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Abstract. We prove detailed asymptotic estimates for the distribution of the 
eigenvalues of linear boundary eigenvalue problems of arbitrary order n with indef­
inite weight function generalizing well known results for the case n = 2. 

1. Introduction. We consider eigenvalue problems of the form 

n 

£(y) = Y(n) + L fv(x)y(n-v) = >.r(x)y, X E [0, 1] (1.1) 
v=2 

Uv(Y) = Uvo(Y) + Uv1(Y) = 0, v = 1, · · · , n, (1.2) 

where r : [0, 1] - R\ {0} is a step function; fv E L[O, 1], 2 ~ v ~ n, and where the 
boundary conditions are normalized; the latter means that 

k..,-1 

Uvo(y) = CtvY(k..,)(O) + L Ctvi-LY(!-L)(O), 
{L=O 

k..,-1 
( 1.3) 

Uv1(Y) = f3vY(k..,)(1) + L f3vi-LY(!-L)(1), 
{L=O 

lavl + l/3vl > 0 for v = 1,··· ,n, 

n- 1 2: k1 2: k2 2: · · · 2: kn 2: 0 with kv > kv+2 for v = 1, · · · , n- 2. 

A central role in our paper is played by the assumption that the boundary conditions 
(1.2) are regular; cf. Definition 2 and Definition 7, where the definition of Birkhoff­
regularity for definite problems (Naimark [12, p. 56]) is generalized in a natural 
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manner. In section 3, we determine the distribution of the eigenvalues of regular 
problems (1.1), (1.2). Corresponding results have been obtained previously only for 
special classes of problems. Langer (10] has derived formulas for the case £(y) := 
y" and r(x) = (x - x0 )a, and Mingarelli [11] has shown that (1.1), (1.2) with 
£(y) := y" + qy and with separated boundary conditions has two sequences >.;t, >.; 
of eigenvalues with the asymptotic distribution 

(1.4) 

(r±(t) := max{±r(t), 0} ). Fleckinger and Lapidus [8] and Faierman [7] have proved 
an asymptotic formula for the eigenvalues of the Laplacian with an indefinite weight 
function (compare [8] for further references). 

2. Preliminaries. Let m E N, 0 = a0 < a1 < · · · < am+l = 1, Io = [0, al], 
Iv = (av, av+lJ, 1 ~ v ~ m and let the step function r be defined by r(x) = 
rv E IR\ {0}, 0 ~ v ~ m. We assume that ko := k1 + · · · + kn is minimal with 
respect to all equivalent boundary conditions (1.2). By V(x 1 , · · • ,xn) we denote 
the Vandermonde determinant of x1, · · · , Xn E C and by Wvl, · · · , Wvn, 1 ~ v ~ m, 
we denote the n-th roots of rv. Further we set >. = pn and we consider a fixed sector 
S E {So,··· , S2n-1} where 

{ 
v1r (v+1)7r} 

Sv = p E C I-;;: ~ argp ~ n , 0 ~ v ~ 2n- 1. 

We enumerate the n-th roots Wvj of rv such that for pES 

Re (pwvd ~ Re (PWv2) ~ · · · ~ Re (PWvn), 0 ~ lJ ~ m. 

If n = 2~-t we have Re (pwvj) ~ 0 for 1 ~ j ~ J.L and Re (pwvj) 2: 0 for J.L + 1 < 
j ~ n. For x E Iv, 0 ~ v ~ m and p E S, (1.1) has a fundamental system 
Yvl(·, p), · · · , Yvn(·, p) of solutions satisfying (cf. [12], §4.5) 

Y~;)(x, p) := (:Xt'Yvj(X, p) = (PWvj)o:ePWvj(x-av)[l] (2.1) 

for 0 ~a::; n- 1, 0 ~ v ~ m, 1 ~ j ~ n, (x,p) E Iv x S. Here and henceforth we 
use the abbreviation 

[a] =a+ 0(1/ p), a E C, p ~ oo. 

