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 On the distribution of throughput of transfer lines
 C Din~erl and B Deler2

 'Bilkent University, Turkey and 2Northwestern University, USA

 Transfer lines simply characterise the interrelationship of manufacturing stages with their buffers and they are used to
 model the key features of such manufacturing environments with simplifying assumptions. There is a vast literature on
 these systems, however, little has been done on the transient analysis of the transfer lines by making use of the higher
 order moments of their performance measures due to the difficulty in determining the evolution of the stochastic
 processes under consideration. This paper examines the transient behaviour of relatively short transfer lines and derives
 the distribution of the performance measures of interest. An experiment is designed in order to compare the results of this
 study with the state-space representations and the simulation. Furthermore, extensions are briefly discussed and
 directions for future research are suggested.

 Keywords: manufacturing; transfer lines; stochastic process evolution; transient analysis; steady-state analysis;

 Introduction

 A transfer line is a manufacturing system with a very
 special structure. It is a linear network of service stations

 or machines (M1, M2,..., Mn) separated by buffer
 storages (BO, Bl,..., B) Material flows from outside the

 system to Bo, then to MI, then to B1, and so forth until it
 reaches B,, after which it leaves. Figure 1 depicts a two-
 machine transfer line. The squares represent machines and
 the triangles represent buffers.

 There are two major reasons for studying the transfer
 lines. Firstly that they are of economic importance as they
 are generally used in high volume production. Secondly
 that they transfer lines simply characterise the interrelation-
 ship of manufacturing stages with their buffers, which are
 used to model the key features of such manufacturing
 environments with simplifying assumptions.

 There is a vast literature on modelling and analysis of the
 transfer lines. However, most of the results are for steady-
 state operation. The literature emphasises this type of
 analysis because the equations involved are considerably
 simplified in the limit and relatively straightforward tech-
 niques such as balance equations can then be used.
 However, such steady-state analyses are inappropriate in
 many applied situations since the time horizon of operation
 naturally terminates, steady-state measures of system
 simply do not make sense. However, transient results can
 be quite difficult to obtain, tend to be rather complicated,
 and are available only for a fairly restricted class of models.

 Almost all the methods in the literature deal with steady-
 state average production rates and steady-state average
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 buffer levels though the variance of the production and

 the buffer levels during a time period is also important.
 GershwinI reports based on the simulation experimentation
 and factory observations that the standard deviation of
 weekly production can be over 10% of the mean which
 means that it is very likely that customer requirements

 cannot be met on time in most of the time. It is striking that
 this inherent characteristic of the manufacturing systems,

 variability, is so little appreciated by researchers. However,
 today it has received a significant amount of importance as
 compared to the the past due to the emphasis on the just-in-
 time production.

 This article shows how to calculate the mean and the
 variance of the throughput rate, which we define as the
 number of parts produced by a transfer line with buffer
 inventories per unit time, and then allows to calculate
 interval estimates for the throughput. These interval esti-
 mates provide an operational guide for the production
 manager. More importantly, we are now able to examine
 the transient behaviour of relatively short transfer lines and
 derive the distribution of the throughput, the number of
 parts leaving the system of interest at an arbitrary instant
 in time. This also leads to the calculation of the steady-
 state mean and variance of the throughput rate. Since
 transfer lines with high efficiencies and low variances are
 generally preferred, our results can be used to help design
 economically feasible transfer lines.

 A mX-X B

 Figure 1 Two-machine serial line production system.
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 Organisation of the remaining part of this paper is as
 follows. In Section 2, an overview of the transfer line
 literature, that emphasises the studies on the transient and

 steady-state analyses in which the first and second order
 moments of performance measures of interest are calcu-

 lated, is given. Section 3 shows how the proposed model is

 developed. Numerical results and discussions are given in
 Section 4 and finally conclusions and new directions for
 future research are given in Section 5. The evolutions of the

 stochastic process of throughput for two- and three-
 machine transfer lines with finite buffer inventories as

 well as the corresponding representations are available in
 Dincer and Deler.2

 Literature survey

 In this section, we present a classification, which is based

 on the methodology followed, for the studies on the

 transient and steady-state analyses of the serial line produc-

 tion systems. Two major methodologies, that are analytical
 approach (exact vs approximate analysis) and simulation
 based approach, are under consideration. There is some
 cross fertilisation among these approaches, for example,
 some analytical approaches use simulation to generate or
 evaluate alternative initial states. Furthermore, we divide the
 models into two: (1) models for determining the first and
 second order moments of the performance measures in the
 steady-state; and (2) models for analysing the transient
 behavior of the transfer lines. The classification of the
 related literature is presented in Table 1.

