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ON THE DISTRIBUTION OF ENERGY IN NOISE- AND
SIGNAL-MODULATED WAVES

II. SIMULTANEOUS AMPLITUDE AND ANGLE MODULATION*
BY

DAVID MIDDLETON
Cruft Laboratory, Harvard University, Cambridge, Massachusetts.

1. Introduction. In Part I1 we have determined the distribution of energy in a
carrier which is amplitude-modulated by a band of normal random noise or by a noise
and a signal, and in an earlier work2 the corresponding problem for frequency- or phase-
modulated waves was considered. With the help of these results we now examine the
case of a carrier which is simultaneously amplitude- and angle-modulated by a pair of
normal random noise waves. Here, either noise wave may be delayed by an amount
tt with respect to the other, but coherence between the two modulations is assumed to
exist.

The investigation of this problem is of considerable interest in the study of the
noise output of typical magnetron tubes, on the basis of a macroscopic model that
treats the magnetron generator as producing a high-frequency oscillation, which in turn
is simultaneously amplitude- and phase- or frequency-modulated by a comparatively
low-frequency band of normal random noise, itself generated in the oscillator due to
the "shot effect" or so-called primary noise which is inherent in the structure of the
electron beam moving under the influence of the applied electric and magnetic fields.
The present problem also provides us with results useful in communication theory when
the interference appears as an amplitude and frequency distortion, or when the modu-
lating signal can be used as a simplified model of a speech signal, f The central feature
of this problem, as distinguished from those examined previously in Part I, is the fact
that the modulating noise disturbances are now correlated with each other. The result
is a "scrambling" of the separate modulations, which in turn produces an asymmetrical
intensity spectrum, unlike those obtained before. This is a significant phenomenon
which is entirely absent in the simpler situations where there is no correlation. Sym-
metrical distributions can occur for selected values of the relative delay between
the amplitude and angle-modulations. Moreover, even in extreme cases, the clipping
due to over-modulation causes comparatively little spreading of the spectrum and
spectral shape is mainly governed by the degree of angle-modulation. Special attention
is given to the example of coherent modulation without over-modulation. Specifically,
the modulated carrier is represented by

g(.y) = V(t) = A0(t) exp [i(w0t + *(«))], (a>o = 2ir/0). (2.1)

*Received May 12, 1951. The research reported in this paper was made possible through support
extended Cruft Laboratory, Harvard University, jointly by the Navy Department (Office of Naval
Research), the Signal Corps of the U. S. Army, and the U. S. Air Force, under ONR Contract N5ori-76,
T. O. I.

XD. Middleton, Quart. Appl. Math. 9, 337 (1952).
2D. Middleton, Technical Report No. 99, Cruft Laboratory, Harvard University (March 1, 1950).
fWe assume for the moment that any background noise accompanying the modulated carrier (and

hence uncorrelated with it) is quite negligible. It is not, however, difficult to include this additional effect
in the analysis.
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2. The correlation function. For the amplitude modulation VAN(t) one has from (2.7)
of reference 1

A0(t) = ( — A0/2ir) JV2 exp 0'z[l + kVAN(t + Q}) dz, (2.2a)

and for the angle modulation one can write

%M(t) = D0VFN(t); *™(<) = D0 f VFN(t') dt'. (2.2b)

As before,1 k (>0) is an amplitude-modulation index, A„ is the peak amplitude of the
unmodulated carrier, and D0 is the r-m-s phase or (angular) frequency-deviation per
unit r-m-s modulating voltage (or current), viz.*: D20 = =
<4/(FpW(02)s-av or Dl = 62d/(VFN(t)2)a.av. respectively. For the moment we distinguish
between the two (real) noise waves VAN(t + Q and VFN(t), the former of which repre-
sents the disturbance producing the amplitude distortion while the latter causes the
phase- or frequency-modulation. The effects of intervals of over-modulation, during
which the oscillator is cut off, are accounted for in the general expression (2.2a), which
gives _40[1 + kVAN(t + Q] when kVAN exceeds —1 and vanishes when kVAN < — 1.
Here U represents a phase lead > 0), or lag % < 0), of the instantaneous amplitude
modulation with respect to the phase- or frequency-modulation. Such a phase difference
is included because in general the mechanism producing the coherent modulations may
not act instantaneously: there may be a definite phase lag or lead of the one over the
other. We assume in any case that we are dealing with proper modulations, i.e., those
whose highest significant frequency components are much less than the carrier frequency
/0 , and that a direct modulation rather than a mixing process is responsible for the
perturbed carrier. [See section 2, Part I, for further comments on this point.]

The auto-correlation function of the modulated carrier is written*

R(t) = (1/2) £e{<y«„ , QV(t0 + t,

= (AS/2) /iejexp (-W)^2)"1 £ 2"2e<s dz £ d$ (2.3)

• [exp {ikVxz + ikV2£ + i*i - ^2)],tat.,

Here Vi {=VAN(t0 -f- Q) is the noise amplitude-modulation at an initial time t„ and
V2 (=VAN(t0 + U + t)) is the same disturbance at a time t later; ^ and ^ are re-
spectively SKt0) and ^(<0 + t), the noise angle-modulation. The statistical average is
performed over the four random quantities V, , • • • XI'2 as indicated. They are not
generally independent random variables, since VAN(t + Q and VFN{t) are assumed to
come from the same source and to contain in common a significant fraction of their
total spectral distributions. We note that

*The symbol ( denotes the statistical or ensemble average over the appropriate random vari-
ables, while ( )>v. indicates the infinite time average, cf. ref. 1.
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[exp (ikVlz + ikV£ + ^