For fixed x each function Yvj(x, ·)is holomorphic inS. According to [12, p. 48], the 
asymptotic estimates (2.1) remain valid if we replaceS by a translated sector c + S 
with c E C. 

3. The asymptotic distribution of the eigenvalues. >. = pv represents an 
eigenvalue of (1.1), (1.2) if and only if there exists a non trivial function y(·, p) 

m n 

y(x, p) =I: :~:::>vj(P)Yvj(X, p) 
v=Oj=l 
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satisfying 

Uv(Y) = 0, 1 :S II :S n, 

and 

(:xt[y(av+,P)- y(av-,P)] = 0, 0 :Sa :S n -1, 1 :S 11 :Sm. 

Therefore, .\ = pn, p E S, represents an eigenvalue of ( 1.1), ( 1. 2) if and only if p is 
a root of the characteristic determinant b. : 

[ 
Doo 

b.(p) = det ; 

Dmo 

where 

UlO~Yon) l ,· 
Uno(Yon) 

[ 
Un(Ymd 

Dom = : 
Unl(Yml) · · · 

Un(~mn) l ' 
Unl(Ymn) 

[ 
Yv+l,l ( a.v+l +, P) 

Dv+l v+l = · 
' . (n-1) ( · ) 

Yv+1,1 av+1+, P · · · 

Yv+l,n(~v+l+' p)l ' 
(n-1)( ) Yv+1,n av+1 +, P 

Dvj = Dnn for all remaining 11,j. From (2.1) we infer 

and 

[ 
[a1](~ol)k 1 

Doo = : 
[an](pwot)kn 

[a1](p~on)k 1 l ' 
[an](PWon)kn 

[ 

[/h](pwml)kl.ePWml(l-am) 

Dam= : 
[/3n](PWm 1 )kn ePWml (1-am) 

[;3l](PWmn)kl:ePWmn(1-am) l ' 
[/3n](PWmn )kn ePWmn (l-am) 
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For 1 ::; O" ::; n we introduce the notation 

and we set 

T1 := { T = (t 0 , · · · , tm) E {0, l}m+l j t,_, = 1, if sgn r,_, = -1, 0::; v::; m} 

T2 := {r =(to,··· ,tm) E {O,l}m+ljt,_, = 1, if sgnr,_, = 1, 0::; v::; m}. 

Part I. Let n = 2JL. Using the preceding estimates we develop !:l.(p) with respect 
to the minors of the first n rows, subsequently we develop the corresponding com­
plementary minors with respect to its first n rows etc.; this procedure yields for 
p E S\{0} 

with 

k n(n-1) 
!:l.(p) = p o+m 2 !:l.l(P) (3.1) 

(3.2) 

m-1 

X IT V(wk,11+tk,Wk,11+2,··· ,Wkn,Wk+l,l,··· ,wk+l,11 -l,Wk+l,J.t+l-tk+I) 

k=O 

-· L (-l)N(r>[e;]ePE;vrl' 
rET1UT2 

where N(r) EN forTE T1 U T2 and where 

The analogous result holds for sectors of the form S+c, c E C. We note that only the 
terms with maximal growth for /p/ --+ oo, p E S, have been included explicitly within 
the sum (3.2); all remaining terms are subsummed within the square brackets. 

In the next part of the section we assume that S := S0 - - this implies that the 
enumeration of the numbers Wkj and the definition of e;, V/, E; is determined 
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accordingly. Further we assume that n = 4k- in the case n = 4k + 2 we can 
proceed similarly. 

With To := (1, · · · , 1) we obtain 

0 

forTE (T1 UT2)\{To} and pESo. 

