, r3, 774, % % ' - are 0.603, 0.058, 0.064, 
0.070, 0.077, 0.027, 0.024; - + . We notice that as many as 
60.3 percent of the nodes on the correct path will be 
“breakout nodes” [4], and the interesting (but not surpris- 
ing) fact that 

TT,<T2<T3<T4 

for this set of metric values. 

(37) 

V. DISTRIBUTION OF C, 

We call the node at depth 1 on the correct path the first 
correct node (Fig. 2). The node at depth 2 on the correct 
path is called the second correct node and so on. Let Cj, 
j= 1,2; - * be the number of computations made by the 
sequential decoder in order to decode the jth correct node 
(or, equivalently, to decode the branch between the (j- 
1)th correct node and the jth correct node). That is, the 
random variable Cj equals the single computation made in 
order to extend the (j - I)th correct node plus the number 
of computations made in order to extend the nodes in the 
jth incorrect subtree (i.e., the incorrect subtree stemming 
from the (j- 1)th correct node). 

We note that for a tree of unbounded length the ran- 
dom variables C,, C,, C,, - - - are identically distributed 
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but not independent. The distribution of q is important 
for determining the performance of a sequential decoder. 
Of even greater importance is the average number of 
computations per decoded branch, 

CA, = trnm C,,(L) = (38) -9 

However, in this paper we shall deal primarily with the 
distribution of cj and in particular we shall compute the 
distribution of C,. 

It is easily proved (e.g., by induction) that for binary 
trees the number of computations C;. equals the number of 
terminal nodes, i.e., nodes for which the cumulative metric 
is less than the minimum cumulative metric along the 
correct path, in the jth incorrect subtree. For reasons that 
will become obvious we concatenate strings of nodes of 
infinite length to the terminal nodes in the first incorrect 
subtree (Fig. 3). Since the strings do not affect the number 
of nodes which are not extended, the random variable C, 
equals the number of nodes at depth cc in the first 
incorrect subtree. 

We shall use the multitype branching process described 
in Section III to compute the distribution of this latter 
random variable when the stack algorithm is used to 
decode an equiprobable complementary + random tree 
code. 

Let the node at depth 1 in the first incorrect subtree be 
the progenitor (the initial generation) and, in general, let 
the nodes at depth n + 1, n = 1,2, * * . in the first incorrect 
subtree constitute the nth generation in a multitype 
branching process. 

The values of the cumulative metrics determine to 
which “type” the different nodes in the first incorrect 
subtree belong. Let a node be of type 1 if its cumulative 
metric M is less than or equal to a threshold value i& 
The random variable Mt represents the largest possible 
cumulative metric for nodes in the first incorrect subtree 
that will not be extended by the sequential decoding 
algorithm. In general, let the nodes with the cumulative 

i=l 
2 
3 
4 
5 
6 
7 

(pii)= 8 
9 

10 
11 
12 
13 
14 
15 

3rd generatio: Lth 5th ge ‘ne- 

generotion ro tion 

Fig. 3. An example of a code tree with strings of nodes of infinite 
length concatenated to the terminal nodes in the first incorrect sub- 
tree. The number of offspring in the fourth generation equals the 
number of computations made in the first incorrect subtree in Fig. 2. 

metricsM=M,+i-l,i=1,2;.*,m,betypeinodes. 
For computational and practical reasons we are inter- 

ested only in the nonasymptotic part of the probability 
distribution for the random variable C,. Thus we make 
the finite number of types m so large that we do not have 
to take its finiteness into account. 

The offspring of the original terminal nodes are the 
nodes on the strings. Let the branch metrics in the strings 
all be zero. Thus all nodes on the strings will be of type 1. 
From the description of the sequential decoding algorithm 
and from the relation between the cumulative metrics and 
the types, it is clear that if, as an example, we choose the 
branch metrics { + 1, -4, - 9>, the m X m Markov transi- 
tion matrix (p& defined in Section III, can be written, for 
m= 15 say, as 

j-l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 
3/4 0 l/4 0 
3/4 l/4 0 
3/4 l/4 0 
3/4 l/4 0 0 
l/4 l/2 l/4 0 

l/4 l/2 l/4 0 

l/4 l/2 l/4 0 (39) 
l/4 l/2 0 l/4 0 

l/4 l/2 l/4 0 
0 l/4 l/2 l/4 0 
0 l/4 0 l/2 l/4 0 
0 l/4 l/2 l/4 0 

0 0 l/4 l/2 l/4 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 



328 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-25, NO. 3, MAY 1979 

and the corresponding generating functions are 

sly i=l 

3/4s, + l/4$,+ ,, l<i<5 

g(i,s)=. 1/4s,+ 1/2si-4+ 1/4Sj+l, 5<i< 10 

1/4si-,+ l/2si-,+ l/4si+i, lO<i<m- 1 

si> i=m. 

