ON THE DISTRIBUTION OF THE QUOTIENT OF TWO CHANCE
VARIABLES

By J. H. Curmiss
Cornell University

1. Introduction. Although the quotient of two chance variables appears fre-
quently in mathematical statistics, the methods used in the literature to derive
the distributions of quotients have usually been special ones devised for the
particular variables under consideration, and in no way indicative of the general
result. It is the purpose of this paper to study the distribution of the quotient
of two variables for itself alone, with attention first to the question of existence,
and then to the accurate derivation of a number of general formulas for the
frequency function and d.f.' The principal formulas which we shall derive may
be described briefly as follows (the numerals refer to the equation numbers in
the text):

(3.1). The frequency function of the quotient of two variables which have an
absolutely continuous joint probability function.

(4.11), (4.12). The df. of the quotient of a pair of arbitrary independent
variables, expressed in terms of the d.f.’s of these variables.

(5.2). The d.f. of the quotient of a pair of arbitrary independent variables,
expressed in terms of the c.f.’s® of these variables.

(6.4). The limiting form of the d.f. of a quotient of two sums of arbitrary
identical independent variables.

(7.1). A formula analogous to (3.1) for the product of two chance variables.

(7.2). A formula analogous to (4.11) for the product of two chance variables.

2. The existence of the quotient distribution. The function Z = X/Y is a
continuous function of X and Y, finite and uniquely defined for all points
(X, Y) such that ¥ ¢ 0. Therefore if P{Y = 0} = 0, the pr.f.* P(S) of the
joint distribution of X and Y determines a probability distribution for Z (see
[1, pp. 12-13]). To avoid irrelevant difficulties, we shall assume in the sequel
that P{Y = 0} = 0 unless definite statement is made to the contrary. This
assumption involves no real restriction on our work, for in situations in which,
a priori, the assumption is not fulfilled, we can always replace the distribution

! Le., distribution function. The underlying axioms, terminology, and abbreviations
in this paper are uniform with those of Cramér’s book [1]. For the definition of d.f., see
1, p. 11].

? Le., characteristic functions. See [1, p. 23].

3 Le., probability function; {1, o. 9).
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410 J. H. CURTISS

of ¥ by the conditional distribution of Y relative to the hypothesis that ¥ 5 0.
In such cases, then, the distribution of Z which we are about to study is to be
interpreted as a conditional distribution relative to this hypothesis.

We shall suppose that the space of X is the z-axis, that of ¥, the y-axis, and
that of Z, the z-axis. It is quite readily seen that the set of points in the (z, y)
plane which corresponds to the set Z < z consists of

(i) the infinite region® in the upper half-plane which is bounded by the nega-
tive = axis and by the line z = zy;

(ii) the-infinite region in the lower half-plane bounded by the positive z-axis
and the line x = zy;

(iii) the line z = zy except for the origin.

Denoting this set by S., we have

H(:) = f dP(S) = P(S,),

where H(z) is the d.f. of Z. The present paper, from the viewpoint of analysis,
is simply a study of the Lebesgue-Stieltjes integral appearing in this equation.

3. The continuous case. Suppose first that P(S8) is absolutely continuous.
This means that the joint distribution of X and Y has a frequency function
¢(x, y), which is defined almost everywhere, is non-negative, and has the prop-

erty that P(S) = f o(z, y) dz dy. In general, this integral must be taken int
8

the Lebesgue sense, but of course if the discontinuities of ¢ form a set of two-
dimensional measure zero, and if the Jordan content of any bounded portion of
the boundary of S is zero, then this integral is just an ordinary improper double
Riemann integral.’” In particular, these conditions are fulfilled if ¢ is continuous
everywhere and if S = 8,.

The transformation 2 = wy, y = v, gives a continuous one-to-one map of S,
onto a set S, of the (u, ) plane which consists of the closed half-plane lying to
the left of the line ¥ = 2z, but with the u-axis deleted. The Jacobian of the
transformation has the absolute value |v|. By the theorem for change of
variables in Lebesgue integrals {4, pp. 653-655], we have

H(z) =j; <p(x,y)dxdy=f® v o(uv, v) du dv.

