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1. Introduction. The theory of the distribution of the values of
Riemann's Zeta-function ¢ hag its origin in the Riemann Hypothesis.
Many results on zero-free regions and on the density of the zeros in certain
domains have been proved since its appearance. The study of the non-zero

values of ¢ was initiated by H. Bohr early this century. His results, te-

gether with zero-density estimates, reveal that { has many more w-roots
(solutions of £(s) = w), w non-gero complex, than zeros in closed half-
planes on the right of the critical line. Many classical results on the distri-
bution of the non-zero values of ¢ have recently been sharpened or extended.

This will also be the theme of this paper, where we shall exclusively be

concerned with the behaviour of ¢ in zevo-free regions. Until now, there
are two types of results dealing with this behaviour. To one of them,
recent contributions have been made by 8. Voronin [11], [12], to the
other by H. L. Montgomery [6]. ‘

Voronin proved in particular the following:

(V1) Let } < o<1 and 0 < ¢ < min(L—o, o—4) Let K be a positive
integer and w,, ..., wx non-zero compler numbers. Then the number of
positive integers n < T such that there are complex mumbers z,, 1< k< K,
salisfying .

Llotinta) =w, |&l<r,

for ko= 1, ..., K excceds o for I 2= Ty where ¢ and T, are positive numbers
depending on Wy, ..., Wg, ¢ and 1, ‘

(V2) Let o and K be as in (V1). Denote by (W, b = 1,2, ..., the k-th
dertvative of £, Then the sequence of points '

(Sa-tin), (M oFin), ooy (5D orin)),  m=1,3,0,

is everywhere dense in G, the K-dimensional complex veclor space.

* Hupportad by -the Swiss National Fund. Nr. 820.423.76.
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(V3) Let v <14 and &> 0. Let [ be o non-vanishing function which
is continuous on the cdosed disc of radius v around the ovigin and analybic
in its interior. Then there are veal numbers T depending on & and [ such
that

mox L --47 -F &) —f{2)] < 8.
|l =5

In case K =1, (V1) i¥ due to Bohr [1] and (V2) to Bohr and Courant
{2]. There is no clagsical vergion of (V3) which can he considered s an
infinite dimensional analogue of (V2.

Montgomery showed that for 1/2 < o<1 and any veat 0
(M1) Re (elog{r+it)) = .Q((].()g‘t)]"”(1(‘:,&:10;;‘#)"’"), -+ oo,
where e denotes the real part. This implics in particular that
(M2) log |{ (o8} = 2 ((log1)'"(loglogt)™ ),

i — 00,

Sec [6] for a historieal agcount of L-vesults for log|f(o- ).
Comparing (V1)~{V3) with (M1)-(M2) one notices at onee that they
arc different in nature. In Vorvonin’s theorems, for instance, only such

values of ¢ are mvolved ag lie in a previously fixed compact suhset of,

€ —{0%, No information is given about the questions, how soon {(o4-4)
gots large or small in {V1), or how soon (o) appreximates very well
in (V2) and (V3), when 1/2 < o << 1 and ¢ — oo, 8o (V1)~(V3) only imply
that the left-hand sides of (M1), (M2} arve &,(1). On the other hand, (M1)
and (M2} do not tell ug muech about the shape of the sefs '

{tlo+it+2)| kl<r}, O<r<min(l—o,o—%), i>0.

This paper iy aimed at the investigation of these and similar questions.
In particular, gnantitative versions of (V1)~(V3) will be proved. The precise
statement of the main vegults will follow in the next section. But fivst
tet us add some remarks about the above mentioned theorems and their
proofs.

Montgomery's paper i likely to mark an achiovenent of double
importance for the theory of the distribution of the values of . Fivet
(M2), though not too big an improvement on earlier rosults, appoars
to be best possible {rom w probabilistic point of view. Seeondly a wnified
approach to problems of type (V1)-{V3) and (M1)—-(M2) can be given now.
Rarlier proofs of R-resuwdts for log|f(s)| and the proofs for (V1)-(V3) had
not much in eommon.

To study the behaviour of £ in zero-free regions, it is most convenient
to work with log{ which can be uniquely defined in a suitably slit complex
plane. The proof of (M1)-(M2) and of our results now ghow the following
general pattern. In o first step it iy proved that log¢ approximates some
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auxiliary functions very often very well. These auxiliary functions are
simpler to study than logé. Bub since they come close to logf, their
properties carry over to log¢ with only minor modifications. In 2 second
gtep thege anxiliary fonctions are investigated. Voronin’s proofs also
split into two parts. The main differences between his and our procedure
are ag follows:

Irirsh Voronin shows by means of a mean value theorem for { and
Weyl’s criterion for uniformly distributed sequences that certain finite
products often come close to £. We, however, approximate logl by using
a zero-density estimate, high moments for 3p™*, where the summation
rung over all primes in a finite interval and quantitative forms of Dirichlet’s
theorem on diophanfine approximation as well as of the just mentioned
criterion of Weyl., The approximation process Voronin used can also
be carried oub in o quantitative manner. Nevertheless the results obtained
in that way from our present day knowledge of { are inferior to those
we get by approximating to logl.

In the seeond step Voronin’s main tool is a generalization of the
following lemmsa to finite and infinite dimensional Hilbert spaces: The
summands of a conditionally but not absolutely convergent series of real
numbers can be rearranged in such a way that the vearranged series con-
verges to any real number given in advance. It is rather obvious that
quantitative results cannot be obtained only with this tool. What we use,
instead, arc convexity arguments such as Hadamard’s three-circle-
theorem and a consequence of the theorem of Hahn-Banach.

The author iy pleased to thank Professor K. Chandrasekharan and
Professor F{. L. Montgomery for suggestions and encouragement.

2. Statement of the results. Before we can write down our theorcms,
we bave to introduce several notations. These will be kept throughout
the paper. _

Tk ¢ always denote a small positive mumber. Thoen ¢y, ¢, ... will
denote positive nwmbers which depend on no other parameters cxcept
possibly on g The ¢y, 64, ... need not have the same meaning at diffevent
oconrrences. Thoe congtants implicitly given by O-symbols are either ab-
solute or depend only on e. Wo sometimes suppose that certain parameters
remuin bounded. Since such parameters then atfeet the results only by
a hounded factor, we wbsorb this factor into the ¢; or the O-symhol by
agsaming, without loss of generality, that those parameters are bounded

Dy 1

The letter p always stands for a prime number. As usual, n (o) denotes
the number of primes not exeeeding e and

1fj, i
Au(m) = 0,  otherwise.

m :?j:j =1,2,..,
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We denote by § = o+, w = %--iv and 2 = @+ iy complex variables
with corresponding real 1)art.s o, u, # and imaginary parts # , y. For
positive » we pub

= 2] lel 7).

Tt § is a subact of the eomplex plane, and f an analytic function defined
i a neighborhood of &, we set

s+ 8 == {gdzl 2 In 8}
atid

FO8) 4] = iIn 8.

The kth derivative of f is denoted by f®.

Lefi ¢ be the open seb of complex numbers s in o = 1/2 such that
[(s+%) is a non-zero complex number for all non-negative real ». Let
log¢ denote the (unigue) analytic funetion on ¢ which is representable
a8

o
logl(s) = 3 dAy(m)m™
M=l
in the halfplanc o= 1.

Now we are able to begin with the list of our 1esults

TagorEyM 1. Let B be positive and 124 e+BR< o1 —e~—E. Then
there are Gy, ... 0, O < gy Such that for positive », v and T salisfying

=T, e<r<log?  and  gllogr<r< R

we can find more than Texp(-—ep/logv) positive numbers 1, < T, 1,

>t,+2r for w=1,2,..., such that & conteins o+il,+D, and
log (o -+1t, +.D,.) contains :

[ . ,”1 ot y I JI <o vl-—d-‘-f‘

W Gy e o T

\ " ogr = Jogy |

Theorem 1 has a corollary which sharpens (V1) in several directions.
YOROLLARY 1. Let the condifions of Theorem 1 be fulfilled. Thew there
exisls a o, and more than Texp(—cyflogy) pogitive sembers 3, <0 1) b, .

> b+ 2r for mo=1,2,..., such that the annulus
{w‘ (159 (

( ’111 AR ‘ (, 1;1 G p ‘
i e s i &) - S
log < ol < expl logr ||
is contained in {{o+4-1it, 4 D).

Remark. Montgomery conjectures that Theorem 1 holds for e,
< log Tloglog T. This would be the complete analogue of his results (M1).
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It would follow from his conjecture [6]

Tog|£(o -+ ib)] = O((ogh) " (loglogt)™), & - co, 12+e< o< 1 e,

by an obvious modifieation of the proof of Theorem 1.

TrowEs 2, Lel a be o positive number sueh that

&

(nllog {1 1 [}

e und le-’“’

|

i

(1) [ e

|
Jor @l non-zero '.io-zrlf'g,'m‘.w L om awd o,
=1 AR U T
58 I?Mh fm q

Let B be positive, 1[24-s - R o
- B Phen there ave o4, ..., ¢ Such Bhat the following
2ty (mw} al?. positive integers K < ¢y loglogds Let

=3

VYR (Vieg V) Co

o < V< @min ((lug o) M, eexp (wK

¢, (log Tlog'?

and Wy, 0 kXK complex numbers such that

1 . ' .
| = T o' (Qog oV ETE N K —R) LK (26(1 — o)) F

Jor 0« ko . Then there ave wmove than g TV points s, = ¢+ina,
1< na T, such that

1—ay
e\ - gk €
(og0f9 (s, —wal = 0 [11R* £ ]
for 0 < k< K. In particulor for o fived K, K <1 le say, and
:’_._(20-—1)
(3) o = (logT} ** (loglog )™,
0 ‘ 60" (log 3 S | k< I,

theve are more than Toxp(—e o) peinds &, = o-fing, 1< n<<T, such

that
I(log £ (8,) =20yl == 0g"* " (log o)1)
for 0« k= K,
For nuinbers & satisfying (1) see the remarks to Liemma
to Theorem 2 sharpens (V2).