(40) 

Assume, in general, that the set of branch metrics is 
{a, - b, - c} where a, b, and c are positive integers and 
a <b <c. The generalization of (40) is obvious: 

SIP i = 1 

3/4s* + 1/4si+,P I<i<l+b 

1/4s, + l/h,-, + l/4$+,, 
g(b) =< l+b<i<l+c (41) 

1/4si_, + 1/2si-b + 1/4si+,, 

l+c<i<m-a 

si9 m-a<i<m. 
c 

viduals in the nth generation, given that the progenitor is 
of type i. Hence for all positive integers r, 

G,(i,s)= 5 P 2 Zj(n)=rlZ(O)=q s* r=l 1 j-1 1 W) 
where Fj(n) is defined in Section III. We are interested in 
determmmg the probability distribution for the random 
variable C,. From (44) and from the fact that the number 
of terminal nodes equals C,, it is clear that the distribu- 
tion is given by the generating function 

G,(i,s) = $% G,(i,s). (45) 

If we let r=ZZJ!-,rj and s*=(s,s;.- ,s) then it follows 
from (10) and (44) that 

G,,(i,s) = I;,(i,s*). (W 

For every complex number s such that JsJ < 1, we let 

G,(b) = r!, c(i,r)s’ (47) 

where 

All individuals of type 1 produce exactly one offspring 
each while all individuals of all other types produce ex- 
actly two offspring each. Thus the generating functions 
reflecting the distribution of the number of offsprings 
produced by an individual of type i are given by 

c(i,r)=P[ C1=rlZ(0)=ci]. (48) 

It is perhaps somewhat surprising that there is a simple 
way to compute the probabilities c(i, r). From (13)-(15), 
(43b), and (45)-(47), it follows that the probabilities c(i,r) 
for i= 1,2,-e . ,m and r > 3 can be computed from the 
values of c(i, r’), i = 1,2, - . - , m and r’ <r. (We notice that 
this is not true for a general generating function A(s), e.g., 
it is not true if in (43b) fi(s) = 1.) For r = I,2 we have 
immediately 

hi(s)= ( “,; 
i = 

’ 
> i=2,3; a. ,m. 

Then it follows from (6), (41), and (42) that 

A(4 = 

SIP i=l 

(3/4s* + 1/4si+,)27 l<i<l+b 

(1/4s,+ 1/2Si-b+ 1/4Si+a)2p 
l,+b<i< l+c 

(l/dsi-c+ 1/2si-b+ 1/4si+a)2, 

l+c<i<m-a 

$7 m-a<i<m. 

(434 

For purposes that will become obvious, it is useful to 
expand the squares in (43a). Thus we write 

fiw = 

$1, i = 1 

9/16s:+ 1/16~iZ,~+3/8sis~+,, I<i<l+b 

1/16s;+ l/4$,+ l/16$+, 

+ l/&,s,-, + 1/8s,.~,+~ 

+ 1/4Si-bSi+a, l+b<i<l+c 

l/16$?_,+ l/4$-,+ l/16$+, 

+ 1/4si-csi-b + 1/8Si-,Si+, 

+ l/4Si-bSi+a, l+c<i<m-a 

$7 m-a<i<m. 

(43’4 

Let G,(i,s) be the generating function representation of 
the probability distribution for the total number of indi- 

c(i, l)= 
( 

A i=l 

9 i>l (494 
and 

c(i, 2) = 9/16, l<i<l+b 

l/16, l+b<i<l+c Wb) 

i>l+c. 