By Fubini’s Theorem [6, pp. 203-208], the last integral can be expressed as a
repeated integral. Integrating first with respect to v, we obtain this result
TrEOREM 3.1: If the joint variable (X, Y) has the frequency function o(z, y),

then
H(z) = [; [f_:n | o] o(uv, v) dv:l du,

¢ 1.e., open connected set.
5 See [4, pp. 476-478: p. 575].
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and consequently H(z) is an absolutely continuous function of z. The frequency
Junction of the distribution of Z exists almost everywhere, and is given by the for-
mula

+c0
(3.1) h) = F'(z) = [ 0| (e, v) db.

We remark that if X and Y are independent, so that ¢(z, y) = f(x)-g(y),
where f and g are respectively the frequency functions of X and Y, then (3.1)
may be written in the form

oo .
(3.2) me) = [ 1| f(en)g) do.

This case was considered recently by Huntington [5], with the additional restric-
tions that g(y) = 0, ¥y < 0, and that f(z) and g(y) be continuous.

All the familiar special quotient distributions of applied mathematical sta-
tistics, such as Student’s ¢ and Fisher’s 2z, may conveniently and rigorously be
derived by means of (3.1) and (3.2); in each case the required result follows
immediately after an obvious change of variables in the integrand. We pause
here only to point out explicitly the result obtained when X and Y have a normal
joint distribution with variances o% , o% , and correlation coefficient p. If the
means E(X) and E(Y) are not equal to zero, it is apparently impossible to
evaluate (3.1) in closed form; this case has been studied in some detail by
Geary [3] and by Fieller [2]. But if E(X) = E(Y) = 0, then

B = ZVi= g L
oy (z - p?) + ox(1 — p%)

Y

which is the frequeney function of a Cauchy distribution with mode at the
point z = pox/oy, the value of the regression coefficient of X on ¥, If X and Y
are independent, then p = 0, and the frequency function becomes

3.3) ) = xor. 1

7 2 7
T gy? +ox

4. The quotient of two arbitrary independent variables. We shall hence-
forth drop the restriction that P(S) be absolutely continuous, but shall suppose
instead that X and Y are independent chance variables with one-dimensional
distributions of the most general type, except that the distribution of ¥ will be
subject to the restriction that P{Y = 0} = 0.

We denote the d.f. of X by F(z), that of ¥ by G(y), and, as usual, that of Z
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by H(z). It is to be noticed that the condition P{Y = 0} = O implies that
G(y) is continuous at the point y = 0. Let

4
7@ = L ¢ dF (z)
(4.1) g0 = [ & dow)

o .
70 = [ & dew).
Clearly
(42) H@E) =P{X—-2Y<0;Y >0} +P{X —2Y 20;Y <0}
We introduce the functions
Nw) =P{X —2Y2u; Y >0} =[1 —GO)]-P{X—2Y 2ulY >0}
o
7)) = f e dri(w),
N(u) = P{2Y — X Su;Y <0} =G0)-P{zY — X Su|Y <0},
(4.3) to
n® = [ anw),

I'(u) = I'y(w) + Ta(w)
4w

7@ = [ 6™ dr@) = m(® + 1.

By (4.2) and (4.3),
(4.4) H(z) = T(0).

We shall now evaluate I'y(u) and I';(u) in terms of F(z) and G(y), and also
v1(t) and-y.(z) in terms of f(t), g*(¢), and g~ (£).

Let us assume for a moment that P{Y > 0} # Q; that is, that G(0) < 1.
The conditional distribution of ¥ relative to the hypothesis that ¥ > 0 then
has the d.f.

G — GO) )20
4.5) Gily) = 1 1-60) ’ -

The d.f. of —zY relative to this hypothesis is Gi(—y/2) if z < 0, and
1 — G4(—y/z) — 0]ifz > 0.