= ^(fi , f 2 , £3 , f.t ; t) — characteristic function of the random

variables kVi , kV2 , ^1 , and SI>2 , for which

fi = 2, f2 = £> {"3 = 1} f4 = 1 •

Since are normal random variables we can write at once3

^(fi, f2, r., *■«; 0 = exp (-i i: i: r,rlM„) = ^ i, -i; o,V '' ' ' (2.4)

when f! = z, f2 = £, = 1, f 4 = — 1,

where the sixteen variances un{j,l = 1 • • • 4) are

Mn = M22 = k\V\\.„. = fc2(F2)8.av. = fc2^(0);

Ml2 ~ M21 = ^ (Fi F2)8.sv. =

(2.5)
M33 = M44 = = <*2)s.av. = (^..aT. ;

M34 = M43 = ( ^l^X.av. ! Ml3 = M31 = k( Fi^i)s. av.

Ml4 = Mil = ^(^l^X.av. > M23 = M32 = F2xI'1)a ,af. J

M24 = M42 = ^O^Sf^s.av. •

The characteristic function (2.4) becomes accordingly

F2(z, ?; 1, -1; <) = exp [-§/c2(z2 + f)^(0) - /c20^a(O]

•exp [ —Z)oO(i)]-exp {— fcD0[zA(+>(<) + £A<-)(0]},
in which

Ai+\t) = A(t, 0 = (Fr(fi - ;

and - ^2))s.aT./D0 = A(~'(<) = -A(-<, 0»

and 12(0 is given by2

fi(0 = [ WfiM(f)( 1 ~ cos cot) df, or (2.7a)
Jo

= [ Wfm(/)( 1 — cos coi) d//co2 (2.7b)
J 0

for phase- or frequency-modulation respectively; ^A(t) is the auto-correlation function
of the noise wave V AN(t) which produces the amplitude-modulation.

There remains now to evaluate the cross-correlation function A(t, Q, relating the
two modulating waves. We consider first phase-modulation. As in previous cases we
express the modulating waves in terms of their Fourier transforms ST(f)A and ST(J)P

3D. Middleton, Quart. Appl. Math. 5, 445 (1948).

(2.6)

(2.6a)
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for the amplitude and angle modulations respectively. Replacing statistical averages by
their equivalent time averages, in virtue of the assumed stationarity (and ergodicity)
of the random processes, we have finally

A(f, Q = f lim 7'_1{(Sr(/)A(Sr( — /)P} exp - eiat) df. (2.8)
J — CD T-* 00

Writing the amplitude-spectral densities ST(f)A , etc. in terms of a modulus | ST(f)A \
(= | ST(—f)A |) and a phase <t>(f)A (= ~<t>{—f)A), with similar expressions for ST(f)F ,
since we are dealing with a real wave, and noting furthermore that the mean spectral
intensities of VAN(t) and VFN(t) are defined by

WAK(f) ^ lim 2 | ST(f)A |'T-1; WFN(f) = lim 2 | ST(f)F \2T~\
T-* oo T-*co

we can write the cross-correlation function A as

u, q = r iwAN(f)WMf)]i/2
(2.9)

• {cos (cct + <t>A ~ <t>F) — COS [w(^ — t) + <t>A — 0F]} df,

since the spectral densities are even functions of frequency, while the phase factors 4>f
and <f>A are odd-functions. In the case of frequency-modulation we replace ST(f')F by
Sr(f')P/io>' in the above, according to Eq. (2.2b), and obtain finally the cross-correlation
function

AFM{t, Q = - I"" [WAN(f)WFM(f)]U20 (2.10)

• {sin (c+ <t>A ~ <t>F) — sin (co(^ — t) + <j>A — <I>F)} df/co.

The cross-correlation function A(t, t#) defined above in (2.6a) has a number of im-
portant properties:

(i) We observe at once from (2.9) or (2.10) that if the two noise waves have no
spectral region in common, i.e., WAN(f) and TFPJV(/) do not overlap, the cross-correlation
function vanishes, even though the two disturbances arise from a common source. Thus
the amplitude- and frequency-modulations are no longer in any way correlated. In
general, however, WAff(f) and WFN(f) may have a significant proportion of their power
distributed in the same spectral region; the precise amount is measured by a quantity
which we shall call the overlap- or coherence-function x(£#>), viz.:

x(Q = (V&a)m.„./D0)

= [ [WAN{f)WUS)]U* cos (««, + 4>a ~ <t>F) df

= A^m(®, t$) (2.11a)

= - f [WAN(f)WFN(f)]W2 sin (««, + </>A - 4>f) df/u
Jo

= Apm(°°, 0 + A (2.11b)
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respectively for phase- or frequency-modulation; A, as we shall see presently, cf. (2.15),
is a constant depending on the behavior of both spectral densities W AN(f) and WFN{j)
as / —» 0.

(ii) When t approaches zero, A(t, Q vanishes identically; this is a direct consequence
of the definition (2.6a) of the cross-correlation function.