 If the relationships that compose the models are simple
 enough, it is possible to use mathematical methods (such as
 algebra, calculus, or probability theory) to obtain exact

 Table 1 Classification from the methodology viewpoint

 Methodology Publications

 Analytical methods
 Exact analysis

 Steady-state behaviour Lavenberg3; Miltenburg4; Ou and
 Gershwin5; Hendricks6;
 Heavey, Papadopoulos and
 Browne7; Papadopoulos8;
 Papadopoulos and O'Kelly9;
 Tanl0

 Transient behaviour Kelton and Law"; Klutke and
 Seiford12; Gopalan and Dinesh
 KUmar'3,14

 Approximate analysis

 Steady-state behaviour Hong, Glassesy and Seongl5;
 Gershwin'; Glassey and
 Hong'7; Springer'8; Wu19;
 Papadopoulos20; Frein,
 Commault and Dallery2'

 Simulation-based methods
 Steady-state behaviour Hendricks and McClain22
 Transient behaviour Lin and Cochran23

 information on questions of interest. However, only special
 systems have exact solutions due to the complexities
 introduced by the buffers in the serial line production

 systems: Hendricks6 developed a technique to analytically
 describe the output process of a serial production line of n
 machines with exponential processing time distributions
 and finite buffer capacities. Papadopoulos8 considered the
 throughput of multi-station reliable production lines with

 no intermediate buffers and exponentially distributed
 processing times and, more importantly, this study provides
 the distribution function of the holding time at the stations.
 Heavey et al7 examined multi-station series production
 lines, but with unreliable machines and Erlang-type distrib-
 uted processing times with the number of phases allowed to
 vary for each station. The methodology they propose
 generates the associated set of linear equations that are
 solved for comparison purposes against approximate results
 which exist in the literature. In another study, Papadopoulos
 and O'Kelly9 developed an exact procedure for the analysis
 of a production line consisting of single machines linked in
 series with no intermediate buffers between them. Their

 exact algorithm gives the marginal probability distribution
 of the number of parts processed by each machine, the mean
 queue length and the critical input rate, that is the through-
 put rate of the line.

 In this review, we also describe the most important
 models and results of transient behavior of transfer line
 literature: Kelton and Law" considered the one-station
 system with parallel servers, exponential inter-arrival and
 service times, and also an arbitrary number of parts present
 at time zero. They obtain probabilities in a relatively simple
 closed form that can be used to evaluate exactly several
 measures of system performance, including the expected
 delay in queue of each arriving part. In another study,
 Klutke and Seiford'2 obtained an exact analytical expres-
 sion for the expected output time of the ith part by using a
 recursive equation to compute the transient expected output
 times. Finally, a merge production system which has two
 parallel stations in the first stage followed by a single station
 in the second stage is analysed to study its transient
 behaviour in Gopalan and Dinesh Kumar13"14 by using the
 concept of semi-regenerative phenomena.

 It appears from the preceding studies that exact solutions

 of relatively short serial lines are available for a wide range
 of models. However, it seems hopeless to expect to obtain
 exact solutions of serial lines with more machines even
 when more powerful computers are available. In such
 cases, the use of approximate solutions is the only viable
 alternative: Hong et al'5 developed an efficient analytical
 method for the analysis of a n-machine production line with
 unreliable machines and random processing times. The
 behaviour of the n-machine line is approximated by the
 behaviours of the (n - 1) two-machine lines based on the
 decomposition technique proposed by Gershwin.24 In their
 next study, Glassey and Hong'7 extend Hong et al'5 serial
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 model by making use of the steady-state output of machine

 Mj in the n-machine line rather than the flow rate-idle time
 relationship. Springer'8 also proposes a new approximation
 for estimating the throughput rate and work-in-process
 inventory of finite-buffer exponential queues in series.

 Papadopoulos20 derives another approximate analytical
 formula, using the holding time model method, for calculat-
 ing the average throughput rate of an n-station production

 line with exponential service times, manufacturing blocking,
 and no intermediate buffers between adjacent stations.
 Finally Frein et aft' approximate the behaviour of a
 closed-loop production line with unreliable machines and

 finite buffers by a continuous flow model that is analysed
 with a decomposition technique, which is similar to that
 used for (open) production lines.

