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ON THE DISTRIBUTION OF ORBITS OF GEOMETRICALLY
FINITE HYPERBOLIC GROUPS ON THE BOUNDARY
(WITH APPENDIX BY FRANCOIS MAUCOURANT)

SEONHEE LIM AND HEE OH

ABSTRACT. We investigate the distribution of orbits of a non-elementary dis-
crete hyperbolic subgroup I' acting on H™ and its geometric boundary oo (H™).
In particular, we show that if I' admits a finite Bowen-Margulis-Sullivan mea-
sure (for instance, if " is geometrically finite), then every I'-orbit in 0o (H™) is
equidistributed with respect to the Patterson-Sullivan measure supported on
the limit set A(T"). The appendix by Maucourant is the extension of a part of
his thesis where he obtains the same result as a simple application of Roblin’s
theorem.

Our approach is via establishing the equidistribution of solvable flows on
the unit tangent bundle of I'\H", which is of independent interest.

1. INTRODUCTION

Let G be the group of orientation preserving isometries of the hyperbolic space
H™ and T' < G a torsion-free non-elementary (=not virtually abelian) discrete
subgroup. The action of I' extends to H” := H" U 9 (H") where d, (H") denotes
the geometric boundary of H", and we define the limit set A(T') as the set of
accumulation points of a T'-orbit in H".

If we denote by ér the critical exponent of I', then there exists a I'-invariant
conformal density {v, : © € H"} of dimension dr on A(I') by Patterson [14] for
n = 2 and Sullivan [I9] for n general. We consider the Bowen-Margulis-Sullivan
measure mBEMS on the unit tangent bundle T!(I'\H") associated to the density
{v.} (Def. . When the total mass [mEMS| finite, the geodesic flow is ergodic on
TH(T\H") [19).

For a subset Q C Jo(H") and z € H", we denote by S,(Q) C H" the set of
all points lying in geodesics emanating from x toward , and by Br(z) C H" the
hyperbolic ball of radius T centered at x.

Our main theorem is the following:

Theorem 1.1. Suppose that the total mass |mEMS| is finite. Let Q; and Qo be
Borel subsets of 0oo (H™) whose boundaries are of zero Patterson-Sullivan measure.
Then, for any x,y € H" and & € 0 (H"), as T — oo,

VZ(QI)Vy(Q2) 0T
or - [mpMS| '

#{v ' (y) € Sa(1) N Br(z) : y(§) € Y} ~
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5,(Q)n B,()

FIGURE 1. Orbits of T on H" X J. (H™)

If T' is geometrically finite, that is, if the unit neighborhood of the convex
CoreE| Cr has finite volume, then [mEMS| < oo [20]. However the above theorem
is not restricted only to those groups as there are geometrically infinite groups with
ImEMS| < o0 (see [17]).

We remark that the assumption of [mEMS| < oo implies that the conformal

density {v,} is determined uniquely up to homothety (see [I7, Coro.1.8]).
When Q1 = Qs = Joo(H"), the above counting problem is simply the non-

Euclidean lattice point counting problem, and was solved by Lax and Phillips [10]
for geometrically finite groups with dp > (n — 1)/2. Theorem [L.1|for Qs = 05 (H™)
is due to Roblin [I7]. When T is a lattice, the same type of orbital counting result
for Qo = 0o (H™) was obtained in a much more general setting of Riemannian
symmetric spaces (see [I1], [2], [5], [6], etc.). Theorem [L1] for general 1,y was
proved in [7] for all lattices in semisimple Lie groups (see also [9] for the case when
0 = 0o (H™)).

We highlight Theorem for the Mobius transformation action of PSLy(C),
that is, the action on the extended complex plane C=cCu {00} by

a b () = az+b
c d Ccz+d
where a,b,c,d € C with ad —bc = 1 and z € C. In the upper half-space model

3 . . . v/ dx2+dy2+dr2
H* = {(z,y,r) : 7 > 0} of the hyperbolic 3-space with the metric d = ¥————,
the Mobius transformations by elements of PSLo(C) give rise to all orientation
preserving isometries of H?.

IThe convex core Cr C T\H" is defined to be the minimal convex set which contains all
geodesics connecting any two points in A(T).
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For g = (ch Z) € PSL3(C), we have

N a|? 4 |b| + |c|? + |d|?
cosh(d(g(j),)) = (LA WE

where j = (0,0,1). Hence the following follows from Theorem [1.1

Corollary 1.2. Let I' < PSLy(C) be a non-elementary geometrically finite discrete
subgroup. For any Borel subset Q of C with v;(0(2)) = 0, we have, as T' — oo,

az+b lv;| - v ()
Q ~ J J . SFT'
catd } Sp - [mBMS| ¢

# { (Z z> el :al* +|b]* + |c|* +|d]* < 2cosh T,
A gimilar result holds for the linear fractional transformatic/)\n action of non-
virtually cyclic and finitely generated subgroups of PSLy(R) on R.