CORGLLARY 2. Let a, B, o; oy, T and K be as in Theorem 2. Let V

7. The corollary

and o be given by (2) and assume @ addition that

. Q]_ug —~ 1K
& 2 40e( ")_(wﬁloge)'
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Let we, 0 < k<< K, be compler numbers satisfiying

1—o771
N e (221 — a) log g) &
[yl = 10K %log o ( e( ) g@) ‘ 3
1 Ql-wrr Kol i . ) -~
PRIy G A de(l o)) 7* 1<k K.
el S5 (51{210,2'9) (41 ~a))™, '

Then there are more than TV poinis s, = o+dna, 12w T, such
that

QI'- 7y
IIU{._’; é’(.\'“) “'wlll =z () (“\i}[(/)ﬂ,:[‘))’

é-(k) (-5', ) GI”"J Qlf‘ @ (k1)K - . -
P — ] = O e e de(l — o))t F 1l kel K.
E1E(s,) W BV3ioge \bK*logo (e ) ! FE

In particular for o fived K, K < 1 /e say, o as in [3) ond

[y] < 50" (Rog o)~ E Y,
Lmer Tl
] < 6 (lo_rag) ., 1=tk K, ¢ suitably chosen,
L]

there are more than Texp{ —e¢.p) polwds s, == o--ine, 1< 9= T, such that

, . el[‘.’r o
log(8,) ~ay| = O ((-13,(.;(;5172)’

l ﬁ) (Sw) wr
£(8y) *

l—a 3y (h—I}E
=0 (QIIE"”(——Q-——w) (log 9)”“), 1<k K.
log g

Our next theorem deals with the infinite dimensional analogue of
what Theorem 1 iy in the one-dimensional esse. A finite dimeusional
version of the theorem follows from it. A sharper finite dimensional form
could be proved directly by combining some results obtained in the proofs
of Thearem 1 and 2. Iowever, since the coneeption of the proof iy essen-
tially the same in the finito and in the infinite dinensional ease, wo vegtrict
ourselves here fio treating the latter. Finally, Theorem 4 confaing the
infinite dimensional analogue of what Theorem 2 iy in the finite dimensional
cuso. Before these theorems can bo stated, some more notations are needaod,

Let U be an open set in the complex s-plance. Lot L,(U) denotie the
Hilhert space of equivalence classes of complex-valued funetions which
are square integrable on U with respect to the Lebesgue measure in the
plane. Let I, (T) denote the closed subspace in Ly(U) generated by the
polynomials in s, i.e. the clogure of the subspace spanned by the functions
(4) _ g g™, omo=0,1,...
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Note that 2, (7) way (e.g. U = {s\ 18] < 1}) or may not {e.g. U = {s| &
< |s| =2 1}) coincide with H, (1)), the closed subspace of analytic functions
in Ly(U). Lebt ¢ be a compact subset of U. Denote by P (0) the set of
continnous functions on ¢ which sare uniformly approzimable on ¢ by
finite linear combinations of the functions listed in (4).

Our aim iy to study the “curve”

D1 g (s> logl(e+9), s in U)
in Ly(U), ot least when 2 belongs to the open set
Gy = {¢] 2+s in & for all ¢ in U},

where U denotes the clostre of U in €. Theorem 3 will tell us what hyper-
planes in Ly(U) are hit by the curve &. Since L,(U) is 2 Hilbert space,
& hyperplane in L, (U) is characterized by an element f in L, (T} and
a complex nwmber w. Moreover, @€ hits the hyperplane corresponding
to fand w, it and only if there iz a 2 in Gy such that

where

(%) Dy(e) = [J(s)logl (e + o) dads
15

and f(s) is the complex conjugate of f(s).

TrorEM 3. Lét 3 +e< oy < oy <1 —e Let U be an open set in the
complon s-plane such that o, < o< oy and | << 1/e whenever ¢ belongs to U.
Lot f be im L,(TU) and @, be given in G by (5).

If f s erthogonal to Po(U), then @x(z) = 0 for all ¢ in Gy. If f i3 not
arthogonal to Py(U) and 6 > 0, then there are ey, o, and a sequence (1),
such that oy <X 0y < oy, Ty > o0 a8 § ~oc0 and for T =1T4,5 =1,2,...,
the following is true:

If 0« Beo - d—e, 7= (logT?® and

]

W o= o] i<, oz ~Riufl o= 4},

logd
* loglog
such that O conleing Snri--W and Oy (3nti +W) containg

then there wre more than S’.’uxp(-—c ~~) pogitive  dntegers T

foe| | < (log Ty —mtB=9)

Theorem 4 deals with the question, how close the curve @ ean come
to @ given eloment of Ly(U7). Thus Theorem 3 and 4 are dual to each
other in some sense. But neither can directly be deduced from the other.
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TrrgoreM 4. Let a satisfy (1). Lot oy, oy and U be as in Theorem 3.
Denvte by Iy 1< o, the set of functions g in L,(U) whick are representable
as,

1 ,
g‘(S) - ‘ pp & m U:

Af p=g
where the z,, A < p < g, wre complew numbers and |z,] < 1. Then there ave

8y, Gy, 8y Stk that the following s tre:

(1) There exists o function f, which 4 analytic éin o > 112 sueh tha
Jor Tz=v
172 &
e Vg ( : ) v 05 G{log Tlog® V)R (Vieg Py 2ee 1y
logg

and for every g in Iy, there are more than [TV ™) positive integers < T
satisfying

log s +ana) == fi(8) -1 ()1 ()(

Jor all s in U,

(it) Bach I, is ¢ convex eirdled set in Ly(U), i.6. if g,, go are in Iy,
then also @y -+ 2ags for oll complew numbers 2y, 2, with |2, |2, < 1. The
projeciion of 'y, with respect to any fin Ly(T), i.e. the set of cofmg)lew num-

bers
f Fis)g

s a elosed dise, say D, Any A8 radiug 1i(4, g} = 0 for all ¢ 1, if and
only if fis orthogonal m Po(U). For every 6 > 0, 1 > 0 and f not orthogonal
to Py(U), there ix a seguence (g;)7, such that g5~ o0 @8 J > o0 and

P
Floga = logi

(8)dodt, g in I',,

A, o) Tl

denotes the olosure of the union

U I
[

in Ly(U), then Ty(U) = Py(U) for all A= 0.
(iii) Let O be a compact subset of U. Thew the funections

If T;(T)

§ > log £ (8 -+ ina),

where n is an integer and ina belongs to Gy, form everywhere dense subsets
in Py{U) and P_(0).
(iv) Let B, ' and RB' be such thal

d
0< iy, R <1, e¢xf+R <1 and ' < ue-e'“”‘,
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where

Let v ="v'(l—a,), R = B (l—o0y) and §+e+r<o,<t—e—r.
y Vobe as in part (1) and let f denote o function of the form

Let T,

where wy, ko= 0,1, ..., are comples numbers such that

A(l—-eyp)
K4
ol < 4R,

k=0,1,...
logg 14y

‘

8 .
Then o == dlog (g?,) —1 is positive and the number of positive integers

na I suoh that

el—-rr Q(l—ﬂ}(llzuu’) Q“—a(l-'u'ﬂ)
1 § i) == +f(s— 0
gLk ina) = Jolo) (s —o +0 | o+ B S
for |8 —aol <7 ewocods LTVO,
Remark, Since Py(D,) = Hy(D,) and D, is simply connected,

(V3) follows from Theorem 4 (ili) by exponentiation. Part (i) and (ii)
show more precisely, how the approximation in (iii) takes place. From
& quantitative point of view it wounld be desirable to have a more explicit
description of I'), a8 p — oo than that given in (ii). Theorem 4 (iv) is an
instance of what such a description should look like. It shows that con-
siderably more than (V3) is true, if » is sufficiently small.

