ON THE DISTRIBUTION OF THE EIGENVALUES OF A CLASS OF INDEFINITE EIGENVALUE PROBLEMS

W. Eberhard
Fachbereich Mathematik, Universität Duisburg, Postfach 1015 03, D-4100 Duisburg 1, FRG
G. Freiling
Lehrstuhl II für Mathematik, RWTH Aachen, Templergraben 55, D-5100 Aachen, FRG

A. Schneider

Fachbereich Mathematik, Universität Dortmund, Postfach 5005 00, D-4600 Dortmund 50, FRG

(Submitted by: W.N. Everitt)

Abstract

We prove detailed asymptotic estimates for the distribution of the eigenvalues of linear boundary eigenvalue problems of arbitrary order n with indefinite weight function generalizing well known results for the case $n=2$.

1. Introduction. We consider eigenvalue problems of the form

$$
\begin{align*}
\ell(y) & =y^{(n)}+\sum_{\nu=2}^{n} f_{\nu}(x) y^{(n-\nu)}=\lambda r(x) y, \quad x \in[0,1] \tag{1.1}\\
U_{\nu}(y) & =U_{\nu 0}(y)+U_{\nu 1}(y)=0, \quad \nu=1, \cdots, n, \tag{1.2}
\end{align*}
$$

where $r:[0,1] \rightarrow \mathbb{R} \backslash\{0\}$ is a step function; $f_{\nu} \in L[0,1], 2 \leq \nu \leq n$, and where the boundary conditions are normalized; the latter means that

$$
\begin{gather*}
U_{\nu 0}(y)=\alpha_{\nu} y^{\left(k_{\nu}\right)}(0)+\sum_{\mu=0}^{k_{\nu}-1} \alpha_{\nu \mu} y^{(\mu)}(0), \\
U_{\nu 1}(y)=\beta_{\nu} y^{\left(k_{\nu}\right)}(1)+\sum_{\mu=0}^{k_{\nu}-1} \beta_{\nu \mu} y^{(\mu)}(1), \tag{1.3}\\
\left|\alpha_{\nu}\right|+\left|\beta_{\nu}\right|>0 \quad \text { for } \quad \nu=1, \cdots, n, \\
n-1 \geq k_{1} \geq k_{2} \geq \cdots \geq k_{n} \geq 0 \quad \text { with } \quad k_{\nu}>k_{\nu+2} \text { for } \nu=1, \cdots, n-2 .
\end{gather*}
$$

A central role in our paper is played by the assumption that the boundary conditions (1.2) are regular; cf. Definition 2 and Definition 7, where the definition of Birkhoffregularity for definite problems (Naimark [12, p. 56]) is generalized in a natural

[^0]manner. In section 3, we determine the distribution of the eigenvalues of regular problems (1.1), (1.2). Corresponding results have been obtained previously only for special classes of problems. Langer [10] has derived formulas for the case $\ell(y):=$ $y^{\prime \prime}$ and $r(x)=\left(x-x_{0}\right)^{a}$, and Mingarelli [11] has shown that (1.1), (1.2) with $\ell(y):=y^{\prime \prime}+q y$ and with separated boundary conditions has two sequences $\lambda_{n}^{+}, \lambda_{n}^{-}$ of eigenvalues with the asymptotic distribution
\[

$$
\begin{equation*}
\lambda_{n} \sim \mp n^{2} \pi^{2} /\left(\int_{0}^{1} \sqrt{r_{ \pm}(t)} d t\right)^{2} \tag{1.4}
\end{equation*}
$$

\]

$\left(r_{ \pm}(t):=\max \{ \pm r(t), 0\}\right)$. Fleckinger and Lapidus [8] and Faierman [7] have proved an asymptotic formula for the eigenvalues of the Laplacian with an indefinite weight function (compare [8] for further references).
2. Preliminaries. Let $m \in \mathbb{N}, 0=a_{0}<a_{1}<\cdots<a_{m+1}=1, I_{0}=\left[0, a_{1}\right]$, $I_{\nu}=\left(a_{\nu}, a_{\nu+1}\right], 1 \leq \nu \leq m$ and let the step function r be defined by $r(x)=$ $r_{\nu} \in \mathbb{R} \backslash\{0\}, 0 \leq \nu \leq m$. We assume that $k_{0}:=k_{1}+\cdots+k_{n}$ is minimal with respect to all equivalent boundary conditions (1.2). By $V\left(x_{1}, \cdots, x_{n}\right)$ we denote the Vandermonde determinant of $x_{1}, \cdots, x_{n} \in \mathbb{C}$ and by $\omega_{\nu 1}, \cdots, \omega_{\nu n}, 1 \leq \nu \leq m$, we denote the n-th roots of r_{ν}. Further we set $\lambda=\rho^{n}$ and we consider a fixed sector $S \in\left\{S_{0}, \cdots, S_{2 n-1}\right\}$ where

$$
S_{\nu}=\left\{\rho \in \mathbb{C} \left\lvert\, \frac{\nu \pi}{n} \leq \arg \rho \leq \frac{(\nu+1) \pi}{n}\right.\right\}, \quad 0 \leq \nu \leq 2 n-1
$$

We enumerate the n-th roots $\omega_{\nu j}$ of r_{ν} such that for $\rho \in S$

$$
\operatorname{Re}\left(\rho \omega_{\nu 1}\right) \leq \operatorname{Re}\left(\rho \omega_{\nu 2}\right) \leq \cdots \leq \operatorname{Re}\left(\rho \omega_{\nu n}\right), \quad 0 \leq \nu \leq m .
$$

If $n=2 \mu$ we have $\operatorname{Re}\left(\rho \omega_{\nu j}\right) \leq 0$ for $1 \leq j \leq \mu$ and $\operatorname{Re}\left(\rho \omega_{\nu j}\right) \geq 0$ for $\mu+1 \leq$ $j \leq n$. For $x \in I_{\nu}, 0 \leq \nu \leq m$ and $\rho \in S$, (1.1) has a fundamental system $y_{\nu 1}(\cdot, \rho), \cdots, y_{\nu n}(\cdot, \rho)$ of solutions satisfying (cf. [12], §4.5)

$$
\begin{equation*}
y_{\nu j}^{(\alpha)}(x, \rho):=\left(\frac{\partial}{\partial x}\right)^{\alpha} y_{\nu j}(x, \rho)=\left(\rho \omega_{\nu j}\right)^{\alpha} e^{\rho \omega_{\nu j}\left(x-a_{\nu}\right)}[1] \tag{2.1}
\end{equation*}
$$

for $0 \leq \alpha \leq n-1,0 \leq \nu \leq m, 1 \leq j \leq n,(x, \rho) \in I_{\nu} \times S$. Here and henceforth we use the abbreviation

$$
[a]=a+O(1 / \rho), \quad a \in \mathbb{C}, \quad \rho \rightarrow \infty
$$

For fixed x each function $y_{\nu j}(x, \cdot)$ is holomorphic in S. According to [12, p. 48], the asymptotic estimates (2.1) remain valid if we replace S by a translated sector $c+S$ with $c \in \mathbb{C}$.
3. The asymptotic distribution of the eigenvalues. $\lambda=\rho^{\nu}$ represents an eigenvalue of (1.1), (1.2) if and only if there exists a non trivial function $y(\cdot, \rho)$

$$
y(x, \rho)=\sum_{\nu=0}^{m} \sum_{j=1}^{n} c_{\nu j}(\rho) y_{\nu j}(x, \rho)
$$

satisfying

$$
U_{\nu}(y)=0, \quad 1 \leq \nu \leq n
$$

and

$$
\left(\frac{\partial}{\partial x}\right)^{\alpha}\left[y\left(a_{\nu^{+}}, \rho\right)-y\left(a_{\nu^{-}}, \rho\right)\right]=0, \quad 0 \leq \alpha \leq n-1, \quad 1 \leq \nu \leq m
$$