After the submission, we were pointed out by the referee that in F. Maucourant’s
thesis [12], Theorem was already proved in the case when the sector is taken to
be the whole ball (i.e., Q1 = 05 (H™)) and that his approach which elegantly uses a
theorem of Roblin [I7, Theorem 4.11] can be extended to obtain Theorem [2f of the
Appendix. As Maucourant’s result is not published, Maucourant agreed to write
an appendix on his result.

Our approach is different from his, as we do not rely on the aforementioned
theorem of Roblin but on a recent result of Oh and Shah (see Theorem [2.3). In
section 2, we obtain the main ergodic theorem which is the equidistribution of
solvable flows (Theorem which is of independent interest. In section 3, we
relate the counting function in Theorem with an average over a solvable flow of
a certain function on T*(T'\H") (Lemma and then apply the results in section
2 to conclude Theorem[I.I] Some computations such as Lemma are a bit tricky
due to the fact that the Burger-Roblin measure mER is not an invariant measure
in general.

This approach of establishing the equidistribution of I'-orbits on the boundary
via the study of solvable flows on T*(I'\H") was first used in [7].

Acknowledgment: We thank Thomas Roblin for useful comments.

2. EQUIDISTRIBUTION OF SOLVABLE FLOWS
For z,y € H" and £ € 0 (H"), the Busemann function 8 is defined as follows:
ﬂf('xa IU) = tli}rgo{d(x7 gt) - d(l/, Et)}

where &; is a geodesic ray toward £.
For a unit tangent vector u € T*(H"), we denote by 7(u) the base point of u and
by ut (resp. u~) the forward (resp. backward) endpoint of the geodesic determined
by wu.
Let I' be a non-elementary discrete subgroup of G = Isom™ (H"). Let {v, :
x € H"} denote a Patterson-Sullivan density for T, i.e., each v, is a finite measure
supported on O (H") satisfying: for any x,y € H", £ € 0, (H") and v € T,
dvy

dv,

VelVz = Vyg; and € = e 0rBe(y.w)

where v, (R) = v, (v 1(R)).
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Definition 2.1. The Bowen-Margulis-Sullivan measure mBMS associated to {v,}

(3], [I1], [20]) is defined as the measure induced on T*(I'\H") of the following
I-invariant measure mP™S on T*(H"):

dmBMS (u) = OBt (@,m(W)) or B, — (2,7(w) gy, (u)dv, (u™)dt.

We denote by {m, : ¢ € H"} a G-invariant conformal density of dimension n—1,
which is unique up to homothety.

Definition 2.2. The Burger-Roblin measure mER associated to {v, } and {m,} ([4],
[I7]) is defined as the measure induced on T'(I'\H") of the following T-invariant
measure PR on T!(H"):

deR(u) = (P DB+ (@m(w)) gor B, — (‘”’”(“))dmx(uﬂduz (u™)dt.

The measure mPR is supported on the set of unit tangent vectors u such that

u~ belongs to the limit set Ar.

We fix x € H” and € € 0 (H"™) in the rest of this section. Let K be the stabilizer
of x in G and P denote the stabilizer of £ € O (H"). The subgroup P is a minimal
parabolic subgroup of G and is the normalizer of its unipotent radical N. Without
loss of generality, we may assume that m, is the probability measure.

Denote by X, € T'(H") the unit vector based at = such that X, = ¢. We set

&= X
Setting A = {a; := exp(tXy) : t € R}, we have (cf. [7, Lem. 4.1])
e G=KATK where AT :={a; : t > 0};
e P = MAN where M is the centralizer of A in K and M = K N P;

e N is the expanding horospherical subgroup of G with respect to AT, i.e.,
N={geG:aga_y »e ast— oco}.

The above Cartan decomposition G = KATK says that for any g € G, there
exists a unique element a € A" such that ¢ = kiaks, for ki, ko € K. Moreover,
kiaks = kjakl implies that k; = kim and ks = m~1k} for some m € M.

We may identify G/K with H" where gK corresponds to g(z) and G/M with
T'(H™) where gM corresponds to g(Xo).

Let By be the maximal split solvable subgroup of G given by

By = AN.
For T > 0 and a subset 2 C K with QM = €, set
Bo(T, Q) := By N QALK

where A; :={a;:0 <t <T}. Our aim in this section is to prove an equidistribu-
tion of By(T,Q) on T*(I'\H"): Theorem
The following is the main ergodic ingredient we use.

Theorem 2.3. [13] Suppose that [mBEMS| < co. Let Q be a Borel subset of K with
QM = Q and with v,(0(Q(&:))) = 0. For any ¢ € C.(T\G)M,

e(n7175r)t/ o(say)dmy(s) ~ %ﬁ‘g)) -mER(¢)  ast — 4oo.
seQ/M |

Imp
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By the Iwasawa decomposition G = AN K, the map
K — By\G : k — Bk

is a diffeomorphism, say, ¢. Let N~ be the contracting horospherical subgroup of
G with respect to AT: N~ ={g€ G:a_tga; e ast— oo}.