(m) When the time lag (or lead) ^ of the amplitude-modulation with respect to
the angle-modulation becomes indefinitely great (i.e., when ^ —> ±°°) we observe in
the case of phase-modulation that since

lim [cos (&)^ + <t>A — (I>f) — cos (cot+ + <t>A — 4>f — w<)]
00

(2.12)
= =F2xco sin ^ d(w — 0) = Tco^sin ■ 8(f — 0),

we have*

lim A,M(t, Q = =Flim U [WA^f)W,N(J)f/2^ sin ̂ }, (2.13)
oo /—0 A )

which usually vanishes, unless the spectral densities together approach zero as 0(c<r"),
(n > 2). For a band of noise whose zero-frequency density is finite or zero, (2.13) always
vanishes. In a similar fashion one finds that in frequency-modulation

lim AFM(t, Q = ±\ f [WAN(f)WFK(f)]W2W - 0) - 8(f - 0)] df = 0 (2.14)
oo A J 0

identically and quite independently of the spectral distributions of the modulating
noise waves in the neighborhood of / = 0. The vanishing of the cross-correlation function
in the limit of infinite delay times is explained if we note that the original wave-forms
are now so separated in time that even a partial coherence between the two waves is
completely lost. This is not true however when the major portion of the noise waves'
energy lies in the almost zero-frequency region, cf. (2.13), as then the waveform changes
so slowly in the course of time that even an infinite delay does not destroy coherence
entirely. This can also be seen directly from the overlap function x(U) when ^ —» ± °o.

(■iv) A similar argument may be applied when | 11 —*°= to show that

lim O = x*m(U) J lim AFn(t, t$) = xf.«(^) ~F ~t Wan(0)Wfn{0) ; (2.15)
(->* oo (_>d.eo "±

here the time-dependent part of the cross-correlation function may or may not vanish,
depending again on how much of the wave's energy is located in the spectral region
(0, e), as « —> 0.

(iv) If the amplitude- and angle-modulations have the same spectra, i.e., WAN(f) =
4>a — <!>f , a simplifying assumption that is ordinarily not at all critical, the

calculation of the auto-correlation function (2.3) and the corresponding mean intensity
spectrum W(f) is greatly reduced, since the cross-correaltion function A takes a com-
paratively simple form. Note also that when the delay t+ vanishes, one has

A,m(<, 0) = cf. (2.7a); *»0) = *W®) - (2-!6a)

*A rigorous treatment recognizes these results as a form of the Dirichlet conditions.4
"H. S. Carslaw, Theory of Fourier's Series and Integrals, 3rd rev. ed. (Dover, N. Y., 1949), pp. 92-94.
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A-Fiuty, 0) = cf. (2.7b); "AaCO = (2.16b)
For example, consider the case of identical gaussian noise spectra, W(f) = W0 exp
[-co2/cot]; one readily finds from (2.9)-(2.11) that

iWt, Q = (lFoco6/4-7r1/2)[exp (—wt^/4) - exp (-»■(« - Q2/4)\-, (2.17a)

WO = (WW4?r1/2) exp (-co24/4),

A™(*, 0 = (TF„/4)[(g)M,/2) - - <]/2)];
(2.17b)

— (W0/4)(0)(<<>(,^/2),
where ®(a:) = 2x~1/2 /o exp ( —?/2) d?/.

The complete auto-correlation function (2.3) for the noise-modulated carrier can
now be written

R(t) = (A0/2) exp { — Dc,Q(t)\ i?e|exp (—iu0t)(4w) 1

• J z~2 dz exp [iz — k2\f/Az2/2 — kD0Ai+)(t)z\ (2.18a)

• Jcr2 dt, exp [t£ - M)0A<_)(<)£ - &Va£2/2] • exp [-k2\pA(t)&]j

= (A2/2) exp {-i)2O(0} E [(-A:2^)7n!]r-0«)x

E Z ([-kD0(iA^F)U2]i+l/m\(+\tyy-\ty (2.18b)
J=0 1=0

i2e{exp (—ica0t)h0_n+ih0,n+i},

where

h,0,Q+n = (2TT)-1 Jc exp (iz - k2^Az2/2)za+"-2 dz,

and (2.18c)
A' '(O/C^A^p) / = X* \t)', \f/a,f(1)/ifrA.F = 1"o(t)A,F •

The amplitude functions h0,a+n are given explicitly by Eqs. (2.11-2.12) of reference 1.
The spectrum is found in the usual way by taking the Fourier transform of R(t).

3. Remarks on power and spectra. As before, the mean total power WT is obtained if
one sets t = 0 in (2.18b) above, namely in the auto-correlation function R(t), and the
mean carrier power Wfo follows from (2.18b) also, as t is allowed to become infinite. In
the former case one gets a single infinite series (n > 0, I = j = 0), while in the latter
a double series development (n = 0, j, I > 0), is the result. WT and Wu may, however,
be obtained in closed form, if we follow the procedure of section 2, ref. 1. We need now
the joint first-order probability density Wi(y, x) for the two correlated, normal random
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variables y = kVAN(t + Q and x = D0V^N{t) or D0 f VFN(t') dt'. This may be obtained
directly from the characteristic function (2.4) and (2.5) for the second-order distribution
on setting f2 = ^4 — 0, which gives the characteristic function Fi(fx , f3).

By inversion one finds3 that

Wtiy, x) = [J Fi(fi , f3) exp {~iyU - ix$8)(2t)

= (2irA1/2)-1 exp {-i [D^Q(co)2/2 + fc2^z2 - 2kDoX(tt)xy](3.1)

A = fc2^Z>020(co) - (IcDox)2.