On the boundaries of So the real parts of several terms pE;, T E T1 (or T E T2) are 
equal, since 

and 

Re (pwk~-t) = Re (pwk,~-t+l) = 0 if argp = 0 and Tk > 0 

if arg p = ~ and Tk < 0. 
n 

Let Tj = ( t~, t{, · · · , ttn) E Tj, j = 1, 2 be defined by 

then we easily infer 

t~ := 0 if sign Tv = 1, 

t~ := 0 if sign Tv= -1, 

0 

Re (pE;:J > Re (pE~) for p E S2n-1 and T E (T1 U T2)\{Tl}, 

0 

Re (pE~2 ) > Re (pE~) for p E S1 and T E (T1 U T2)\{T2}, 

and with 0 < t: < 2: we have 

Re (pE~) > Re (pE;_) 

Re (pE~) < Re (pE;_) 

for T E T1, O" E T2 \ {To}, - E < arg p < E 

1r 1r 
for T E T1 \ {To}, O" E T2, - - E < arg p < - + t. 

n n 

Hence, almost all eigenvalues >.k of (1.1), (1.2) are contained in {A E C I larg >.I < 
E or l1r- arg>.l < E}. 

Using the method described in [12, §4] we infer from the preceding estimates that 
the n-th roots Pk = ).~In of the eigenvalues are staisfying one of the equations 

or (3.3) 

L (-1)N(r)e~V71 ePE;[1] = 0 if 1r- E::; argp::; 1r + t: 

rET2 

(0 < t: < 2: and n = 4~>:). 
Dividing the sums (3.3) by exp{p L:;=0 (ak+l- ak) LJ=~-t+2 Wkj} we get exponen­

tial sums of the form 

mj . (j) 

ePcLc~)eipak !3[1]=0, j=1,2, cEC, (3.4) 
k=O 
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where (3 E { e- \:, 1, e ;: }, o:~) < o:ij) < · · · < a~~ and c~) E C for j = 1, 2. 
For example we have for n = 4K and j = 1 

m 

a~~ - o:~l) = -i(E;1 - E;0 ) = -i L (ak+l- ak)(wk~-t- Wk,~-t+I) 

m 

k=O 
rk>O 

= -i L (ak+l- ak)rk/n2i = 2R+, 
k=O 

rk>O 

and for n = 4K and j = 2 we get 

o:C2) _ o:(2) = -iei*: (E1 _ E1 ) 
m2 0 To T2 

m 

= -iei*: L (ak+l- ak)(wk,~-t+1 - Wk~-t) 
k=O 

rk<O 

m 

= -iei*:2ie-i*: L (ak+1- ak)rk/n = 2R_. 
k=O 

rk<O 

(3.5) 

(3.6) 

In the case n = 41'1: + 2 we obtain similar formulas but the role of R+ and R_ has 
to be interchanged. 

The coefficients c~j), c~; of the relevant exponential terms of (3.4) can be deter­

mined explicitly. On account of (3.2) there are nonvanishing constants k~) defined 
by products of Vandermonde determinants, such that the following relations hold: 

(i) For n = 2J.L we get 

a) If ro > 0, rm > 0 (3.7) 

C( 1 ) - e(w w . w w )k(1) -· k(1)() 0 - 01,···, 0~-t, m~-t+1····, mn 1 -. 1 1, 

C~~ = ()(wo1, · · · ,WO~-t-1,WO~-t+1;WmJ.t>Wm~-t+2• · · · 1 Wmn)k~1 ) =: k~1)()2, 

b) if ro > 0, rm < 0 

(1) - k(1)() 
Co - 4 1' C( 1) - e(w w w . w w )k( 1) -· k( 1)() m 1 - 01• · · · ' 0~-t-1• O~-t+1• m~-t+1• · · · ' mn 5 -. 5 3 

C( 2) - O(w w · w w w )k(2) -· k( 2 )() c< 2) = c( 1) 0 - 01, · · · ' OJ.L, mJ.L, mJ.L+2, · · · ' mn 6 -. 6 4, m 2 0 ' 

c) if r o < 0, r m > 0 

C(1) _ k(1)g c(1) = k(1)() c(2) _ k(2)() c(2) = c(1) 
0 - 7 1• m 1 8 4, 0 - 9 3, m2 0 ' 

d) if ro < 0, rm < 0 

C(1) - k(1)() c(1) - k(1)e c(2) - k(2)() c(2) = c(1) 
0 - 10 1• m 1 - 11 1, 0 - 12 2, m2 0 · 
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(ii) For n = 411: + 2 we get 

a) if ro > 0, rm > 0 

b) if rm < 0 < ro 

c) if ro < 0 < rm 

d) if ro < 0, rm < 0 

C(1) _ k(1)() c(1) _ k(1)() c(2) _ k(2)() c(1) _ c(1) 
0 - 10 1, m 1 - 11 2, 0 - 12 1, m 2 - 0 · 