The map M x N~ — By\G, mn ~ Bymn, composed with (=1, is an M-
equivariant map M x N~ — K which is a diffeomorphism onto its image, which is
a Zariski open subset. Let S be the image of {e} x N~ under this map. We note
that the complement of M\MS in M\K is a point.

Lemma 2.4. Let s € S. If V C S is a neighborhood of s and Sy is a compact
subset of S, there exists C = C(Sp) > 1 such that for any m € M,

MSym C MVs tma_, forallt>C.

Proof. Since e € Vs™!, the conjugation by a; expands Vs~ C S by the factor of
e?, and hence we can find C' > 1 such that

So C a;Vsta_,
for all £ > C'. Hence
BoMSom C BoMa:Vs ta_ym = BoMVs 'ma_;

as a; € By.
By the uniqueness of the decomposition G = By K, we have the desired inclusion.
|

We denote by dh the Haar measure on G such that for h = kjaks € KATK,
dh = 2"~ (sinh t cosh )"~ V/2dk, dtdk,

where dk denotes the probability Haar measure on K.
We denote by p, the left-invariant Haar measure on By given by the relation:

dh = dpq(b)dk

where h = bk € ByK.
In the rest of this section, we assume that [mEMS| < oo.
The following lemma is a special case of [16], Prop. 3.1]:

Lemma 2.5. Any sphere centered at & € A(T") has measure zero with respect to
Vg

Proposition 2.6. Let V' be an open neighborhood of e in K such that MV = V.
Let Q be a Borel subset of K with QM = Q and with v;(0(2(&;))) = 0. Then for
any P € C.(T\G),

61’*T
// W (bk)dpy (b)dk ~ (Bﬁfg” me® (¢ xv),
Bo( TQ) |m \

as T — oo, where ¥ * xy(h) = fkev ) hk)dk: and Bo(T,Q) := By N QALK
Proof. Note that
Bo(T,Q)V = ByV N QALK
= {kiatks : k1 € Q, (1),0 <t < T, ko € K},
where Qp, (t) = QN BoVky ta_y.
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Setting Z(t) = 2" (sinh ¢ cosh t)(*~1)/2 we have

= / b(kyagks)ZE(t)dkodtdly
kiatko€Bo(T,2)

/ / / ’l/)(klatkg)a(t)dkgdtdkl
ko€ K JO<t<T k1€Qk2(t)

Set for m € M,
Q= QN MSm™1

where S is the image of N~ in K. We note that since S C M\ K is an open Zariski
dense subset whose complement is a point and v, is atom free, v,(2) = v, ()
and v, (0(Q)) = v, (0(Qy)). Write V.= MV, for Vy C S. Let ko = ms € MS with
se V.

By Lemma [2.5] for any fixed ¢ > 0, we can take a compact subset S, C S
such that v;(Q(&) — Sc(&:)) < € and v;(0(Se(€5))) = 0. If we set Q,,(Se) =
QN MSm=1 then v, (Qm(€x) — Qm(Se) (&) < € and v, (9(Qm (Se)(€2))) = 0 since
O (5)(€x)) € O(UE)) U I(Se(&2)))-

By Lemma [2.4] there exists C. > 1 such that for all ¢t > C.,

Q0 (Se) T Qs ().
On the other hand, as a; € By,
Qms(t) C QNBoMVs *m™ta_, = QQBOM(atstla_t)mfl CONMSm™ =Q,,.

Without loss of generality we assume below that ¢ is non-negative. Hence for
all t > C.,

/ W(kiarsm)dky S/ Y(k1arms)dky S/ Y(kragms)dk;.
k1€Qm (Se) KEQ s (t) k1€Qm

Note that by applying Theorem

/ ¢(k1 atms)dkl

k1€Qm (Se)

= / / P(sagmims)dmydmg(s)
SGQm(Sé)/M myEM

= / Yms(sag)dmg(s)
SEQm (Se)/M

1
O B o O (5 E2)
r

~ €

where ¢,5(h) := [y, P(hmims)dm.
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Hence

lim inf e(”_l_‘sr)t/ Y(kiarms)dky
t k1€ Qs (1)

> lim infe(”_l_‘sr)t/ Y(k1ayms)dk;
klEQm(ss)

_ WgﬂAS'ngwm)%(%(se)(@))

> WF@@R(%)@A%(@)) — )

and similarly

. n—l— 1
limsup ™! 5F)t/ Y(kiagms)dky < Tmm?R(wms)Vﬂ((Qm(gﬂ)) +e).
k1 € (1) [mp™|

t

As e > 0 is arbitrary and Q,,(&;) = Q(&:), we deduce

. n—l— 1
lim 6( L ér)t/ ’(/)(kl(ltms)dkl = Wm?R(d]ms)Vz(Q(gx))
kEQms (t) Impe|

t—o0

Using that Z(t) ~; e® D! we obtain that for any ms € MV, as T — oo,

/ / Y(kiayms)Z(t)dkqdt
AL Qs (1)
orT

€ BR
~ or - |m1]§MS‘mF (Vs )V (U&z))-
Now for ms ¢ MV;, we claim that

hmsupe 5FT/ / P(k1ayms)Z(t)dkdt = 0.