3. Auxiliary lemmas,

Levya 1. Let @ be as in §2 and set =
Jollowing holds:

(i) Suppose that 0 < d = §, 3

= log’T for T > 0. Then the

osil and 0Kt

{w| o< u and |v—1i < 27}

T If

18 contained in G, then

IIUQC(S‘ +-iy) ( (Id'y)) (1+4-cos(ylogy)) dy

Per Z Al(m)m"s (d-—.— log —:E‘) “}"O(Vr—l), t — 09’

{log{myytezed



356 A. Good
(ii) Let u =" and 0 <t < 1. Define p by
@(o) = min{l, max(2—g¢,0)}, =0,
If

{w] Ttegn, -1/ 2'.5”2"'”*}

is contained in O, it follows that

1/:.v 1/

£ o0,

Jor 142 eul ond p—1| <
Proof. Part (i) follows f.rmn equation (13) in [6] ax (1
Since we have

8) in [6].

ple) = 2 —¢-—max(l—g,0)
for 0 < ¢ << 2, part (if) follows, i we show that under the conditions in
(if) :

6)  logé(w) = ZA](m)m—"’(1e "Z) FO(r MogT),  t -+ oo

e
for }-F2e < u<1 and v —7| < 2, Now a version of Perron's formula
asserts that

Lfdaa p
@ Y amm{i- ) = 2 [ egtwra
W 27i —a 2(z-+1)

WL f

for such w. Let ¥ denote the path in the z-plane from 1 —ico to 1--dsc

. . . b 1
which passes throngh the vertices 1 —doo, 1-——2—1”2* Ve, —é—}-sﬂu»Jr; -

i
-

2
and is linear 111_bctween. ‘41110(3 w1 oand o —# < 7Y in (1), Coauchy’s

theorem. hmplics that

1/2-1-11e

PR Ry T + gl 1—|—m;iw , L-tieo in this order

‘Z

— _i{'j_ W %4 - '

W

{8) ]op;

for z > 1/e. Denote by I;,j = @, -1, +2, the confribution to the integral
in (8) coming from the integration over that part of @ which conneets the
(3 +7)th with the (4 - j)ﬁh vertex. Bince logf(w--2) is bounded on & =1,

we conclude that
©) Iy = OgaTe

T~ oo,

= 0(1’"1’"‘"),

iom

for 1+2:e @

Jor
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Theorem 9.2 and 9.6 (B} in [10] imply that

2
Togl(w+e) == 0( 1fﬁlog(q.ﬁ+_w—:€_8)), t— oo,

for d4-eSu ka2 and |v—1] < 272 1, Hence it follows that
k 1 v ) :11‘2“1-—-2,’5 . 2 —1f2
(10) Ty =0 |pr j log[=)an) = 0(x#), 1 - co,
1fr 1
and
(113 Ty==0 (Mlﬂ-i F-u-l-lh,r]/:lonr m_“@?{—— _ O(M"ETUZIOQ‘T)
‘ © J 14y ©

Twllzlt)g"r), 1~ oo,

Thug (8)~(L1) imply (6) and the lemma i3 proved.
Lumma 2. There are positive numbers oy, ..., ¢, such that the following
a8 true for o, KLy v = (log P, p = 1", ¢, <v < p and 1 o positive integer:
() The number of positive integers v < T jv satisfying

max [log{(s+3ntt)| < »' 7 logy

[4se-t1
< 1 —2¢ emoeeds

T w0( 1~e 1 qpt (05
T

ogv) T ( logv)’)_
¥
() Ifl<ae<? t+2 <0, X>0,0<Y < »andqis asin Temmal
(ii), the number of po%fme integers m<< T such that

g ( ){ < X:Y—

o1 ~2e and [t < 1)z exvceeds

1 " 'Y 1201\ ¢
o) o)

Proof, Let the coefficients a,, = a,(f, 4, ») be defined by

(X oeim

nEy

g0 (10,2’%! (

[e]

(12)

¥ -= Acta Avithmetles XXXVIIT 2, 4
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Sinee a,, << 1!, we infer from Corollary 3 in [7] that

(13) f [ 2/ A d?} =T 2 (me ﬂu'i-()(z a’m - “'u)

0 W= ne=

cm| 3 o 30

[ VP-E-TJ(.N

pr2 I Mﬁ-«zu [4
< T oy | -2 g5 - ) y Fhe Ul —s,
logw logu

for a suitable ¢;. Now let f be an analytic funetion in D,, 4 > 0. Then
we have by Canchy’s theorem and Holder's inequality

—-E- f j f(ré™y ulqwh
YT

1 g
=— f L&) dardy.

lef=c8

< (ot [ ey (ot

|wled

(14) If(0)"

Soppose that 1 <y <L, e, X > O and 0 < Y < », Then we get from

(12)-{24)
'E' 2
(1) 2 max Z:p‘"““”“’ ( )
lznS iy 1’[;2;171525 T
l—s 27'fe .
9 Yw 01
< [ T el
noTe gyi e | pay #

oU [ \(3T [ v \' T\ "
< —] == —
ﬁﬁze(xz){ 5 (lﬂw) fﬁ(v) e (10{2#) f( )
. oy

<'11 o \ (8T [ w \}f¥\HOmA LY
< (31 (m") ) (m)}

for }-- 26« oy 51 —2e. ence puart (i) follows from (15) with = a
and § = 1 /lo,q,v IL we choose 4 == 3, 6 = & X = dgflogy and ¥ ==y, (‘11“»)

alyo Jmphw that for a sufficient ly large ¢; the nnmber of positive intﬁgors-

n = e satisfying

?)1 I3
16) max Z i —-—) % gy e for L D5l o 1 —2e
{ L 7 ( = hlogv é .B L O &
exeeeds
A elogy \! e t'® !
= —-o(ru( : 2‘%”)4—1!( e logw))
oy &
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Now theorem 8,19 (B) in [10] tells us thas
N{k4e, T) = O(T=R="]qg8 T) = 0(T"" “ﬁr“” T — oo,

where N (o, L) denotes the number of zeros of £(w) in the rectangle o<
2 1 and fo| = I\ Hence the nomber of positive integers » < TJr such that

(L7) {w]}+e=<w and jo—3nz| < 20 < @

exeeeds

(18) | Pl — (T2t Uy o P G (T,
Now '
| | e
(] % # — ,A@j,,u‘ —
(10) m%).»il(m) =0l ) e
’)ib;;‘! ‘

.Thuh‘, if {17) holds for w, we infer from Lemma 1 (i) that
(20) log & (s 3nri) = 3\ A amym 8 (ﬂ) +0(r ¥logr)
e t

fan]

1 . -
= Z p—ﬂ--aﬁ.t-:rp (p_)+0(1) m
1 #
for %+28\<_ o<1 and |# < r+1. Hence part (i} of the lemnn follows

from (16)—-(18) and (20) by a suitable choice of e;.
The next lemma is essentially due to Montgomery [6].

LumMa 3. There are ¢y, ..., 6y such that for e; < Ty v = (logd)* and ey < v
< v the number of positive integers n << Tjr satisfying.

15
max [logf (s + 3nzi)| = ———

1 log»
for 3--2e <5 o<1 +2 evoeeds
r 3
T x| ey | — O
; ('t]_)( g log ) { )
Proof. It follows from Lemima 1 (i), (17) and (18) that'

flogc (0 +1{t+3nr ))(“n;/z) (14 cos(tlogw)}dt

#._E 2 Al(m)m""“g’"i(% log —-—l)+0 (v, $+2e<o<,
llog‘-"-:i < '
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for more than T'/v — O (1'%} positive integers # < Tz, Divichlet’s theorem
on ithe simultancous diophantine approximation (p. 152 in [10]) says
that the number of positive integers « < I'/r such that

s a 10g_’p 1| = }
(22) min 37— —h| < o
1 integral ATC 4

for all p with log—?;— < 1 is ab least

(23) ()} =

T ¥

e OXPH | g

T 1 4 luuv

The inequality in (23) follows from the prime number theorem. Buppose
now that (21) and (22) hold. Then wo obtain by appealing to (19) and
once more (o the prime number theorem

T ‘ 115,
Zoxp Jlog6 (s (6™ Py) —
T

(24) max log (s 4 dni)|
=
1 sint/2
mnlocvé‘(e+‘3¢?r@)|~—-,f(------ {'Im)( -+ cos (tlogy)) dt
I#1 2
gini/2
jlogé (& -+ 3mad) |- T (1 -+ ws(tlow))dt
-~ ‘L \ e G 30T l r£ —_
I U RS
Hos(p/ sz :
. 1 ~L :p :ul.—o‘
e e — | o~} — W= e ——
“8 Z P (2 log » ) o)z ulogv
Noa(wi?)l-5 -
for }--2e < o=t 1—2e The lemma now follows from (21)—(24).

The following lemma was proved by J. ¥, Koksma in [51. It containy
the guantitative form of Weyl's eriterion we referved to in §1.

ILoMmMa 4. Let L be o jp()sff’f’m imteger and @yy ooy Wy, by by be
vewl numbers such thal ay < b=t ap-LL for ©e="1, .., L. Let ¢} denote The
set af potnts == (wy, .. ,.x{,d) in R*, the Jfd’imaw.sifmu'b roal weslor-space,
satisfying oy < by for Le=1, ..., J}. Lot a == (ay, ..., 2,) D6 on L-tupel
of real numbers and lot N (Q) denvte the number of points we == (Hathyy + vy By),
1Sn < N, which, modulo L, He in Q. Let H, L= 1,..., 1, be greater
than 1 and -

by~ T8Hy,  for b =0,

30
min(yu,“ hﬁf)’ for b 0.

C Vg T

icm
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Then we have

N L
—J(V‘(l?“)*n(bz“““z)

L L i
< ﬂ(bz‘“%){n(l+ zﬂb@_dﬁ") 1}+

{=l Tl
L . N L L
LN N AN
wf o 2 f
| V2 ,\ exp (umm S azhz) [] Vigls
(¥t} Mol I=1 I==1

where the sume 37 cwtends over all b = (hy, ..., hy) # (0, 0) sweh that b,
Hy(1+mn(logH;, logly), I =1, ..., L.

Luvwva 5, Let a be o real nuwmber satisfying (1). Then there emist ¢, ¢,
such that, if y-t3e<o L1, 1 Vo<, eys0, VFr(r/o) 2 < elogT
and Gy, 1 55 g, are any veal numbers,

S . 1I2— 1/“
2 P—a-—ma _ Ep—sg—-zmﬂp = ) (_]:E) (]QP.JPQ + ___))

P p=e
oL oSl —e and [t < 1/,

)
is wntegral and b)) <

or more them YTV positive integers n < T.