8 By P(4]b) is meant the conditional probability of the event A relative to the hy-
pothesis b.
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It is well known that the corresponding d.f. of the sum X + (—zY) is given
by a convolution of the d.f.’s of X and (—2Y).” In the present case, this result
takes the form

+

f rmF(u—v)d(h(— Z), 2 <0,

— 00

f_:wF(u—v)dlil —G1<—Z—O)], 2> 0.

Referring to the definition of these Lebesgue-Stieltjes integrals [4, pp. 662—-663],
we see that the change of variables w = —u/z yields the equations

(46) P{X—2Y<Su|Y>0}=

wa(u‘sz)de(w), 2<0,
@) PX—2¥ SulY>0} =1

0

fo F(u + 2w) dGy(w — 0), 2> 0.

Now the definition of the variation of Gy(y) [4, pp. 341-342] used in forming
these Lebesgue-Stieltjes integrals makes no distinction between the variation of
G1(y) and that of Gi{(y — 0) over any bounded set contained in an interval of
integration ¢ < y < o, provided that G(y) is continuous at @ in the two-sided
sense. Since Gi(y) is continuous at ¥ = 0 in this sense, it is possible to replace
Gi(w — 0) by G1(w) in the second of the two integrals in (4.7).

Equation (4.7) is clearly true for z = 0 as well as for all other values of z.
Referring to (4.5) and (4.3), we see that

) = f Fu + 2w) dG(w), all z.
o
The c.f. of the convolution (4.6) is the product of the c.f.’s of X and of the
conditional distribution of —zY [1, p. 36]. This product is f(t) - f e dGy(y).
o
Thus by (4.5), (4.3), and (4.1),

w0
0

49 w0 = 1= 60110 [ a6 | = 05—,
We have established (4.7) and (4.8) under the condition that P{Y > 0} = 0.
However, it is obvious that they are trivially true if P{Y > 0} = 0.

We turn now to Tx(x). Supposing that P{Y < 0} s 0, the conditional
distribution of Y relative to the hypothesis that ¥ < 0, has the d.f.

)
G = (60 V<Y
1, y=z20.

7 See [1, pp. 35-36]; also [71.
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The conditional distribution of zY has the d.f. Gy(y/z) for z > 0, and
1 — Go[(y/2) — O] forz < 0. Thedf. of —Xis1 — F(=z — 0). Thus

PzY — X 2ulY <0} =
[Cn-rew—y —O]}d[l—Gz(Z——O)], 2 <0,

ff {1 —Fl—(u—0v) - 01}dG<§>, 2> 9,
=1 [iF(zw — u — Q) dGx(w).

Evidently the first and last members of this equation are equal for z = 0 as well -
as for all other values of z. From (4.3) we obtain

T(u) = G0) — [) F(zw — u — 0) dG(w), all 2.

Also, as before,
v(t) = f(—8g ).

Obviously, the last two equations are still true if P{Y < 0} = 0.
To summarize, we have shown that

4.9 Iruw) = Q0O + [n F(u + zw) dG(w) — [] Flzw — u — 0) dG(w), allz;

(4.10) v(t) = f®)g"(—zt) + f(—b)g (2t).

Referring now to (4.4) and letting v = 0 in (4.9), we are able to state the
following theorem:

TaeorREM 4.1: If X and Y are independent chance variables with respective
d.f’s F(z) and G(y), the d.f. of the quotient X /Y is given by the formula

@11)  H() = 60) + fo " Pew) dG(w) — f_ " Flew — 0)dG(w)

for all values of z.

We shall not attempt to make a careful study of the above formula, such as
the studies which certain writers have made of convolutions. However, it does
seem desirable to place on record here certain remarks concerning it of a more
or less superficial character. For convenience in later reference, we state these
remarks in the form of four lemmas.