7ns t

Consider the set
Qe = QN By(MS — MVy)s™'m ™ a_y.
As s € MS — MVy, we have by the previous case that
1
lime™ 5FT/ / Y(krayms)E(t)dkydt = ———————mBE® (¢, ) e (Qn (E2)).
A+C) 14¢ ) () 1 6p|m1§MS| r ( ) ( ( ))

ms,t
Since €7, , C Q,, and
1

li 76FT/ / k E dkidt = ms Ve (3im\Sz ) )5
ime o 7”1/1 1a;ms)=(t)dky or - m BMS‘mF B (s ) Ve (U (&)

the claim follows.
Since the image of S is an open Zariski dense subset of M\ K, we may replace
K by MS in the integration over K and hence

/ / / Dk aums)E(t)diey didls

ko€ K JAL Jk1€Qu, (t)
/ / / klath)E(t)dkldtde
msEMVo k1€Q%k, (

W{W W’*XV)Vx( (&2))-
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This completes the proof of Proposition [2.6] O

Theorem 2.7. Let ) be a Borel subset of K/M with v,(0(Q2(E:))) = 0. Then for
any P € C.(T\G), as T — oo,

T v (&) pr
/B O(me(b)dm(bw i s (©).

Proof. Let V. be an e-neighborhood of e in K such that V.M = V.. For any
Y € Co(T\G)M and € > 0, define functions 1+ € C.(T\G)M as follows:

Y (h) := suptp(hk), and ¥ (h) := inf ¥ (hk).
keVe keVe

Let 7 > 0. By the uniform continuity of v and the M-invariance, there exists
e = €(n) such that |¢F(h) — ¢ (k)| <nfor all h € G.
Without loss of generality we may assume v > 0. Note that, by applying Propo-

sition [2.6]

lim sup 6_5FT/ ¥ (b)dpe(b)
T Bo(T,9)

< limsup e ~rT Vol (V,) ! / / F(bk)dpe(b)dk
keV. J Bo(T,Q)

— VOl(V) ™ mBR (0t sy e (QUE)).

or|mpMs|
Similarly
lim inf e =07 / (b)dpe(b)
T Bo(T,Q)
> lim inf e =7 Vol(V;) ! / / Y7 (bk)dpe(b)dk
T keV. JBo(T,Q)
1
-1 BR/, /,—
= Vol(Ve) WWP (Ve * xv. )va (&)
Since

mER ($ * xv.) = mp(¥) Vol(Ve) + O(n),
we deduce that

. _ 1
lim sup ¢~rT /B o PO = g R () (2(6)) + O

T
and
C e 1
liminfe 5FT/ P(b)dpe(b) = Wm?R(w)VE(Q(fx)) +O(n).
T Bo(T.9) op|mpo|
As 1 > 0 is arbitrary, this proves the claim. [

3. PROOF OoF THEOREM [I.1]

Fix z € H” and £ € 0x(H"™). We keep the same notation from the previous
section. Let y € H™ and choose g € G such that g(z) = y.

For a subset W of G, we denote by W9 the conjugate giWg~!. Note that K9 is
the stabilizer of y and that B := Bj stabilizes g(§) = g(X; ).
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For 1, C Oso (H™), we set
Q) = {k‘ (S K/M : ]Cfa; S Ql}, Qy = {]{Z S Kg/Mg : k‘(g(g)) S QQ}

so that Q; = 04 (&) and 0y = D2(g(£)). We assume that the boundaries of O
have measure zero with respect to the Patterson-Sullivan density.
In this notation, we have

{2 € 8.(),d(z,2) < T} = Q A (2)

and hence the condition v~y € SE,T(Ql) becomes v € gKA;Qfl. And ~(¢) € Qo
is equivalent to vg~1(g(€)) € Q2(g(£)) and hence to yg~1 € Q2 B.
For h € G, we write
h= hK_q th
where hiys € K9 and hp € B are uniquely determined.
Hence setting

B(T, Q) = BNgQ AfKg™*,
the number we want to count is the following:
Nr(,9s) 1= #{y €T : 7(9(¢)) € 2,7 (1) € Su()}
=#T NgKA;Q ' NQ2Byg
= {’7 el: VK9 € QQ,’}/EI S B(T,Ql)}

Let V. be an e-neighborhood of e in K such that MV.M = V..

For the e-neighborhood A, = {a; : |[t| < €} of e in A, by the strong wavefront
Lemma (see [8] or [7]) there exists a symmetric neighborhood O. of e in G and
C > 1 such that for all k € K and all t > C,

(3.1) gka: Kg 'OL C gkVea  AcKg*.

