
337

QUARTERLY OF APPLIED MATHEMATICS
Vol. IX January, 1952 No. 4

ON THE DISTRIBUTION OF ENERGY IN NOISE-AND
SIGNAL-MODULATED WAVES
I. AMPLITUDE MODULATION*

BY

DAVID MIDDLETON
Cruft Laboratory, Harvard University

1. Introduction. Because noise is an inevitable and undesirable companion of in-
telligence transmitted or received by electronic systems, it is essential for any proper
theory of communication to provide suitable methods for studying the physical prop-
erties of a noise wave and its interaction with a desired signal. On the one hand a suc-
cessful technique of measurement is required to control or minimize the noise, and on
the other an adequate theory is necessary to guide experiment and interpret the data.
Accordingly, the purpose of the present paper is to present a number of new results,
obtained by the analytical methods developed in recent years, [2-15, 17-20] for the
following important problems. (In all cases considered here the noise is assumed to
belong to the fluctuation type characteristic of shot and thermal noise, which are de-
scribed by a normal random process [5, 10]. Impulsive noise, such as atmospheric and
solar static, is not treated, although the general methods of analysis remain the same.)
Our interest here is confined mainly to amplitude-modulated waves, specifically,

(i) carrier amplitude-modulated by noise: this problem considers the amplitude dis-
tortion by noise of the carrier wave as the mechanism producing the modulation, and
the important case of over-modulation is also examined. This example is of particular
interest when normal random noise is used as an approximate model of speech, f or as
a form of interference.

(ii) carrier amplitude-modulated by a signal and noise: this is a frequent case in
practice where a certain amount of noise accompanies the desired signal in the process
of modulation. Included also is the problem of speech (normal random noise) accom-

*Received April 18, 1951. The research reported in this document was made possible through
support extended Cruft Laboratory, Harvard University, jointly by the Navy Department (Office of
Naval Research), the Signal Corps of the U. S. Army, and the U. S. Air Force, under ONR Contract
N5ori-76, T. O. I.

fRecent experiments of W. B. Davenport, Jr. ("A study of speech probability distributions,"
Technical Report 148, Research Laboratory of Electronics, (MIT) August 25, 1950) indicate that
speech is more satisfactorily described statistically in terms of an impulsive or "static" noise model,
where overlapping among individual (and independent) pulses is assumed to be small, of the order of
30-50 per cent of the time. This is different from the usual model of fluctuation or normal random noise,
which assumes complete and highly multiple overlapping between the elementary transients. However,
because normal random noise has the great advantage of mathematical simplicity, its use as a speech
model seems justified on this and physical grounds, at least as a first approximation.
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panied by noise; the two noise waves are assumed to be uncorrelated. In a later paper*
is considered

(iii) simultaneous amplitude- and angle-modulation of a carrier by noise: here the
modulating noise waves are correlated, and there may be in general a phase lag of one
modulation with respect to the other. The results are of particular interest in connection
with the problem of the noise in magnetron generators, in which a simultaneous ampli-
tude- and angle- (i.e., phase- or frequency-) modulation of the oscillations due to the
inherent or primary noise of the tube is known to occur.

[A discussion of the problem of carriers angle-modulated by signal and noise has
been given elsewhere in a recent report (D. Middleton, 1)].

We remark further that, apart from the specific applications to problems (i)-(iii),
the results are needed in the general theory of noise measurement, for here the central
objective is to be able to determine by measurements on the output wave, following
various linear and nonlinear operations (such as amplification, rectification, clipping,
mixing, modulation, discrimination, etc.), the "structure" of the original input dis-
turbance, i.e., whether or not it is an amplitude- or frequency-modulated wave, how the
noise and signal occur together, and other qualitative and quantitative data.

The quantities of chief physical interest are (a), the mean or steady component of
the disturbance, (b), the mean intensity of the wave, and (c), the s-pectral distribution
W(f) of the mean intensity. This latter quantity is in fact sufficient to give us the other
two; the mean intensity is obtained as the area under the spectral density curve W(f),
while the (square of the) steady component is given by the constant (or frequency-
independent) term in the expression for the spectrum. It is assumed that we are dealing
with a stationary (and ergodic) random process, namely, a process for which the under-
lying mechanism does not change with time. Then time averages and ensemble or
statistical averages are equivalent, [20] to within a set of random functions of prob-
ability zero, so that if we represent our stochastic, time-dependent disturbance by y(t)
we may write the steady component (a) as**

(2/W).v. = lim T'1 f y(t0) dt0 = (y(to)),.„. = [ yW^y) dy, (1.1)
T_»oo J 0 t/ — oo

and the mean intensity (6)