Expressing F(0, (2.1), now in terms of the random variables y and x, namely,

7(0 = A0(l + y) exp (ix + iw0t), (y > -1); = 0, (y < —1),

we have

Wr = R(0) = | <| |2)s.aVi

= (Ao/2) • f dy (1 + y)2 f e'^W^y, x) dx (3.2)
J —1 v —oo

= U„2/2) (1 + «(t/) dy,

where TF^j/) is a normal probability density for which y = 0, y2 = showing that
the mean total power is the same as if there were amplitude-modulation only. This is
what we would expect, since angle-modulation merely redistributes the original wave's
energy among the carrier and sidebands without changing the total power (see sec. 2
of ref. 2). On the other hand, the mean power Wremaining in the carrier is influenced
by the phase- or frequency-modulation, because of the coherence between modulations.
We have

(A0(t)e'*in)..„. I2 = (Ao2/2) | £ (1 + y) dy J_~ e'W^y, x) dx

= U2/2) | /" (1 + V) dy (21r)"lFl(fl , 1) df,

— (Ao/2) exp [ D0fi(°°)] 1/2 f
I If J A)'1''

dz

•(1 + z[2Jc2tA]U2) exp [-(^ - iDoX/(MA)l'y]

(3.3a)

(3.3b)

which may be integrated in straightforward fashion with the help of the MacLaurin
series for <j>""(x ± a). We find the mean carrier power to be finally
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Wf, = {Al/2) exp [ — Dltt(co)] h0,0 + ikD0x | h0il \

(3.4)
+ kiT i: ± {iDox/trn'-^ak'tA}-1")

n=2

representative values of which are shown in Fig. 3.1, along with curves for the mean
continuum power Wc = Wr — W fo. (Typical curves for WT are given in Fig. 2.2 of ref. 1.)

It is immediately apparent from (3.3b) that if there is no angle- or amplitude-
modulation (i.e., D0 —» 0, or k —> 0) one obtains the previous result for W f, , namely
Eqs. (2.21), ref. 2 or (2.16), ref. 1, with corresponding expressions for the mean con-
tinuum power Wc . Furthermore, if there is no coherence between the modulations (so
that x —> 0), the resulting power is proportional to the product of the individual carrier
powers for angle- and amplitude-modulation alone, viz.:

W,0 = {Al/2)hl,„-exp [-D30(»)], (x -» 0). (3.5)
We distinguish now between phase- and frequency-modulation, according to the

remarks of sec. 2, ref. 2. Figure 3.1 shows only the case of phase-modulation by noise
with a gaussian spectrum for which W^,M(0) is finite,* cf. Eq. (2.35), ref. 2. Increasing
6d ( = -Do(F(0iv)s-av), either by lessening the rate of sweep or by increasing the r-m-s
phase deviation D0 , decreases the amount of power remaining in the carrier and makes
noticeably greater the amount of energy available in the continuum. However, because
of coupling with the amplitude-modulation, the scale of this effect is determined by
(a), the extent of the amplitude variation (^pAk2), and (b), the amount of coherence
(-—x), which depends jointly on the time-delay ^ and on the magnitude of the angle-
modulation (^Dlipr). For very heavy over-modulation (k —* °°) Eq. (3.4) reduces to

W,. ̂  (A„72) 2tt]i/2[1 + exp (D2oX2/2iA) - (21/2Z)oXM/2)

I 2w , iD oX7T1/2
(2 iAy/2exp (y ) dy + (3.6)

exp [ —Dofi(°°)], (k-><*>);

The integral in (3.6) is tabulated on page 32 of Jahnke and Emde's Tables (Dover,
1943).6 Integrating (3.3b) by parts gives the appropriate asymptotic development when
D0x/ (2^)1/2 is large, for any value of /,:(>()). We have finally!

Wf. ^ (Ao/2)(fcVi/2irD„x4)• I (1 + 2i/kDoX + •••) I2
(3.7)

• exp {-l/k2tA + Dl[x2/iA ~ Q(»)]}, (DoX/(2^)I/2 » 1).

We return to the expression (2.18b) for the auto-correlation function of the modu-
lated carrier. Applying the theorem of Wiener and Khintchine [(1.6), reference 1], we

*Since WFM(G) > 0 for the same type of spectrum, °°) becomes infinite in such a way that
Wf, above vanishes. Consequently, all the wave's energy is distributed in the continuum; therefore
Wr = Wc and Wr are independent of x and D0.

6Jahnke and Emde, Tables of Functions, 4th rev. ed. (Dover, N. Y., 1945).
tk never appears to any lower power than kr1 in the series in Eq. (3.7).
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I //'/' ii!: in jii-/ ' ' / /'/

 = Wt/a|/2 mean total power / / / . //'
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k = AM MOD. INDEX ' ///,,, //' .

/CJh'rt- '// wh'*11

" / // /^i.2 II.
NOISE POWER j I j j'//

/ o//'/ !':

Fig. 3.1. Mean power in a carrier simultaneously amplitude and phase modulated by correlated random
noise.
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distinguish three general types of spectral contribution: (i) "pure" angle-modulation of
the carrier by noise, i.e., (noise X carrier), or (n X c) terms, for which (n — j = I = 0);
(ii) "pure" angle-modulation times "pure" amplitude-modulation harmonics, namely
(n X c)ODglc • (n X c)am components, for which in turn (n > 1, j = I = 0); and finally
(iii), the cross-modulation products (n X c)angle X (n X c)AM , {n > 0, j + I > 1),
which arise from the coherence of the simultaneous angle- and amplitude-modulations.
(We use the term "pure" above to indicate the independent or incoherent character of
the modulation vis-4-vis the carrier and the other modulation.) Components of types
(i) and (ii) are readily seen to yield only the usual symmetrical power spectra (about
/0). Modulation products belonging to group (iii), however, are more complex: these
yield both symmetrical and anti-symmetrical distributions. As we shall see presently,
this anti-symmetry is a direct consequence of the coherence between the two noise
modulations and depends critically on the amount of delay % between them.