Choose a symmetric neighborhood V. C V. so that
(3.2) Vol(V;H = Vo) < nVol(V,)
where V.* := V.V, and V.~ := Nuep, Ve

We may assume without loss of generality that O satisfies
ank(g~t0Lg) C a;ANEV.

for all a;nk € ANK.

We set

O, = Oé NnB

and note that Ot = O..

Fix i > 0. Then there exists 0 < () < n such that for all 0 < € < €(n),
(3.3) v (Qf (&) = Q1(&)) <n
where Qf,e =0 V." and Qie = Mpev,- Q1 k. This is possible since the boundary of

Ql has measure zero with respect to v,.
Similarly, we may assume that

(3.4) vy(Q3.(9(6)) — Q3..(9(8))) <

where Q;E = QWUS and Q, = Ngev- Stk where UF = gVEg~!. We also set
Ue=gVeg™".
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We choose ¢F = d)éw € C.(K9)M? such that 0 < baye < QS;SM <1,¢9f(k)=1
for k € Qo, ¢F (k) =0 for k ¢ QuUe, ¢- (k) =1 for k € Nyey. Qou, and ¢ (k) = 0
for k ¢ Q.

We denote by p the left invariant Haar measure on B given by: for ¢ € C.(B),

/ B(b)dp(b) = / (g™ bog)dpe(bo).
B bo€ By

Choosing a non-negative function 1. € C.(B) supported on O, and with [, 1he(b)dp(b) =
1, we define a function fézm on G = K9Bg by

fézaﬂ(h) = (béz,e(n) (hKy)’L/)e(n) (hB)

where h = hgoshpg € G with hx € K9 and hg € B uniquely determined and
e = €(n). Define

Fop(h) = foy (V).
el

which is an integrable function defined on I'\G.

We set

BS (T, ) == By N Q1 AL (O)K;
BY(T, Q) := BNg AL(C)Kg™Y;
NE(,Q0) == #T N gKAL(C)Q; ' N Q2 By

where AL (C) ={a_;: C <t <T}and AL(C) = {a; : C <t <T}. When C =0,
we simply omit the superscript 0 from the above notation.

Note that

NE(Q1,Q2) = {y €T : v € Q75" € BE(T, 1)}

Lemma 3.1. Let C > 1 be taken so that (3.1) holds. For any T > 1 and small
n > 0, we have

(1)

NE (Q1,) < / Fg, o (00)dpe(bo);
Bo(T+e,97 ,)

(2)
/ Fa, »(bo)dpe(bo) < Nr(€4,€2)
B§(T—&,97 )

where Qfe =W Ve and Q7 . = Ngev. Uk and e = e(n).

Proof. For simplicity, we set F* := Fsi , and Qli = Qfﬁ. We have

/ F* (bo)dpe(bo)
Bo (T+a,Qlf )

-/ F* (g~ bg)dp(b)
B(T+e,97)

9 )We b)dp(b
> /B oy X010

~el

- / ve(b)dp(b)
Y€ET, Y9 €Q2 v8B(T+¢,Q7)NO.
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since p is left-invariant. Since we have chosen O, so that BY(T,Q,)0. C B(T +
€,Q7), for any v € T" such that 7]51 € BY(T, ),

B(T + 6,9 ) N5'0c =750,
and hence

/ e(b)dp(b) = / e(b)dp(b) = 1.
8 BC (T+€,Q7)NO. O.
It follows that

/ FH0)dpe(b) = {7 € T : 7o € O, 75" € BO(T, Q1))
B(T+¢,97)

= NS (1, Q).

Similarly, we have

/ F~(bo)dpe(bo)
B§ (T—e,Q7)

-/ F~ (g~ "bg)dp(b)
BC(T—e,Q;)

: /BC(T—€7Q1) ZXQZ (’YKQ )we('VBb)dp(b)

~el’

/ e(b)dp(b).
v BC(T—¢€,Q7 )NO.

v€ET, Y9 €Q2
Since Q7 Ve C Q4, we have
BY(T — ¢,Q7)0. C B(T, ).

Therefore for v € T such that y5' ¢ B(T,Q1), we have po(BY (T—¢, Q7 )Ny5'0.) =
0.
Hence it follows that

/ F(b)dp(b) < #{7 € T < ko € Do, 75" € BT, )} = Ne(, ).
BC(T—¢,0Q7)

O

Lemma 3.2. Let k € K and ky € K9. Writing k™ 'kog = a,nky € ANK, we have
r = Pre(y, x).
Proof. Since & = lim;_, o, a_ix, we compute that

Bre(y, x) = Bre(kay, x)

= Be(k™ ' kay, )

= lim d(a,nkox,a_sz) —t
t—o00

= tllglo d(ar(atna_¢)atkor,x) —t = 1.