<2/(<o)2>.v. = lim T~l [ y{tQf dt0 = (y(t0)2),.^. = [ y^W x{y) dy; (1.2)
T—>oo J0 J -co

W\{y) dy is the probability that (at any initial time t0) y lies in the range y, y + dy
The moment of greatest interest, however is given by

#(<) = (y(to)y(t0 + <)>.v. = lim T'1 [ y(t0)y(tx +'<) dt0 . (1.3)
r-» oo Jo

The quantity R(t) is the auto-correlation function of y and may be found statistically
when the second-order probability density W2(yi , ?/2 ; 0 is known; W2 has the following
interpretation:

*We distinguish here between time and statistical averages by ( }av. and ( respectively.
"Accepted for publication in the Quarterly of Applied Mathematics.

The equivalence of these averages follows from the ergodic theorem [2, 20].
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(l/i , 2/2 t) dy, dy2 = the joint probability that at some (initial) time t0 , y( — y,) lies
in the range (yx , y, + dy,) and at a later time t0 + t, y( = y2)
falls in the interval (y2 , y2 + dy2). (1.4)

Because time and ensemble averages are equivalent here, Eq. (1.3) becomes

R(t) = (2/12/2),.av. = J J yiy2W2(y1 , y2 ;t) dy\ dy2 , (1.5;

and since the process is stationary, the initial times t0 do not enter: one is concerned only
with the time intervals (t) between observations.

Knowledge of the correlation function R(t) is important, for by the theorem of
Wiener [14] and Khintchine [15] the mean intensity spectrum follows at once as the
cosine Fourier transform of R{t), namely

W(f) = 4 [ R(t) cos wt dt, (c0 = 2irf) (1.6a)
J 0

with the inverse relation

R(t) = [ W(f) cos cot df. (1.6b)
Jo

To determine the desired energy spectrum W(/) the simplest procedure is first to obtain
the correlation function and then apply (1.6a). Note from (1.6b) that setting t = 0 in
R(t) gives the mean total intensity of the random wave, namely

R(fl) = [ W(f) df = lim [[ y1y2W2(y1 , y3 ; t) dy, dy2 = (?/2}s.av. (1.7)
J 0 *->0 JJ-m

which is the area under the spectral distribution curve W(f), as expected. On the other
hand, allowing t to become infinite in R(t) yields the steady component (?y)8.!iv. , since
lim,^„ W2(jji , 2/2 ; t) = W\ (?/i)l'F, (y2), so that (1.5) becomes

lim R(t) = [[ 2/12/2^1(2/1)^(2/2) dyx dy2 = <2/),2.,«. , (1.8)
i—>00 J J-co

from (1.1). For a pure noise wave (y)avanishes, as there are no steady components.
However, when y does not represent a purely stochastic variable, but contains steady
and periodic terms as well, lim,^ R(f) will not die down in time, but will oscillate in-
definitely. If R(t) is then expanded in a Fourier series, the coefficient of each periodic
component represents the mean power (or intensity, as the case may be)* associated
with that component; setting t = 0 in R(t) still gives the mean total power in the wave.

In a similar way we may find the correlation function for a general function g(y)
of the random variable y. By definition (3, 10) we have

R(t) = (g[y(to)]g[y(to + t) ]}„. = {g(yi)g(y2))..*-,.

(1.9)
= ff_ g(yi)g(y2)W2(y1 , 2/2 ; t) dyi dy2

*The mean intensity may be expressed in units of power or mean square amplitude, appropriate
to the problem in question.
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The spectrum follows from (1.6a). For problems (i)-(iii) the modulated wave V{i) is
expressed as a function of a statistical variable y, and the choice of g(y) is based on the
pertinent physical model which describes the problem. In general, g(y) is not a linear
function of y, and so the evaluation of the auto-correlation function becomes difficult.
These remarks are illustrated in the following sections.

The main results of the analysis of a carrier wave amplitude-modulated by normal
random noise, or a signal and noise, show that the amplitude-distortion characteristic
of over-modulation spreads the spectrum but not significantly; the additional noise
components are due to (n X n) noise modulation products. Furthermore, when a modu-
lating signal accompanies the noise, distortion of the signal also occurs, and (s X n)
as well as (n X n) noise harmonics are produced. Expressions for the mean total power,
the mean continuum power, the mean carrier power, and the mean power in the discrete
portions of the spectrum are given, along with a detailed treatment of the spectral
distribution of the wave's energy. In the following sections, a discussion of the limiting
cases of weak noise, strong signal, etc., is included, and a number of figures illustrate
the principal results.

