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ABSTRACT

Two randomization tests of the null hypothesis in cloud seeding
experiments are compared - the Wilcoxon-Mann-Whitney test and a test based
on an average ratio of seeded to non-seeded amounts of precipitation.

Data from the Israeli experiment suggest that the latter test is relative-
ly more sensitive to apparent effects of seeding. The significance level
of this test may be estimated by Monte Carlo methods or approximated by
using the asymptotic normal distribution of the average ratio. Sampling
trials show that this approximation is adequate only when the experiment

is of several years! duration.

1. PROBLEMS OF STATISTICAL EVALUATION OF RAINFALL STIMULATION EXPERIMENTS.

The statistical evaluation of randomized rainfall stimulation experiments
raises problems of choice of valid and suitable methods of analysis. Most stand-
ard statistical techniques are not applicable to such experiments since precipi-
tation data do not generally fit the common textbook assumptions. Distributions
of amounts of precipitation, especially for short periods such as 24 hours, are
usually discontinuous at zero and have most pronounced tails. The discontinuity
is due to a positive probability of no rainfall at all, and the tails show the
presence of occasional very extreme amounts. Furthermore, measurements of pre-

cipitation are not independent either in space or in time, but there exist strong

%* This work was supported in part by the National Institutes of Health (Institute
of General Medical Sciences) Grant No. GM-12868-03.



correlations between stations which are scores of miles apart as well as appre-
ciable dependence of precipitation on successive days. This lack of "good be-
haviour" of the data is especially troublesome when complex experimental designs
are used, such as cross-over designs with random daily allocation of seeding to
alternate areas and when detailed and sensitive statistical analyses are required,
e.g., when concomitant variables are to be taken into account.

A further difficulty in applying standard statistical techniques is that
the form of possible seeding effects is not known but may well be most irregular.
Considerable differences in the outcomes of different rainfall stimulation ex-
periments point to the existence of factors, not hitherto identified, which may
sometimes further the effectiveness of cloud seeding but perhaps inhibit it at
other times (Neyman and Scott [8]). A number of findings suggest that seeding
may be highly effective on some occasions but have little or no effect on many
other occasions (Siliceo et al. [10], Gabriel [4]). Since so little is known
about the alternative one should be testing against, it is not only doubtful
whether standard techniques are valid but it is difficult to decide what a good
technique is. (For the derivation of optimal techniques under certain simple
assumptions, see Neyman and Scott [7]).

Unless a satisfactory parametric model of precipitation becomes available,
i.e., one which takes account of all the irregularities and dependences noted
above, the safe course is to use randomization tests. (For an earlier discussion
of the need for non-parametric tests, see Adderley [1]). Such tests compare a
summary statistic based on the experimental results under the actual randomized
allocation of treatments with all possible values this statistic might have
assumed for the same experimental results had the allocation been different.

To be specific, for each possible allocation under the randomization scheme,




the observed experimental data are considered afresh and the resulting statistic
compared with that found under the allocation used. This is a valid comparison
under the null hypothesis that seeding has no effect, for in that case the same
rainfalls would have occurred, no matter what the allocation. Clearly, random-
ization tests do not require any assumptions about the distribution and dependence
of the precipitation data, and therefore provide valid analyses of rainfall
experiments.

Different randomization tests are obtained by using this principle with
different statistics. For example, one may take the difference between mean
values on treated observations and on control observations, and compare the ex-
perimental difference with similar differences obtained by other allocations of
the same data. Alternatively, one might take the difference between medians, or
mean ranks, or proportions of observations above some constant, etc.. Each com-
parison statistic will yield a randomization test. For certain statistics the
distribution over all allocations can be derived mathematically, and critical
values for significance testing have been computed and tabulated. A well-known
example is the WMW (Wilcoxon-Mann-Whitney) test whose statistic is the number
of pairs consisting of a treated and a control observation, for which the treat-

ed observation has a larger variable value than the control observation.