- Proof, LetJ denote the integral part of ¥ {»/p)'~". With § = (8,)

3lpEry
whme the 6, are real, we associate the seb

< 91» |— — for p < ¢ and

1
) Q) = o = el 0,—5, <4,

6,— —--1 &y, < f +~L for Q<;D$§vl
» 2J D% § |
n(v), ¢ =Q(8)

in If"(") We now apply the preece dmg lemma with L =

a
and e« = . (logp)pz. Thus we have
ATC

N(Q(ﬂ)) o %TV»:.(Q]JMQ)H,,(,,),

provided that the inequalities

(27) ( F—ZSK) n( ) ‘;’f_) —1 <l
Cand e
(28) 2*’ > exp(maZk logp)‘nyh € FTV Oyl

(n) Il pEr

hold with some positive numbers H, > 1, p <

p << v and assume that H =
i

». We seb H,, — Hflogw for
2 . Usmg simple Inequalities we see that the



362 A. Good
left-hand side of (27) iz smaller than

5 —I—OI?—J— m (v..) XD (75J l(ﬁi :rn(v\z).
Hence (27) i true, provided that
{29) Jv[H < 0
for a sufficiently small ¢. On the other hand, let E\delmtu an inta(sgur of

12 . . -
minimal distance from - 2 b, logp. Then it follows from (1) that

“ _',m:‘y

2 1
4 \ [, logp -+ 5

/

and

sin (__ Z B 10gp) L

(30) l Z exp (i*}m 3 h“"l%p)l

eI Py P
3 2l _
14
e . gy

T Y R
e () (L!pmp (;;4 |111)]19gp) ),

if 150 and not all 7, are zero. Bug, since
| 2 hplogp l nf’ ihp!’ *
Py ey

it not all A, are zero; (30) also holds in case of I = (. By our choice of
H, wo have
H,(1 +min(logH,, logn(»)) < 2H

for v sufficiently large. Thus we conclude from Lemma 4 and (30) thatb
the left-land side of (28) i

.(31) ()( Hvy! : [_I Vi ﬂl) - ()(}11')41 [( I GO )_} p;:ﬂ))

) pEd REAS lefuyaal]
ur

() ((Hea)‘L ‘ ((;4,}7--)) == ()((sxp( i Haf)), ¥ 00,
!1 i : ’

It follows from our assumptions on V and J that

Jﬂ{u)wn(v)vu(e)‘ = O(am)’ v e
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Henge (31) implies that {28) holds for » = ¢; provided that

(32) 20, Hy < logT,
Thus {27)~(29) and (32) show that (26) is true, if
(33) Ce v, Voir/o) < e logT

and 6,, ¢, are suitably chosen. If denote.s the summation over all
()
J = (Jplocpes, where the j, arve positive integers not emuedmg J, we

get from (14) with ! = 1 ‘md & ==

: § L P |
(‘54) ©INAx @3 2 P a g dmifphd
1226l

&) 2|1 PPy
1 - ue 1 . .
=) f ‘e“ 2 ﬁ'se‘-m’"pf-’r«zm
e ) —e 124e o< pir
2/e 1

e g '
~3s 1ibs  g<pe ‘

From now on we assune that the 0,, ¢<<p<w sre of the form
Jpld, where the positive integers j, do Dot exceed J. Hence, if o> ¢,
(25) and (34) imply that we can find more than FJ™~*@ digjoint sets
@(9) which agree in all the 6, for p < ¢ and satisty

91,'2—- o
=Y (‘ao‘gz)ﬂ)

. : 2
for }+2:<o<l—¢ and |f|<1fe. Suppose now that 5——(1ogp)p<,
i

(35) ‘ Z ?—na—minp

<Py

belongs to €(#) module 1. Then it follows from (25) that

0 |Srne S| off Srevd 3 )

Py = B0 QLYY
¢~
2= O =
(Vlﬂf-w)
for o, < o< 1—& Combining {26), (33), (35) and (36) we get what we

wani.

LeMmA 6. Let K and L be positine integers and K < L. Lel ay and by,
1< K, 1<1i< L, denote comples numbers. Suppose that the system
of equations .

. L
(37) Za’p‘rlzl =by,, 1lKk<K,
i=1 :
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has « soluiion (2,,...,2;) Delonging lo

A% = (e, .o

Then (37) also has ¢ solution (3],
L —K positive integers 1< L.

Proof. We procecd by induction on L. There is nothing to prove
for K = I, and so the lemms holds for L = 1. If 1 < K < L, the solutions
of (37) form a linear manitold of (complex) dimension = L —A > 0. This
linear manifold has a non-empty intersection with 4% by assumption.
Hence its intersection with the boundary of A* is non-empty as well,
i,e. without logs of generality we may assunie the exigtenee of » real nunber
f sueh that the system

zL)[ 2; complem amd || =01 for 10«0 LY,

ooy o) i A% sueh that |g]| == 1 for ut least

£l
(38) Dy = by e L, K

{=1
has a solutiom (2, ..., 2,_,) in 4%7'. Now (38) is a systen of K equations
in L—1 unknowns. It has a solution (2}, ...,25_) in A%Y with. |¢}| == 1
for at least L —1—K positive integers 1< L—«l by the 111d11ct1()n hypo-
thegiz, Ience the lemuna is proved.

LEMMA 7. Let a be a real number satisfying (1). Then there ewist ¢y, ¢y, ¢,
and a fumtion o which is analylic in e = § such that the following is true:
If o; < T, 1<, 0,2 %26, 0, < V< (ofloge)®,

i

0<< o5(log TTog P V)2 (Viog* ¥y 2Ba=D

and 2,y A<<p < g, ore complew numbers of modulus <1, then there are
more than 3TV™™Y posilive integers n < T such that

~ Lo g Alfﬂ«a
Nagrol i )

log L{s - tna) = fy(s) Viege = logi
- kst o~ |

Ao

Jor oy oS L—g |8 =5 1e :
Proof. Teb 7 = (logT)® and p == ¢¥*. Then it follows in the same
way a8 (17) and (20) that the 1111111[),(!1 of positive integers n < T with

oo

(39) log £(s -+1na) == SW Ay (m)ym 8 eg, (f’_’_) + 0(v " Flog),
breest #

% o 1,

exceeds T'—O(1"7%). We also have by (19)

[¢] =5 1/e,

U . m Ay
(40) Ay(m)m=e=ina _) o(_) 75 oo
2 tmm ol - ,

men

iom

is absolutely and uniformly convergent in o =
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for o2 426 Thus we infer from Lemma 2 (i), (39) and (40) that

(41)  logZ(s-ting) = 3 Ayfmyms=ime g N pms—ina y
damared

mald =y
mep -

. 1“"_”
‘ + O (1.'"”‘]0g:r+ _16“_7 +Xy—.ﬂ),

erm ol —2g, |t 1/e

for move than

oo e ne)

positive integers n < T, where Tz o, A > 0, o, <
and 1 is a positive mtegel.
Next we choose real numbers 6y, p prime, satisfying

ll/"
= {) - 00,
¢ ( Ogl)’ A oo

Yo 1gigp

(42)

‘ —2mi 0

A
It follows again from (19) that

=]

1}._ —ZmO,p g d
jZ(e )

J=2 »

%+ 2¢, whereas (42) implies
the uniform econvergence of

26 ..mﬂz];p
]
on compach subsets of o> 4 Ience the funetion f, defined by .
. o
VLT, —amie?
(43) fole) = )= Dy
F=1 1 » .

is analytic in o> §. Furthermore, if

(44)

AN
2>

1 A
B—wwlogp’ Y for p
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i
t follows t.hap

icm

— 2rei?
(45) E Ay (m)m~3~ ey 2 o Py

masi pgd

mEDR
_ A —27:1'92) s ( _a) NL 1 -
~f0(8)+0(’é-ie P )+O ZAl(m)m +0 7 %Al(m)m

) p=t ;1111.1;1) m;p

11/2—0’ 1
J‘(<s)+c)(hg;L F-~-) .

T i+ 2e Lol and [# <1 /e.

Now Lemma. 5 and its proof show that for any given real numbers 011
A< p <, we can find more than 32TV positive integers « < T sueh
that (44) holds and

(46)
! v —5—ina é’e" “"‘D?J \1 (,\«m-mj,; -3 0 le*a’: 1o 1‘,12 | 9”2
h — H == [ p——— » g T RN
|--J’ P P L P log g B 14

=y . PEA A<<pp

for oy o 1 —2¢ [t < 1/e, provided that the conditiony of Lemuna §
are fulfilled. Oombmnlg.., (41), (&5} and (46) we sce that

(47)  logg(s-+ina) = f,{8)4 ! g~ ¥ 0pp =8
A<p=lp
lfl—n' l=a
+ 0 ~1/210gr+~ ~+X1" -|-__— 4 VIOg,Q)’ oy o< 1l—2e, i & 1e,

for more than

. 1 ¢ i (lr/y)ﬂal 1
: Ly = 1 ool |—4 1fs
ws) LTV O(T log az.(xz) :T( s )+(1r )})

positive integers n < T, if ! is a positive integer and

osT, "X>0,
6 < V < (efloge)”,

o 5 ¥ sl v & u, wiAL oLy,

(49)
Vq}z(jflg)iwdl F (iﬁl(){.’:

Now let X = 'ﬁg"gg Y = g and I be the integral part of

X(wa)1”‘°1 Hence it follows from (49) that

lﬂgé'x

1< o< v < (glog
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and 7 Yogz is the smallest term inside the O-gymbol in (47). Thus we
obtain from (47 -(49)

Al,’l—- o Ql_ 7]
i) == fo (s v —indly -8 L
Ll 2y e O (k@i +'Vmg@y

(50)  logl(s-
' A<y

o= os 12, |t < 1/e,

for wmore than | TV"@ positive integers < 7T, if

) 172 .
0E T, S Val—] . 110 o,
(51) logo

a(”/@)wl_l-

A gimple ealeulation shows the existence of a positive » such that all
inequalitios in (51) hold, if

‘ 1

Gy V\g(—gm) and

log ¢

Por(efo) 1< olog?  and  ViegV <e

(52) el 1gie,
| ! B
Ga‘(lOgT loglfﬂ V)1[2(‘;710g.1f2 V) 23r—1)

£(>1 a suitably {,hos('n €y
To eomplete the proof of the lemma it remains to show tha.t the
¢~ in (H0) ean be replaced by arbitrary complex numbers of modulus
h ) p

16
1. Te this end let 4 == 1 'cmd K be the integral 1)3,1'11 of ———-log'r;. If =,

B << P B, are complex Hlllllbclb of modulus << 1 and [s| < 2 /e, we have
9 "
: 1 )z (— logZT;)
" \ 1 e \7 - 0,213 \T ,i i
63) N apt= D N e e 40 0
ynpugidy . Dutfe i peSpendy A}!«.
al 1 100' ) e
[VENY LR (O y _.U} i
Next woe apply Lemma 6 to the system ‘
3 ~—]u
By - ) 88 ke 0, K.