2. Carrier amplitude-modulated by noise. We represent the IF (or RF) wave by a
complex disturbance

9(y) = ^(0 = A0(t) exp (ioiot), (co0 = 27t/0), (2.1)

where A0(t) is a real quantity. The amplitude modulation is specifically

Ao(t) = ilo(l + kVM), y = kVN{t) > -l)

= 0, y = kVN(t) < — l)
(2.2)

in which VN(t) is a normal random noise voltage (or current) and A; is a modulation
index, with dimensions (volts)-1. When the instantaneous amplitude VN(t) is less than
— 1 /k, over-modulation occurs, and the signal generator does not oscillate until VN(t)
is once more greater than — 1 /k. Since we assume a purely normal random noise, large
and even infinite amplitudes are possible, and consequently we may expect over-modu-
lation for a noticeable part of the time, unless the modulating noise is weak. The analysis
of this and succeeding sections assumes the common type of modulation in which the
instantaneous amplitude of an oscillator's output is modified according to some signal
or other low-frequency disturbance applied to a suitable control grid. Frequently, how-
ever, a modulated output is produced by applying the sum of the separately generated
oscillations and the modulation to the input of a (half-wave linear) rectifier. The tube
acts now as a mixing device, which yields a suitably modulated output carrier wave
only if the original carrier oscillations are very intense relative to the modulation. Otherwise
one obtains serious distortion due to the significant additional harmonics generated in
the nonlinear mixing of the signal (noise), carrier, and background noise. Thus, if a
mixer is used, Eqs. (2.1) and (2.2) apply here approximately, provided the modulation
is weak, while (2.1) and (2.2) are valid models for all degrees of carrier and modulation
strengths when the alternative system of a modulated oscillator is employed.

Let us consider first the simpler and less general situation in which the r-m-s noise
amplitude (VN(t)2)Y.lv is very much less than 1/k 21/2; this means that for an overwhelm-
ingly large percentage of the time the instantaneous amplitude kVN(t) is less than unity
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and therefore over-modulation is for all practical purposes ignorable. The exact ex-
pression (2.1) then becomes simply

A0{t) = A0(l + kVN(t)) = A0(l + y), (-00 < y = kV„{t) < °°), (2.3)

provided (0 < k(2\py/2 « 1), where by \p we abbreviate • To see how strict
the condition (0 < k(2\p)1/2 « 1) must be, we ask what fraction of the time a
(0 < a < 0.5), V(t) exceeds an amplitude F0 = 1/fc. Since V(t) is normally distributed,
we have at once

« = To-TVT* f exp (- V2/2i) dV = i [1 — 0(l/fc(2^)1/2)],
(Zirxl/) Jv.-i/i *

(2.4)
(i m <FW«)2>...0,

(2tt^)

where 9 is the familiar error function

G(x) = 2ir~in exp (-z2) dz, and <f>(n)(x) = ^(frr)"2^' ^2 A^

With the help of tables of 0 we readily determine k(2\f/)1/2 corresponding to a chosen
value of a. We see for example that when k (2^)1/2 < 0.6, over-modulation occurs less
than 1 per cent of the time, and so for most purposes Eq. (2.3) may replace the more
general relation (2.2) when (Fw(<)2)..av. < 0.18/A;.

The autocorrelation function of the modulated wave is therefore from (1.3) and (2.3)

R{t) = (42/2)fle{exp (-z'co0 <)[1 + k\VN(to)VN(to + 0).v.]l
(2.5)

= (A?/2) cos «0i{ 1 + k2R0(t)N\,

in which R0(t)w = (VN(l0)VN(ln + is the auto-correlation function of the modu-
lating noise wave. The mean intensity spectrum is from (1.6)

WU) = (A02/2) 8(f ~ fo) + Alk2 [ R0(t)N cos (o,„ - «)< dt, (2.6)
•'O

where we neglect the contribution from cos (co0 + oj)< in (2.6), since the spectral width
(^Wj,) of the noise is much less than the carrier frequency ( = /0). The carrier power is
unchanged, viz., W= A\/1, while the amount of power Wc in the continuum is dis-
tributed symmetrically about f0 , with a total intensity Alk2ip/2. [Unlike frequency- or
phase-modulation (cf. sees. 2, 3 of ref. [1]) there is a larger amount of energy in the
wave after modulation than before, and all of the additional power appears in the con-
tinuous spectrum.] Now R0(t)\ cos u0t in (2.6) represents the correlation function of
the continuous part of the output spectrum, which is the same as the correlation function
that one obtains for a narrow-band of noise centered about /0 , and consequently yields
the same intensity spectrum. There is, however, an important difference between the two.
In the former the component at a frequency f0 + /' is correlated with the component at
the image frequency /0 — /', while in the latter there is no such coherence between pairs
of harmonics symmetrically located about f0 ■ Nevertheless, identical forms of correlation
function and spectrum occur in either instance because, by definition, these quantities are
squares of a modulus, from which all phase factors are excluded. On the other hand, a
Fourier analysis of the noise-modulated carrier (2.1), (2.3) and the equivalent (in power)
narrow-band noise centered about /0 show at once coherence in the former and none in
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the latter. This can be observed directly on a cathode-ray oscilloscope: for a noise-modu-
lated carrier with ignorable over-modulation, the instantaneous envelope will vary
randomly but there will be no change in the phase of the carrier, while in the case of the
noise band the phase of the carrier will change (relatively slowly) in a random way.