2. THE TWO TESTS IN THE ISRAELI EXPERIMENT.

The Israeli rainfall stimulation experiment uses a cross-over design
with daily random allocation of seeding to either the North or the Centre of

Israel. (For detailed descriptions of the experiment, see Gabriel [3], [4],

[5]).



Most analyses of this experiment are confined to rainy days - defined
as having some precipitation in the always unseeded buffer area between the
North and the Centre. In effect some 98% of all precipitation occurs on such
days so that the omission of the other, dry, days is unlikely to hide any seed-
ing effects.

For a day indexed by subscript i, out of a total of N days, X, and '
denote the mean amounts of precipitation per station in the North and the Centre
respectively. The random allocation variable ei is defined as 1 if seeding is
allocated to the North and as 0, i.e., 1 - ei = 1, if seeding is allocated to

the Centre. With this notation, the WMW test uses the count statistic

N N
U= 5§ £ 0,(1-6,)¢.. (1)
j=1 =1 - 1

where °ij indicates whether the ith day's variable exceeds the jth day's variable.

In the Israeli experiment X, -y, was chosen as experimental variable so that

1 if xi-yi > X,-y,

J 7]
= 1 i - - -
¢ij 1 if XYy xj yj (2)
0 if X, 7y, < xj-yj.

Note that even though the x, -y, are not independent and identically distributed
under the hypothesis of no seeding effects, the WMW test is still valid since
the seeding allocation was determined by randomization.

This statistic is easily computed and its distribution has been tabulated

in detail*. The WMW test can, therefore, be used in over-all analyses of entire

* See, for example, the tables by Owen [9]. For large samples an asymptotic
approximation is available.
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experiments as well as for detailed investigations which require testing in each
of many categories of days. Such detailed analyses are of considerable importance
in increasing sensitivity by using categories defined by well correlated concom-
itant variables (Gabriel [4]) and in providing breakdowns from which one may learn
under what conditions seeding may be more or less effective (Neyman and Scott [8]).
Alternatively, a randomization test may be based on a quantitative meas-
ure of apparent seeding effect. The choice of a suitable measure will be guided
by simplicity and by what one considers relevant as a useful or economically
valuable effect. A ratio of amounts of precipitation under seeding to amounts
in the absence of seeding may serve this purpose. In cross-over designs such a
ratio can be obtained as the geometric mean of the seeded to unseeded ratios of

both experimental areas. In the above notation, one may write the total amounts

as

N ‘ N

in North: z 6.x, seeded; ¥ (1-0,)x, unseeded,
PG . i771
i=1 i=1
N N

in Centre: % (1-6.)y. seeded; $ 6.y, unseeded.
s=1 i’7i jmq 11

This average ratio is defined as R, where¥

N N N N
2 = - -
R L 6% /% (1 ei)xi v (1 ei)yi z 0.y, 3)

i=1 i=1 i=1 i=1

(R has been referred to as the Root-Double-Ratio by the Australian cloud seed-
int team, who seem to have been the first to use it - Adderley and Twomey [2]).

One notices that -each day's ei =lorl - ei = ] appears twice in the expression

* If all ©'s are equal, R may be arbitrarily defined as 1.



for R, once in the numerator with one of the variables x, y and once in the de-
nominator with the other variable. And since precipitation in the North and the
Centre, i.e., x and y, is highly correlated (r=.8), this ensures that variations
due td the random allocation of seeding will not greatly.affect the statistic

R. (An. approximation to R is discussed in the Appendix).

The statistic R is an average ratio, but its use must not be understood
to imply that the actual effect of cloud seeding on precipitation is multipli-
cative. R is an average, and a particular value of R might be the result of a
variety of effects on different days of the experiment.