Therefore, $\lambda=\rho^{n}, \rho \in S$, represents an eigenvalue of (1.1), (1.2) if and only if ρ is a root of the characteristic determinant Δ :

$$
\Delta(\rho)=\operatorname{det}\left[\begin{array}{ccc}
D_{00} & \cdots & D_{0 m} \\
\vdots & & \vdots \\
D_{m 0} & \cdots & D_{m m}
\end{array}\right]
$$

where

$$
\begin{aligned}
D_{00}= & {\left[\begin{array}{ccc}
U_{10}\left(y_{01}\right) & \cdots & U_{10}\left(y_{0 n}\right) \\
\vdots & & \vdots \\
U_{n 0}\left(y_{01}\right) & \cdots & U_{n 0}\left(y_{0 n}\right)
\end{array}\right] } \\
D_{0 m}= & {\left[\begin{array}{ccc}
U_{11}\left(y_{m 1}\right) & \cdots & U_{11}\left(y_{m n}\right) \\
\vdots & & \vdots \\
U_{n 1}\left(y_{m 1}\right) & \cdots & U_{n 1}\left(y_{m n}\right)
\end{array}\right], } \\
D_{\nu+1, \nu}=- & {\left[\begin{array}{ccc}
y_{\nu 1}\left(a_{\nu+1^{-}}, \rho\right) & \cdots & y_{\nu n}\left(a_{\nu+1^{-}}, \rho\right) \\
\vdots & & \vdots \\
y_{\nu 1}^{(n-1)}\left(a_{\nu+1^{-}}, \rho\right) & \cdots & y_{\nu n}^{(n-1)}\left(a_{\nu+1^{-}}, \rho\right)
\end{array}\right] } \\
D_{\nu+1, \nu+1}= & {\left[\begin{array}{ccc}
y_{\nu+1,1}\left(a_{\nu+1^{+}}, \rho\right) & \cdots & y_{\nu+1, n}\left(a_{\nu+1^{+}}, \rho\right) \\
\vdots & & \vdots \\
y_{\nu+1,1}^{(n-1)}\left(a_{\nu+1^{+}}, \rho\right) & \cdots & y_{\nu+1, n}^{(n-1)}\left(a_{\nu+1^{+}}, \rho\right)
\end{array}\right] }
\end{aligned}
$$

$D_{\nu j}=\Omega_{n n}$ for all remaining ν, j. From (2.1) we infer

$$
\begin{gathered}
D_{00}=\left[\begin{array}{ccc}
{\left[\alpha_{1}\right]\left(\rho \omega_{01}\right)^{k_{1}}} & \cdots & {\left[\alpha_{1}\right]\left(\rho \omega_{0 n}\right)^{k_{1}}} \\
\vdots & & \vdots \\
{\left[\alpha_{n}\right]\left(\rho \omega_{01}\right)^{k_{n}}} & \cdots & {\left[\alpha_{n}\right]\left(\rho \omega_{0 n}\right)^{k_{n}}}
\end{array}\right], \\
D_{0 m}=\left[\begin{array}{ccc}
{\left[\beta_{1}\right]\left(\rho \omega_{m 1}\right)^{k_{1}} e^{\rho \omega_{m 1}\left(1-a_{m}\right)}} & \cdots & {\left[\beta_{1}\right]\left(\rho \omega_{m n}\right)^{k_{1}} e^{\rho \omega_{m n}\left(1-a_{m}\right)}} \\
\vdots & & \vdots \\
{\left[\beta_{n}\right]\left(\rho \omega_{m 1}\right)^{k_{n}} e^{\rho \omega_{m 1}\left(1-a_{m}\right)}} & \cdots & {\left[\beta_{n}\right]\left(\rho \omega_{m n}\right)^{k_{n}} e^{\rho \omega_{m n}\left(1-a_{m}\right)}}
\end{array}\right], \\
D_{\nu+1, \nu}=-\left[\begin{array}{cccc}
e^{\rho \omega_{\nu 1}\left(a_{\nu+1}-a_{\nu}\right)}[1] & \cdots & e^{\rho \omega_{\nu n}\left(a_{\nu+1}-a_{\nu}\right)}[1] \\
\vdots & & \vdots \\
\left(\rho \omega_{\nu 1}\right)^{n-1} e^{\rho \omega_{\nu 1}\left(a_{\nu+1}-a_{\nu}\right)}[1] & \cdots & \left(\rho \omega_{\nu n}\right)^{n-1} e^{\rho \omega_{\nu n}\left(a_{\nu+1}-a_{\nu}\right)}[1]
\end{array}\right],
\end{gathered}
$$

and

$$
D_{\nu+1, \nu+1}=\left[\begin{array}{ccc}
{[1]} & \cdots & {[1]} \\
\vdots & & \vdots \\
\left(\rho \omega_{\nu+1,1}\right)^{n-1}[1] & \cdots & \left(\rho \omega_{\nu+1, n}\right)^{n-1}[1]
\end{array}\right]
$$

For $1 \leq \sigma \leq n$ we introduce the notation

$$
\theta\left(x_{1}, \cdots, x_{\sigma} ; x_{\sigma+1}, \cdots, x_{n}\right)=\operatorname{det}\left[\begin{array}{cccccc}
\alpha_{1} x_{1}^{k_{1}} & \cdots & \alpha_{1} x_{\sigma}^{k_{1}} & \beta_{1} x_{\sigma+1}^{k_{1}} & \cdots & \beta_{1} x_{n}^{k_{1}} \\
\vdots & & \vdots & \vdots & & \vdots \\
\alpha_{n} x_{1}^{k_{n}} & \cdots & \alpha_{n} x_{\sigma}^{k_{n}} & \beta_{n} x_{\sigma+1}^{k_{n}} & \cdots & \beta_{n} x_{n}^{k_{n}}
\end{array}\right]
$$

and we set

$$
\begin{aligned}
& T_{1}:=\left\{\tau=\left(t_{0}, \cdots, t_{m}\right) \in\{0,1\}^{m+1} \mid t_{\nu}=1, \text { if } \operatorname{sgn} r_{\nu}=-1,0 \leq \nu \leq m\right\} \\
& T_{2}:=\left\{\tau=\left(t_{0}, \cdots, t_{m}\right) \in\{0,1\}^{m+1} \mid t_{\nu}=1, \text { if } \operatorname{sgn} r_{\nu}=1,0 \leq \nu \leq m\right\}
\end{aligned}
$$