Lemma 4.1: Let M, be the set of all values of z such that if z e My, the set of
discontinuity points of F(zw) on the w-axis has a point tn common with the

point spectrum of G(w). Then if 2z e C(M),),? the integrals f F(zw + 0) dG(w),
o

8 By C(M,) we mean the complement of M with respect to the z-axis.
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0
f F(zw £ 0) dG(w), are Riemann-Stieltjes integrals and consequently the inte-

grands can be replaced by F(zw) without aliering the values of the integrals.

The lemma follows immediately from the definitions of Riemann-Stieltjes and
Lebesgue-Stieltjes integrals.

LemMma 4.2: The set My is denumerable.

The proof can easily be supplied by the reader.

LemMa 4.3: Let M, be the set of all values of z such that if z € M, , I'(w) is discon-
tinuous at w = 0. Then M, C M, .

To prove this statement, we first observe that I'(w) is a genuine d.f. {1, p. 11].
For obviously T(—«) = 0, T(+«) = 1, and since I';(x) and Ty(u) are both
preducts of d.f.’s into constants, these two functions, and therefore I'(x), must
be continuous from the right. It is this last property of I'(u) which is needed
for our present purposes; in particular, we have the relation lim,_ . I'(u) =
I'(0) = H(z). On the other hand, by the general convergence theorem for
Lebesgue-Stieltjes integrals {4, pp. 663-664], we have

limy_,—y T'(w) = G(O) + fow Fzw — 0) dG(w) — [0 F(zw) dG(w).

If z be chosen so that this integral and the ones in (4.11) are all Riemann-
Stieltjes integrals, the expression (zw — 0), wherever it appears, may be replaced
by zw without changing the values of the integrals. Thus for such a value of z,
r'(+0) = r'(—0). According to Lemma 4.1, we can be sure that at least if
z e C(M,), the integrals here will be Riemann-Stieltjes integrals, so our proposi-
tion is proved.

Since H(z, 4+ 0) is equal to I'(40) with z = 2z, and H(z; — 0) is equal to
I'(—0) with z = 2, , we have the following result:

LeMMA 4.4: The set M, s the set of discontinuity points of H(z).

By using the alternate form of the convolutions used to derive (4.9), we obtain
a representation of I'(u) somewhat more complicated than that appearing in
(4.9). The corresponding formula for H(z) is as follows:

G@U—F@mn—mmmm+1faeym@

4wa<’3—o>dF(v—o), 2 < 0;
0 4
(4.12) H(z) = {F(0)[1 — G(0)] + G(0)[1 — F(-0)], z=0;

1+G@U—M—M—G©ﬂ®+[%&9ﬁ@—m

- f:GG—o)dF(v), 2> 0.
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5. Representation of H(z) by characteristic functions.. A simple algebraic
formula connecting the c.f. of Z with those of X and Y is not available. How-
ever, there exists an interesting representation of H(z) in terms of the functions
1), g*(t), and g~(¢). The result may be stated as follows:

TurorEM 5.1;° Let the distributions of the independent variables X and Y have
Jinite first absolute moments, and let the integral

5.1) < [: " f:")lf(t)g*(—zt) Jtrf(—t)g“(zt)ldt

be finite for each value of z.  Let A(u) be any d.f. with a finite first absolute moment,
-1 o0
and let (f + f ) ? ’ dt be finite, where 5(t) is the c.f. of A(u). Then
- 00 1

(5.2) H(z) = A(0) — é_l_m f—:wf(t)g+(—2t) +f(t—t)g_(2t) — (1) dt.

If the integral obtained by formal differentiation under the integral sign with
respect to z in (5.2) is uniformly convergent in a certain interval I, then the
frequency function k(2) of the distribution of z exists in that interval and is given
by the formula

R
Me) = 5o [ U5 (=20 = f(—0g7 @) dt,  zel.

We remark that the condition (5.1) will be satisfied for all values of z if f(¢)
alone satisfies a similar condition, inasmuch as [g*(®)| = 1, |¢g )| = 1.
Important special cases of the theorem arise when A(u) is replaced by F(u) or
G(u), and when A(w) is so chosen that A(Q) = 0.