In comparing the two statistics it is clear that R has the advantage of
depending directly on amounts of seeded versus unseeded rainfall, whereas U de-
pends on these amounts only indirectly through the ranking of the differences
(xi—yi) - (xj-yj). If none of these differences are particularly large, either
positively or negatively, as compared with the rest, it will not matter much
that ranks are used instead of actual values, and the WMW statistic may be as
appropriate as R but simpler to use. Indeed, the WMW test is known to be power-
ful in many standard situations. For these reasons the WMW test was originally
chosen for éhe analysis of the Israeli experiment.

If, however, effects of seeding vary a great deal from day to day, i.e.,
if seeding has little or no effect on most days but on a few days it has very
large effects, this will hardly affect the ranking of the (xi-yi) - (xj-yj) dif-
ferences even though some of them become extremely large. The WMW test will be
quite insensitive to effects of this kind, but the R statistic will show them

clearly. A hypothetical example will illustrate this:




i {12 3456 789 1011 12 13 14 15 16

0 0100 110 1 0 0 1 1 0 0
7 34692575 6 3 517 8 7 7
y 16612457 884 810 4 5 8 5 7

X O
L

16 16 16 16 16
£e, =7 ex =72 £ (1-8)x =5, 50y =4, = (1-8)y; =60
i=1 i=1 - i=l i=1 i=1

R =~ (72/52)(60/47) = 1.33 U= 29,

2
7 47 )

(Approximation - see Appendix - 1 + 2(S-T) = 1 + 2(72+52 " 57760 = 1,28).

The median values under the null seeding effect hypothesis are Med R = 1 and
Med U= 7 x 9/2 = 31.5, so that the two statistics deviate from their medians
in different directions. R indicates positive seedingseffects because of the
few appareptly large effects (on days 3, 7, 11 and 13) whereas U indicates the
contrary because ail twelve other days had apparent small negative effects or
no effects at all.

Another drawback of the WMW technique is that it is merely a test of
significance and does not provide a quantitative estimate of the size of seeding
effects. To obtain estimates and confidence bounds one must have recourse to
rather cumbersome iterative techniques whose results lean heavily on one's
assumptions regarding the form (e.g., additive, multiplicative, etc.) of the
effects - assumptions which unfortunately have little to be based upon (Gabriel
(4], section 5.1).

Variation of the statistic R from allocation to allocation depends on
the actual amounts of precipitation observed during the experiment. It can

therefore not be studied generally as was the U statistic of the WMW test.



A complete enumeration of values of R dbtained under all p&ssible allocations
is nof practical either, even with an electronic computer (with 300 rainy days
2309 values would have had to be computed). However, one may use the Monte
Carlo fechnique to sample from all these allocations and thereby obtain an
estimgte‘of the‘probability.oflexceeding the actually observed R, R0 say, by
chanqel"Sucﬁ sampling is readily peffdrmed on an electronic computer. For
each‘sampie a (pseudo) random allocation is generated and the experimental data
used to compute the sample value of R. The proportion of sample R values which
exceed the experimental value Ro is an estimate of a = P(R > RO). Simple random
sampling theory applies, so that the estimate is unbiased and has variance (1-a)a/n
whére n is the number of samples generated. A few hundred samples usually suffice
to give a fairly good idea of the level of significance and the cost of generat-
ing them on a modern computer is negligible as compared with the éxpenseS«involved
ih a cloud seeding experiment.

For the data of the entire Israeli experiment, as well as for a number
of categories of days separately, Monte Carlo trials of several hundred samples
each were run on the Hebrew University's I.B.M, 7040 computer. The resulting
estimates of significance levels by the randomization test are compared in Table 1
with those obtainea by thé WMW tést. (The "R-asymptotic".levels of significance
of. Table 1'are.discussed in section 3, below. The 1 + 2(8-T) approximation to R
is discussed in the Appendix).