 Simulation is certainly more tractable than analytical
 formulations of production system problems. Moreover,
 there is no concern about feasibility since there is no
 need to make any simplifying assumptions. Therefore, the
 simulation model can be built as close to reality as one
 needs to: Hendricks and McClain22 examined the output
 process of a serial production line of n machines with

 general processing time distributions and finite buffer

 capacities via the use of simulation. In another noteworthy
 study, Lin and Cochran23 studied the transient behaviour of

 GI/GIn queueing system for the often encountered
 dynamic event of machine breakdown by computer
 simulation.

 The performance measures of almost all the studies

 correspond to the steady-state average production rates
 and steady-state average buffer levels. However, the
 essence of transfer lines is their variability and this issue
 has been mostly neglected. As far as we are aware of, there

 are only two published papers that deal with the variance of
 the performance measures of a transfer line over a limited
 period: Lavenberg3 derives an expression for the Laplace-
 Stieltjes transform of the steady-state distribution of the
 queueing time for the M/G/l finite capacity queue that can
 be differentiated readily in order to obtain higher order
 moments of the steady-state queuing time and Miltenburg4
 presents a procedure for calculating the variance of the

 number of units produced by two-machine transfer line.
 There are also four working papers on the variance

 calculation of the performance measures of interest: Ou
 and Gershwin5 derive a closed-form expression for the
 variance of the lead time distribution of a two-machine
 transfer line with a finite buffer and Gershwin'6 analyses
 the variance of a tandem production system. Wu19 develops
 algorithms to calculate the variance of the number of
 departures at fixed time intervals from both tandem queuing
 network models and discrete-time models with breakdowns

 and repairs. Finally, Tanl' determines analytically the
 variance of the throughput rate of an n-machine production
 line with no intermediate buffers and time-dependent
 failures.

 A detailed description and discussion of the models,
 which have been developed till 1992, in the transfer line

 literature can be found in Dallery and Gershwin25 and

 Buzacott and Shanthikumar.25 Another noteworthy review
 is by Papadopoulos and Heavey27 in which a bibliography
 of material (from 1992 to early 1995) concerned with

 modelling of production and transfer lines using queuing
 networks is provided. A similar literature survey on the

 transient behaviour of transfer line literature is also avail-
 able in Deler and Din9er.28

 The model

 The model assumptions and notation

 This section is devoted to the verbal description of the
 transfer lines with buffer storages. The assumptions listed
 in Table 2 describe the mostly encountered production line

 in the literature,25 and also, the basic notation used through-
 out this paper is introduced Table 3.

 Modelling

 As stated in the previous section, the general system under
 consideration is a n-machine-(n + 1)-buffer line. However,
 we specialise on three systems: (1) The atomic model; (2)
 two-machine-one-buffer system; and (3) three-machine-
 two-buffer system. This section gives the verbal and
 graphical descriptions of the transient behavior of these

 Table 2 The assumptions

 1. The production line is a serial arrangement of a finite number
 of n machines. Each machine can operate on one unit of
 product at a time and has internal storage capacity for that unit.

 2. The arrival process is assumed to be Poisson. Therefore, the
 inter-arrival time for part i, Ti(i = 1, . . .), is an independent
 identically distributed exponential random variable with
 density function f(t) = Ae't, A > O, t > O.

 3. The machines Mj(j = 1, ..., n) have mutually independent
 processing times that are also exponentially distributed with

 density function f;(t) = jtje-IV, ,Uj > 0, t > O.
 4. The first buffer of the line is assumed to have zero capacity (the

 parts arriving the system while the first machine is busy are
 lost) and the last buffer is considered to have infinite capacity
 (last machine never gets blocked).

 5. The buffers between the machines of the line have finite
 storage capacities. There are no overflows or lost parts. If a
 machine has finished working on a part and the next down-
 stream buffer is full, that machine becomes blocked and stops
 processing parts until a buffer slot becomes available (block-
 ing-after-service policy).

 6. All machines are reliable and produce no bad parts.
 7. No batching and no setup times (single product) are consid-

 ered.

 8. The output process is not necessarily stationary (a steady-state
 distribution for the output of the system under consideration
 may not exist).