We return now to the general case (2.2), which includes over-modulation. To represent
the discontinuities in ^o(0> (2-2), we express A0(t) in terms of its Fourier transform

^o(0 = — A0(25t)_1 J^z~2 dz exp (iz[ 1 &W(<)]), (2.7)

where C is a contour extending along the real axis from - co to +00 and is indented
downward in an infinitesimal semicircle about the singularity at z = 0. The correlation
function is now

R{t) = (Ao/2) /fejexp (—iu0t)(4ir2y1 z~2 dz exp {iz[ 1 + kVN(t0)])

(2.8)
£~2 exp (—i|[l + kVN(t0 + *)])(L ) a tat.av.

since no coherence between carrier and modulation is assumed. Here C* is the contour
conjugate to C, extending from + <» to — » and is indented upward in an infinitesimal
semicircle about the point £ = 0. Furthermore, inasmuch as VN{t) is real, A0(t) is also
and so A0(t)* = A0(t) and we can replace the integral over C* by one in C, setting i = — i.
The ensemble average in (2.8) may be effected in a straightforward way if we note that
since VN{t0) ( — F,) and VN(tn + t) (=F2) are normal random variables, their joint
distribution is given by a relation of the form

W2(V1 ,V2;t) = [2^(1 - r2)1/2r exp {-[F2 + F22 - 2FaF2r0]/2(l - r2)*}, (2.9)

and r0 = (FiF2)s.av./(F2)a.tv. = i(t)/\J/ is the normalized auto-correlation function of
the modulating noise, whose mean intensity spectrum is PF(/)jy . Substituting (2.9) into
(2.8) and observing that the statistical average yields the characteristic function (cf.
Eq. (2.16) of ref. [10]) for the noise F2(z, £; t)N = exp {— 5&V(0)(z2 + £2) — z^(t)}, we
have finally

R(t) = (A2/2) 7?e|exp (—iwat){W)~x Jc z~2 dz exp (■iz — k2\pz2/2)

• jj~2 d£ exp (t£ - k2^2/2 - k2t(t)zi^

= (A2X,o/2) cos to0t + (Al/2) hl„ cos co„<, (2.10)»=i ri\
where

ho,. = (2*)_1 \/'2 exp {iz - k2\pz2/2) dz = -t-(ftV)<1->/22(-,)/a

(2I1)

+ ww* " aM/KSr5)]



1952] DISTRIBUTION OF ENERGY IN NOISE-AND SIGNAL-MODULATED WAVES I 343

from Eq. (A3.17) of reference (10); iFt is a confluent hypergeometric function. Specific-
ally (cf. (A.9) of ref. 10), we have for the amplitude functions h0.„ ,

ho.o = [1 + 0([2A:Vr1/2)]/2 + (A:V/2tt)1/2 exp (-1/2JfcV) (2.12a)

fto.i = i[l + e([2k2i]-1/2)]/2, (2.12b)

h0.„ = (-ir/\kUyi-n)/Vn-i)(.[k2+]-1/2), (» = 2, 3, 4, 5, • • •) (2.12c)

(the definitions of 0 and <f>!n) are given in Eq. (2.4a); see also Appendix III of ref. [10]).
By Eq. (1.6a) the mean intensity spectrum is the Fourier transform of (2.10), namely,

W(f) = UXo/2) S(f - /„) + AlkX-hlM f ro(0 cos (co0 - o>)t dt
V®

(2.13)
00 ^n~2)(\b2 n~l/2\2 r°°

+ Alk2* t, ®/ r0(t)n cos (fi>0 - ca)t dt.
n = 2

When the modulating noise has a gaussian spectrum, WN(f) = W0 exp (-co2/'>>l), this
becomes explicitly

W(f) = (AX.o/2) 8(f - /„) + exp [ —(co0 - a,)2/"2,]

(2.14)
a> j(n-2)/ri.2 11 —1/2\2 ")

, ??!C'a + g iipi—i- exp [-(«„ - co)7mo?]j.