Each row of Tables 1 and 2 contains the results of different and indepen-
dent Monte Carlo randomization samples, but the same daily rainfall data was used
repeatedly.‘ Thus, there are 400 and then another 200 independént randomizations

on the same 1961-5 data, 500 more randomizations run after the 1965/6 season's

results were added to the data, and a further 400 randomizations for the same
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Table 1. Significance Levels Attained by Different Tests -
. Rainy Days Only*
Number Level of Significance Observed {Observed |Number of
el PRV v ot ol I d I 0

1961-6 327 .057 . 004 . 004 1.190 1.174 500
1961-6 (Interior of Regions)| 327 . 009 . 000 . 0003 1.273 1.240 400
1961-5 281 .190y .03 .024 1.155 1.144 400
.04 200

1961 26 .140| .0725 .011 1.737 1.492 400
1961/2 57 .3871 .21 .173 1.185 1.164 400
1962/3 49 .532 .34 .242 1,102 1.095 400
1963/4A 20| .605 .47 .463 1.017 1.017 400
1963/4B 57 .032 . 0175 .008 1.376 1.317 400
1964/5 72 .615 .175 . 164 1.131 1.123 400
1965/6 46 .015 . 0025 .001 1.544 1.391 400
1961-2 83 .263 .14 . 082 1.244 1.215 200
962 -4 126 . 165 .12 .074 1.154 1.143 200
1964-6 118 . 133 .02 .014 1.244 1.213 200
1961-6 Buffer- < -10 26 .123 . 130 .085 1.138 1.126 300

South

n " -10 < <=5 22 .178 .087 .055 1.281 1.243 300

" " -5< <-1 27 .055 .027 . 008 1.395 1.309 300

" " -l1< < 0 24 | .074| .120 . 029 1.415 1.209 300

" " 0< < 1 81 .855 . 130 .058 1.433 1.355 300

" " 1< < 3 46 . 843 .683 .685 0.918 0.936 300

" " 3< < 5 20 ) .741 .820 .813 0.709 0.700 300

" " 5< < 10 35 . 008 . 047 .008 1.394 1.293 300

" " 10 < < 20 23 .019 .000 .000 1.792 1.507 300

" " 20 < 23 . 189 .220 . 163 1.177 1.159 300

% A detailed description of the dates and groupings in these tables is given else-

where (Gabriel [4], [5]) and is not repeated here as it is not directly relevant

to the question of choice of statisti
annual periods are mid-October to mid

The split of the 1963/4 season was due to a change 1
start and end to an 8 a.m.

ruary).

the operational day from an 8 p.m.

seeding.

CS.

However, it may be mentioned that the
-April (except 1961 which started in Feb-

n the definition of
start and end of




-10-

days!' rainfall in the interior areas which is highly correlated with that in

the entire areas used before. Clearly, in as far as effects of cloud seeding are
apparent, and one test is found more sensitive than another, these different cal-
culations give dependent and very similar results. However, as regards the form
of the distribution of the sample R values, the results are independent from one
row to another, each being based on separate Monte Carlo samples. The same re-
marks apply also to the further repeated use of the same rainfall data in each

of the next four parts of the Tables. As far as Table 1 is concerned these are
repetitious uses of the same data and must not be mistaken as independent cumula-
tive evidence. The rows and parts of Table 2, on the other hand, do provide in-
dependent information on the distribution of R under randomization. '

For all seasons together as well as for each}seasén by itself, the signif-
icance levels for the WMW test are seen to exceed the‘eséimates of o for the R
randomization test. In so far as the seeding effects observed in this and other
experiments are real and not mere random fluctuations in rainfall, the difference
in the behaviour of the two tests would indicate that the WMW test is indeed less
sensitive to this type of effect than the test using the average ratio. One
would conclude that the WMW test, though valid for rainfall stimulation experi-
ments, is less powerful than the R-randomization test. Clearly, this conclusion
is meaningful only if there really are seeding effects, whereas if seeding were
completely ineffectual, no one test could be more powerful than another.