Part I. Let $n=2 \mu$. Using the preceding estimates we develop $\Delta(\rho)$ with respect to the minors of the first n rows, subsequently we develop the corresponding complementary minors with respect to its first n rows etc.; this procedure yields for $\rho \in S \backslash\{0\}$

$$
\begin{equation*}
\Delta(\rho)=\rho^{k_{0}+m \frac{n(n-1)}{2}} \Delta_{1}(\rho) \tag{3.1}
\end{equation*}
$$

with

$$
\begin{aligned}
\Delta_{1}(\rho) & =\sum_{\tau=\left(t_{0}, \cdots, t_{m}\right) \in T_{1} \cup T_{2}}(-1)^{N(\tau)}\left[\theta \left(\omega_{01}, \cdots, \omega_{0, \mu-1},\right.\right. \\
& \left.\left.\omega_{0, \mu+1-t_{0}} ; \omega_{m, \mu+t_{m}}, \omega_{m, \mu+2}, \cdots, \omega_{m n}\right)\right] e^{\rho E_{\tau}^{1}} \\
& \times \prod_{k=0}^{m-1} V\left(\omega_{k, \mu+t_{k}}, \omega_{k, \mu+2}, \cdots, \omega_{k n}, \omega_{k+1,1}, \cdots, \omega_{k+1, \mu-1}, \omega_{k+1, \mu+1-t_{k+1}}\right) \\
& =\sum_{\tau \in T_{1} \cup T_{2}}(-1)^{N(\tau)}\left[\theta_{\tau}^{1}\right] e^{\rho E_{\tau}^{1}} V_{\tau}^{1},
\end{aligned}
$$

where $N(\tau) \in \mathbb{N}$ for $\tau \in T_{1} \cup T_{2}$ and where

$$
E_{\tau}^{1}:=\sum_{k=0}^{m}\left(a_{k+1}-a_{k}\right)\left(\omega_{k, \mu+t_{k}}+\sum_{j=\mu+2}^{n} \omega_{k_{j}}\right)
$$

The analogous result holds for sectors of the form $S+c, c \in \mathbb{C}$. We note that only the terms with maximal growth for $|\rho| \rightarrow \infty, \rho \in S$, have been included explicitly within the sum (3.2); all remaining terms are subsummed within the square brackets.
In the next part of the section we assume that $S:=S_{0}$ - this implies that the enumeration of the numbers $\omega_{k j}$ and the definition of $\theta_{\tau}^{1}, V_{\tau}^{1}, E_{\tau}^{1}$ is determined
accordingly. Further we assume that $n=4 k$ - in the case $n=4 k+2$ we can proceed similarly.

With $\tau_{0}:=(1, \cdots, 1)$ we obtain

$$
\operatorname{Re}\left(\rho E_{\tau_{0}}^{1}\right)>\operatorname{Re}\left(\rho E_{\tau}^{1}\right) \quad \text { for } \tau \in\left(T_{1} \cup T_{2}\right) \backslash\left\{\tau_{0}\right\} \text { and } \rho \in \stackrel{\circ}{S}_{0} .
$$

On the boundaries of S_{0} the real parts of several terms $\rho E_{\tau}^{1}, \tau \in T_{1}$ (or $\tau \in T_{2}$) are equal, since

$$
\operatorname{Re}\left(\rho \omega_{k \mu}\right)=\operatorname{Re}\left(\rho \omega_{k, \mu+1}\right)=0 \quad \text { if } \arg \rho=0 \text { and } r_{k}>0
$$

and

$$
\operatorname{Re}\left(\rho \omega_{k \mu}\right)=\operatorname{Re}\left(\rho \omega_{k, \mu+1}\right)=0 \quad \text { if } \arg \rho=\frac{\pi}{n} \text { and } r_{k}<0
$$

Let $\tau_{j}=\left(t_{0}^{j}, t_{1}^{j}, \cdots, t_{m}^{j}\right) \in T_{j}, j=1,2$ be defined by

$$
\begin{array}{ll}
t_{\nu}^{1}:=0 & \text { if } \operatorname{sign} r_{\nu}=1 \\
t_{\nu}^{2}:=0 & \text { if } \operatorname{sign} r_{\nu}=-1
\end{array}
$$

then we easily infer

$$
\begin{aligned}
& \operatorname{Re}\left(\rho E_{\tau_{1}}^{1}\right)>\operatorname{Re}\left(\rho E_{\tau}^{1}\right) \quad \text { for } \rho \in \stackrel{\circ}{S}_{2 n-1} \text { and } \tau \in\left(T_{1} \cup T_{2}\right) \backslash\left\{\tau_{1}\right\}, \\
& \operatorname{Re}\left(\rho E_{\tau_{2}}^{1}\right)>\operatorname{Re}\left(\rho E_{\tau}^{1}\right) \quad \text { for } \rho \in \stackrel{\circ}{S}_{1} \text { and } \tau \in\left(T_{1} \cup T_{2}\right) \backslash\left\{\tau_{2}\right\},
\end{aligned}
$$

and with $0<\epsilon<\frac{\pi}{2 n}$ we have

$$
\begin{aligned}
& \operatorname{Re}\left(\rho E_{\tau}^{1}\right)>\operatorname{Re}\left(\rho E_{\sigma}^{1}\right) \quad \text { for } \tau \in T_{1}, \sigma \in T_{2} \backslash\left\{\tau_{0}\right\},-\epsilon<\arg \rho<\epsilon \\
& \operatorname{Re}\left(\rho E_{\tau}^{1}\right)<\operatorname{Re}\left(\rho E_{\sigma}^{1}\right) \quad \text { for } \tau \in T_{1} \backslash\left\{\tau_{0}\right\}, \sigma \in T_{2}, \frac{\pi}{n}-\epsilon<\arg \rho<\frac{\pi}{n}+\epsilon
\end{aligned}
$$

Hence, almost all eigenvalues λ_{k} of (1.1), (1.2) are contained in $\{\lambda \in \mathbb{C}|\arg \lambda|<$ ϵ or $|\pi-\arg \lambda|<\epsilon\}$.