For simplicity, we set F,f = FS;—LQW and fni = fgz’n.
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Lemma 3.3. We have

lim sup m?R(F?7 ) = lim inf mBR(F,7 ) = vy ().
n n

Proof. We use the formula for mBR: for any ¥ € C.(G)M,
mBR (W) = / U (ka,n)e™ " dndrdv, (k(€)).
KAN
Define functions R, R, R on G: for h = a,nk € ANK,

Re(h) = e xv, (k), RE(h) = e xyr (k), Re(h) = e xy, - (k).
Note that

/ Ye(b = ws(gatng De ("= Didtdn
and hence
(n— De / we < e(nfl)e.
We then have
REF = xv,) = mP (S xn)
/ / E(a,nk:))xv, (k1)e™°"dkydndrdv, (k(€))
KAN JEkieV.

/ FF(kh)R (h)dhdu, (k(€))
keK JheG
/ FH ()R (k" R)dhdy, (k(€))
keK JheG

- /,CGK/,C I fo (kob™ g)Re(k™ kab™ " g)dp(b)dkodvy (K(€))

/keK/kEK.c//beB Q”(”) ) then) (b DRk kb g)dp(b)dkadvy ((€))

=00 [ 0, ()98 G g ()

For h € G, define k), € K to be the unique element such that
h € Boky,.
We note that R R
kp-11pg = ki-14(9" " k2g).
Hence together with Lemma |3.2]
RE (k™ hag) = xy 2 (k-1g(g7  kag)) - € O Pre@ o),
Define functions ¢~>$ <€ C(K9)M? by

Q%M(k:g) = sup qbQ 6(kgk‘) and égz,e(kg) = inf ¢,  (kok).
keut keUs
Note that 0 < (532,5 < 1 vanishes outside Qng and is 1 on .
Therefore, using the conformal property of {v, : z € H"}:

efél“ﬂkﬁ (y7w)dyz(k£) = dVy(k€)7
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we have

/ B e k)X (19 (g™ hag)) - e PP WD) dkyduy (k(€))
ko€ K9 JkeEK
= / B et (TR 1,0 k)X (97 eag) dadyy ((€))

ko€eK9 JkeK
< / e IR 149 )Xy (9 kag)daduy (k(€))

ko€K9 JkEK
= (L+OMIVOLVe) | b (ki i g™ )iy (k(€))-

vk (n) g

Since kBy = (gl%,;,llggfl)(gBo) and By stabilizes &, we have

(3.5) k(&) = (gk; 21,07 ) (98)-
Therefore we have
mp®(FF + xv,)

— (OO [ 3,y ()i (9(6)

k'eK9

= (14 0(n)) Vol(Vo)ry (Qa(9(£))) by (B-4).
Hence we conclude

mpR(Ef % xv,)

limeslm Vo) (14 0())ry(Q2(9(£))).
Similarly we can deduce
m?R ok
imn 00X (14 0(0) (3(4(6)

On the other hand, it is not hard to deduce from the continuity of Fni that

BR +
BR/ -+ _mp (B xv.)
FE) =lim —— 1 2%
mr (Fy) = lm =<2 75

Hence lim sup, mp®(F,1) = v,(Q2(g(€))) = liminf,, mpR(F,"). O

Proof of Theorem [L.1l
Since v,(0(€1)) = 0 and any circle with center in A(T') has measure zero by

Lemma we may choose V; so that v, (0(Qf .(&,))) = v (0(Q (€2))) = 0.
By Lemma [3.1] Theorem 2.7 and Lemma we have
< lim sup

),
F+ bo dp( bo
T 65FT Bg(T-‘,—E,Qfe) n ( ) ( )
BR

, 1+ 0(m)va( (&) .
= l1mnsup ( 5F(77)7)711]§1(\/[Sl|( ). hmnsup mp (F;')
() (Q2)

O [mpME]

NE (Q1,00)
€5FT

lim sup
T
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Similarly,
Np (9,0 1
Jim inf (81 $%2) > lim inf / F (bo)dpe(bo)
T, e‘SFT Tm €5FT Bo(T—e,Q7 ) !

i ing BT O (1))

. BR/ —
3 br - [mEMS| . hmnlnf mp(F)
_ va(Q0)ry (22)

op - [mpMS]

Since [Ny — Np(C)| < #T'NK{a: : 0 <t < C}K is a finite number independent
of T', the above proves that

NT(Ql QQ) ~ eéT . V-T(Ql)yy(QQ)

Op - [mpM3]
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A. APPENDIX BY FRANGOIS MAUCOURANT

ABSTRACT. The purpose of this note is to show how one can recover a result
in the spirit of Lim and Oh from a Theorem of Roblin. The following is part
of the author’s PhD Thesis [12], with some minor modifications, and some of
these ideas have also been used in [9], but in the case of lattices in higher rank
Lie groups.

Let (X,d) be a CAT(-1) space, and I' a discrete, non-elementary subgroup of
isometries of X. Denote by 90X the visual boundary of X, X = X UJX, § the
critical exponent of I', which is assumed finite, {v,} the Patterson-Sullivan density
for T, and m?MS the associated Bowen-Margulis-Sullivan measure. We shall assume
that the length spectrum is non-arithmetic, and that m?MS is of finite mass; remark
that all these hypotheses are satisfied in the case of geometrically finite groups on
hyperbolic spaces. First, let us state Roblin’s Theorem.