We observe that the terms in (2.18b) for which j + I = odd (n > 1) are responsible
for the spectral asymmetry. To see this we note first that terms involving X<+>(£) and
A'~' (t) in the auto-correlation function R(t), that are odd in t, yield spectral contributions
which are odd (i.e., antisymmetrical) in (/0 — /). Furthermore, such terms have as a
factor sin w0t, so that R(t) itself remains an even function, as required from the nature
of R(t). Now A<+) and A(-) may be split into two parts, one of which is even and the
other odd, in such a way that if we let n(+)(t)'(t)1 /j\l\ represent the summand of
the double series in (2.18b), including the amplitude factors h0l(l , we may write sym-
bolically (Ej + 0,)'( — Ei + 01)1 /j\l\, where E and 0 are respectively the even and
odd parts of //*'(I). Then by direct expansion one gets for (j + I = odd) only odd
terms, and for (j + I = even), only even terms. Let us illustrate with the simplest,
but most important case, for which (j + I = 1, n = 0), and to facilitate the discussion
without in any way changing its-essential features, let us further require that D0\pY* be
so small that we can set exp [—Z>oO(£)] equal to unity. We have as before to distinguish
between the generally dissimilar situations of phase- or frequency-modulation. From
(2.18b), (2.9) and (2.10), we have for the part of the auto-correlation function for which
(j + I = 1, n = 0)

= (Al/2)kDQ{4>A\pFy/2[\^+\t) + X(_,(0] Befexp (-tW)^o,oA.i}

{fm! = ^oSin^-iVoA,} IWMf'Ww.Fmif')]1

I sin (»% + 4>a ~ 4>f) j
sin o)'t\ / df

(cos (co% + 4>'a —

(3.8a)

(3.8b)

respectively for phase- or frequency-modulation. The power spectrum for these cross-
products becomes

TF(/)(<*iAr.F My = AokDoi ih0,0-h0A)

• r - [fo + /]) - s(f - l-fo - /]) (3.9)
•'o

+ S(f - [fo - /]) - S(f -[-/„ + /])] df,
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where

Q*mW) = [WUf')WU!')]Xn sin Wh + 4>1 - */],
and (3.9a)

QfmW) = [WUf'WrNU')]l/i COS («% + - *;)/«'.

Since both /0 and / are positive, for obvious physical reasons, it follows immediately
that the spectral density (3.9) reduces to

( Qifo - /), fo>f> o)
W(f) = AlkDoi-iho.o-K.M >, (3.10)

l-QU-fo), f>fo>o)
inasmuch as the integrals over Q in (3.9) are zero for all negative values of f0 and /,
and because Q(f0 + /) is vanishingly small, Q being a low-frequency spectral distribution
of the type W0 exp {—u/w2b). The asymmetrical nature of the spectrum is at once
evident from (3.10). Actually, the discontinuity at / = f0 does not exist, but is due
here to our simplifying approximation that exp [ — D2„Q(t)] = 1. Including the expo-

W(f) 6=C0NSTANT W(f) CO. /CJ.= CONSTANT(0M.AM) d (FM.AM) 0 b

CARRIER

COht„, TT/2^ -TT/2

AM LAGS ANGLE - MODULATION
(OJbt0<o)

-IT/2

\ AM LEADS ANGLE - MODULATION
(u>„v>0)

I I
(o) (b)

Fig. 3.2. Symmetrical and asymmetrical noise spectra for correlated noise modulation.

nential factor removes the discontinuity but does not alter the asymmetry; a specific
example is considered in section 4(b) following. Similar remarks apply to the terms in
R(t), (2.18b), for which n >1 and I + j = odd >1.

Figure (3.2) shows typical spectra for a fixed amount of over-modulation and for
various values of delay; (a) illustrates the case of phase-modulation by noise, while (b)
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gives the corresponding case of frequency-modulation by the same noise wave. The
noise causing the angle-modulation is here identical with that producing the amplitude-
distortion of the carrier, but is delayed by seconds. We note at once that phase-
modulation leads the frequency-modulation by approximately a quarter period. This is
understandable if we remember that the frequency-modulation is the integral of the
phase-modulation (for the same modulating wave), cf. (3.8), and consequently lags
behind the latter in time by a delay ^ ^ ir/2wb on the average. In the case of simultaneous
amplitude- and angle-modulation by a sine-wave alone this is exactly the delay. Now,
as the delay or lead becomes progressively greater, the maxima of the spectral distribu-
tions, and therefore the distributions themselves, oscillate about f0 in ever-decreasing
swings until for infinite lags or leads all coherence between the modulations is lost, and
only a symmetrical spectrum remains. The decay of the swings' maxima is quite rapid
for phase-modulation and somewhat less so for frequency-modulation, cf. (2.17). The
oscillations of the spectral maxima are also shown in Fig. (3.2) above; we remark, how-
ever, that values (of a>bt^) at the points of symmetry (/ = /0) and maximum asymmetry
are only approximate and do not represent a purely periodic phenomenon. The precise
values depend in a complicated way on the spectral shape of the modulating noise, the
amount of over-modulation, and the intensity of the angle-modulation. From this we
see also that a symmetrical spectrum alone is not sufficient evidence upon which to
postulate a lack of coherence between modulations. For a given level of clipping, the
power (i.e. the area under the spectral curve) in the continuum is a constant, inde-
pendent of the phase-differences between modulations, (but not necessarily independent
of the type of angle-modulation).