Our proof of the theorem will depend on a rather general result due to Cramér
[1, Theorem 12], which we shall restate here in the special form applicable to the
problem at hand.

LemmA 5.1: Let R(u) be a function of bounded variation over the infinite
interval —o < u < oo, let im R@) = lim R(w) = 0, and let r(t) =

U —r—00 u—>+o0

[T evara). 1@ [ 1wl dRG) and o) ( [ +] °°>

Jinite, then for every value of u,

7%0 ] dt, both are

1

—itu
5— dt.
2w — o0’ t ¢

R(u) =

To prove Theorem 5.1, we observe that since I'(u) is a d.f. (see proof of Lemma
4.3), the difference I'(u) — A(u) is a function similar to the function R(u) of the
lemma. If we dolet R(u) = TI'(u) — A(w), it follows at once that r(t) = v(f) —
8t = ft)-g*(—z2t) + f(—=t)g (2t) — 8(t). If we can verify that this R(u)

® The theorem is due to Cramér in the case in which G(0) = 0, and A(u) = G(u). See
{1, Theorem 16].
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satisfies conditions (a) and (b) of the lemma, then we shall have established the
relation,

r(u) — A(u) . 2_% ‘[:wf(t)g-*_(_Zt) +f(t_t)g—(2t) - a(t) e—-i‘tu dt,

for all values of u, and letting w = 0 in this equation, we shall obtain (5.2).

Condition (b) in the lemma is taken care of by (5.1) and the condition on §(¢)
in Theorem 5.1. Clearly condition (a) will be satisfied if it turns out that I'(u)
has a finite first absolute moment. Now the existence of finite first absolute
moments of X and Y will insure the existence of finite first absolute moments
for the conditional distributions involved in the definitions of I'i(u) and TI'y(u),
because £ | X — 2Y | £ E|X| 4+ |2z|E|Y|. It follows quite readily from
this that the first absolute moment of I'(u) is finite. The proof of the theorem
is complete.

6. Distributions of variable form. We consider now the case in which the
distributions of the numerator and denominator approach limiting forms.

TueoreM 6.1: Let the independent variables X, and Yy have respective d.f.'s
F.(z) and Gs(y) which depend upon the two parameters a and 8. Let H, 5(z) be
the d.f. of the quotient Zo g = X,./Yg. If there exist two chance variables X and Y
with respective distribution functions F(x) and G(y) such that lim F,(z) = F(z)

at all points of continuity of F(x), and lim Ge(y) = G(y), at all points of con-
B0
tinutty of G(y), then

(6.1) lim H,g(z) = lim lim H.p(z) = lim lim H,s(z) = H(z)
a-ro0 a-+0 f—rc0 B0 a—r0
o0

at all points of continuity of H(2), where H(2) is the d.f. of the variable X/Y. The
double limit in (6.1) is uniform in any finite or infinite interval of continuity
of H(2). )

In the interpretation of the limits involved in this theorem, it is to be under-
stood that in the hypotheses, o may tend to infinity over any unbounded set
T, of the a-axis, and 8 may tend to infinity over any unbounded set T's of the
B-axis, provided that in (6.1), @ and B are restricted so that @ ¢ T, and 8 ¢ Ts.

To prove the theorem, we introduce functions fu(f), ga(t), g5 (t), Tas(u),
Ya,5(t), which are defined by equations (4.1) and (4.3) with 7, @, X, Y replaced
respectively by F., Gs, Xa, Y5. On the other hand, with reference to the
distributions of X and Y, we employ the notation of section 4 without modifica-
tion. According to the work in that section, I'(x) is given by (4.9) and its c.f.
() is given by (4.10). Also,

Yas(t) = fa(t)gs (—20) + ful —1)g5 (1)

But it is an immediate consequence of our hypotheses that lim f.(t) = f(8),

oa=—rc0
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hm gr () = g™ (t), and lim g5 (f) = g~ (¢), all of the limits being uniform in any
oo