75 1))
n&:p%b} e

Thus for any c'umplwx numbers 2, with [s,| <1, % < p < 27, there are
coruplex numbers 2, with ;zl,\ K, n<p <2y and & ol < L for at most
K -1 primes p such that ‘
— C —1 :
P e 2

] I
n«:f)sznn qLPEY .
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Hence we have by (53)

G = D g 00

iy Rty
for |s| < 2/e. Therefore real numbers 6, can be found sueh that
(54) E z“p—-ﬂ (,vlmﬂﬂp L0 (1{,}7—-;1 4 Tf-._l(n'ﬂ)

p i -
for |s] = 2/e. Using (54) with ¢
gee that for any =, with Jg,| < 1,

w2 290 for 1< jur
A< p sl o,

L log(pfAY log2, we

theve are renl mumbers 0,

A< p < p, wach that
(55) et = 3 ey 0 logd)
Ao il Aelpalp

for |g] < 8/e. Thus the lemma follows from (43}, (50)-(32) and {55).
Remark 1. Lemma 7 is not void, sinee Lor almost all positive real o
(in the sense of Lebesgue) theve exists an g > 0 sueh that (1) holds.
This follows as @ special case from
Remark 2. Let y be a positive funchion of fwo integral variables
sueh that
w(l,n)=Y  and

&

w(l, n) < oo,
1

e

i

L

Then the set of those positive real nmmbers & for which
(56 bt —m] << p{li, |n])

has infinitely many solutions in non-zero integers §, m and a has Lebesgue
measure zero. For the set of positive numbers b satisfying

(bt —amnf < w(l, n)

o ‘ 2 fm\Y
for some positive integers I, m, n  hay weaswe s (=] (i, n).

Im \ »
Henceo for o fizxed » >

L bhe sel of nuwmbers b with,
I by and
Ly mz Noand m i L has measure

<o \**1 >1 v (,,f,’n )m AL (T’EZ“’“’ 'n.))»

L
I.:as.l} ﬂ;:N L -k oy Lok winiN

bt —an| x5 (L, n)

for some T =

This lagt expression tends to zero, if L —» o and N -+ co. The xofore the
sot of numbers b in the interval {1/n, 5] for which

[nb' —m| < p(l,n)  or  mbTh—m| < pil,n)

icm

(61) Fy () = \,Xp(_
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has infinitely many solutions in positive integers I, m and # has measure
zero, Since # was arbitravy, (56) now follows.
Jmmma & Let b be a function which satisfies the following conditions:
(i) his analytic in R = {z| |o] < Ry, |y! < Ro+ Ry}, where B, and R,
are positive veal numbers.

(i) There is @ v > 1 such that

(o) = 27"
for all 2 in R,
(iii) There is & positive aumber & < 1 such thot
max |h(z)| = dp™
fwl=ces
Jor oll @ with |z < B, .

If 02 100 and v ds such that B, = v = 8¢jlogy, then (1)—(iii) imply (he
ewigtence nf a el number 1, || << R,, setch that h(it-- 1) contains
{w] ve g lw| < dvTe ).
Proof. We may assume that ¢ and v satisfy the inequalities e™° << d
and Ry, = r = 3e/logy. For otherwise there iz nothing to prove. Now (iii)
implies the cxistence of a real number ¢ such that

> dd“ﬂﬂ ?‘

(57) <R, and h( o +u‘)

Zlogy

We agsume now that the lemma is false. Then there is 2 complex number w

guch that

(58) W L ) < de
and
(69) - hiz) #w
for oll 7 in d4-D,. USing (ii) we obtain for sueh an w
k oy gl ) g2k X hef?
>‘1 RE ()0 “*‘“2 L« Zf e e —log (L — e,
; % k
k al Foe=1 kel
be
whenever 2 belongs to B = R N {z] > —r ~§E~é‘; . Hence the tunction

Ry given by

ai‘.-—*.

oy RE(R)w TN
LG

k=1
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is analytic in R°. The assumption (59) implies that , can be analytically
continued to i+ D,. For this disc is contained in R, has a non-empty
intersection with R and

( o B (z)wE ) 11(2)
exp | — Z R I TR
“ k W

Again it follows from (ii) that for ¢ 2 2 and & in it D,

(82) ()
-ﬁ(g) —1 D < 14 nxp( log ( Jh(—f)i -}-1))

1
< 1 +4-exp (— log
¢ W I

1 » . 1 .
14 exp - log o +1 ) = 1 -] g oxp ( . log(1 (9_2")) = 10,
Using (60) and |¢"—1] < js|e in (61) we obtain
(63)  (Py(2)]

1 y ) 2
£ — m(;, log (1 _6“0/‘!) (1~ e*t‘f.l)--llc P ew—t'll(l . cu(‘fz)mll-—lfc::\/__ 36_0"2,

Hap —rt- be
2log

Now let My, j = 1, 2,3, denote the maximum modulus of h, in the

and ¢ ='2.

by

. 3e
diges of centoer —r- "lggw 4t and radil r;, § =1, 2, 3, where
i

3 ¢ 7 “ fo Al i
e g wE mmmme—e— A fy = ——
YT 2lgy’ P 2logw Y7 logy
Hadamard’s 3-circle-theorem tells ug that

M, < JIII'”M”

for # == log(ry/ry)/log(rgfry) == logh flog6. Hence wo infer from (62) and
(63) that

(64) - -jif‘.! < (3e~uc12)1--«1ng Sflog 6 Loles sflog6 30(’,}(]') ( s f_ ) .
) ‘ A ‘ 24
But it follows from {57) that for ¢ 2 and 2 = —r-h L e 41

log

h( 2) ml)) —1 o\p(l ug( ”T@S}?J ——1)) —

1 d: e“‘"’” ‘ ; :
= exp (—E— 10g(~£7-» o -1 )) —1 == exp (—«3 log (e ——1)) —L z 136

(68) © Myz | (2)]

(1
=|exp mlog
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Therefore {64) and (653) imply that

3/10 < 30exp( —e/24)
or '
6 < 24log(100) < 150.

Hence (08) and (59) cannot hold, if ¢ = 150, R, = v > 3eflogy and ¢ ° < d.
Thus the lemma is proved.

Lomma 9. Lel A,,, A< p, denote the set of vectors z = (z Vicpe, With
compler components z, of modulus < 1. Let ¢, k = 0,1, ..., be functions
on A, defined by

(66) gulz) = X apT(—logp), o< l-—e.

A<p=e

Lot K be a positive integer and wy, k = 0, .., K, complex numbers suoh
that

1 1/3
(87) K =of[-258 —1) exp( (log 1) )) 2 oo,
log 4
and .
logi \&+1
loge |1~ Toge
(68) o] < 989 98¢ | k(K —k)toghe.

10K%loga 2K

Then the system of equations
(69) . 0.7 =w,, k=0,.,K,

has a solution = in A,, for all sufficiently large A.

Proof. The vectors (gn(z y oo gx(®))y # in 4, form a convex set
in OF+' Therefore the system (69) has a solution in 4,,, if and only if
for arbitrary eomplex numbers I, k = 0, ..., K, there iz a 2 in 4;, such
that

: K K
(70 Y hglrr = D bavy.
R0 k=0

It follows from (66) that, as 2 runs through 4,,, the left-hand side in (70)
represents every complex number of modulus

X |
(~logp)*|-

A<= k=0
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On the other hand we have

I Iy
1 it
M| < 3l lwl.
k=9 fosal)

Thus (70) holds, if
logd

J4-1
1 — - oy
A log u
(71) B¢ ( - oEe ) }_J [l Tl (B — ) log"e

10K%0gh \ 2K
K
-

< Do lzlk(wlw)”

Apo =0
Thercfore, to prove the lenuna, it suffices to show that (71) hG]dH for any
given complex numbers L, & =0, ..., K, if I satisfieg (67).
Now let @, denote the polynomml
IS

(72) Q&) = D L.

e

T
Let &, zlogﬁ.»l—»ﬁ- log(ofi), & =0,...,

fomst O

If, and get -

Gyl & H(E £), 0<h<K.

o=

wewtk
Hence we have
X! .
713 o< L& (logo™~, 0<j, k<K,
and.
'.m: 10 A
(74) le(EAi—”j i3) --( g«-(f/ )) B —R)1,

mfk
0k K.