 9. The production line assumes idle and empty initial conditions.
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 Table 3 The notation

 Nj(t): random variable of the number of parts that have left
 machine j up to time t in an n-machine transfer
 line, j = 1, . . . n

 1: number of parts leaving the system at an instance in
 time

 k: index of the time frame in which the system is
 p c,k number of parts arriving the system under Case c in

 time frame k

 n: number of machines in the system
 A: arrival rate to the system
 y: service rate of machine j,j = 1,..., n
 T,: inter-arrival time for part i

 T': service time for part i on machine j, j = 1, n
 b,> size of the mth buffer in the n-machine transfer line,

 m = O, 1, ..., n
 ]3,t (t): probability density function of the random variable

 T; + T,
 F, (t): cumulative distribution function of the random vari-

 able T, + Ti
 f,' (t): ith convolution of the probability density function for

 the random variable T, + T7
 P (t): Ith convolution of the cumulative distribution func-

 tion for the random variable T7, + T
 E(Nn(t)): mean of the throughput, the number of parts leaving

 the n-machine system at time t
 V(Nn(t)): variance of the throughput, number of parts leaving

 the n-machine system at time t
 E(t): mean of the throughput rate at time t
 V(t): variance of the throughput rate at time t

 F: steady-state mean of the throughput rate
 V: steady-state variance of the throughput rate

 systems. The corresponding descriptions help us to write
 down the representations for the number of parts leaving
 the system at an arbitrary instant in time. Finally, the
 relevant representations are utilised to obtain the distribu-
 tion of throughput by which the mean and variance of the
 number of parts leaving the system are calculated. The
 approach is explained in detail after presentation of the
 stochastic process evolutions of the related systems.

 The atomic model

 The atomic model corresponds to one-machine system as
 depicted in Figure 2.

 The evolution of the stochastic process of the random

 variable, Nvl(t), is presented on the following page.
 The memorylessness property of the inter-arrival times

 (the Poisson arrival process) and the zero capacity of the
 first buffer in the line facilitate the representation of the

 b0 F 1b

 Figure 2 T, exp(L), T1, exp(,u) Vi; bo = 0 and bi = ox.

 stochastic process evolution for the atomic model. When-

 ever a part leaves the system, say part (i - 1), the next one
 arrives T' time units later. Hence, the number of parts
 leaving the system at time t can be written as

 N, (t) =

 O if + < t < T< + Tj +7

 2 if~~~~~~~~~~
 1 if Vj( + T 77 < t < L(7- + T ?ll )

 2 if 1(2 ?(Ti 7)<t<E$4(TjT 1)

 I- if E-(T;, + T,,ll < t < (7l(T, + Tl,,

 I if EII(T;' + Tlt, ) < t < E- (i+ T,iit

 1+ 1 if t < 1(T>2 + )<t<>jji(T? + Tj)

 : : : (1)

 Two-machine-one-buffer system

 The system under consideration is illustrated in Figure 4.
 Now, there occurs an increase in the number of the

 sources of variability (77., T77l, and T,> i ) 1) due to the
 more number of machines and buffers in the system of
 interest and this leads to the existence of two mutually
 exclusive and collectively exhaustive events that describe

 the behaviour of the system: (i) the part leaving Ml finds
 M* busy; and (ii) the part leaving Ml finds M* starved.
 While Ml refers to the first machine itself, M* is not
 considered only as the second machine of the line, but as
 the rest of the system consisting of the second buffer (B1)
 and the second machine (M2) of the line. In the former
 event, the second buffer of the line is at its full capacity and
 the second machine is processing a part at the time the part
 on the first machine is ready to leave. Hence, the system
 gets blocked (blocking-after-service policy). In the latter
 event, the part leaving the first machine enters the queue
 and depending on the state of the second machine (idle or
 busy), it is delayed in the queue for either zero or more
 number of units. The effect of the buffer capacity on the
 throughput behaviour is implicitly characterised via the
 consideration of this case. The two-machine transfer line
 will be in either of these mutually exclusive and collec-
 tively exhaustive cases at different instants during the
 evolution of the relevant stochastic process. This is why
 we recommend to make use of the time frames in which the
 mutually exclusive and collectively exhaustive descriptions
 of the system behaviour take place for particular number of
 parts arriving the system in order to keep a better track of
 the evolution of the throughput. Each time frame is labeled
 with index k in which the first and second cases are
 assumed to hold consecutively for pl k and p2,k parts,
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 Nit)

 4

 3

 2

 1~~~~~~~~~~~~~~

 Figu 3 l+TuIt o oTf+T he s To +Tic p e ss , N t).