As noted above, the energy spectrum may be resolved into three principal orders of
modulation products (i)-(iii), viz.:

IV(f) = TF(/)(<m0I«.n-0-j-i) ~t~ W(f) (anole-AM; nil, i-l-O)
(3.11)

+ W(f)lanoleXAM;n>0,j + l2:l) = W(f) I + W(f)U + W(f)UJ ,

respectively. When the deviation of the angle-modulation is very large compared to the
rate of deviation, so that asymptotic developments are possible in the manner of
section 2 (reference 2), we find from (2.18) that

W7(/)I+II *= Al £ {(-k2tA)n/n}}hl.„
„ =0

(3.12)
• £ f c(2°\t)r0(t)2 exp (-D20Q(2,t2/2) cos (co0 - co)t dt,

Ct = 0 Jo

where the polynomials c<2a)(<) yield the asymptotic development in descending powers
of coi/a>6 or 02d ; thus c(2a)(t) yields (ud/ub)~2" or 0J2° multiplied by appropriate constants.
Specifically we have

— r>2o<4> /—n2o(6) n4o(4>2 \
c<°'(*) = 1; C<2,«) = l4; c(4,(t) = (—+ "fr t»);

_ / — -Pofl(8> f« I ^ n4Q(4)ot6)/10 — -PoQ<4'3 ,12V
c (0 - ^ 8! t + 2!6!4! 0 1 3!4!3 1 )'
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As)( (-DlQ™ ,o . ^[0<6>2 20(4,fi(8,l 12
C (<) = ( 10! ' + 2! L"6F~ ̂ 

3Z)So(4,2n<6> ,4 , Din
3!4!z6! ' 4!-4!" ' )' etc

where

Opm = (—l)"_162n-2 ; » > 1; oil? = M-1)""1; » > 0;

6n = I df.
Jo

The spectrum of the cross-modulation is more complicated, but can be handled in a
similar fashion. One has then to consider terms of the following type:

(3.13)

(-1 )Re{h0,n+rh0,n+i ^ r„(0»c<2,,(0A(«, ttf

f• exp ( — D0ft t /2 — iw0t) cos wt dt

On the other hand, if the amplitude-modulation is excessive, so that over-modulation
occurs approximately half the time, the asymmetrical components are suppressed, and
one has essentially a symmetrical spectrum, which nevertheless is influenced by the
coherence between the angle- and amplitude-modulations. The analytical explanation
is immediate: only hp,n+q (n + q — even) does not vanish when (2k2\pA)l/2 —»a>, except
Ao.i , which becomes independent of (2k2\pA)1/2, cf. Eqs. (2.12a-c), ref. 1. Consequently,
j + I is always even, and only symmetrical terms remain. Since these components are
all of order (k2^/A), the contribution of the single remaining antisymmetrical pair
(j + I = 1, n = 0), which are 0(k\f/A2), becomes ignorable in the limit (2&VA)1/2 —>«>.
Physically, it is the amplitude distortion which effectively determines the "cut-off"
and "cut-in" of the oscillator. The angle-modulation alone does not alter the amplitude,
changing only the spacing between zero-crossings, and therefore one expects that the
strong amplitude-modulation controls the duration of the "on"- and "off"-periods of
the wave.

4. Coherent and incoherent modulations. Two important cases remain to be consid-
ered in some detail: one, the situation of no coherence (A = 0) between modulations,
and two, the case of coherence, but no over-modulation. A discussion of one and two
follows below in parts (a) and (b).

(a) No coherence:

The general problem simplifies greatly when there is no coherence or coupling be-
tween the modulating waves, a condition represented analytically by the fact that
A (t, vanishes, and physically, by the complete independence of the noise waves. The
auto-correlation function (2.18) reduces now to

R(t) = rn(t)anJle-R0{t)AM cos wot

(4.1)
= (Ao/2) exp [-Z>Jn(0] £ {(-k2tA)n/n\\r0(f)2hl.n coseo0t,
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and the intensity spectrum W(f) ( = W(f)i + W(f)u), cf. Eq. (3.11), contains no cross
terms of the type W(f)lu . The mean total power in the wave is given by Eq. (2.17),
reference 1, as before; the power in the carrier and continuum is also easily found from
(3.4).

Let us consider the specific example of phase-modulation, and let us assume a gaussian
spectral distribution for the modulating noise; (in general, the two noise waves need
not have identical spectra or powers.) The spectrum follows at once from the cosine
Fourier transform of Eq. (4.1) and we obtain finally with the help of (c), section 2,
reference 2,

W(f) = Ay/2 6XP (~g'} {«.„ S(f ~ f0) + hi,o ± ^ eX^[~//q)
cob l, a_i qiq

(4.2)
Q2a ' — hjM" ,2 exp (—182/(g + ncoj/<ot))\ _ u0 - w+ e z v r'q! n! (q + mci/cci)1/2 )' K *

The first term represents the carrier's contribution, the second, the spectrum due to
phase-modulation alone, and the final term, the distribution W(f)n , attributable to
the noncoherent modulation products between the angle- and amplitude-modulations.
When excessive over-modulation occurs, we find that

tit/n . . a2 k^A exp (-el) /. y, ft ((exp (-02/q)

, 7T exp [ —ffV(g +
+ 2 (q + col/c2)172 )

-A I (2n)\ exp [ — tf/jq + (n + 2)wl/wb)]
+ \n!222"(2n + 2)(2n + l)[ff + (n + 2)«i/co|]1