Table 1 also shows similar comparisons of levels within categories of
days defined by means of a concomitant variable that is correlated with x-y but
is unaffected by seeding. This variable is the difference in precipitation
amounts between the unseeded buffer and South areas, which lie, respectively,

between the North and Centre experimental areas and South of the Centre area.
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No consistent pattern is found between the two levels of significance. For some
categories the WMW level is higher, for other categories the R level is higher.

In so far as real seeding effects exist and the above conclusions about the
relative sensitivity of the two tests are meaningful, one would further conclude
that.the greater sensitivity of the R-randomization test holds only when all types
of days are tested together. Within relatively homogeneous categories of days,

neither test would appear consistently superior to the other.

3. THE ASYMPTOTIC DISTRIBUTION OF R AND ITS USE.

When the number N of experimental observations is large, the sampling
distribution of R may be approximated by asymptotic theory. It is shown in the
Appendix that for large N the distribution of R under random allocation of seed-

ing tends to normality with expectation 1 and variance

N
Var (R) = = (x,/X-y, /D7, )
i=1
where
N N
X = X, and Y= =y, . (5
i=1 " i=1 "

This asymptotic result holds provided no single value of either x?/Xzor yi/Y2
or (xi/X - yi/Y)2 remains appreciable as N increases. In other words, it holds
unless the rainfall amounts x,y and differences % -%’ on a very few days dominate
the total amounts and differences over the entire experiment even when the experi-
ment becomes increasingly long. (The exact conditions are given in the Appendix,
equations (15) and (18)).

To find out whether this assumption is tenable for precipitation data

or whether it is vitiated by the occasional occurrences of extreme amounts of
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rainfall, the distribution of sample R values was compared to the asymptotic
normal distribution. Sample R values were obtained by the same Monte Carlo
sampling described above in connection with Table 1. The results are pre-
sented in Table 2 for data of the entire Israeli experiment as well as for
several separate categories of days.

‘Tests of goodness of fit of the asymptotic normal distribution with
mean 1 and variance 'g (xi/X-yi/Y)2 show no significant deviations when the
data for the entire 1521-5 or 1961-6 period of the experiment are analyzed.
However, when R values are obtained separately for each season, the fit is
significantly poor - sum of chi-square statistics 389.00 with 133 d.f.. For
pairs of seasons the fit is not good - sum of chi-square statistics 73.40 with
57 d.f... One may conclude that asymptotic theory gives a good approximation
when N is as large as 300 rainy days (5-6 seasons), that it is doubtful for
100-0dd rainy days (2 seasons), and that it is clearly inadequate for as few
as 50 or.so days (single seasons).

Monte Carlo trials have also been carried out within ten categories of
days defined by the buffer-South difference. The number of days per category
was about N = 30, and the fit of the sample R distribution to the asymptotic
normal was very poor - sum of chi-square statistics 427.4 with 190 d.£.. Clearly,
for this size of N the asymptotic approximation is inadequate even within rela-
tively homogeneous categories of days.

Further details of the sampled distributions of R are also presented
in Table 2.. These .give some idea of how the sampled distributions of R deviate
from the. asymptotic normal. The distributions of R have slight positive skew-

ness .and a:small positive bias in the expectation. The bias is of the order of

2% for. single seasons and of less than 1% for the whole length of the experiment.