 Figure 3 Evolution of the stochast'ic process, NI (t).

 bo AI b, g2 b2

 Figure 4 T, exp(L), T' - exp(iuj) Vi, j = 1, 2; bo = 0,
 bi >0 and b2 = X??

 respectively. What happens in time frames helps us to

 describe the system behaviour and obtain the analytical

 derivations for the number of parts leaving the system at

 different instants in time. We must note that the pl,k and

 p2,k variables are considered to be known in advance by the
 production manager and, accordingly, the analytical deri-

 vations for the number of parts leaving the system, N2(t),

 can be modified at any instance in time. The evolution of

 the stochastic processes and the corresponding analytical

 derivations for N2(t) under Case 1, Case 2, and the
 aggregate case, under which the first case holds for plk
 parts and the second case for p2,k parts in time frame k, for
 the two-machine transfer line with finite buffer storage, are

 available in Dinser and Deler.2

 Three-machine-two-buffer system

 The system under consideration is illustrated in Figure 5.

 In this system, there arises four mutually exclusive and

 collectively exhaustive events that describe the behaviour

 of the line: (i) the part leaving M1 finds M* busy and the
 part leaving M* finds M* busy; (ii) the part leaving M1
 finds M* busy and the part leaving M* finds M* starved;

 (iii) the part leaving M1 finds M* starved and the part

 leaving M* finds M* busy; and (iv) the part leaving M1

 finds M* starved and the part leaving M* finds M* starved.

 Similarly, M* corresponds to the second buffer (B 1) and the
 second machine of the line (M2) while M* represents the
 third buffer (B2) and the last machine (M3) of the line. The

 behaviour of the first part of the system, which is composed

 of M1 and M*, implicitly describes the effects of jl, bl, and

 I2 on the throughput of the line while the consideration of
 M* helps to characterise the effects of the b2 and [13 on the
 transient behaviour of the system behaviour. However,

 none of these mutually exclusive and collectively exhaus-

 tive events uniquely represent the true system behaviour by

 itself. Hence, an aggregate case is considered under which

 each condition is allowed to be valid for particular number

 of parts, assumed to be known in advance, in each time

 frame.

 The corresponding analytical derivation for N3(t) under

 the aggregate case, in which Case c holds for pc,k parts in

 each time frame labeled with k, c = 1, 2, 3, 4, for three-

 machine transfer line with finite buffer storages, is also

 available in Din9er and Deler.2

 Approach

 In this section, we explain how the analytical derivations

 for the number of parts leaving the system at an instance in
 time can be readily utilised to obtain the various moments

 of the throughput rate. This is shown on the atomic model

 due to the simplicity in deriving the first and second order

 moments of the throughput rate of the system.

 0 mi WC m X>1
 Figure 5 T,, - exp(i), Tpj - exp(yj) Vi,j = 1, 2, 3; bo = O, b, > O, b2 n 3=x
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 C Din~er and B Deler-On the distribution of throughput of transfer lines 1175

 The number of parts leaving the system, the atomic

 model, at time t has been obtained in (1). It is deduced
 from this statement that,

 P(O < t < T; + T)= P(N(t) = 0), (2)

 and

 /t t+1

 P (Ti + T8) < t < (T T +Ta)) = P(N1(t) =1),

 1=1,2,... (3)

 By definition of the expectation,

 00 t 1+1

 E(NI(t)) =E x P (Z(T - + Tt) < t < (T, + TPI))*
 t=1\i=1 =1/

 (4)

 Simultaneously, P(NI (t) = 1), 1 = 1, 2 .... can be written
 as the difference of the convolution of distribution func-

 tions,

 P(NI (t) - 1) = Fl ,, (t) - F,11 (t), (5)
 If this is substituted into the expression (4), then we
 determine the mean and the variance of the number of

 parts leaving the system at time t,

 E[NI (t]= x (Flg 1 (t) -Fl+ (t)) (6)

 E[NI (t) X (NI (t) -1)]
 00

 E EI x 1) x (F,[N (F1+Q (t)), (7)

 and

 V[N1 (t)] = E[N1 (t) x (N1 (t) - 1)] + E[NI (t)] - E[NI (t)]2.
 (8)

 Then, the mean and the variance of the throughput rate over
 a length of time t, can be written as,