, __ (2n)! exp (—/32/(ra + 2)&jj/to2)  
+ n!222"(2n + 2)(2n + l)[(n + 2)col/wl]1/2

and when there is ignorable over-modulation we have simply

W(f) = Al exP(~^|g(/ - /„) + £ -§7, exp (-/32A)
£06 ^ o — l <(•</

+ fcV. z exp,/"f/(,g/t1^V";)], (2fc2^)1/2 < 0.6.
jri g!(g + coA/a>6)

(4.3)

(4.4)

Figure (4.1) shows the energy spectrum for (2k2\p)1/2 = 0.5 and for various values of
the deviation ratio dd . A general, but very slight broadening of the spectrum results
from the additional modulation. Similar remarks apply for frequency-modulation (de-
tailed calculations for which may be carried out along the lines of section 2(b), reference
2). In general, because the spread in the spectrum due to clipping is small, even in the
extreme case of 50 per cent over-modulation, as can be seen from Fig. (2.1), reference
1, we expect little additional broadening of the spectrum due to this effect. For large
values of 02 or a>2/co2 the spectral intensity W(f) is obtained in asymptotic form from
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(3.12) and (3.13); in the instance of a gaussian spectrum for the amplitude-modulation
(^WA exp ( — co2/ua)) we have

W(f) ^ Z (~fc2,^r h20.n {Eq. (2.33), ref. 2, modified}, (4.5)
n-0 n-

where now Eq. (2.33), reference 2 is easily modified by first multiplying numerator and
denominator of each term which contains a factor by a suitable power of D20 , so

Fig. 4.1. Mean intensity spectrum for simultaneous uncorrected amplitude and phase-modulation of a
carrier by noise (no over-modulation).

that results in the denominator, and then replacing [DlQ<2>]q so obtained by
[Dof2<2) + uln/2]Q; the argument of the 4>'2"' is similarly changed from /?" to
0"/(l + wln/2Dfow)1/2.
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(b) Coherence, but no over-modulation

This is a particularly important case because it is the simplest one which incorporates
all the new features of coherence between modulations, and because it offers a promising
macroscopic model for the behavior of noise in a magnetron, as described at the be-
ginning of this section.

When over-modulation effects are ignorable (<1 per cent of the time), only the
amplitude functions hOi0 ( = 1) and linA ( — i) yield significant contributions, and we
obtain from Eq. (2.18b) the following spectral components: (noise X carrier)angie m0d- ,
for which (n = j = I 0); (n X c)ang]e-(n X c)AM , for which (n = 1, j - I = 0);
and finally (n X c)angle X (n X c)AM , where (n = 0, I + j = 1), all of which are repre-
sented in (4.6) below in the order listed:

R(t) = (Ao/2) exp [ —DlQ(t)]\ cos u0t + k \pAr0(t)A cosedat

(4.6)
+ 2fcZ)0( ̂  Q(f') sin cSt d/') sin «0*j, (2k2^A)1/2 < 0.6.

Here Q(f') is given by Eq. (3.9a). We observe at once that the mean total power is the
same as if there were no angle-modulation at all, which is not surprising, as angle-
modulation alone does not change the energy content of a modulated carrier. Note also
that the cross-correlation term never contributes to the total power (by definition, cf.
(2.6a)), but represents a redistribution of the existing energy, determined by the carrier
strength and degree of amplitude-modulation. The mean power in the carrier is the
coefficient of cos w0t or sin wat as I becomes infinite:

Wu = (AS/2) exp [-DSa(»)]{1 + (kDo/2) lim [«'<?(/')]}, (4-7)
f-0

showing that Wfo is determined essentially by the type of angle-modulation. The second
term of (4.7) vanishes for the usual types of phase-modulation, while for frequency-
modulation the exponential factor vanishes, as explained earlier in section 2, reference
2, with the result that Wis here described by the previous expression (2.21), reference
2. The continuum power is

Wc = (Ao/2)(l + k2iA - exp [-Z)Sa(co)]). (4.8)

Let us consider specifically the example of phase-modulation when the modulating
noise waves are identical, so that

= W,M) = Wo exp (-0,7*4); = W0ub/W2 = i;
(4.9)

<t>A = <t>F ; r0(t) = exp [-Ubf/A}.

To obtain the desired spectrum we need the following integrals:

/:
sin at
cos at

exp (—b2t2 ± ct) dt

- <*'"/» l<c" - {iZ'/lt')}' ««(I M) > 0.
(4.10)
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Fig. 4.2. Cross-spectral intensity of a carrier simultaneously amplitude and phase modulated by
(no over-modulation).
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F.g. 4 3. Mean spectral intensity of a carrier simultaneously amplitude and phase modulated bv corre-
lated random noise (no over-modulation, ffd constant, various delays).
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{w(f)t ♦Wdljj +w(,)A

Fig. 4.4. Mean spectral intensity of a carrier simultaneously amplitude and phase modulated by correlated
random noise (no over-modulation, t# constant, various degrees of modulation).
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Application of the Wiener-Khintchine theorem yields

W(f) = W(fU + W(f)*M.AM + W{f)mM , (4.11)
where = W(f)I is given by Eq. (2.48), reference 2, W(f)iM.AM = W(f)n is
obtained directly from the last term of (4.4) when ccA — 03b , and

W(f),MXAM = W(f)III = 0,(*V)1/S exp(-e2d)UW/2M

■ S w!(n ^ 2)1/2 exP [~P2/(n + 1)1^2 sin (~^y) exp [-n(wbQ2/'4(n + 1)]|, (4.12)

/? = (&)0 — Co)/o>6 .