Theorem 1. [I7, Theorem 4.1.1] Let f a continuous function from X7 to R, and
(z,y) € X?. Then

BMS
i ISy i) = | sEmane (€,

T—+o00 e
el d(z,vy)<T

‘We shall prove here:

Theorem 2. Let f be a continuous function on YQ, and ¢ € 0X.

BMS
im 2 fac o = [ e (@ o),

v€eT,d(z,yy)<T

A simplified version (where f does not depend on the second coordinate) ap-
peared in [12]. The argument divides into three steps: first, we show a quantitative
estimate for the recurrence of the action of I' on the set of geodesics, of independent
interest. Second, we show that the quantity on the left-hand side above does not
depend too much on ¢. Third, we integrate over ( to be able to apply Roblin’s
Theorem.

1: At most linear recurrence on the set of geodesics

Define G = (0X)? — diag to be the set of bi-infinite oriented geodesics on X, and
let SX be the set of isometric embedding of R to X. The geodesic flow (g!):cr is
the time-shift g’ f(s) = f(s+t), and the canonical projection 7 : SX — X is the
map 7(f) = f(0). We shall make the usual identification

SX =G xR,
and this can be done in such a way that 7((&, n),0)) is the point of the geodesic from
& to n closest to a fixed reference point o € X. In such coordinates, the geodesic
flow is just ¢'((¢,m),s) = ((§,n),s + t), whereas the action of I" on SX defines a
cocyle ¢ : T' x G — R, such that for any ((£,7),t) € SX =G x R, we have

Y((&,m),t) = (V&) t + c(v, (&, m))).

Note that |c(7, (§,7))] is the distance between the projections of o and v o
on the geodesic from £ to 7, and recall (see [I, Corollary 5.6]) that in CAT(0)
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spaces, projection on a closed convex set is uniquely defined and 1-Lipschitz, so the
following inequality holds for any v € T, (¢,n) € G:

le(y, (§,m))| < d(o,70).

Proposition 1. Let K be a compact subset of G, and (z,y) € X2. Then there exists
Ck >0 and T, , > 0 such that for any (§,n) € G, and any T > T,

{y el :d(yz,y) <T,(v€,yn) € K}| < CkT.
Proof. For v € T\SX, define

f(Tv) = Z Lxx[0,1](7v)-
yel
Since I' is discrete and acts properly on SX, and K x[0, 1] is a compact subset of SX,
it follows that f is uniformly bounded by some constant Cy depending only on K.
Choose T, , = d(o,z) +d(o,y) + 1, T > T, , and let v € T" such that (v¢,vn) € K,
and d(y,yz) < T. Define v = ((£,7),0), then g=¢(&M) (4v) € K x {0}. Thus,

—c(v,(&m))+1 .
/ Liexpo)(vg'v)dt =1,
—c(v,(&:m))

and so, since |c(v, (€,7))] < d(0,70) < d(x,vy) + d(o,x) + d(0,y) <T + Ty — 1,

T4T, .,
1< / Licxjo,1)(vg"v)dt.
-T-T,,

Summing over all such v, we obtain

T+Ty,y
v €T : d(ya,y) < T, (v6,1m) € K}| < / F(g'Tv)dt,

—T—Tyy

and the right hand side is bounded by 2(T + T ,,)Co < 4CT. O

2: Second and third steps

Let f be a continuous function on X°. Define

1
I ) 77 ~— T~ D /. N\l E ) -t .
e ) [Tz n Br(y)] veF,d(a:,vy)STf(VC ! )

Let € > 0, then since f is uniformly continuous, there exists a neighborhood U of the
diagonal in X2 such that for any (¢,7) € U and any z € X, |f(&,2) — f(n,2)] < e

Let K be the complement of U, which is a compact subset of G. So
1

F& 2, T)-F(nz,T)| < ——"——

F(& & T) = F..T)] < [ pres

* > €+ > 2[[flloo |

~v€eT,d(z,vy)<T,(v&,yn) €U vel,d(z,yy)<T,(v&,yn)EK

By Proposition 1, the last sum contains at most O(T") terms, so for sufficiently large
T

9

|F(§,£C,T) - F(naxaT” S 2e.
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This proves that F(¢,z,T) does not depend too much on ¢ for large T', so for any
¢, its value is close to the integral with respect to any probability measure. Fix y,
it will then be sufficient to prove that the function

dv,
L(T"r’y) = ox F(CvxaT) |5y(ﬁ)’

has limit W [ fdvyvy as T — +oo; indeed, recall [17] that the orbital func-
tion satisfies

\Fa:ﬂBT(y)\ ~ ||Var||-”’/y”e§T.