Using the method described in $[12, \S 4]$ we infer from the preceding estimates that the n-th roots $\rho_{k}=\lambda_{k}^{1 / n}$ of the eigenvalues are staisfying one of the equations

$$
\sum_{\tau \in T_{1}}(-1)^{N(\tau)} \theta_{\tau}^{1} V_{\tau}^{1} e^{\rho E_{\tau}^{1}}[1]=0 \quad \text { if } \quad-\epsilon \leq \arg \rho \leq \epsilon
$$

or

$$
\begin{equation*}
\sum_{\tau \in T_{2}}(-1)^{N(\tau)} \theta_{\tau}^{1} V_{\tau}^{1} e^{\rho E_{\tau}^{1}}[1]=0 \quad \text { if } \pi-\epsilon \leq \arg \rho \leq \pi+\epsilon \tag{3.3}
\end{equation*}
$$

$\left(0<\epsilon<\frac{\pi}{2 n}\right.$ and $\left.n=4 \kappa\right)$.
Dividing the sums (3.3) by $\exp \left\{\rho \sum_{k=0}^{m}\left(a_{k+1}-a_{k}\right) \sum_{j=\mu+2}^{n} \omega_{k j}\right\}$ we get exponential sums of the form

$$
\begin{equation*}
e^{\rho c} \sum_{k=0}^{m_{j}} c_{k}^{(j)} e^{i \rho \alpha_{k}^{(j)} \beta}[1]=0, \quad j=1,2, \quad c \in \mathbb{C} \tag{3.4}
\end{equation*}
$$

where $\beta \in\left\{e^{-\frac{i \pi}{n}}, 1, e^{\frac{i \pi}{n}}\right\}, \alpha_{0}^{(j)}<\alpha_{1}^{(j)}<\cdots<\alpha_{m_{j}}^{(j)}$ and $c_{k}^{(j)} \in \mathbb{C}$ for $j=1,2$.
For example we have for $n=4 \kappa$ and $j=1$

$$
\begin{align*}
\alpha_{m_{1}}^{(1)}-\alpha_{0}^{(1)} & =-i\left(E_{\tau_{1}}^{1}-E_{\tau_{0}}^{1}\right)=-i \sum_{\substack{k=0 \\
r_{k}>0}}^{m}\left(a_{k+1}-a_{k}\right)\left(\omega_{k \mu}-\omega_{k, \mu+1}\right) \tag{3.5}\\
& =-i \sum_{\substack{k=0 \\
r_{k}>0}}^{m}\left(a_{k+1}-a_{k}\right) r_{k}^{1 / n} 2 i=2 R_{+},
\end{align*}
$$

and for $n=4 \kappa$ and $j=2$ we get

$$
\begin{align*}
\alpha_{m_{2}}^{(2)}-\alpha_{0}^{(2)} & =-i e^{i \frac{\pi}{n}}\left(E_{\tau_{0}}^{1}-E_{\tau_{2}}^{1}\right) \\
& =-i e^{i \frac{\pi}{n}} \sum_{\substack{k=0 \\
r_{k}<0}}^{m}\left(a_{k+1}-a_{k}\right)\left(\omega_{k, \mu+1}-\omega_{k \mu}\right) \tag{3.6}\\
& =-i e^{i \frac{\pi}{n}} 2 i e^{-i \frac{\pi}{n}} \sum_{\substack{k=0 \\
r_{k}<0}}^{m}\left(a_{k+1}-a_{k}\right) r_{k}^{1 / n}=2 R_{-} .
\end{align*}
$$

In the case $n=4 \kappa+2$ we obtain similar formulas but the role of R_{+}and R_{-}has to be interchanged.

The coefficients $c_{0}^{(j)}, c_{m_{j}}^{(j)}$ of the relevant exponential terms of (3.4) can be determined explicitly. On account of (3.2) there are nonvanishing constants $k_{\alpha}^{(i)}$ defined by products of Vandermonde determinants, such that the following relations hold:
(i) For $n=2 \mu$ we get
a) If $r_{0}>0, r_{m}>0$

$$
\begin{aligned}
& c_{0}^{(1)}=\theta\left(\omega_{01}, \cdots, \omega_{0 \mu} ; \omega_{m \mu+1}, \cdots, \omega_{m n}\right) k_{1}^{(1)}=: k_{1}^{(1)} \theta_{1}, \\
& c_{m_{1}}^{(1)}=\theta\left(\omega_{01}, \cdots, \omega_{0 \mu-1}, \omega_{0 \mu+1} ; \omega_{m \mu}, \omega_{m \mu+2}, \cdots, \omega_{m n}\right) k_{2}^{(1)}=: k_{2}^{(1)} \theta_{2}, \\
& c_{0}^{(2)}=k_{3}^{(2)} \theta_{1}, \quad c_{m_{2}}^{(2)}=c_{0}^{(1)},
\end{aligned}
$$

b) if $r_{0}>0, r_{m}<0$

$$
\begin{aligned}
& c_{0}^{(1)}=k_{4}^{(1)} \theta_{1}, \quad c_{m_{1}}^{(1)}=\theta\left(\omega_{01}, \cdots, \omega_{0 \mu-1}, \omega_{0 \mu+1} ; \omega_{m \mu+1}, \cdots, \omega_{m n}\right) k_{5}^{(1)}=: k_{5}^{(1)} \theta_{3} \\
& c_{0}^{(2)}=\theta\left(\omega_{01}, \cdots, \omega_{0 \mu} ; \omega_{m \mu}, \omega_{m \mu+2}, \cdots, \omega_{m n}\right) k_{6}^{(2)}=: k_{6}^{(2)} \theta_{4}, \quad c_{m_{2}}^{(2)}=c_{0}^{(1)},
\end{aligned}
$$

c) if $r_{0}<0, r_{m}>0$

$$
c_{0}^{(1)}=k_{7}^{(1)} \theta_{1}, \quad c_{m_{1}}^{(1)}=k_{8}^{(1)} \theta_{4}, \quad c_{0}^{(2)}=k_{9}^{(2)} \theta_{3}, \quad c_{m_{2}}^{(2)}=c_{0}^{(1)}
$$

d) if $r_{0}<0, r_{m}<0$

$$
c_{0}^{(1)}=k_{10}^{(1)} \theta_{1}, \quad c_{m_{1}}^{(1)}=k_{11}^{(1)} \theta_{1}, \quad c_{0}^{(2)}=k_{12}^{(2)} \theta_{2}, \quad c_{m_{2}}^{(2)}=c_{0}^{(1)}
$$

(ii) For $n=4 \kappa+2$ we get
a) if $r_{0}>0, r_{m}>0$

$$
c_{0}^{(1)}=k_{1}^{(1)} \theta_{1}, \quad c_{m_{1}}^{(1)}=k_{2}^{(1)} \theta_{1}, \quad c_{0}^{(2)}=k_{3}^{(2)} \theta_{2}, \quad c_{m_{2}}^{(2)}=c_{0}^{(1)},
$$

b) if $r_{m}<0<r_{0}$

$$
c_{0}^{(1)}=k_{4}^{(1)} \theta_{1}, \quad c_{m_{1}}^{(1)}=k_{5}^{(1)} \theta_{4}, \quad c_{0}^{(2)}=k_{6}^{(2)} \theta_{3}, \quad c_{m_{2}}^{(2)}=c_{0}^{(1)},
$$

c) if $r_{0}<0<r_{m}$

$$
c_{0}^{(1)}=k_{7}^{(1)} \theta_{1}, \quad c_{m_{1}}^{(1)}=k_{8}^{(1)} \theta_{3}, \quad c_{0}^{(2)}=k_{9}^{(2)} \theta_{4}, \quad c_{m_{2}}^{(2)}=c_{0}^{(1)},
$$

d) if $r_{0}<0, r_{m}<0$

$$
c_{0}^{(1)}=k_{10}^{(1)} \theta_{1}, \quad c_{m_{1}}^{(1)}=k_{11}^{(1)} \theta_{2}, \quad c_{0}^{(2)}=k_{12}^{(2)} \theta_{1}, \quad c_{m_{2}}^{(1)}=c_{0}^{(1)} .
$$