From (15), (43b), and (46), it follows that for r> 3 we 
have 

c(i,r)= 

0, i=l 
r-l 

l/16 x c(i+aj)c(i+a,r-j) j=l 
+3/8c(l, l)c(i+a,r- l), l<i<l+b 

r-l 

1/4,zI c(i- bj)c(i-b,r-j) 
‘s 

r-l 
+ l/16 2 c(ifaj)c(i+a,r-j) 

+ 1/4c;;i)c(i- b,r- 1) 

+ 1/8c(l, I)c(i+a,r- 1) 
r-l 

+ l/4 x c(i-bj)c(i+a,r-j), 
j=l 

l+b<i<l+c 

(49c) 
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r-1 

l/16 x c(i-cj)c(i-c,r-j) 
j=l 

r-1 

+ l/4,?, c(i- bJ)c(i- b,r-j) 

r-1 

+I/16 c c(i+aj)c(i+a,r-j) 

c(i,r)=’ 

I 
j=l 

r-l 

+ l/4,?, c(i- c,j)c(i- b-j) 

r-1 

+1/8 x c(i-cJ)c(i+a,r-j) 
j=l 

r-1 

+1/4x c(i-bj)c(i+a,r-j), 
j=l 

l+c<i<m-a 

channel symbols are erroneous, then, since we assume 
that the information symbols are independent and equally 
likely to be zeros or ones, we have 

P[Z(0)=rl~El]=P[Z(O)=r2~E,]=1/2, if D,=O 

(56) 

where D, is defined in Section IV. The random resolution 
of this particular type of tie and the linearity of convolu- 
tional codes justify the use of a fixed transmitted informa- 
tion sequence, e.g., the all zero sequence, instead of the 
more realistic random sequence and more practical fixed 
resolution of this type of tie (e.g., “extend the one-branch 
first”) when simulating the sequential decoding algorithm. 
From the “last in/first out” rule we also conclude that 

P[Z(O)=r,lE,] =P[Z(0)=c31El] = l/2, if D,=l 

(57) 
I 0, i>m-a. WC) P[Z(O)=r,lE,]=l, if D,<a+c (58) 

From (49) it follows that and 
c(i,r) -0 (50) P[Z(O)=r,lE,]=l, if D, =a+c+l. (59) 

for all i and r such that 

and 

i>l+kc (51) 

r<2k+’ (52) 

where k=O, 1,2;. . . 
As mentioned before, we are interested only in a finite 

maximum number of computations made by the sequen- 
tial decoder in order to decode the first correct node. Let 
this number be rmax. Then from (51) and (52) it follows 
that if 

However, it is very difficult to analyze how ties are 
resolved in general. We shall give upper and lower bounds 
on the distribution function for Cl, P[ C, > k], k = 1,2; * * , 
to avoid these difficulties. When there is no obvious way 
to resolve the ties we use the policy “in case of ties extend 
an incorrect node first” to obtain an upper bound and we 
use the policy “in case of ties extend the correct node 
first” to obtain a lower bound. The different policies 
correspond to the following values of the threshold M( 

upper bound: i’t!, = Men,, - 1 (60) 

lower bound: it4, = Mti, i (61) 
m - a > 1 + cl-log, rmaxJ (53) where Mmin i is defined by (24). 

the finiteness of the number of types in the multitype From the’ definition of D, (23) we have 
branching process will not affect the computed probabil- 
ity distribution. 

wni*,l=zl-Dl (62) 

Let us express the probability distribution for C, as a where zi is the metric for the first branch along the correct 

sum path. If AM, is the difference between the cumulative 
metric for the progenitor Zi and the threshold M,, i.e., 

P[C,=k]=~P[C,=klZ(O)=q]P[Z(O)=q]. (54) 
i 

AM,=&+, (63) 

then it follows from the relation between the threshold MI 
and the different types that 

(55) PIZ(0)=ri]=PIAMI=‘-11. (64) 

From (48) and (54) we have 

P[C,=k]=xc(i,k)P[Z(O)=q]. 
i 

The probability that the progenitor is of type i, i.e., 
P[Z(O) = EJ, can be determined from the stationary proba- 
bilities rro, IT,, 7~~, * * . for the Markov chain described in 
Section IV. The main difficulty remaining is to describe 
the effects of resolving ties. In practice ties are usually 
resolved according to the rule “last in/first out”. In our 
analysis we can handle only a few very special cases, e.g., 
when the extending of the root node results in the same 
cumulative metrics for both successors (i.e., a single error 
occurs during the transmission of the first two channel 
symbols) then one of the successors is randomly chosen 
for the top position on the stack. Thus if we let Ej, 
j= 0,1,2, denote th e event that exactly j of the first two 