Lagrange’s interpolation formmula tells us now that

! QI ‘Ek

75
(78) ) D¢
Thus it follows from (72)-(76) 1.11.Lt

K K
. N | Q; "Sh j I |Qt 5}. K K j( K o
ML == eelsk) AL A Lo -
3l I;% & () O 275' K =T 1(K )1 AR Yoy

K K - Fe

HE?
< $iie o
2 G (&) TR @//1 '
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and thorelore we have

’ logad \*
Y 73 I T
@6\ ) D e —ptere< Y i
=4 k=0

Now let iy L& ko I, be such that

(77) max  |§,(¢&

= |Q(md  and & << E.
e ety e} -1 S S &

Problem 83 on p. 91 in [9] says that

(78) ma;.:sc Q) (5)] = K* max |Q(&)],

~3aggg]
where @ denotes a polynomial of degree K, Hene.e we have by (77)

(79)

TN }le)(f)[ = INax ( Sk— Ek‘{_j‘i'-i)
B T ~lgg 2
E £+ S
= max - -
Jeggen &4 5, 1 Q’( B )
< max s
E)‘ ’E]p 1§ SESER !
200 il 1<k K
= e Lhg K.
| log(g/d) ™ =
If now
log( {4y \
Lo={6 b i< b i gon < 25D 1
it follows from (77) and (79) that for & in I,
(80)  1QUE = 1Qulm)l — 1Qu(m) —Qu(£) = HQulm)l, 1< k< K.
log(e/A)

The length

of the interval I, is at least T Mence, if I
sutistios (67) and 1 <€ k< X, we infer from the guantitative form of the

prime number theorem (Theorem 23 in [4]) that there arc more than
¢! log(o/4)

81 s
(81) &, bHEY

A= oa,

primes p Hﬁch 1;haﬁ logp belongs to I,. Combining (72), (77), (80} and

4~ Acla Arlihmelics XXXV . 4
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(81) we see that

K
\ —r ! Je —
5| Syers| -

_.-1 - F o
(82) D 5 @ulogz)
A<pse k=0 A pse ‘ ) «
A logo ( logﬂ) =
1-— )X
" 10XClog A loge g@:(ﬂrc
K
A~clogo ( 1ogﬂ) X
e 1 — 2 (&
7 SoiToga \ | Iog P

Fom)
Thus the lemma follows from (71), (76) and (82).

Lemma 10 is & variation on the fundamental Tewnma in [12].

TEMA 10, Lot 0 K op<<l—e and U be a relatively compact open
set in the halfplane o < o, of the complex 8 -plane. Let f be in Ly(U). Then

2 ff(s)io*sdcrdt‘ -0
pTe U

for all o> 0, zf f is orthogonal 1o Py(U). If f is not orthogonal fo Py(T)
and &> 0, there erislts « sequence (.QJ)j:,,_1 suoh that gy -» oc ag j — oo and

> \ F(s)p~ dodi 1 > gl
nese U
for g =g j=1,2,..
Proot. If
(83) Fl) = [Fis)et s dvdt,
U

then F iz an entire function of exponential type. For we have by Cauchy's
inequality y
F(e)| < olows e f 1 (8) *dadt f dodt)",

whote A = sup|¢| < oc. Sinee U is relatively compact, we can also
setly
write I us

ket
where
(85) Fy = [fls)s"dodt, % =0,1,...
[

Thus the first part of the lemma follows from. (83)~(85). Fox f is orthogf:)na,l
to P, (U), if and only if F; =0 for k = 0,1, ..., 16 if and only-if ¥

icm
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vanishes identically. It ulso follows from (83) that
(86) )| < | [ If(s)Faoat | e Vo)
r i

@ real.

et ({[ () dodt J ciﬁdt)m:

Su];ffmma. now that there is & 6> 0 and a 2, > 0 such that
|F(2)| < o8
o- Then (86} and (87) imply that by given by

= [ Fla)

< 8, On the other hand, since ¥ is of exponential

(87}

for @ >

6'!;z"w dz

ig analytic in the strip |v|
type and

[ IF@)fde < o,
it follows from Paley—Wiener’s theovem (Theorem 10, p 13, in [8]) that
T has a bounded support. Thus F and therefore algo F, have to vanish
identieally. Hence the agsumption (87) implies in view of (84) and (85)
that f is orthogonal to Py (U). So, if f is not orthogonal to P, (T) and & > 0,
there iy & sequence (#);2, such that 2; — oo as j — co and '

{88) Fla) =6, §=1,2,...

Furthermore we may assume w.l.o.g. that

(89) max =P (p)| = @ U R ()], §=1,2,...,
|:2!*""(Cj|$1 ) .

and - ’

(90) o268 < 1.

' B
Now let B and E, be defined by Blog Y 148, B> 0, and

S (=
F(5) = )_, ¥y ,,,.,,%;m, K =0,1,..
=0 )

Then (84) and (85} imply that for K > Bl

el

(91) -

o P (o) B ()] < ) 1T 2

R IC

\<.( Uf FE)doit Uf dadt);”%é(f%ﬁ_)'

< e—fxl’



376 A Good

if o} is sufticiently large. Combining (88)-(91) we have

max e ()] 4- 6%
=gl =l

< 90702 | P (wy)]

max |Fg ()} <
Ja- | <1

(92)

it K= B(ay-+1) and § is sufticiently large. Thus we infor from (78), (8%,)
(91) a,nd (92) by choosing a K satisfying B{e;+1) < 2 Ko< 2By that

(93)  |e” @R ()| 2 ¢ OB ()| — | B () — €7 (e 07 B (a5
— [ B (1) — B ()| — o™ O () — e ()]
S ¢ Ot 1 ()| (L — 20 — ] ) — e @)
2 .%6--(024-2-‘1)3:_.,- —B8e¢™% 2 ‘%gw(«r._,‘rkzé)mj’
it je—myl < FE2Bg)” *and j is sufticiently large., The gquantitative form

of the prime numher theoremn (Theoremn 23 on p. 63 in [4]) shows that
there arc more than

(94) o" 2,

&> 00,

primes p such that # —e™* < logp = . Hence, by (93) and (94), we have

3T pmet P (logp)] > ha texp((L — 0y —28) @),
1ng';r)f.§n‘j
if. § is sufficiently large. In view of (83), this proves the lemma.

TmMMA 11, Let 328 < 0, < 0y < L —2e. Let U be an open set i the
complex s-plane such that oy < 0 < 0y and |1 < 1/e whenever 8 belongs to 17,
Let f be an element of Ly UY which is wot orthogenal to Py (7). Let Dy be given
by (6) and 0 < & < & Then there arc ¢y, 0y and & s6quence ()72, sueh that
01 K 0y K 0y Ty o0 as j — oo wid the aumber of positive tnlegers b =5 T fz,
7 = logh T, satisfying

max | Bp(z -+ 3nwi)| < (log Ty ™,
[#]=5z41
max [Pz - Bnd) | = (log Ly d
Wlsir

el L —oy =2 and T =T §-=1,%, ..., eieeds

logT
o loglog 7' |

For b1 de oy

A Toxp ( —

Proof. Apart from the use of Lemma 10, the proof of this ety
is actually a repetition of the proofs of Lemma 1, 2 (i) and 3 with the
funetion @, instead of logl. Therefore it will not be carvied out in all
doebail,
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On the distribution of the values of Riemann's Zela-function

377

We agsume that
jf(s)dadt < 1je.

It can be shown as in Lemma 1 that

o &

J D (2 4 3nri )(——_—g}j{l) (14 cos(ylogv)) dy
7: . (s ‘
by Z Ay (Y qn et f Jisym™ *dodt (d—m

[

| (aefoy| =2l

log

K’L)()—l
" +O(ve™)

for w4 —oyp, if

'
rzl, Pze, lsuTr,

{w] w=a+to, |[v—3nr] <27}

(96) 0<d<d,

is contained in @, and

. % AN
(97) Dy (w) = Z\..J Ay (m)ym Ve (—%) jf{s)m’sdadH—O(r“mlogv:)
He=al 7

for {wl w3 b4 2e—ay, lv-—3nr| < A,
(98) woe= T e T, L<a< T,

Wl wzF+s—ay, lv—3nr] g 27049
iz contained in &
It follows from (19) and Cauchy’s inequality that the right-hand

gides of (95) and (97) equal
7 .- e
09) D' pTa—jloglp)) [ fls)p tadi+0(),
Hog (vl U
@z tt+2e—oy,
and.
{100 Z pUp(plp) [Fis)ptdodi+0O(L), i 3-+2e—oy,
w
ruﬁl}(!n{;ivuly.