Remark 1. The determinants θ_{i} in (3.5) are not independent. Compare [12, p. 59] and [13]. Substituting $\phi_{0}=\frac{2 \pi}{n} k_{0}$ where $k_{0}=k_{1}+\cdots+k_{n}$ we get
(i) For a) $\theta_{2}= \pm \theta_{1} e^{i \phi_{0}}$, for b) $\theta_{3}= \pm \theta_{4} e^{i \phi_{0}}$, for c) $\theta_{4}= \pm \theta_{3} e^{i \phi_{0}}$ and for d) $\theta_{1}= \pm \theta_{2} e^{i \phi_{0}}$. The proofs are analogous to [12, p. 60] or [13, p. 11].
(ii) Let additionally $\alpha_{i}, \beta_{i} \in \mathbb{R}, 1 \leq i \leq n$, then we get for b) $\theta_{3}= \pm \bar{\theta}_{1}$ and for c) $\theta_{4}= \pm \bar{\theta}_{1}$.

Definition 2. For $n=2 \mu$ (1.1), (1.2) is called regular if $r_{0} r_{m}>0$ and $\theta_{1} \neq 0$ or $r_{0} r_{m}<0$ and $\theta_{1} \neq 0 \neq \theta_{3}$.

Remark 3. (i) For $\alpha_{i}, \beta_{i} \in \mathbb{R}, 1 \leq i \leq k$, the assumption $\theta_{1} \neq 0$ is sufficient for the regularity of (1.1), (1.2). If the boundary conditions (1.2) are separated and therefore Birkhoff-regular in the sense of [12, §4], then the determinants θ_{i} in (3.7) are products of two nonvanishing determinants (cf. [12, p. 96]), and (1.1), (1.2) is regular.
(ii) Definition 2 is independent of the sectors used in the definition of $\theta_{1}, \cdots, \theta_{4}$. We define

$$
\begin{aligned}
R_{+} & :=\sum_{\substack{k=0 \\
r_{k}>0}}^{m}\left(a_{k+1}-a_{k}\right)\left|r_{k}\right|^{1 / n}=\int_{0}^{1} \sqrt[n]{r_{+}(t)} d t, \\
R_{-} & :=\sum_{\substack{k=0 \\
r_{k}<0}}^{m}\left(a_{k+1}-a_{k}\right)\left|r_{k}\right|^{1 / n}=\int_{0}^{1} \sqrt[n]{r_{-}(t)} d t,
\end{aligned}
$$

and we assume without loss of generality $R_{+} \geq R_{-}>0$ (otherwise we substitute $\lambda \rightarrow-\lambda)$.

The distribution of the zeros of exponential sums is well-known; if we have exponential sums of the special form (3.4) we can use for example the following lemma which results from [14, pp. 25-28].

Lemma 4. Let $n_{1}<n_{2}<\cdots<n_{p}$ and $c_{\nu} \in \mathbb{C}, 1 \leq \nu \leq p$ with $c_{1} \neq 0 \neq c_{p}$. Then the zeros ρ_{k} of

$$
f: \mathbb{C} \rightarrow \mathbb{C}, \quad \rho \longmapsto \sum_{\nu=1}^{p}\left[c_{\nu}\right] e^{i n_{\nu} \rho}
$$

are fulfilling the asymptotic estimates

$$
\rho_{k}=\frac{2 k \pi}{n_{p}-n_{1}}\left[1+O\left(\frac{1}{|k|}\right)\right], \quad k \in \mathbb{Z} \backslash\{0\} .
$$

From (3.6) and the preceding results we infer
Theorem 5. For $n=2 \mu$ every regular eigenvalue problem (1.1), (1.2) has two sequences $\left(\lambda_{k}^{(j)}\right)_{k \in \mathbb{N}}, j=1,2$, of eigenvalues satisfying

$$
\begin{equation*}
\lambda_{k}^{(1)}=(-1)^{n / 2}\left(\frac{k \pi}{R_{+}}\right)^{n}\left[1+O\left(\frac{1}{k}\right)\right], \quad k \in \mathbb{N} \tag{3.8}
\end{equation*}
$$

and

$$
\lambda_{k}^{(2)}=-(-1)^{n / 2}\left(\frac{k \pi}{R_{-}}\right)^{n}\left[1+O\left(\frac{1}{k}\right)\right] .
$$

We note that in the definite case $R_{-}=0$ our proof of Theorem 5 has to be modified only slightly. In this case the sequence $\left(\lambda_{k}^{(2)}\right)_{k \in N}$ has to be omitted.

Part II. Let $n=2 \mu-1, \mu \geq 2$. For the proof of asymptotic estimates for $\Delta(\rho), \rho \in S$, we use the same procedure as in the case of even order problems. In addition to the abbreviations $\tau_{0}, \tau_{1}, \tau_{2}, E_{\tau}^{1}, \theta_{\tau}^{1}, V_{\tau}^{1}$ introduced in Part I, we set for $\tau=\left(t_{0}, \cdots, t_{m}\right) \in T_{1} \cup T_{2}$

$$
\begin{gathered}
E_{\tau}^{2}=\sum_{k=0}^{m}\left(a_{k+1}-a_{k}\right)\left\{\omega_{k, \mu-1+t_{k}}+\sum_{j=\mu+1}^{n} \omega_{k j}\right\}, \\
V_{\tau}^{2}=\prod_{k=0}^{m-1} V\left(\omega_{k, \mu-1+t_{k}}, \omega_{k, \mu+1}, \cdots, \omega_{k n}, \omega_{k+1,1}, \cdots, \omega_{k+1, \mu-2}, \omega_{k+1, \mu-t_{k+1}}\right)
\end{gathered}
$$

and

$$
\theta_{\tau}^{2}=\theta\left(\omega_{01}, \cdots, \omega_{0, \mu-2}, \omega_{0, \mu-t_{0}} ; \omega_{m, \mu-1+t_{m}}, \omega_{m, \mu+1}, \cdots, \omega_{m n}\right)
$$

Expanding $\Delta(\rho)$ we infer as with (3.2) for $\rho \in S \backslash\{0\}$

$$
\begin{equation*}
\Delta(\rho)=\rho^{k_{0}+\frac{m \cdot n(n-1)}{2}}(-1)^{N} \Delta_{1}(\rho), \tag{3.9}
\end{equation*}
$$

where

$$
\begin{gathered}
\Delta_{1}(\rho)=\sum_{j=1}^{2} \sum_{\tau \in T_{1} \cup T_{2}}(-1)^{N_{j}(\tau)} \theta_{\tau}^{j} V_{\tau}^{j} e^{\rho E_{\tau}^{j}}[1], \\
N, N_{1}(\tau), N_{2}(\tau) \in \mathbb{N}, \quad N_{1}\left(\tau_{0}\right)=N_{2}\left(\tau_{0}\right)=0,
\end{gathered}
$$

$$
N_{1}\left(\tau_{1}\right)=N_{2}\left(\tau_{1}\right)=m+1-\sum_{j=0}^{m} t_{j}^{1}
$$

and

$$
N_{1}\left(\tau_{2}\right)=N_{2}\left(\tau_{2}\right)=m+1-\sum_{j=0}^{m} t_{j}^{2}
$$

In the following we assume for simplicity that $n=4 \kappa-1$; in the case $n=4 \kappa+1$ we can proceed in an analogous way.