ﬁmte interval of values of t.** Thus

(6.2) lim v.6(t) = lim lim v,4{(¢) = hm lim y.5(t) = v{8),
a—w ‘a0 f—red f—0 a—w
B—ro0

uniformly in any finite interval on the t-axis.
Consider the extreme members of (6.2). It follows immediately from a well-
known general theorem™ that lim T,g(x) = I'(x) at all continuity points of

a-+00,8—+0

T'(u). Then since Hq5(2) = T,5(0) and H(z) = I'(0), we find that

li—l-lalo H,s(2) = H(z), 2eC(My)

f—rc0
where M, is the set defined in Lemma 4.3. By Lemma 4.4, the set M, is the
set of discontinuity points of H(z), so the equality of the first and last members
of (6.1) is established at all continuity points of H(z). The uniformity of the
limit is due to a general property of convergent sequences of d.f.’s; see [1, p. 31].

The existenc¢e and equivalence to H(z) of each of the iterated limits in (6.1)
may be established by two consecutive applications of the foregoing argument,
and by the use of (6.2). We leave the details to the reader.

It is to be remarked that both H,s(z) and H(z) can be represented by (4.11),
provided, of course, that F and G in (4.11) are replaced by F, and G in the
case of H, s ; thus our theorem essentially states that the order of the double
limit and the integration is immaterial in this formula. A similar remark
applies to formula (5.2).

The reader is reminded that we have tacitly been assuming that the d.f. of
any variable appearing in a denominator is continuous at the origin. In case
Gs(y) does not satisfy this condition, but G(y) does satisfy it, and if, as suggested
in section 2, we consider H, s(y) to be the d.f. of the conditional distribution of
Z, . relative to the hypothesis that Yz > 0, then it can be shown rather easily
that Theorem 6.1 remains true with this modified interpretation. But if G(y)
is discontinuous at the origin, and if H(z) is interpreted as the d.f. of the condi-
tional distribution, then (6.1) may be no longer true, as can be shown by trivial
examples.

Perhaps the most important cases of variable distributions arise in the con-
sideration of sums of independent chance variables. We accordingly present the
following synthesis of Theorem 6.1 and a simple case of the Central Limit
Theorem.

THEOREM 6.2: Let Uy, Uy, - - -, be a sequence of identically distributed chance
variables, each with mean zero and (finite) standard dewviation oy, and let Vi,

10 See {1, p. 30].
11 8ee [1, Theorem 11]. The result needed bere is a trivial extension of the theorem
cited.
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Ve, -+-, be a sequence of identically distributed chance variables, each with mean
zero and (finite) standard deviation oy . Furthermore, let the variables U; and V;
be all independent, 1 = 1,2, .-+ ,j = 1,2, ---. If m and n tend to infinity in
such a way that

(6.3) lim % =k =0,

m—rco
n—ro0

then the d.f. of the conditional distribution of the variable

W _ U+ U+t -+ Un
Vi Vet o + V)

relative to the hypothesis that the denominator is different from zero, tends uniformly
o the function

wko’:;av 1
6.4 J(w) = [ - du.
64 Y

For if we let
U+ Ui+ .-+ + Un
oov'm
Vi+ Vot oo + 7V,
Uv\/ﬁ
then Wo,» = \/m/n(ou/0v)Zmn. The Central Limit Theorem [1, Theorem 20]
states that the d.f.’s of the numerator and denominator of Z,, each tend to the

function / (1/4/2x)e " dt, which is the d.f. of a normal distribution with

Zm,n =

mean zero and variance one. By (3.3), the quotient of two variables, each of
which has this d.f., has the continuous d.f. H(z) = [ A/m[1/A + 2%)]dz.

If we let H,,.(2) denote the d.f. of the conditional distribution of Z,, , , relative
to the hypothesis that the denominator of Z, . is different from zero, then by
Theorem 6.1, lLm Hn.(z) = H(z) uniformly in z. Now the d.f. of the

conditional distribution of W, , is Hom..[\/ n/m(ov/ov)w], and because of (6.3)
and the uniformity of the limit of H, .(2), this approaches Hlk(cy/ocy)w].
Differentiating the last expression with respect to w, we find that the resulting
frequency function is equal to J'(w); and this concludes the proof.