Remark 1. The determinants ()i in (3.5) are not independent. Compare [12, p. 59] 
and [13]. Substituting ¢o = 2; ko where ko = k1 + · · · + kn we get 

(i) For a) 82 = ±81ei<l>o, for b) 83 = ±84ei<Po, for c) 84 = ±83ei<l>o and for d) 
()1 = ±82ei<Po. The proofs are analogous to [12, p. 60] or [13, p. 11]. 

(ii) Let additionally ai, (3i E R, 1 ~ i ~ n, then we get for b) ()3 = ±01 and for 
c) 84 = ±01. 

Definition 2. For n = 2J.L (1.1), (1.2) is called regular if rorm > 0 and 81 "1- 0 or 
rorm < 0 and 81 "1- 0 "1- 83. 

Remark 3. (i) For ai, f3i E R, 1 ~ i ~ k, the assumption 81 "1- 0 is sufficient for 
the regularity of (1.1), (1.2). If the boundary conditions (1.2) are separated and 
therefore Birkhoff-regular in the sense of [12, §4], then the determinants ()i in (3. 7) 
are products of two nonvanishing determinants (cf. [12, p. 96]), and (1.1), (1.2) is 
regular. 

(ii) Definition 2 is independent of the sectors used in the definition of ()1 , · · · , 84 . 

We define 

m 1 

R+ := L (ak+1 - ak)\rk\ 1/n = 1 ~ dt, 
k=O 0 

Tk>O 

and we assume without loss of generality R+ 2:: R_ > 0 (otherwise we substitute 
.A--t -.A). 

The distribution of the zeros of exponential sums is well-known; if we have expo­
nential sums of the special form (3.4) we can use for example the following lemma 
which results from [14, pp. 25-28]. 
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Lemma 4. Let n1 < n2 < · · · < np and Cv E C, 1 :S v :S p with c1 =f. 0 =f. cp· Then 
the zeros Pk of 

p 

J : C----+ C, p 1-----f L[cv]einvP 
v=l 

are fulfilling the asymptotic estimates 

k E Z\{0}. 

From (3.6) and the preceding results we infer 

Theorem 5. For n = 2J.t every regular eigenvalue problem (1.1), (1.2) has two 
sequences (-\~))kEN, j = 1, 2, of eigenvalues satisfying 

k E t\J 

and (3.8) 

We note that in the definite case R_ = 0 our proof of Theorem 5 has to be 
modified only slightly. In this case the sequence ( Ak2) )kEN has to be omitted. 

Part II. Let n = 2J.t - 1, J.t 2: 2. For the proof of asymptotic estimates for 
f:l.(p), p E S, we use the same procedure as in the case of even order problems. In 
addition to the abbreviations To' Tl' 72' E;' e;' V/ introduced in Part I, we set for 
T =(to,··· ,tm) E T1 UT2 

m 

E; = L(ak+l- ak){wk,~-t-l+tk + LJ=~-t+lWkj}, 
k=O 

and 

Expanding !:l.(p) we infer as with (3.2) for p E S\{0} 

(3.9) 

where 
2 

f:l.1(p) = L L (-1)N1 (T>etv;epE~[1], 
j=l TET1UTz 
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m 

N1(rl) = N2(rl) = m + 1- L t} 
j=O 

m 

N1(r2) = N2(r2) = m + 1- L t]. 
j=O 

1175 

In the following we assume for simplicity that n = 4~~;- 1; in the case n = 4~~; + 1 
we can proceed in an analogous way. 