Let $0<\epsilon<\frac{\pi}{2 n}, S:=S_{0}$ and let the n-th roots $\omega_{1}, \cdots, \omega_{n}$ and $\hat{\omega}_{1}, \cdots, \hat{\omega}_{n}$ of 1 and -1 respectively be enumerated such that for $0 \leq \arg \rho \leq \frac{\pi}{2 n}$

$$
\operatorname{Re}\left(\rho \omega_{1}\right) \leq \cdots \leq \operatorname{Re}\left(\rho \omega_{\mu}\right) \leq 0 \leq \operatorname{Re}\left(\rho \omega_{\mu+1}\right) \leq \cdots \leq \operatorname{Re}\left(\rho \omega_{n}\right)
$$

and

$$
\operatorname{Re}\left(\rho \hat{\omega}_{1}\right) \leq \cdots \leq \operatorname{Re}\left(\rho \hat{\omega}_{\mu-1}\right) \leq 0 \leq \operatorname{Re}\left(\rho \hat{\omega}_{\mu}\right) \leq \cdots \leq \operatorname{Re}\left(\rho \hat{\omega}_{n}\right)
$$

Using the identities $\omega_{\mu}=-\hat{\omega}_{\mu}, \omega_{\mu-1}=-\hat{\omega}_{\mu+1}, \omega_{\mu+1}=-\hat{\omega}_{\mu-1}$ we obtain from the definition of R_{+}, R_{-}and E_{τ}^{j} by subtracting

$$
E:=\sum_{k=0}^{m} \sum_{j=\mu+2}^{n}\left(a_{k+1}-a_{k}\right) \omega_{k j}
$$

from E_{τ}^{j} :

$$
\begin{align*}
& E_{\tau_{0}}^{1}-E=\omega_{\mu+1} R^{+}+\hat{\omega}_{\mu+1} R_{-}, \tag{3.10}\\
& E_{\tau_{1}}^{1}-E=\omega_{\mu} R^{+}+\hat{\omega}_{\mu+1} R_{-}, \\
& E_{\tau_{2}}^{1}-E=\omega_{\mu+1} R^{+}+\hat{\omega}_{\mu} R_{-}, \\
& E_{\tau_{0}}^{2}-E=\left(\omega_{\mu}+\omega_{\mu+1}\right) R_{+}+\left(\hat{\omega}_{\mu}+\hat{\omega}_{\mu+1}\right) R_{-}=E_{\tau_{0}}^{1}-E+\omega_{\mu}\left(R_{+}-R_{-}\right), \\
& E_{\tau_{1}}^{2}-E=\left(\omega_{\mu-1}+\omega_{\mu+1}\right) R_{+}+\left(\hat{\omega}_{\mu}+\hat{\omega}_{\mu+1}\right) R_{-}=E_{\tau_{2}}^{1}-E+\omega_{\mu-1}\left(R_{+}-R_{-}\right), \\
& E_{\tau_{2}}^{2}-E=\left(\omega_{\mu}+\omega_{\mu+1}\right) R_{+}+\left(\hat{\omega}_{\mu-1}+\hat{\omega}_{\mu+1}\right) R_{-}=E_{\tau_{1}}^{1}-E+\omega_{\mu+1}\left(R_{+}-R_{-}\right) .
\end{align*}
$$

Case II $A: R_{+}>R_{-}$(and $n=4 \kappa-1$). In this case we infer from (3.10) that

$$
\operatorname{Re}\left(\rho E_{\tau}^{j}\right), \quad j \in\{1,2\}, \quad \tau \in T_{1} \cup T_{2} \quad(\text { and } \rho \neq 0)
$$

is maximal if and only if
(i) $\quad E_{\tau}^{j}=E_{\tau_{0}}^{1} \quad$ for $0<\arg \rho<\frac{\pi}{2 n}$,
(ii) $\quad E_{\tau}^{j}=E_{\tau_{0}}^{2} \quad$ for $\frac{\pi}{2 n}<\arg \rho<\frac{\pi}{n}$,
(iii) $E_{\tau}^{j}=E_{\tau_{2}}^{1}$ for $-\frac{\pi}{2 n}<\arg \rho<0$,
(iv) $E_{\tau}^{j}=E_{\tau_{1}}^{2}$ for $-\frac{\pi}{n}<\arg \rho<-\frac{\pi}{2 n}$,
(v) $\quad E_{\tau}^{j}=E_{\tau_{2}}^{2} \quad$ for $\frac{\pi}{n}<\arg \rho<\frac{3 \pi}{2 n}$.

Further we have for $j \in\{1,2\}$ and $\tau \in T_{1} \cup T_{2}$

$$
\operatorname{Re}\left(e^{-i \frac{\pi}{2 n}} E_{\tau_{1}}^{2}\right)=\operatorname{Re}\left(e^{-i \frac{\pi}{2 n}} E_{\tau_{2}}^{1}\right)>\operatorname{Re}\left(e^{-i \frac{\pi}{2 n}} E_{\tau}^{j}\right)
$$

for $(\tau, j) \notin\left\{\left(\tau_{1}, 2\right),\left(\tau_{2}, 1\right)\right\}$,

$$
\begin{align*}
& \operatorname{Re}\left(E_{\tau}^{1}\right)=\operatorname{Re}\left(E_{\tau_{0}}^{1}\right), \quad \tau \in T_{2}, \\
& \operatorname{Re}\left(e^{i \frac{\pi}{2 n}} E_{\tau_{0}}^{1}\right)=\operatorname{Re}\left(e^{i \frac{\pi}{2 n}} E_{\tau_{0}}^{2}\right)>\operatorname{Re}\left(e^{i \frac{\pi}{2 n}} E_{\tau}^{j}\right) \tag{3.12}
\end{align*}
$$

for $(\tau, j) \notin\left\{\left(\tau_{0}, 1\right),\left(\tau_{0}, 2\right)\right\}$ and

$$
\operatorname{Re}\left(e^{i \frac{\pi}{n}} E_{\tau_{0}}^{2}\right)=\operatorname{Re}\left(e^{i \frac{\pi}{n}} E_{\tau}^{2}\right), \quad \tau \in T_{2}
$$