Figure (2.1) shows typical intensity spectra for a number of values of (2k2\p)1/2 between
0 and co. We distinguish two limiting cases: (2k2^)1/2 —>°° and (2k2\f/)1/2 —> 0; the auto-
correlation function (2.10) is accordingly

(2&V —):««) *= cos «.<.|l + |r„«)  uu»oj0f|i T 2 'oW

(2.15a)
, y ro(t)2"+2(2nV. 1 2

+ ^ 22"n!2(2w + 2)(2w + 1)/ + U
;v -
. / ,J\r , . _! 14x COS cooMro(<)l 2 + Sin r0J

- —    ... .   (2.15b)
+ (1 " »'o)1/2j + 0([2A;Vr/2) '■ -I

for the former, while in the latter instance we obtain as expected Eq. (2.5), with a cor-
rection term o(e~ik**nr0(t)z).

Equations (2.15) apply when the maximum amount of overmodulation, namely 50
per cent of the time, occurs, whereas (2.5) yields the correlation function when essentially
no overmodulation takes place. Additional correction terms may be found in straight-
forward but tedious fashion. We note from Fig. (2.1) that the mean intensity spectrum
is here more widely distributed about f0 than for the case of ignorable over-modulation.
The additional harmonics are (carrier X noise) noise products, stemming from the
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Fig. 2.1. Mean intensity spectrum of a carrier amplitude-modulated by noise.
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clipping process inherent in overmodulation. However, [unlike the examples of fre-
quency- or phase-modulation discussed earlier in ref. 1] there is a limit to the spread of
the spectrum, determined by the fact that over-modulation can occur at the maximum
but 50 per cent of the time. On the other hand, since the amount of clipping inherent in
the weak modulation cases is ignorable, no significant spectral spread is obtained, (see
Fig. 2.1). In any case the spectral spread is relatively small.

V2 k2 1|J

Fig. 2.2. Mean power in a carrier amplitude-modulated by noise.

Whereas the spectrum requires a series development, cf. (2.13), the total mean power
Wr and the total intensity Wc of the continuous part of the disturbance are easily ob-
tained in precise, closed form from Eq. (2.2) if we remember that kVN(t) = y is normally
distributed with the first-order probability density Wx(y) = (2irk2\f/)~1/2 exp [ — y2/2k2\p].
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The power in the carrier after modulation is (cf. (1.1) and (1.2))

W,. = (Al/2) | J" (1 + y)W1(y) dy = (Al/2)hl.0
(2.16)

= u;/2){[i + em2tri/2])/2 - w'a&vr172)2}
and

Wr = R{ 0) = (Al/2) (1 + yfW^y) dy

= (Ag/2)[(* +2fe2^)[e([2fcV]~1/2) + i]] -

and so

PFC = Wr - W,. = (A?/2)[l/4 + (&V/2)[G{(2fc2^)1/2J + 1]

- {e[(2fcV)-1/2] - fc2^(tfcV]-!/a)}2].

(2.17)

(2.18)

Figure (2.2) illustrates the behavior of the mean intensities WT , Wfo , Wc for different
degrees of over-modulation. (See also Figs. 3.1 and 3.2 when n — Oi) Their limiting
conditions are instructive: As the intensity of the modulating noise! is increased, a
correspondingly^ greater proportion of the modulated wave's power is distributed in the
(noise X noise) noise sidebands, generated in the process of modulation and the clipping
due to possible over-modulation, as shown in Fig. 2.2. We remark that the amount of
power in the carrier component, and in the continuum is quite independent Of the partic-
ular spectral distribution of the original (normal random) noise, and depends only on
the clipping level at which over-modulation occurs, since power in a given band of
frequencies is proportional to the integrated intensity of the band. One can consider
also more complicated modulations, such as square-law modulation, viz: A0(t) =
[1 + kVNIt)]2: the treatment is identical with that of the linear case examined here,
following an appropriate modification of the transform relation (2.7).

3. Carrier amplitude-modulated by a signal and noise. The results of the previous
section may be generalized to include the important case of modulation of a carrier,
A0 exp (io30t), by a signal with an accompanying noise disturbance. The modulated
carrier (2.1) may now be written

V(t) = A0(t) exp OW)

= A0[l + kVN(t) + ixVs(t)] exp (ico0<), kVN + /iVs > —1/ (3.1)

= 0, kVn "4" < -v
which includes possible over-modulation when the signal and noise are properly phased
and sufficiently intense. As before, A0(t) is represented by a suitable contour integral
[cf. (2.7)]. Remembering that An(t) is a real quantity, we apply Eq. (3.1) and the results
of section 2 to the general relation for the auto-correlation function of the modulated
wave and obtain finally
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R(t) = (1/2) Re{V(t<;)V(tn + tŷ,*1
s tat.av.