Let 0 < E < 21fn' s :=So and let the n-th roots w1,··· ,Wn and w1,··· ,Wn of 1 
and -1 respectively be enumerated such that for 0 ::; arg p ::; 2: 

and 

Using the identities wf..l = -wf..l, wf..l_ 1 = -wf..l+1, wf..l+I = -wf..l_ 1 we obtain from the 
definition of R+, R_ and Et by subtracting 

from Et: 

m n 

E := L L (ak+l- ak)Wkj 
k=Oj=f..l+2 

E;_0 - E = wf..l+1R+ + wf..l+1R-, 

E.;_, - E = wf..LR+ + wf..l+lR-, 

E;_2 - E = wf..l+1R+ + wf..LR_, 

(3.10) 

E;0 - E = (wf..l + wf..l+l)R+ + (wf..l + wf..l+l)R_ = E;_0 - E + wf..l(R+- R_), 

E;,- E = (wf..l-1 + wf..l+1)R+ + (wf..l + wf..l+dR- = E;_2 - E + wf..l_1(R+- R_), 

E;2 - E = (wf..l + wf..l+1)R+ + (wf..l-1 + wf..l+dR- =E.;.,- E + wf..l+1(R+- R_). 

Case II A: R+ > R_ (and n = 4~~;- 1). In this case we infer from (3.10) that 

Re (pE~), j E {1, 2}, r E T1 U T2 (and p -::f. 0) 

is maximal if and only if 

(i) £1 = E 1 
T To 

for 
7r 

0 < argp <-, 
2n 

(ii) £1 = E 2 for 
7r 7r - < argp <-, T To 2rL n 

(iii) E1 = E 1 
T T'2 for 

7r 
- 2n < arg p < 0, (3.11) 

( iv) E1 = E 2 for 
7r 7r - - < arg p < -- , T Tj n 2n 

(v) E1 = E 2 for 
7r 37r - < argp <-. 

T T2 n 2n 

--- -----------------
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Further we have for j E {1, 2} and TEn u T2 

Re (E;) = Re (E;J, T E T2, 

Re (ei2"n E;0 ) = Re (ei 2"n E;0 ) > Re (ei tn EO 
(3.12) 

for (r,j) ¢ {(ro, 1), (ro, 2)} and 

If R+ < R_ we obtain an analogous result. 

Case II B: R+ = R_ (and n = 4~~:- 1). According to (3.10) and (3.11) we have in 
this case 

andRe (pEt), j E {1, 2}, T E T1 U T2 is maximal if and only if 

(i) Ej = E 1 = E 2 for 
7r 

0 < argp <-T To To n 
and 

(ii) 
. 1 2 

E~ = ET2 = ET! for - 1r < arg p < 0. 

Further we infer from the definition of E;. and E; that Re E;. = Re E;. and 
Re (ei*"E,!.) = Re (ei*"E;) for a E T 1 and T E T2. 

(3.13) 

(3.14) 

Now we assume again that the coefficients of the dominant exponential terms of 
~(p), pESo U S2n-1, do not vanish. 

Definition 6. a) For n = 4~~:- 1 problem (1.1), (1.2) is called regular if 

(i) e;_o, e;_o, e;_2 , e-;_1 "/= 0 and R+ "/= R_ 
or 
(ii) 01 U1 + 82 U2 ...;.. 0...;.. 81 U1 + (-1)L:=o(tl-tile2 U2 and R+ = R_. To To To To f f Tz Tz T 1 T) 

b) For n = 4~~: + 1 problem (1.1), (1.2) is called regular if 

(iii) e;_o, e;_o , e;_1 , e;_2 i- 0 and R+ i- R_ 
or 

Remark 7. Definition 7 is independent of the sector S0 used for the definition of 
the constants et' u~. 