If $R_{+}<R_{-}$we obtain an analogous result.
Case II B: $R_{+}=R_{-}$(and $n=4 \kappa-1$). According to (3.10) and (3.11) we have in this case

$$
\begin{equation*}
E_{\tau_{0}}^{1}=E_{\tau_{0}}^{2}, \quad E_{\tau_{1}}^{1}=E_{\tau_{2}}^{2} \quad \text { and } \quad E_{\tau_{2}}^{1}=E_{\tau_{1}}^{2} \tag{3.13}
\end{equation*}
$$

and $\operatorname{Re}\left(\rho E_{\tau}^{j}\right), j \in\{1,2\}, \tau \in T_{1} \cup T_{2}$ is maximal if and only if

$$
\begin{equation*}
E_{\tau}^{j}=E_{\tau_{0}}^{1}=E_{\tau_{0}}^{2} \quad \text { for } 0<\arg \rho<\frac{\pi}{n} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{\tau}^{j}=E_{\tau_{2}}^{1}=E_{\tau_{1}}^{2} \quad \text { for }-\pi<\arg \rho<0 \tag{ii}
\end{equation*}
$$

Further we infer from the definition of E_{τ}^{1} and E_{τ}^{2} that $\operatorname{Re} E_{\tau}^{1}=\operatorname{Re} E_{\sigma}^{2}$ and $\operatorname{Re}\left(e^{i \frac{\pi}{n}} E_{\sigma}^{1}\right)=\operatorname{Re}\left(e^{i \frac{\pi}{n}} E_{\tau}^{2}\right)$ for $\sigma \in T_{1}$ and $\tau \in T_{2}$.

Now we assume again that the coefficients of the dominant exponential terms of $\Delta(\rho), \rho \in S_{0} \cup S_{2 n-1}$, do not vanish.

Definition 6. a) For $n=4 \kappa-1$ problem (1.1), (1.2) is called regular if
(i) $\quad \theta_{\tau_{0}}^{1}, \theta_{\tau_{0}}^{2}, \theta_{\tau_{2}}^{1}, \theta_{\tau_{1}}^{2} \neq 0$ and $R_{+} \neq R_{-}$
or

$$
\begin{equation*}
\theta_{\tau_{0}}^{1} U_{\tau_{0}}^{1}+\theta_{\tau_{0}}^{2} U_{\tau_{0}}^{2} \neq 0 \neq \theta_{\tau_{2}}^{1} U_{\tau_{2}}^{1}+(-1)^{\sum_{k=0}^{m}\left(t_{k}^{1}-t_{k}^{2}\right)} \theta_{\tau_{1}}^{2} U_{\tau_{1}}^{2} \text { and } R_{+}=R_{-} . \tag{ii}
\end{equation*}
$$

b) For $n=4 \kappa+1$ problem (1.1), (1.2) is called regular if
(iii) $\quad \theta_{\tau_{0}}^{1}, \theta_{\tau_{0}}^{2}, \theta_{\tau_{1}}^{1}, \theta_{\tau_{2}}^{2} \neq 0$ and $R_{+} \neq R_{-}$
or
(iv) $\quad \theta_{\tau_{0}}^{1} U_{\tau_{0}}^{1}+\theta_{\tau_{0}}^{2} U_{\tau_{0}}^{2} \neq 0 \neq \theta_{\tau_{1}}^{1} U_{\tau_{1}}^{1}+(-1)^{\sum_{k=0}^{m}\left(t_{k}^{1}-t_{k}^{2}\right)} \theta_{\tau_{2}}^{2} U_{\tau_{2}}^{2}$ and $R_{+}=R_{-}$.

Remark 7. Definition 7 is independent of the sector S_{0} used for the definition of the constants $\theta_{\tau}^{j}, U_{\tau}^{j}$.

It is possible to derive relations between the nonvanishing constants in Definition 6 ; we omit details (cf. Remark 1).

Theorem 8. For $n=2 \mu-1, \mu \geq 2$ every regular boundary eigenvalue problem has a countably infinite set of eigenvalues.
a) If $R:=R_{+}=R_{-}$, then there are two sequences $\left(\lambda_{k}^{(j)}\right), j=1,2$ of eigenvalues satisfying for $k \in \mathbb{N}$

$$
\begin{equation*}
\lambda_{k}^{(j)}=(-1)^{j}\left(\frac{k \pi}{R \cos (\pi / 2 n)}\right)^{n}\left\{1+O\left(\frac{1}{k}\right)\right\}, \quad j=1,2 . \tag{3.15}
\end{equation*}
$$

b) If $R_{+} \neq R_{-}$and $R_{0}:=\min \left\{R_{+}, R_{-}\right\}>0$, then there are four sequences $\left(\lambda_{k}^{(j)}\right), 3 \leq j \leq 6$, of eigenvalues satisfying for $k \in \mathbb{N}$

$$
\begin{align*}
& \lambda_{k}^{(j)}=(-1)^{j}\left(\frac{k \pi}{R_{0} \cos (\pi / 2 n)}\right)^{n}\left\{1+O\left(\frac{1}{k}\right)\right\}, \quad j=3,4 ., \tag{3.16}\\
& \lambda_{k}^{(j)}=i(-1)^{j}\left(\frac{2 k \pi}{\left|R_{+}-R_{-}\right|}\right)^{n}\left\{1+\frac{\xi_{j}}{k}+O\left(\frac{1}{k^{2}}\right)\right\}, \quad j=5,6 . \tag{3.17}
\end{align*}
$$

The constants ξ_{5}, ξ_{6} can be evaluated explicitly and almost all eigenvalues $\lambda_{k}^{(j)}$, $j=5,6$, are simple.
Proof: Using the preceding estimates for $\Delta(\rho)$ we obtain (3.15) and (3.16) as with the proof of Theorem 5.

For the proof of (3.17) we discuss exemplarily the case $n=4 \kappa-1, R_{+} \neq R_{-}$. In this case we infer from (3.11), (3.12) that (1.1), (1.2) has four sequences $\left(\lambda_{k}^{(j)}\right)$, $3 \leq j \leq 6$, of eigenvalues. By $\left(\lambda_{k}^{(6)}\right)$ we denote the sequence having the positive imaginary axis as asymptote; let $\lambda_{k}^{(6)}=\left\{\rho_{k}^{(6)}\right\}^{n}$ where

$$
\frac{\pi}{2 n}-\epsilon \leq \arg \rho_{k}^{(6)} \leq \frac{\pi}{2 n}+\epsilon, \quad(k \geq K)
$$