= (Ajj/2) flejexp ( —ico0<)(47r2)-1 z 2 exp (iz) dz (3.2)

/c? 2 exp (ig)F2(z, £; Oa^2(z, f; <)s dfj,

where F2(z, £; ?),v is the characteristic function for the accompanying noise, and

F2(z, f; Os = [exp (ifiVs(t0)z + ifiVs(to + <)f)].t,t.,v,

= To1 [ exp (ifiVs(t0)z + inVs(to + Of) clt°
J 0

(3.3)

is the characteristic function for the signal, with T0 the period of the modulation. Ex-
panding the exponents in (3.3) in a double Fourier series and averaging over the period
T0( = 27r/a>„) we can write the signal's characteristic function in the general form

00

T<\{z, f -,t)s= X) (-1 )mtmBm(z)Bm(g) cos mo>at. (3.4)
TO = 0

For signals which are entirely stochastic, we may replace the time-average in (3.3) by
its equivalent ensemble average, since we are assuming throughout stationary (ergodic)
processes. An example of the latter type is provided when the modulating signal is a
(normal) random noise, uncorrelated with the background interference, in which case

F2(z, £; t)s = exp {— mV(0).s(z2 + f2) — M2iK0sZf},
(3.5)

iKOs = ^(0) sro(t)s j (^(0)s = <As)-

Here ip(t)s is the auto-correlation function of V(i)s ■ The correlation function of the
modulated wave is then given by (2.10), provided we replace k2i//r0(t) therein by
&Vivro(0iv + mVs?"o(0s and ifcfy in h0,n , Eq. (2.11), by fc'fyv + mVs ■ The resulting in-
tensity spectrum is a superposition of (n X n) noise components, the carrier being the
only periodic term.

Let us consider now the more complex situation involving a periodic signal. The
auto-correlation function (3.2) becomes with the help of section 2 and (3.4)

00

R(t) = (,4o/2) XI em( l)m[cos (oj0 + rna>„)t + cos (&>0 — mwa)t]
m = 0

(3.6)
1J,2 , y (-l)"(fc'>o(<))" , *
q J ''m, 0 "I / > 'im,n

where the amplitude functions hm,n are

K.n = (27T)-1 Jczn~2Bm(z) exp [iz - fc>2/2] dz. (3.7)

The mean intensity spectrum follows at once in the usual way with the aid of the theorem
of Wiener and Khintchine, cf. (1.6). Because of the distortion inherent in over-modula-
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tion we expect that the original signal will be deformed, and because of the accompanying
background noise we may further predict that not only will there be cross-modulation
between the components of the noise, but between them and the signal harmonics,
modified in the process of over-modulation. Accordingly, we observe from (3.6) that
the term in the correlation function for which (m = 1, n = 0) corresponds to the carrier
component, and the harmonics for which (m > 1, n = 0) represent the (s X s) signal
cross-terms generated in the course of over-modulation. On the other hand, the com-
ponents for which (m = 0, n > 1) are attributable to (n X n) noise harmonics, while
for (m > 1, n > 1) one has as the noise contribution (s X n) noise products. The mean
power associated with the carrier, signal, and continuum are obtained from (3.6) on
setting t = oo for the periodic components and t = 0 for the stochastic part of the
modulated wave, according to section 1. Note that again, cf. section 2, the power content
of the disturbance does not depend on the spectral distribution of the noise and signal
modulations. (See also Appendix II of ref. [10].)

We can determine WT by a more direct method than expansion in a double series,
which involves one less infinite development, unlike (3.6). The procedure is based on
the observation that y = kVN(t) and z = nVs(t) can be treated as independent random
variables, whose first-order probability densities Wt(y) and wt{z) are easily determined.
Thus, for the background noise, W^{y) is a gauss distribution density for which {y2)s.^. =
AV, = 0, while for a periodic signal

w,(z) = f (2x)_1 exp (iztj) d£ f (2ir)_1 exp [z>£Fs(0, <j>)] d<j>. (3.8)
J _qo J0

The phase <j> is a purely random quantity, distributed uniformly between 0 and 2ir
with a probability density l/2?r. Therefore VK is also a random variable, corresponding
physically to the fact that we agree now to observe the periodic wave at (independent)
random times. (In this fashion any periodic disturbance can be "randomized" with
respect to the observer.) The mean-square value of the modulated carrier (3.1) becomes

WT = (| V(t0) |2)„.av./2 = (A20/2)((l + y + z)2)s..v. , (for all w = y + z > -1),

r» (3.9)= (Al/2) J i IFrVXl + wf dw = R(0),
where the frequency-function W{iX)(w) for w = y + z is given by

Wi\w) = f W^w^w - y) dy
(3.10)