8 |mgMs]|
Define the map g for any z € I'y and any z € X by:
1
g(z,x) = ||V || f(C?m)dVZ(C),
yll Jox

and extend g when z is in the limit set Ar, to be equal to f(z,z). Then g is contin-
uous on I'y x X. By Tietze-Urysohn’s Theorem, g can be extended to a continuous
function, still denoted by g, on Y2, and moreover f gdvydvy = [ fdv,dy,. Then

1 -1
L(T,z.y) = 3 /8 G ) ),

Tan BrWlnll 2=

1 _
> gty te),

[Tz N Br(y)| Y€, d(z,vy)<T

and by Roblin’s Theorem applied to the function g, we conclude that L(T), z,y) has
limit m [ fdvgdvy, as T — +o0, as desired.

Acknowledgments. Maucourant wishes to thank Thomas Roblin for suggesting
improvements on the hypotheses.

REFERENCES

[1] W. Ballmann. Lectures on spaces of nonpositive curvature. DMV Seminar, Band 25,
Birkhauser.

[2] Hans-Jochen Bartels. Nichteuklidische Gitterpunktprobleme und Gleichverteilung in linearen
algebraischen Gruppen. Comment. Math. Helv., 57(1):158-172, 1982.

[3] Rufus Bowen. Periodic points and measures for Axiom A diffeomorphisms. Trans. Amer.
Math. Soc., 154:377-397, 1971.

[4] Marc Burger. Horocycle flow on geometrically finite surfaces. Duke Math. J., 61(3):779-803,
1990.

[5] W. Duke, Z. Rudnick, and P. Sarnak. Density of integer points on affine homogeneous vari-
eties. Duke Math. J., 71(1):143-179, 1993.

[6] Alex Eskin and C. T. McMullen. Mixing, counting, and equidistribution in Lie groups. Duke
Math. J., 71(1):181-209, 1993.

[7] Alex Gorodnik and Hee Oh. Orbits of discrete subgroups on a symmetric space and the
Furstenberg boundary. Duke Math. J., 139(3):483-525, 2007.

[8] Alex Gorodnik, Nimish Shah, and Hee Oh. Strong wavefront lemma and counting lattice
points in sectors. Israel J. Math, 176:419-444, 2010.

[9] Alexander Gorodnik and Frangois Maucourant. Proximality and equidistribution on the
Furstenberg boundary. Geom. Dedicata, 113:197-213, 2005.

[10] Peter D. Lax and Ralph S. Phillips. The asymptotic distribution of lattice points in Euclidean
and non-Euclidean spaces. J. Funct. Anal., 46(3):280-350, 1982.



18

SEONHEE LIM AND HEE OH

[11] Gregory Margulis. On some aspects of the theory of Anosov systems. Springer Monographs in

Mathematics. Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits
of hyperbolic flows, Translated from the Russian by Valentina Vladimirovna Szulikowska.

[12] Frangois Maucourant. Approximation diophantienne, dynamique des chambres de Weyl

et répartition d’orbites de réseaux. PhD Thesis, Université Lille I, |http://tel.archives-
ouvertes.fr/tel-00158036/fr,

[13] Hee Oh and Nimish Shah. Equidistribution and counting for orbits of geometrically finite

hyperbolic groups. Preprint, arXive:1001.2096.

[14] S.J. Patterson. The limit set of a Fuchsian group. Acta Mathematica, 136:241-273, 1976.
[15] Marc Peigné. On the Patterson-Sullivan measure of some discrete group of isometries. Israel

J. Math., 133:77-88, 2003.

[16] Thomas Roblin. Sur ergodicité rationnelle et les propriétés ergodiques du flot géodésique

dans les variétés hyperboliques. = Ergodic Theory Dynam. Systems, (20), 1785-1819, 2000.

[17] Thomas Roblin. Ergodicité et équidistribution en courbure négative. Mém. Soc. Math. Fr.

(N.S.), (95):vi+96, 2003.

[18] Daniel J. Rudolph. Ergodic behaviour of Sullivan’s geometric measure on a geometrically

finite hyperbolic manifold. Ergodic Theory Dynam. Systems, 2(3-4):491-512 1982.

[19] Dennis Sullivan. The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes

Etudes Sci. Publ. Math., (50):171-202, 1979.

[20] Dennis Sullivan. Entropy, Hausdorfl measures old and new, and limit sets of geometrically

finite Kleinian groups. Acta Math., 153(3-4):259-277, 1984.

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL, 151-747, KOREA
E-mail address: slim@snu.ac.kr,

MATHEMATICS DEPARTMENT, BROWN UNIVERSITY, PROVIDENCE, RI AND KOREA INSTITUTE FOR

ADVANCED STUDY, SEOUL, KOREA

E-mail address: heeoh@math.brown.edu

UNIVERSITE RENNES I, IRMAR, CAMPUS DE BEAULIEU 35042 RENNES CEDEX - FRANCE
E-mail address: francois.maucourant@univ-rennesi.fr


http://tel.archives-ouvertes.fr/tel-00158036/fr
http://tel.archives-ouvertes.fr/tel-00158036/fr

	1. Introduction
	2. Equidistribution of solvable flows
	3. Proof of Theorem ??
	A. Appendix by François Maucourant
	References