 E(t) = E[ (t = E[N1 (t)] (9)

 and

 V N) , LN(t)1 V[Nj (t)] ~ (0
 V [) t ] t2 (I10)

 The mean and the variance of the throughput rate in the
 steady-state can also be calculated as

 lim E(t) = E, (11)
 t *00

 and

 lim V(t) = V. (12)
 to+00

 The major difficulty is due to the development of the
 closed-form expressions for the mean and the variance of
 N1 (t), which are expressed as in (6) and (8). Therefore, the
 essential step turns out to be the determination of i-fold

 convolution of distribution function, Fit (t). In fact, this is

 the i-fold convolution of the random variable T,' + Tt,,,
 which is hypoexponentially distributed with parameters i

 and ,ul, respectively, in case i 7& ,l. Otherwise, the i-fold
 convolution of the random variable TX + TJ, has an Erlang-

 typc distribution. In other words, T;, + TJil, hypo(X, It,) if
 i 0 ,uI and Tj + Tj, - ErlangjLI) if i = p1. In case the
 arrival rate is equal to the service rate of the server, ) = PI ,
 the closed-form expressions for the probability density

 function and the distribution function can be readily
 obtained by the definition of the Erlang distribution func-
 tion.29 However, although the sum of hypoexponentially
 distributed random variables is also hypoexponentially
 distributed with the requirement that all the random vari-

 ables are independent with different parameters,30 there is
 no concrete information about whether the sum of hypoex-

 ponentially distributed random variables is also hypoexpo-
 nential in case the parameters of the random variables are

 identical. At this point, we recommend to make use of the

 convolution method by which the closed-form expression

 of F>,, (t) can be obtained.29 In this way, the closed-form
 expressions for the probability density function and the

 distribution function are obtained as in case i # l:

 X ,X X (e-X1--ie-t)

 ifl1 (13

 ).~ ~~(-) x eR-,u Lii et

 + a ixEi=(lilxA ?x tlifXl=O i

 (,- 1
 (-)x 8-,) 21-1

 if -> 1 (13)

 and

 i -8+ , xet + I if 1=0

 thax cI x dined X Ai X gl-i(t) x x 8)1'

 (I - 1) X PR_IM1)21-1

 RIx HIt x 1 (l+ x Ai x hl-i(t) x (PI -i1

 (I1!x (-)21- 1
 i f I >- 1 (14)

 where gl-i(t) and hl-i(t) are incomplete gamma functions
 that can be defined as gl-i(t) = g0xl-i x e-XI-ll dx and
 hl-i(t) = J xl-' x e-X' dx, and also the coefficients Ai are
 numerically calculated in the Maple V environment by
 convoluting the relevant density functions.

 The substitution of expression (14) in (6) and (7) leads to
 the determination of the exact values of the mean and the

 variance of number of parts leaving the system at time t.
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 Finally, the mean and the variance of the throughput rate at
 time t and the steady-state mean and variance of the

 throughput rate by letting time, t, approach infinity, are
 numerically obtained.

 Validation

 After the development of the model, an experiment is
 designed in order to determine whether the model can

 capture the true transient and steady-state behaviours of
 the corresponding systems.

 State-space representation

 For each system, the mean and the variance of the

 throughput rate obtained by the analytical method are

 compared with the ones given by the state-space represen-
 tations developed under exactly the same assumptions for
 the analytical models (Table 4). The state-space representa-
 tions correspond to the Markov chain models that are

 developed via the use of balance equations and that are
 used in order to obtain the steady-state performance
 measures of the systems.

 The design used for the experiments is the paired
 comparison design in which the precision can be greatly
 improved by making comparisons within pairs of experi-

 mental results at a significance level of 95%. The results of

 the experimental design show that there is no evidence to
 indicate that the two approaches produce statistically
 significant difference in the estimation of the performnance
 measures, which are the mean and the variance of the
 throughput rate.