Now let o, be sech that for every ¢ > 0 there is 2 sequence (v)i%,
with, #; -> 0o a8 § - oo,

(101) [flsy otz v dor w=wy, j=1,2,..,
12

and '

(102 v 2 7.

ff(s) v ododt < v for
i
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We have o, < o, by Cauchy’s inequality and o, oy by the proof of
Temma 10. Forthermore (89) and (91)-(93) show that

[T dodi— [ Js) ¢ doit| < §| [T(s) 05 dodt]
Ly %) o

(103)

for < p <0, i

(104) »' = voxp(log™), I ff(s)g,,‘"dcrdtl iz INX
18]

veipEy’ gy
van g, e,
and » is sulficiently large. ’
If v o=, §=1,2,.. and

logp

3ng —mm — bl f6
T L

(105} min

I inbegrud

for all p with |log(p )| < d, then it follows from (101), (103), (104) and
the quantitative form of the prime nnmber theorem (Thoorem 23 in [4])

that (99) exceeds
(106) et (loge) " = pmEETE L %0y LK L0y — 2

if §«e 4= (logy)™® and v iy sufficiently large. Lemma 2 and 3 ghow
that (96), (98) and (L0B) can bo yimwltanconsly fulfilled for more than

T
R e ¢ TN [ — — Tl—e
(107) - OXD ( ¢ o ) 0( )

positive integers n < 7'fr. It follows from. (102) and the beginning of the
proof of Lemma 2 that the number of positive integers n < T v satisfying

22)--2-‘-51'::5?7 (j:p_“) J‘f“(s)pwsdo‘dt
15y \H o

2

JESY PR R PR
-{~_‘V rrn| d—

(108) max

ISR

=

for §ob Be oy el @ 10y 28 gxeecds

r o Vo 1 teyt
(109) P 0 (1’6!(»‘1}-]—3-0---) AW o™ )),
where T is o positive infeger. Sinee the left-hand side of (95) is dominatied

by

(110) miuax. | Py (e - Bnri)|
Il

and (102) also implies that

(111) 1 2 pa iy (%) ] "F(s)prdodi

nsy v

= () (vl»«»au-}-éi-—m) ,
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Lem_ma 11 follows from (95)-(100) and (105)—(111), if we choose I to be
the integral part of »/logy and v = ¢logT, where ¢ is snfficiently small.
Lumma 12. Let 8, &', , ¢ and R be positive such that n > 28 and B = 2s.
Lot b be an analylic function on
W' =1z oz —RB, [yl < 2R}v{z &= 0}
such that '
0 bzl <o if @20,
(1) lw—h(=) =8, if aze and w % h(s) for all s with o= 0,
(i) |h(=) < +7, if 2 belongs fo W',
(iv) |h{~B-+8)l =",
Then W{W') contains [w| lw] < »*~*) for all v, where v, depends
only on 8, &'y & n, ¢ and R,
Proof. If w == h{2) for some 2 with # = 0, there i3 nothing to prove.
Otherwise w satisfies (i) and we assume further that
(112) hiz) 7= for all z in W’ and |w] < »" %,
Then
1 f ) '
hyo(2) = exp|—-r fwﬁ ds)—
g (2) Xp(logv J G a) 1

defines an analytic function 4, on W'. Sinee (i), (ii) and Cauchy’s ine-
qualities for the derivatives of analytic functions imply that

&
B (s) e ¢ ¢
A | Ly =
mf B(s) —w )“ & & &
for |z—2e] < é, we have
2¢

¥logv’ le—2el < ¢

¢ ¢
113 ] & e e OK <
(113) Il (S’Iogw(xl)( 5,10”) ‘

it v 32 ve (0", ¢). From (iii) and (112) we deduce that
(114) [y (2)]

1 log (L 4»7%) .
w1 e A 7 — 57 e e | L A 2T
Lol exp (10{“_;” og h(z) w|)\._ 1—|—axp(71 } Togn ) +¢
for z in W', If » 2= »,(8, )., But (iv) and (112) imply that
(115) [he{ —B -+ 8)| 52 €xD (—l-—logih( —R-+3) —-wl)——l
_ log»
o log(L—vY
=ex —_0 - N J— =
= (“XP('I] 6 I' ].Clg'l»'- ) 6?
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it »2(8,n). As in Lemma 8, (113)-(115) and Hadamard's 3-c¢ivele-
theorem applicd to A, with respeet to the circles of eenter Ze and radii e,
R+, R--2¢ show now that (112) ean only hold for » < v (9, 0", & 7, ¢, B).
This proves the lemma.

4. Proof of the main resnits

Proof of Theorem L. Let T 3 ¢;, 7 = (log?)?, 0<dgl
and 1 a positive integer. Then we deduce from Lemma 2 (i) and Lemma 3
that the number of positive integers < I'fv satisfying

Oy 5, ¥ 5 Ty

,pl---a
(116) max [Logf (s -+ 3nri)| w5 -
NELAS! gw
and
117 Nog £{s -+ dni)! o) "
max log £{8 4 3ntt)! Z o 25 s —
(117) T & log (dv) log»
for }+3e= o< L —26 exceeds

4 aap A E /e I
_gﬂ__ﬁiwu “O(TI_”—FTZ!(IOgv) "’HT(T logv)).
log (d,‘)) 641»' 04',;

If we choose [ to be the integral part of opflogy and d = min(1, ¢;/2¢),
then (118) iy groater than

T
{118) = exp (

119 T expl —e S
(1) 7 Py Ty )

provided that

l‘n

4
{120) ——logrloglogs < v K .4‘1 7,

04 03
If {118} and (L17) hold for =, then the function h given by

logw . ‘ o .
h(2) = o logl (e o+-3nri), j+ds~oxol~2e—0, [yl<r-1,
P ' .
fulfillsy all conditions of Lemma 8 Thus, by combining (116)-{119) and
using Lemma 8§ with o sufficiently large ¢, we sce that Theorem 1 holds
for those » satisfying (120).

On the othoer hand, thore e e ¢ ¢; such thab

~ My

Pl P z»a

(121) |1ng £{s -+ ina) 3428 < o< L —2s,

' : v Lo .
for more then Texp (--c:5 --lw—) positive integers » £ T, if
gy

14

(122) o satisfies (1) and ¢, Ky o
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This results from Lemma 7 by taking 2 = », p = 2v, 5, = Lfor A < p <
and ¥ to be a lixed large positive nmmber. Hence the prime mlmbor
theorem and {121) imply that

P

1—¢
{123) max {log&{s + ina)] < -y 3+ 2L o128,
=1 elogy
and.
. . et
{124) max [log (s -+ ina)| = , 2o L2,
[l 4 logw

for morve than Tvxp( —0y T(—é») positive integers w << T, if (122) holds.

In view of Lemma 8, (123) and (124) imply Theorem 1 for the range
0% v < e’ in the same way as (L16) and (117) for the range in (120).
Proof of Corollary 1. It follows from Theorem 1 by exponentiation.
Proot of Theorem 2, Let 3+2:<0, =06—R<e<1-2:—R.
If a, 4, ¢, T and V satisfy the conditions of Lemma 7 and (2,);< <, Delongs
to 4,,, then there are more than %TV”"“’) points 8, = oc+ina, 1 << T,
such that

(125) log (s, +2)

S ona O l—al Al,lz—a'l
= folo+2)+ 2,0 7+ (Vlog@ + Toed )
A<1J<a

for |z = R. If (1256) holds, Cauchy’s inequalities for the derivatives of -
analytic functions show that

(126)  (log£Y™(s,)
1w-ay 11/2—61
e FURY —y ok 1 ~r} €
fiHo) + Zw (—logp) +0(h B {V10g9‘+ oz }),
i<p<e
(127) 1fi9(e)] = O(k1e™)
for I'u w= 0y 1, .. an leb X be a positive integer and wy, 0k < K,

1/3
(128) K- ((—lig% m)! exp (4 (log ,1)1’2)), A oo,
and
1ng K41
2 %og o "~ loge

(120) |l < BUE —k)oghp, 0<h<E.

10K 0g 2K

Then Lemma 7, Lemma 9, (125) and (126) imply the existence of ¢,, ¢, ¢¢

guch that
1—‘0‘1 )
(130)  (log£)® (s, Qw—) 0<E<E,

= £ (¢) + 1w, +o(wz— T
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for more than TV~ points s,, 1<<n< T, if
L logd {A\7 e
6 <T, ¢<V<oPmin ((log o) 12, -1l (—) ) and

(131) loge

0 = o (log Tlog V)2 (V log V) Hor—1),

As o function of A, the right-hand side of (129) takes on its maximum
near the maximum of the function

]
when 4 varies from e to o. Therefore we ehoose
(132} ‘ ' A= gexp( lJEcr)
and assuine now that
(133) K< 8(l—o)loga, &<K1—e.’
Hence K satisfies (128),
30 -giz@”(gyrﬂzyéwﬂmm(Fdrgﬁgg)
and fhe right-hand side of (129) iy larger than
(135) 6K (26 (L — o)) (K — k) k! (log L
Since
I AL L
e age) > (ainga) » 1< T <o
we havoe
(136) 5 0ot — )% T
(loge)™
for 0= kS K, i 8 in (133) s such that

2o
b= oue[2).

Thus the general part of the theorem follows from (127)-(136), i we
use (130) with w,—fi¥(¢) instead of w;,. We dednee the pavticulsr case
K <1le from it by taking V = ¢fo/loge)? and £ = 1loge.

‘Proot of Oorollary 2. Let K2 and ), 0 < k< K, complex
numbers such that
(37 lwyi <P BE, ke=1,..,K,
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for some 5 > 1. Define w,, 0< &< K, recurgively by
! !
Wy = Wy, Wy = Wy,

(138) , Sk ,
Wy == Wy - Z 1_“1‘ Wity b=2, .., K.
=1 '
Tt follows from (137) and (138) that
T || < —1 W, k=1,..., K.

For, by induction, we have

-1 T -1
e Btz oo S 2)
k=1 k=1}
B P U S ST
o 3K +— 41( Rz K‘, TE oLy ey .