It is possible to derive relations between the nonvanishing constants in Definition 
6; we omit details ( cf. Remark 1). 
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Theorem 8. For n = 2t.t- 1, 11- ~ 2 every regular boundary eigenvalue problem 
has a countably infinite set of eigenvalues. 

a) If R := R+ = R_, then there are two sequences (..X~\ j = 1, 2 of eigenvalues 
satisfying for k E N 

(j)_ 1( k7r )n{ 1 
..\k -(-1) Rcos(1rj2n) 1 +0(-k)}, j = 1,2. (3.15) 

b) If R+ =F R_ and R0 := min{R+, R_} > 0, then there are four sequences 
(..\~)), 3:::; j :::; 6, of eigenvalues satisfying fork EN 

(1) _ 1 ( k1r ) n 1 
..\k - (-1) Rocos(7r/2n) {1 + O(k)}, j = 3•4 ·• (3.16) 

(1) _. _ 1( 2k1r )n{ ~1 2_ 
..\k -z( 1) IR+-R-l 1+ k +O(p)}, j=5,6. (3.17) 

The constants ~5 , ~6 can be evaluated explicitly and almost all eigenvalues ..\~), 
j = 5, 6, are simple. 

Proof: Using the preceding estimates for Ll(p) we obtain (3.15) and (3.16) as with 
the proof of Theorem 5. 

For the proof of (3.17) we discuss exemplarily the case n = 4~~: - 1, R+ =F R_. 
In this case we infer from (3.11), (3.12) that (1.1), (1.2) has four sequences (..X~\ 
3 :::; j :::; 6, of eigenvalues. By (..\~6)) we denote the sequence having the positive 

imaginary axis as asymptote; let ..\~6 ) = {p~6 ) }n where 

7r (6) 7r ( 
2n- f:::; argpk :::; 2n + E, k ~ K). 

According to (3.9)-(3.12) p~6) must be the solution of an equation of the form 

0 = (}1 vl epE~o [1] + (}2 v2 epE;o = (}2 v2 epE~o { e;o VT~ [1] + ep(E;o -E~o)} To To To To To To (}2 V2 · 
To To 

Since e;_o - B~o = wf..L(R+ - R_) this equation is equivalent to 

(3.18) 

with A= -(e;o VT~)j(e;o VT~). The solutions of (3.18) with 2:- f:::; Pf=~ :::; ;n + f 
satisfy 

(6) ei 2"n { . 1 } 
plkl : = -i(R+ _ R_) 2k7rz + ln0 A+ 0( lkf) 

i..lL 2k7r { ln0 A 1 } 
= -e 2n R+ - R_ 1 + 2k7ri + 0( k2 ) ' 

(3.19) 

where kEN for R+ < R_ and-kEN for R+ > R_. (3.19) implies (3.17) for j = 6 
with 

nlnoA 
~6 = ± 2 . . 7rZ 
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In all remaining cases we prove (3.17) similarly. 

Remark 9. (i) The method used in this paper can also be applied for the discussion 
of boundary eigenvalue problems (1.1), (1.2) with a piecewise continuous weight 
function r with lr(x)l 2: c > 0 for x E [0, 1]. In this more general situation one can 
assume without loss of generality that the coefficient of y(n-l) in £(y) is zero (if the 
coefficients f v are sufficiently smooth). 

(ii) For k 2: K the multiplicity of the eigenvalues is bounded by #(T1UT2 ) - 1 
(in formula (3.15)) or by #T1 - 1 or #T2 - 1 (in Theorem 5 or formula (3.16)). 

If we have for example 

r(x) = { 
-a< 0 

b>O 

for 0::::; x::::; x1 

for x 1 < x ::::; 1, 

then almost all eigenvalues of (1.1), (1.2) are simple and satisfy asymptotic estimates 
of the form 

0 { a 1 } >.k = >.k 1 + k + 0( k2) · 

(iii) Just as in the case of definite problems it is possible to weaken the hypoth­
esis of regularity by assuming that the coefficients of the dominant terms in the 
expansion of fl 1 (p) have the form 

sEN fixed, 

where L:~=O IA.kl > 0. Details will be discussed elsewhere. 
(iv) In the case n = 1 the asymptotic behaviour of the eigenvalues of regular 

problems (1.1), (1.2) can be determined easily. We omit details. 
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