= [ (2tt)-1 exp (-tco£ - k2<pf/2) d£ [ (2x)~' exp (irfVs(0, <f>)) d<t>,
J-oo J 0

since the Jacobian | d(y, z)/d(y, w) | of the transformation is unity. In a similar way
one obtains the mean power in the carrier, which is

Wu = (Al/2)hl,0 = (| V(t) |)».sv./2 = (AS/2) | (1 + y + z)„. |2,

for all w = y + 2 > -1 (3 ] i)

= (A20/2){j° + w) dwj,
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since iv is real. Note that this procedure does not give the mean power Woer. in the
periodic components of the wave, but only the steady or average value of the envelope.
To calculate Wper. one must sum the series

TO =» 0

In the specific case of a sinusoidal signal,

= Vo cos (aiat + 7),

we find from (3.3) and (3.4) that now Bm(z) = Jm(nV0z), and so the amplitude functions
(3.7) are explicitly*

hm,„ = (2x)_1 Jcz"~2Jm(nVoZ) exp (iz — k2\pz2/2) dz

_,"»+» /L?lf.\ <1 —")/2
= -2^r-(Yj - Vo/(2 W/2r (3.12a)

. y (2)°/21F,([g + m + n - l]/2; m + 1; - n2Vl/2k2*)
' hi q\ik2i)a/2r([3 - m-n - q\/2)

or
  'm + n / i2 » \ (1 —n) /2 03

= ~i—(2/ •[MF„/(2fcV),/2]m E amn^2Vl/2k^Y, (3.12b)

where

O.CEg + to + n - 11/2; 1/2; - 1/2k2j)
ct„ = [1 /q\(q + to)!] r([3 — 2q — to — »]/2)

. n,/, i(f2<7 + to + nl/2; 3/2; - l/2fcV)
+ (2/A *) r([2 _ 2q _ m _ nj/2)

(3.12c)

The first result, (3.12a), is convenient when the signal is large relative to the noise
[fiVl » 2k2\p), for then we may use the asymptotic form of the confluent hypergeometric
function

F,(a- 8- — x) ^ — x-°\i -|- ^ ft + 1)P' J ~ res - a) I si!

+ «(« + !)(« ~ + !)(« ~ fl + 2) + 1 ^ > Q
(3.13)

On the other hand, the series (3.12b) is particularly useful for weak signals [mVl <K 2k2\f/].
From either expression we can easily obtain the important limiting cases of over-
modulation and weak noise (2k2ip —> 0), the latter by (3.13).

*The details of the integration are given in section 2 and in Appendix III of ref. [10]. See also Ap-
pendix IV of ref. [3],
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Fig. 3.1. Mean carrier power of a carrier amplitude-modulated by noise and a sinusoidal signal.

The mean power in the carrier is found directly from (3.12) to be in the sinusoidal
case A20hl,0/2, which is illustrated in Fig. (3.1) for a variety of Values of (2/;V)' and
n2V20 . The mean total power W, is in the present instance more easily found from (3.8)-
(3.10) than from the multiple series expression, where now Fs(0, 4>) = V0 cos (7 + <p).
We have

Wr = (Al/2) f (1 + w)2 dw f 7r_1./o(/iFoQ cos exp (—k i?/2) d£ = R{0)
J-I J 0

= {AH2){(| + ^ + ^)[1 + e([2k2iV/2)] - k2Hn)W i) -l/2-i

(3.14a)

(3.14b)
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WT is shown in Fig. (3.2) for representative values of n2Vf, and (2k2\p)1/2. The power
associated with the carrier part of the modulated wave is obtained alternatively from
(3.11) in a similar manner; we have finally

Wu = (All2)j[l + 0{(2fcV) }]/2 - k*Uw[{k2trU2}

(3.15)

which is equivalent to our result Alhl,0/2. Typical curves for Wu as a function of (2k2\f/)1/2
are shown in Fig. (3.1). Since WDer = Wf„ + TF(sxa) one easily finds the mean power
TF(SXS) associated with the signal components once Wv,,r and Wfa have been calculated.
Furthermore, because Wc = WT — WDK, , we obtain also the mean power in the con-
tinuum, without having to sum the doubly-infinite series of the direct expansion (3.6).