Since

1—~1
) = 3 (13 tog Py, 1=1,2, .0

Feeal)
we obtain from (138)

0 s) ;
140) o —
(140) 7 oy T
i-1
_ {logg)(s) X log&)*~*(s) {1¥(s) }
= T —wz—}-r}?’ 1 3)1 R 2 () 0y Wy,
log )% (s
L (ogd)Pis) et
l!
I
(log &)U F(s) W
-4 ; (-L o E) {( (,‘ k) - =W wk "‘i‘“’ TQ!C(S) — Wy 'w;_.,‘,,+
(log4) 5"s) t(s) o ey e g
|( WM(IG,C )}, 2LICH,
Noxt we aggume the existence of positive numbers 8, B such that
(%) [ !
(141) '“%gjﬂmm«WHﬂ'ogk@m
for some g. If 61 and Ky = 10, we conclunde that
W) logll)—wy< s and | _ule o 1qigE
(142) lﬂgil(&)“wa! & an L) Wy | = R"? y Isis
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For the first inequality and the ease I == 1 in (142) hold frivially by (138)
and (141), whereas for 2 <1< & we deduce from (137), (139) and (140)
that

f=1
g9 (s) Y T ytF d ]
M _,w’ < éR—l B 2 (1 _ﬁ_) ) 61”\'“5..,M._. e g1 __7____ Y ’Ic—l____ pli— 14
]uc(s) HE M 2 s e T
p 1™ I~ 8 ¥ ]
B e Tt I Bt NV Ryt T O N (it
i {( )T g 2 () Y L L(H:n l
Rl FAE
R &y ' 8K -1/Ryy ° ' Ry—1]
§ af1 1 1) 8
SIS B TR RTIE YRl PP
BTN T e TE et R

Theoremy 2 shows that for complex numbers w, satisfying (139)
there are more than z-fl’V"“("} points s, = o--ina, L<n< T, for which
. (141) holds with '
11—a)

143 e e ATIC ™
{143) § = Fio g and B> 0,
if 126, K oedoglogdy o und Vo osatisfy (2) and

1 . -
[g| < 0 o' " og o) IR TK 26 (1 —0))7H,

(144) -
=5 ) (de(l—a)".
1 (51::~1og9) le(1—0))
For
1—u
W ol (0(L a) K
bE"logg
e Kl
- Q . . T . ',v) "
o b (B0 )R T [ L ke I
SKogg ot UL —k) (‘mg@) b b K

o . _ oo A -UK
if 0y iy sulficiently small. Binco By 10 for B 2 408(1 - o) ( ¢ )

‘ BIflogo
the first part of the corollury follows from (187) and (141)-(144). The
particular case JC < 1/e follows from it ay in Theorem 2.

Prooi of Theorem 3. First let f be orthogonal to P,(T), i

[F(s)s"dodt = 0
o
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for w == ¢, 1, ... We have

logt(s-+s) = D h(s)s",

=0

if @2 2/e and ¢ belongs to U. Hence

Dy(e) = M, (2) [Fls)sdodt = 0, @2,
#—=0 17
what shows that @, vapishes identically.
S0 let us assume now that f is not orthogonal to P,(U). By (102),
the Diviehlet series for ¢ '

Zzll(m) m=° f flsym™ *dadt
r

=

—

converges absolutely for > 1-¢y. Since in Lemma 12 condition (i)
and the analyticity of 7 imply condition (ii) for some &' > 0, the functions

# - Opz+3+iv), v real,

satisfy (i) and (i) in Lemma 12 uniformly in 2. Combining these remarks
with Lemmsa 11 and 12 we obtain Theorem 3.
Proot of Theorem 4. Pard (i) is a direct consequence of Lemmas 7.
Tivis clear that the I, are convex circled sets. Henee their projeetions
are cloged dises of radius

(4, @) == max Z 2, ff(s)p“"dadt\ = Z \ ff(s)p*sdcrdt .
g

wedy, | a<peig i<p=e U

Thus Lemma 10 implies the properties of 7:(4, ¢) stated in (ii). Since

{(145) Iy e Iy

for g = », the union Ty, and its elosure I{(T) in L, (U) are also convex
o> A .
cireled sets. Since the elements of I, are entive functions, I must

be contained in P, (). As a closed subspace of the Hilbert space L,( U},
P,(U) is isomorphic to its dual. Thus, by a consequence of the theorem
of Flahn-Banach (Prop. 3, p. 120, [3]) an element of Py (T) belongs to
DUy it and only if its projection with respect to any fin Py (U) belongs
to the projection of I3(T) with respect to f. Bub the projection of Iy (1)
with respect to any f in Py(U) is the whole complex plane in view of (145)
and the Iower bomnds for #:(4, o).
Theorem 3 shows that the funetions

(146)

8+ log&(s+ina)
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are in Py(U), it ira Dbelongs to Gy, Combining Theorem 4 (i) and (if)
with ¥V = (g/log o)"* and 2 large enough we conclude that the functions

in (146) are everywhere dense in P,(U). Sinee cvery clement of P_(¢)

ig the uniform limit of elements in P,(U) restricted to ¢, the functions
in (146} arc also cverywhere dense in P {C). For, by Cauchy’s theorem,
two clements of Po(I7) are close with regpeet to fhe supremum norm
on C, if they are cloge with respeet to the Ly,-norm on U,

For part {iv) we obscrve firs: that

by

4 \7 ~ =& N\ I ~ - 4, ( _H-log.p)k‘
1) Dlap = Dis—a)t Y gl L
AL pte fe=al) AP .
_ -1 I I~-ap Fy —afl=my)
- o( M D) \.(?.___ﬁ;f,z”'.if?)_) O(Te__ﬁ.- (PL’C_I.,‘;;%_Q_) ) -0 (.@m,qi)
e N S ogg \ K logg

for all {2,);-p.c, N Ay, and |8 —oy| < 7, if

It
< dggl~s,

-

(149)

X
A = gCx] ( —T ) = g% o sufficiently large
1]

and w, 0 < k< K, are complex numbers satiglying

1

(150) oyl < 5 ¢ (log @ TR — )1 2e(L - 00) K, 0<E<E,

Lemma 9 and (128)-(135) show the exisbence of a (2,);.,., in 4, such
that

x

IR ot &
(151) ).4‘ (8 —00)" Z 2P = ffp) T )\ (8 — ag)auy.
Tewat) i<pme : fn

It
{162) R =R{—g)>0 and f=1—-R—dlog (i::),

we have

e (K —R)! R IKR
plmm 9¢(1 — o "I\lﬂf\""-' _(m e Vbt -k
¢ (26 (1 ~ o)) (Blog )&% = ¢ 2e(l— o)

= @f’\'l— "(J)R_’?“" .

(158)

icm

On the distribution of lhe values of Riemann's Zeta-function 387

Now let f be an analytic function of the form

(1B4) fley = > we,
k=1
where
Qﬂ(l"ﬂu) o .
(155) Lw,ﬁxg—i(—)gw R k=0,1,.

Then, by (147)-(1585), there is a g in I, such that
Q—a(l—u'o)) (Qﬂ(l—uo) ( » )}'a)
= ] o —_— O B ——
(156) ) =flo =0 +0 (4] + >

log"‘z)_m
) —~afl—ay) f{1—op) K -~ afl—ag}
p e e AN T Y e -
mf(s—%}"lmo( log ¢ )+O(Iog‘9 (R) ) =Jts d°)+0( log e )

for |8 — o] < 7y if (148), (149) and (152) hold with a positive §. For then we
have

é 1 1 1
6(1—60)%3’& 5o < TToz @0l ng
2log (i,—)
and,
o) )2 )
= —R'—dlog (Eg‘i)_a < —aq.

Moreover « i positive, if r’ < —6—@“”". Thus part (iv) follows from part (i)
¢

and (L54)-(158).
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On the generalized Ramanujan-Nagell equation I
by :

. Brurers {Leiden)

Introduction. Tn this paper we shall study the diophantine equation
¥ — ) == 2 (D) e Z) in the positive integers @, ». The equation @247 = 27
is known as the Ramannjan—Nagell equation. It was solved by several
authors (see Hasse [6]) and has five solutions, namely (@, 1) = (1, 3),
(3, 4), (B, b}, (11, 7), (181, 15). : l

In*1960 Apéry [1] proved that the equation @2 —D = g» (D < 1,
1) 5% —T) has at most two solutions. Browkin and Schinzel [4] conjectured
that this equation has two solutions if and only if D = —23 or 1-—2%
for some k= 3. Schinzel ([7], p. 212) partly resolved this conjecture by
proving that; unless 1) = 1 —2°, the equation has at most one solution
with % > 80. In Theorem 2 of the present paper we prove the Browkin—
Sehinzel conjecture,

Theorems 3 and 4 deal with the equation 22 —D = 927 (D > 0).
In Theorem 4 we prove that this equation has at most four solutions.
Hurprisingly it turns out to be possible fo construct infinitely many equ-
ations each one admitting precisely four solutions. In Theorem 3 a complete
clagsification is given for those equations with 0 < D < 10'? having
exactly three or four solutions. I have not found any reference to the
cage J) - 0 except for a remark by Hasse ([6], p. 100) and a few congru-
enea conkidarstions by Browkin, Schinzel {[4], p. 311).

Theorems 2, 3 and 4 depend on Covellary 1 of Theorem 1 which
stadios that o < 435 4-10 (log| D log2) for any solution (z, ), This result
makes it possible to solve a given equation o1 = 2" in finitely many
steps, Theovem 1 gives @ good lower hound for the approximation to V2 by
rational mymbers whose denominators are a power of two. The proof
of this theorem uses so-called hypergeometric funetions. In 1937 Siegel [8]
introdnced these functions in the theory of diophantine approximations.
By refining Siegel’s method Baker [2] succeeded in giving a good lower

3__
bound for the rational approximations 0. V2. The proof of Theorem 1
ifin fact an adaptation of Siegel’s method.
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