Thus from (59)-(63) and (64) we have the following 
generating functions for the probability distributions for 
the type of progenitor: 

upper bound: $i P[ Z(0) =ri]si 

a+C 

= PO jpj s+~o+,+,s3 +j~47i’-2+.+.s~) 

I( 1 

1 

1 co 

+Pl 2 ‘,,+ ~(lio+Sl)S2 + z?rlS2+ ~ ~j-zs’ 
j=4 1 

=j-2-a-c si 
(654 
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lower bound: izl ‘[ z<“>=‘i]si 

where 

Pizp[ &I, i=o, 1,2. 
I 

Wb) 

(66) 
Finally, (49) and (65) can be inserted into (55) to obtain 

the probability distribution for the random variable C,. 

VI. DISCUSSION OF NUMERICAL RESULTS AND 

hULATIONS 

Using the branching processes methods described in 
Sections IV and V, theoretical upper and lower bounds on 
the distribution function of the random variable C,, P[C, 
> N 1, have been evaluated for the case where transmission 
takes place over a binary symmetrical channel (BSC) with 
crossover probability p = 0.045. Since we are only consid- 
ering rate R = l/2 codes-the codes of greatest practical 
importance-this crossover probability corresponds to 
transmission at the computational cutoff rate R,. For this 
particular channel the Fano metric set is approximately 
{ + 1, - 4, - 9}. The bounds are evaluated for this 
“matched” metric set and for the “unmatched” sets 
{+1, -3, -7}, {+1, -5, -ll}, and {+l, -6, -13). The 
bounds are shown in Fig. 4 together with the simulations 
of P[ C, > N] for the complementary + random code. 

It is interesting to notice the close agreement between 
the simulated C,-curves and the corresponding lower 
bounds. This is a strong indication that the tie-resolving 
rule “last in/first out” is near-optimal, which is not 
surprising since this rule is a “depth first” rule, i.e., it 
deepens the search, while the “first in/first out” rule 
broadens the search and is a “parallel” rule [ 161. 

To investigate the relationship between C, and CA,, the 
total number of computations per information digit, as 
many as 10 000 frames consisting of 256 information 
symbols augmented by a tail of M=23 zeros were trans- 
mitted at rate R= R, and decoded with different metrics. 
The best presently known fixed convolutional code with 
memory length M = 23, viz., the ODP QLI code [lo], was 
used. The results are shown in Fig. 5 together with the 
corresponding lower bounds obtained with the branching 
processes method. The great discrepancies at N= 3 be- 
tween our lower bounds and the simulated C, curves are 
due to the complementary structure in the convolutional 
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Fig. 4. The computational distribution function P[C, >N] obtained 
from sequential decoding simulations for the complementary + ran- 
dom code, and theoretical upper and lower bounds on P[ C, > N]. 

tree code. Furthermore, we notice that in the range of 
interesting metric sets (the metric set { + 1, - 3, - 7) is not 
interesting since it is not matched to any BSC!) the lower 
bounds on P[C, 2 N] obtained with the branching 
processes method are good approximations of both P[C, 
> N] and, more important, P[C,, > N] for a practical 
sequential decoder. For N > 10 we can extend our bounds 
with the well-known Pareto asymptote. 

Finally in Fig. 6 we compare the branching processes 
bounds with P[ C, > N] for the complementary + random 
code and with P[ CA, 2 N] for the fixed convolutional 
code. The channel transition probabilities correspond to 
transmission at a rate 2.5 percent above R, (p -0.048) 
and at a rate 4 percent below R, (p = 0.040). We notice 
that in the range of interesting rates, viz., about R,, the 
branching processes method gives a close approximation 
to the computational performance of a sequential de- 
coder, viz., P[ CA, > N]. 

VII. REMARK 

In principle the distribution of the average number of 
computations CA, can be estimated by a procedure which 
is a straightforward generalization of the procedure devel- 
oped in Section V. However, the generalized procedure 
contains sums of such high numbers of terms that it is too 
time consuming to be an attractive design tool. 
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