-13 -
I Table 2. Sampled Distributions of R, Goodness of Fit and
’ Other Characteristics (Rainy Days Only)
l Num-{ Number Chi-square
ber of for goodness| Prop. . Asymptotic
of Permuta- of fit (R>1) Mean |Variance variance | ©3 %y
Days| tions 19 d.£.¢?
1961-6 327 500 29.2 .52 1.0051¢ .0052 . 0053 .00612.81
I 1961-6% 327 400 14.1 .51 1.0034| .0066 . 0063 .014}13.16
1961-5 281 400 21.1 .51 1.0075¢( .0061 . 0061 .025]13.36
l 200 23.4 .52 1.0042| .0064 .0061 .02712.96
1961 26 400 153.7 .49 1.0739| .1596 .1018 .29512.91
. 1961/2 57 400 50.3 .48 1.0221) .0519 .0387 .17413.96
1962/3 49 400 62.9 .52 1.0214| .0262 .0212 .057]2.59
l 1963/4A 20 400 37.7 .51 1.0208) .0473 .0352 .09213.34
1963/4B 57 400 35.1 .50 1.0117| .0285 . 0243 .05512.78
1964/5 72 400 18.1 .49 1.0025] .0200 . 0180 .055(2.99
l 1965/6 46 400 31.2 .52 1.0131| .0316 . 0298 .05312.57
l 1961-2 83 200 29.8 .52 1.0312} .0367 .0307 .066)2.64
1962 -4 126 200 21.2 .56 1.0163} .0130 .0113 .018]2.84
1964-6 118 200 22.4 .52 1.0152| .0129 .0122 .02812.46
l 1961-6 26 200 23.0 .46 0.9985| .0114 .0101 .028}2.68
22 200 32.4 .52 1.02264) .0377 L0310 .10513.35
l 10 categories 27 200 27.4 .50 1.0269¢ .0335 .0267 .108(3.29
of rainy days || 5, | 500 94.6 .46 [1.0293] .0940 0481 |.192|2.52
according to
' buffer-south 81 200 77.8 .50 1,0435] .1170 .0761 .20212.72
differences
(See Table 1) 46 200 11.4 52 1.0166 0295 0287 016 65
' 20 | 200 58.0 44 |1.0497] . 1666 1074 |.429]3.95
35 200 56.6 .56 1.0411| .0341 . 0269 .12213.09
' 23 200 20.8 .46 1.0056| .0398 .0378 .10313.02
lL 23 200 25.4 .54 1.0285| .0406 .0323 .06412.94
l % Amounts of precipitation in interior parts of areas only,
l 1t Each distribution of Monte Carlo sample values of R was sorted
. into 20 classes for testing of goodness of fit.
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On the other hand, the proportions of R values above 1 do not deviate systemat-

ically from 1/2. These characteristics are readily understood when one considers l\

that R is a ratio which may assume any non-negative value and that the chance of

any one value is equal to that of its reciprocal. Thus, 1 must be the median, l

but there is positive skewness and the expectation exceeds 1. : l‘
More crucial to the application of the asymptotic distribution is the

difference between VarO(R) and the true variance of R. Table 2 clearly shows l\

that the sample estimates exceed the asymptotic expression for almost all the

Monte Carlo trials that were run. For single seasons and for particular buffer- l}

South cateogries of days the variance appears to be 20-40% larger than Varo(R). "
For pairs of seasons it is 10-20% larger, but for the entire length of the experi-
ment it is very close to the asymptotic value.

The standardized fourth moment shows no further systematic deviation

from normality.
In applying asymptotic theory to practical testing of significance, one l

would compute the normalized statistic

Z = (R-l)NVarO(R) (6)

and enter it in a table of the normal probability integral. The resulting "R -
asymptotic" levels of significance are compared in Table 1 with the unbiased
estimates obtained by Monte Carlo sampling. For all comparisons except those

of the entire length of the experiment, this asymptotic normal method is seen to
underestimate o and makes the results appear more highly significant than they
really are. This underestimate of a results from the underestimate of the var-
iance of R in the denominator of the above expression for Z.

For finite N the moments of R might be approximated somewhat better by

using the formulas
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61R =1+ VarO(R)/Z Varl(R) = VarO(R)élR. (7

Checking of these approximations against .the sample moments in Table 2 shows
that they deviate systematically somewhat less but in the same direction as the
previous approximations, 6OR = 1 and VarO(R) of (4). As far as the estimate

of the Varignce is concerned, the new approximations do not reduce the bias much
and are therefore little better than those used in (4).