As an application of the theorem, let us consider the following problem.
From an urn containing white and black balls in the proportion of p to 1 — p,
we shall make 100 random drawings of a single ball with replacement after each
drawing. Let Wg s be the ratio of the deviation of the number of white balls
in the first 50 drawings from the expected number, to the deviation of the number
of white balls in the second 50 drawings from the expected number. What is
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the approximate value of w for which P{Wgm = w|b} = .05, where the
hypothesis b is that the denominator of Wy 5 shall be different from zero?"
To answer this question, we observe that the numerator and denominator of
W5 can each be expressed as the sum of 50 independent identical chance
variables, each with mean zero and with variance p(1 — p). Thus according

to Theorem 6.2, the approximate d.f. of Wy g is

Jw) = ./_‘oo;rl-}-;u‘ldu = ;—+ %_arctan w,
and the required value of w satisfies the equation J(») — J(w) = .05. The
solution of this equation (correct to one decimal place) is w = 6.3.
It is perhaps needless to remark that a study of the error involved in sup-
posing J(w) to be the d.f. of W, , in Theorem 6.2, must necessarily precede the
unreserved acceptance of numerical results obtained by means of that theorem.

7. Products of chance variables. We conclude this paper with a rather brief
treatment of the distribution of the product of two chance variables. To pre-
serve a notation uniform with that of the preceding sections, we shall write the
product as X = YZ, where the df.’s of X, Y, and Z are to be denoted, as before,
by F(z), G(y), and H(z), respectively. The existence of F(x) is readily proved
by the methods of section 2. The assumption that P{Y = 0} = 0 is of course
unnecessary here, and will be dropped in this section.

In the continuous case, an argument similar to the one employed in section 3
will establish the following result:

TaEOREM 7.1: If the joint variable (Y, Z) has the frequency function ¥(y, z),

then
oo L[ o)l
RIREHCHII

and consequently F(x) is an absolutely continuous function of x. The frequency
Sfunction of the distribution of X exists almost everywhere, and is given by the formula

1 T Y vf =z
;’\lz(a,v)dv—[‘n ;(v,;)dv.

In the discontinuous case, with ¥ and Z independent, we can write X =
ZY = Z/(1/Y) and use Theorem 4.1 to derive a formula for F(z). We have:

1

v

1
v

L
v

@) j@=r@=

Fiz) =P{X =2} =P{Y #0JP{X S 2|Y # 0} + P{IX =2, ¥ = 0}.

12 This hypothesis would always be fulfilled in case 50p is not an integer.
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Excluding for a moment the trivial case in which P{Y = 0} = 0, let G4(y) be
the d.f. of the conditional distribution of (1/Y) relative to the hypothesis that
Y £ 0. Then

G(—0)+1—G<$—0>, y>0,
P{Y # 01G:(y) = (G(-0), y=0,
1(;(—0) - GG - o), y < 0.

It is to be observed that Gi(y) is continuous at y = 0. Using Theorem 4.1, we
find that

PXS2|Y#0) =GO + [ Hew dow) — [ Hw - 0) d6i(w),

So
P{Y #0}P{X £ x| Y # 0}

= G(—0) + fo :OH(xw)d [—G(@—lv -~ o)] -~ [i_oH(xw ~0)d [—G(ul) - o>]

L 0—0
=6(~0) + [ H(?"—> a6 ~ [ H(’f - 0) dG).
0+0 v '— 0 v
This equation is trivially true if P{Y = 0} = 0. Also,

b

PIX24;Y =0} = {G(O) _ @(—0)

z <0,
z 0.
Thus we obtain the following theorem:

TareoreMm 7.2: If Y and Z are independent chance variables with respective d.f.’s
G(y) and H(z), then the d.f. of their product is given by the formula

o o= o[-0 s 720

Jor all values of z.
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