For a given amount of signal GuF0 fixed) the power in the periodic and in the carrier
components of the modulated wave increases with the amount of modulating noise, as
shown (for W/o only) in Fig. (3.1). The energy available in the signal becomes inde-
pendent of the noise; however, the noise is then relatively so great that the signal is
quite ignorable. This is easily seen from (3.12) in the case of the sinusoidal signal (^A?,0)
when 2k2\p —> oo. Depending on the strength of the signal and noise relative to the
amplitude A0 of the unmodulated carrier, some of the remaining signal power is dis-
tributed in (s X s) "discrete," periodic terms (m > 2, n = 0), which represent a dis-
tortion of the original sinusoid, attributable to the clipping inherent in over-modulation.
Furthermore, as the noise becomes more intense, over-modulation occurs a significant
fraction of the time, up to a maximum of 50 per cent. The amount of signal power in
the modulated wave is then one-half that in the original modulating signal, since on
the average the comparatively weak signal "rides" on the stronger noise half the time.
Additional noise is also generated by the clipping of the wave, and these new noise
components appear as (s X n), (m, n > 1), and (n X n), (to = 0, n > 1) terms, pro-
duced by the cross-modulation of the signal and noise harmonics. Only the (n X n)
terms are important when the noise is strong compared to the signal. In a similar way
one finds that for weak noise and strong signals, the (s X n) noise products are sig-
nificant provided /iF0 is noticeably greater than unity (over-modulation of the carrier,
due essentially to the signal). If /xF0 is less than unity and there is little noise, we expect
a negligible amount of over-modulation, and the original signal consequently suffers no
appreciable distortion. The same argument applies to describe the variation of the
mean-total power Wr and the mean continuum power Wc = Wr — WBeT with different
amounts of signal and noise modulation. Again, when the noise is the dominant factor,
both WT and Wc become indefinitely large as 2fcV —cf. Fig. (3.2). We note also
that TFper approaches a fixed limit, independent of the amount of modulating noise,
which is one-half the original power in the carrier and modulating signal. Most of the
wave's energy goes now into the noise continuum (s X n, n X n), as a result of the
very heavy (^ 50 per cent) over-modulation. When the noise becomes weaker, corre-
spondingly less of the modulated carrier's power is distributed in the continuum. In
general, different degrees of modulation (i.e., different values of n and k) will, as ex-
pected, critically affect the magnitudes of total, periodic, and continuum powers.

The explicit calculation of spectra, based as it must be on Eq. (3.6), is far more
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Fig. 3.2. Mean total and continuum powers in a carrier amplitude-modulated by noise and a sinusoidal
signal
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Fig. 3.3. Spectra:
(a) No over-modulation,
(b) Moderate over-modulation,
(c) 50% over-modulation.
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tedious than the determination of power. A sketch illustrating typical spectra is given
in Fig. (3.3); the precise calculations are reserved for a later paper.

With the help of the properties of the hypergeometric function one can obtain other
interesting limiting expressions for the power and the spectrum.* For example, when
there is ignorable over-modulation, Gu2(Fj)B.av. + /c2(F.v)„.av. « 1), hm,n, (m > 2, n > 1),
approaches zero, and one has as expected

R(t) = (Al/2){1 + k\m + AVs(t0)Vs(t0 + *)>„.} cos a*t,
(3.16)

(M2<F|)s.av. + fc2(F^),.av. « 1).

For no signal at all the results of the preceding section can be applied, while at the other
extreme of no modulating noise (tp = 0) one finds R(t) from (3.6) and (3.7) on setting
n ~ 0' In the specific case of sinusoidal modulation the amplitude functions are** now

h,,,o = fc Jm(^VoZ) exp (iz) dz/2-KZ

= iVFo hFMm ~ 11/2, [—m — l]/2; 1/2; l/M2Fg)
4 I r([3 + m]/2)r([3 - m]/2)

2__ 2Fi(m/2, - m/2; 3/2; l/»2Vl)\ ,
+ r([2 + m]/2)T([2 - m\/2) <' 1

(3.17a)

::c
= —1 , m =

inVo/2, m = 1, X (0 < nV0 < 1). (3.17b)

0, m

The mean total power is found from (3.14a) to be, (fcV = 0),

\\/nV0 , mF„ > 1
r = fl(o) = (AI/2t) £ + dz, z0 =

= (AS/2){(| + \ sin- 2o)(l + (l - ^o)(l - z?)"2} (3.18)

0 < »V0 < 1

while the mean power in the carrier is

- MMji+ isin-'z„ + ^(1 (2tV->0). (3.19)

The difference WT — Wto now represents the mean power in the continuum, in this case

*See section 4 of ref. [10]; in particular the case of the biased, v th—law rectifier.
**See Eqs. (4.19), (4.20), and (4.22) of ref. 10.
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the discrete spectra consisting of the harmonics of the modulation and its distortion (if
any) due to over-modulation. When there is no signal, only terms in (3.6) and (3.7) for
which m = 0 remain, and our general expressions of the present section reduce to the
results of the preceding section, cf. Eq. (3.16) et. seq. Other limiting cases may be
treated in the manner of section 4, reference [10].
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