We conclude that the asymptotic normal dist;ibution may be applied safely
only when data of some 5 seasons, i.e., 300-odd rainy days, are available for
analysis. For shorter periods and for smaller categories of days, use of asymp-
totic formulas underestimates the variance and leads to spuriously significant
results. This means that in effect the asy;ptotic distribution is useful only
for overall evaluation of an entire experiment and cann%f’be used for detailed
analyses within categories or shorter periods.

Our findings are based entirely on_déta of the israeli experiment. One
may ask how far the ;onciusions can be extended to other rainfall stimulation
experiments. Clearly, one cannot infer from Israeli rainfall data to data in
areas with very different rainfall regimes, but some inferences are possible
to slightly different experimental designs. Though our evaluation of the Israeli
experiment used only rainy days, we have made some additional checks using the
data of all days of the rainy seasons. There were altogether 946 days, rainy
and dry together. For these days we checked the applicability of the asymptotic
normal distribution of R, and did the same for sets of 5, 10 and 20 successive
days. The latter might correspond more closely to the analyses of some experi-
ments which used units considerably longer than 24 hours.

The results of these additional Monte Carlo sampling trials are present-

ed in Table 3. Tests of goodness of fit do not indicate deviation from the



asymptotic distribution either for single days or for sets of days.

estimates of the variance of R do not differ much from asymptotic Varo(R)
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Sample

though the latter seems slightly too low for single days and possibly a little

too large for sets of days.

R may be used safely when data of about 5-6 seasons are available evidently

Our conclusion that the asymptotic distribution of

holds not only for single rainy days but also for all single days and for sets

of days as well.

Table 3.

Sampled Distributions of R, Goodness of Fit and Other
Characteristics (All Single Days and Other Periods)

Number Number | Chi-square
ofe of for goodness| Prop. Mean |Variance Asymptotic o @
Periods Permuta- of fit (R>1) a a variance 3 4
tions 19 d.f£.¢t
1961-6 946 200 26.40 .495 |1.0065 . 0048 .0051 .006 {3.21
(Days)
1961-6 189 200 24.00 .535 11.0054 .0050 . 0044 .009 ] 2.53
(5-days)
1961-6 94 200 25.20 .505 |1.0056 . 0049 . 0047 .019 | 3.31
(10-days)
1961-6 47 200 12.40 .560 {1.0085 . 0051 . 0047 .005 | 3.19
(20-days)

+See footnote to Table 2.

is slightly larger than that based on all days.

It is interesting to note that the variance of R based on rainy days

Since the value of R is practi-

cally the same in both cases, it appears that exclusion of "dry" days may slight-

ly reduce the sensitivity of the R randomization test.

found in some earlier calculations for the WMW test which appeared to gain in

sensitivity when restricted to rainy days.

Contrary results were
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APPENDIX

THE ASYMPTOTIC DISTRIBUTION OF R

The statistic R is a function of weighted sums of independent Bernoulli

variables 91’62""’9N’ each being 1 or O with probability %. Using the nota-

tion of (5), and defining

A, = xi/X and B, = yi/Y s (8)

1

these sums may be written

N N
S = .Z xiei and T 'Z piei (9)
i=1 i=1

and the average ratio (3) becomes

R = [S/(1-8) - (1-T)/T]%. (10)

One readily obtains

8(8) =2, N\ /2= 3

§(T) =z, »,/2=1%
Var(S) = £, A2/4 | (11)
Var(T) = £, nf/4

Cov(S,T) = =, \n,/4.