Typical spectra are shown in Figs. (4.2)-(4.4) for a variety of time-delays and for various
values of 6d . The spectra are in general asymmetrical, in the manner of Fig. (3.2); the
spectral spread increases with the larger values of dd . We remark that, unlike the case
of no coherence, it is not possible here to speak of a phase-modulating noise equivalent
to a frequency-modulating wave (in the sense of Eq. (2.19), reference 2) which produces
the same final spectrum, even if we assume the same disturbance causes both amplitude-
and angle-modulations. The explanation lies in the entirely different types of modulation,
which are coupled together in such a way that altering one does not produce a com-
pensating change in the other. When the angle-modulation is sufficiently intense (i.e.,
high modulation indices), we obtain from (3.12) and (3.13) the needed asymptotic
representation of the spectrum, namely

W(f) ^ Ao ^ [ rfn(l + k2\f/Ar0(t)A) cos (co0 — u)t + 2kD0 sin (co0 — <S)t
Q=0 Jo I

(4.13)
• Q(f, Q sin coftdfjc(2'\t) exp (-D2„Q(2"t2/2).

The precise forms of 9,'21 etc. that appear in the exponent and in the polynomials c<2> (t),
Eq. (3.13), are described in Eq. (2.34), reference 2. W(f)i and W (J) u follow from sec. 2,
reference 2, and the above W(f)Ui has the following general form

W(f)m ^ -rkD0Al ' (4.14)
(2m + 1)![Z)^<2)]'"+1'

where

- r Q(f, t*w2m+1 df,
J —00

and G(2m+1\l3) is the (2m + l)st derivative with respect to j3 of the expression in the
parentheses of Eq. (2.33), reference 2. For phase- or frequency-modulation by noise
with a gaussian spectrum one easily shows that when the amplitude- and angle-modula-
tions are identical

TTT/ « . . /r. \3/2/f*J.2 ,Nl/2 -4o ( 1) +W(J)II, ^ (2tt) (2k i) —L ——  (t (0 )
<t>M Wb"d m = 0 (2771 "j" l)lOd

(4.15)
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or

wu)i ii se -t(2tY/2 — [2(2fcV)]1/2 E —— (~Y" W^1^)
__0 2m Wei/u* 2m w/ (2m + 1)!

(4.16)
• G(2m+1)(P'); « 1, 0' = (5?2^LiS)(^)-

We observe that if the amplitude-modulation is particularly weak, the (angle X AM),
or W(f)hi , components are strong compared to the incoherent terms W(f)u , since the
latter are 0(k2\pA), whereas the former appear as Q(k2>pA)'/2. The "pure" angle-modulation
terms W(J)t , however, remains unaffected.

5. Remarks on signal and noise modulations. When a signal accompanies the noise
there are a number of interesting possibilities: (i) amplitude-modulation by signal and
noise and angle-modulation by noise, (ii), amplitude-modulation by noise and angle-
modulation by a signal and noise, and (iii), angle- and amplitude-modulations by signal
and noise; in each case the noise waves and the signal waves are respectively coherent,
but there is no coupling between signal and noise. We shall outline the principal steps
in the process of obtaining the spectrum, but without giving a detailed treatment, in-
asmuch as the more complex problems of signal and noise in this case introduce no new
concepts or techniques not already considered in the preceding sections.

Since (iii) contains (i) and (ii) as special cases, let us examine the more general case
first. The modulated carrier is now

g(y) = F(<) = 4o(0s+jv exp [t'(«o* + V(t)N + ¥(0s)} (5.1)

where A0(t)s+N is an obvious generalization of (2.2a), viz.:

A0(t)s+tf = ( — A0/2ir) j^z~2 dz exp {iz[ 1 + kVA_w(t + Q + nV a(t + QJ} (5.2)

and ^r(t)N , ty(t)s are specified by [(2.1), (2.2), (3.1b), ref. 2], or by (2.2). The auto-
correlation function (2.3) becomes

R(t) = (Ao/2) /?e|e"'"°'(47r2)_1 fc z'V dz

ifV{ d^ [exp {ikVNiz + ikF.V2£ + •— ̂ 2}]stat.av. (5.3)L>
• [exp {inVslz -f iiJ.Vs£ + ^S1 - ]stat.«

where the subscripts 1 and 2 refer to the wave at an initial and final time, t seconds apart.
The first ensemble average has already been found, namely Eq. (2.6), and the second,
which is the characteristic function for the joint signal modulations may be expressed as*

*It is assumed that the fundamental frequencies of the two signals are here commensurable; otherwise
there will be no coherence between signals, and the characteristic function then factors into the product
of two characteristic functions F2{z, £; t)s,AM-F2(z, £, t)s,angi„ m , representing the (now) independent
amplitude- and angle-modulations.
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F2{z,Z-, 1, — 1; t)s

= T01 f exp [ipVs(to + t^)z + i)xVs(ta + t+ + — + Os] (5.4)
■'0

00

= Y, e»(-l)mCm{z)Cm{£) cos mwj,
m = 0

since F2 is an even function of t. The auto-correlation function (2.18b) may still be
used, provided that we replace the amplitude functions h0,n+a by hm<n+a according to
(3.7) of ref. 1, with Cm{z) in place of Bm(z) therein, insert (— l)mem cos mwj as an addi-
tional trigonometric factor, and perform the summation over all values of m. The precise
form of Cm(z) depends, of course, on the wave shape of the modulating signals, and
except for the simple sinusoidal cases, are very complicated functions. In general, the
spectrum will be asymmetrical in the discrete or signal portions of the distribution, as
well as in the continuum.
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