According to (3.9)-(3.12) $\rho_{k}^{(6)}$ must be the solution of an equation of the form

$$
0=\theta_{\tau_{0}}^{1} V_{\tau_{0}}^{1} e^{\rho E_{\tau_{0}}^{1}}[1]+\theta_{\tau_{0}}^{2} V_{\tau_{0}}^{2} e^{\rho E_{\tau_{0}}^{2}}=\theta_{\tau_{0}}^{2} V_{\tau_{0}}^{2} e^{\rho E_{\tau_{0}}^{1}}\left\{\frac{\theta_{\tau_{0}}^{1} V_{\tau_{0}}^{1}}{\theta_{\tau_{0}}^{2} V_{\tau_{0}}^{2}}[1]+e^{\rho\left(E_{\tau_{0}}^{2}-E_{\tau_{0}}^{1}\right)}\right\} .
$$

Since $E_{\tau_{0}}^{2}-E_{\tau_{0}}^{1}=\omega_{\mu}\left(R_{+}-R_{-}\right)$this equation is equivalent to

$$
\begin{equation*}
e^{\rho \omega_{\mu}\left(R_{+}-R_{-}\right)}=\exp \left\{-i e^{-i \frac{\pi}{2 n}} \rho\left(R_{+}-R_{-}\right)\right\}=[A] \tag{3.18}
\end{equation*}
$$

with $A=-\left(\theta_{\tau_{0}}^{1} V_{\tau_{0}}^{1}\right) /\left(\theta_{\tau_{0}}^{2} V_{\tau_{0}}^{2}\right)$. The solutions of (3.18) with $\frac{\pi}{2 n}-\epsilon \leq \rho_{|k|}^{(6)} \leq \frac{\pi}{2 n}+\epsilon$ satisfy

$$
\begin{align*}
& \rho_{|k|}^{(6)}: \tag{3.19}\\
&=\frac{e^{i \frac{\pi}{2 n}}}{-i\left(R_{+}-R_{-}\right)}\left\{2 k \pi i+\ln _{0} A+O\left(\frac{1}{|k|}\right)\right\} \\
&=-e^{i \frac{\pi}{2 n}} \frac{2 k \pi}{R_{+}-R_{-}}\left\{1+\frac{\ln _{0} A}{2 k \pi i}+O\left(\frac{1}{k^{2}}\right)\right\},
\end{align*}
$$

where $k \in \mathbb{N}$ for $R_{+}<R_{-}$and $-k \in \mathbb{N}$ for $R_{+}>R_{-}$. (3.19) implies (3.17) for $j=6$ with

$$
\xi_{6}= \pm \frac{n \ln _{0} A}{2 \pi i}
$$

In all remaining cases we prove (3.17) similarly.
Remark 9. (i) The method used in this paper can also be applied for the discussion of boundary eigenvalue problems (1.1), (1.2) with a piecewise continuous weight function r with $|r(x)| \geq c>0$ for $x \in[0,1]$. In this more general situation one can assume without loss of generality that the coefficient of $y^{(n-1)}$ in $\ell(y)$ is zero (if the coefficients f_{ν} are sufficiently smooth).
(ii) For $k \geq K$ the multiplicity of the eigenvalues is bounded by $\#\left(T_{1} U T_{2}\right)-1$ (in formula (3.15)) or by $\# T_{1}-1$ or $\# T_{2}-1$ (in Theorem 5 or formula (3.16)).

If we have for example

$$
r(x)=\left\{\begin{aligned}
-a<0 & \text { for } 0 \leq x \leq x_{1} \\
b>0 & \text { for } x_{1}<x \leq 1
\end{aligned}\right.
$$

then almost all eigenvalues of (1.1), (1.2) are simple and satisfy asymptotic estimates of the form

$$
\lambda_{k}=\lambda_{k}^{0}\left\{1+\frac{a}{k}+O\left(\frac{1}{k^{2}}\right)\right\} .
$$

(iii) Just as in the case of definite problems it is possible to weaken the hypothesis of regularity by assuming that the coefficients of the dominant terms in the expansion of $\Delta_{1}(\rho)$ have the form

$$
\sum_{k=0}^{s}\left(\frac{\gamma_{k}}{\rho^{k}}+O\left(\frac{1}{\rho^{s+1}}\right)\right), \quad s \in \mathbb{N} \text { fixed }
$$

where $\sum_{k=0}^{s}\left|\lambda_{k}\right|>0$. Details will be discussed elsewhere.
(iv) In the case $n=1$ the asymptotic behaviour of the eigenvalues of regular problems (1.1), (1.2) can be determined easily. We omit details.

REFERENCES

[1] F.V. Atkinson and D. Jabon, Indefinite Sturm-Liouville problems, Argonne National Lab., Report ANL-84 (1984), 31-46.
[2] R. Beals, Indefinite Sturm-Liouville problems and half-range completeness, J. Diff. Equations, 56 (1985), 391-407.
[3] G.D. Birkhoff, On the asymptotic character of the solutions of certain linear differential equations containing a parameter, Trans. Amer. Math. Soc., 9 (1908), 219-231.
[4] G.D. Birkhoff, Boundary value and expansion problems of ordinary linear differential equations containing a parameter, Trans. Amer. Math. Soc., 9 (1908), 373-395.
[5] H.E. Benzinger, Sturm-Liouville problems with indefinite weight functions in Banach spaces, Argonne National Lab., Report ANL-84 (1984), 47-55.
[6] W. Eberhard, G. Freiling, and A. Schneider, Expansion theorems for a class of regular indefinite eigenvalue problems, Diff. Integral Equations, 3 (1990), 1181-1200.
[7] M. Faierman, On the eigenvalues of non selfadjoint problems involving indefinite weights, Math. Ann., 282 (1988), 369-377.
[8] J. Fleckinger and M.L. Lapidus, Eigenvalues of elliptic boundary value problems with indefinite weight functions, Trans. Amer. math. Soc., 295 (1986), $305-323$.
[9] H.G. Kaper, M.K. Kwong, C.G. Lekkerkerker, and A. Zettl, Full- and half-range eigenfunction expansions of Sturm-Liouville problems with indefinite weights, Proc. Roy. Soc. Edinb. Sect. A, 98 (1984), 6988.
[10] R.E. Langer, The boundary problem associated with a differential equation in which the coefficient of the parameter changes sign, Trans. Amer. Math. Soc., 31 (1929), 124.
[11] A.B. Mingarelli, Asymptotic distribution of the eigenvalues of non-definite Sturm-Liouville problems, in "Ordinary Differential Equations and Operators," W.N. Everitt and R.T. Lewis (eds.), Lecture Notes in Math., 1032, Springer, Berlin (1983), 375-383.
[12] M.A. Naimark, "Linear Differential Operators," Part I, F. Ungar, New York, 1967.
[13] T. Stoeber, "Ein indefinites Eigenwertproblem mit einem Vorzeichenwechsel in der Gewichtsfunktion," Diplomarbeit 1988, Universität-GH-Duisburg, Fachbereich Mathematik.
[14] J.D. Tamarkin, Some general problems of the theory of ordinary linear differential equations and expansions of an arbitrary function in series of fundamental functions, Math. Zeitschr., 27 (1927), 1-54.

[^0]: Received May 1, 1989.
 AMS Subject Classifications: 34B25.