The difference S-T = Zi(%irui)ei is a weighted sum of N independent
Bernoulli variables. Its expectation is zero since Zi(%i-pi) = 1-1=0 and its

variance is Zi(%i—ui)2/4. To obtain its asymptotic distribution, define, for
any N,

- -L

(g 1,) (0,3

Z.. = :
Ni
NZ O 8 )34

i=1,2,...,N, (12)
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so that gZNi =0 i=1,2,...,N and ZiVar(ZNi) = 1 for all N. Hence Loeve's

Normal Convergence Criterion ([6], p. 295) applies and

5 Z 2(5-T) (13)

i“Ni T o m )2
zi(7\i ui)

is asymptotically N(O,1) provided that for every € >0

s. u2dFZ (u) = 0 as N—>w . (14)

1 Ju|>e Ni

Condition (14) holds if, for every € > 0, there exists an No large enough so

that for all N > NO

lxi-p‘i'

Ve, O y)®

<e€ for all i=1,2,...,N

(for in that case P(|Z2_ .| >¢€) = 0 1i=1,2,... N). Hence a sufficient condition
Nl = 2= )

for asymptotic normality in (13) is

[, |
Lim max i1 =0 ) (15)

N— 1N o )2
)t:i(xjl ui)

Next, to obtain the asymptotic distribution of the average ratio R,

one may expand it as a Taylor series about (S,T) = (4,2). Noting that
_a_IS. = ———-——R and é—R— = - -———-—R
oS  28(1-8) oT 2T(1-T) ’

one obtains, at point ({,1),
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R=1 OR/dS =2 and OR/OT = -2.

The Taylor series therefore becomes

e
]

1+ 2(8-1) - 2(T-3) + W
i (16)

1+ 2(S-T) + W,

where W is a sum of terms with two or more (S-%), (T—%) factors each.
vi _1)2= 2 1= 2
By virtue of (11) (S 2) OPCZiXi) and (T 2Y2 Op(Ziui) so that

= 2 2 sos 1 . \/————-——2—
W OpCZiui + zixi). Dividing both sides of (16) by Zi(xi pi) and

rearranging, one obtains

S A2 + 5 pf
R-1 - 2(S-T) +0 ( 1%1 Zlul) . (17)

dzi(xi-ui)2 dzi(%i-ui)z P \/zi(%i-ui)z

Provided, then, that

. S +3.pf
Lim ii i i 0 (18)

N —> _ 2
»J}:i(xi ui)

. . - - 2 - - 2
it follows ([6], p. 174, item 16) that (R-1)/~ Zi(%i pi) and 2(S-T)/N zi(xi ui)
have asymptotically the same distribution, that is, if (15) also holds, a unit
normal distribution. In particular, this establishes the asymptotic expectation

& R=1 and variance in (4), above.

If, in (16), terms involving the second derivatives

PR _ _(48-1)R PR __ R R _ _(3-4T)R
352 T 482(1-5)2 7 OSoT  4ST(1-8)(1-T) > OJOT° 4T2(1-T)°
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were separated from W, one would obtain

=
]

142(S-1) -2(T-3)+4(8-1)2/2-2x4(5-3) (T-1) /2+4(T-1)=/2 + W
(16a)

1+2 (S-T)+2 (S-T)Z+Wr

After some reduction, this will be seen to yield the approximations to the expecta-
tion and variance given in (7), above.

Finally, this development suggests that the statistic 1+2(S-T) might
itself be used as a good practical approximation to R. Under the null hypothesis
its expectation is one and its variance Z‘,i(?\i—pi)2 for any sample size. Con-
dition (15) suffices for its asymptotic normality. It is also not difficult to
argue the intuitive appeal of this statistic since S is the proportion of North
area rainfall which falls on North seeded days, and T is the proportion of Centre
area rainfall falling on the same days. Without seeding effects, the expected
values of S and T are both L, and &{1+2(S-T)} = 1, whereas with a proportionate

increase of (l+r) due to seeding, S would tend to be close to Lr and T to L

2+r 2+r
' 2r rZ
so that 1+2(S-T) would be close to 1 + e 1+r - 2+r,i.e., quite near l+r for

small r. Table 1 shows that the observed values of this statistic indeed under-
estimate the average ratio R. The underestimate is very slight unless r is at

least 0.25.