 Table 4 Analytical results vs state-space representations

 Analytical method Markov chain
 System parameters

 (b, ..., b,il_, i, 1j, . Ji) Mean Variance Mean Variance

 The atomic model

 (3,3) 3.000 9.000 3.000 9.000
 (1,0,5) 0.499 0.249 0.500 0.250
 (0,5,1) 0.499 0.249 0.500 0.250
 Two-machine-one-buffer system
 (0,1,3,3) 0.727 1.650 0.727 1.653
 (0,1,7,3) 0.834 1.804 0.833 1.804
 (2,1,3,3) 0.748 1.686 0.749 1.687
 (2,1,7,3) 0.871 1.854 0.873 1.857
 (5,1,3,3) 0.748 1.686 0.750 1.687
 (5,1,7,3) 0.874 1.856 0.875 1.859
 Three-machine-two-buffer system
 (0,0,1,3,3,3) 0.239 1.832 0.241 1.833
 (0,0,1,6,4,3) 0.274 2.000 0.275 1.999
 (2,2,1,3,3,3) 0.282 0.128 0.285 0.131
 (2,2,1,6,4,3) 0.392 0.164 0.388 0.163
 (2,5,1,6,4,3) 0.401 0.207 0.398 0.205
 (5,2,1,6,4,3) 0.408 0.209 0.409 0.211
 (5,5,1,6,4,3) 0.412 0.214 0.412 0.213

 Simulation

 The simulation analysis helps to determine whether the

 model operates appropriately in the transient state. The
 codes to simulate the systems developed under exactly the
 same assumptions for the analytical models, are written in
 the SIMAN simulation language.3' While obtaining the
 numerical results for the mean and variance of throughput
 at arbitrary instants in time via the use of simulation
 models, the following formulas are used:

 500N1t
 E(Nn (t)) =

 500

 and

 500 Nny(t) - EX)
 Var(Nn(t)) = L 99

 y=l 4

 where NnY(t) corresponds to the number of parts leaving the
 n-machine system at time t in the yth replication. These

 formulas are basically the definitions of the sample mean
 and the sample variance that are available in the reference

 of Montgomery.32 Then, the mean and variance of through-
 put rate of the n-machine transfer line can be numerically
 calculated by

 E(t) = E[Nt(t)] E[N(t)

 and

 V(t) = V[Nt] =- Ot]

 respectively, at time t.

 It is observed that the pattern which analytical results
 follow is smoother than the one of the simulation results
 (Table 5). This is due to the random number generator that
 is one of the main mechanisms of the simulation software.

 The simulation analysis indicates that the proposed
 method works fairly well in reflecting the transient beha-
 viour of the systems under consideration (Table 5). This is
 confirmed by the paired comparison design that is done at a
 significance level of 95% with the result that the analytical
 and simulation based approaches do not produce statisti-
 cally significant difference in the estimation of mean and
 variance of the throughput rate.

 Conclusions and new directions for future research

 In this paper we propose an analytical method for estimat-
 ing the mean and variance of the throughput of a serial line
 production system with reliable machines and finite buffers.
 The transient and steady-state behaviours of the system are
 determined by using the evolution of the stochastic
 processes under consideration. The analysis of the evolu-
 tion of stochastic processes enabled us to derive the
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 Table 5 Analytical results vs simulation

 Analytical method Simulation

 System parameters

 (b,...,bn1, il, j .j. ., t) Mean Variance Mean Variance

 The atomic model
 (2,20,2) 1.802 1.422 1.809 1.431
 (2,20,5) 1.816 1.434 1.824 1.438
 (2,20,10) 1.882 1.496 1.885 1.501
 (2,20,25) 1.844 1.450 1.846 1.451
 (2,20,50) 1.837 1.451 1.838 1.449
 (2,20,100) 1.828 1.449 1.827 1.449
 Two-machine-one-buffer system
 (5,1,3,3,2) 0.869 0.318 0.872 0.320
 (5,1,3,3,5) 0.801 0.267 0.794 0.270
 (5,1,3,3,10) 0.772 0.242 0.776 0.249
 (5,1,3,3,25) 0.761 0.238 0.762 0.239
 (5,1,3,3,50) 0.755 0.235 0.752 0.238
 (5,1,3,3,100) 0.753 0.237 0.752 0.236
 Three-machine-two-buffer system
 (2,5,20,6,4,3,2) 2.012 1.364 1.767 1.361
 (2,5,20,6,4,3,5) 2.296 1.492 2.287 1.467
 (2,5,20,6,4,3,10) 2.511 1.668 2.509 1.666
 (2,5,20,6,4,3,25) 2.674 1.692 2.666 1.678
 (2,5,20,6,4,3,50) 2.703 1.715 2.699 1.716
 (2,5,20,6,4,3,100) 2.713 1.728 2.713 1.727

 distribution of the throughput. This distribution is then
 utilised to find the higher order moments of the throughput
 rate for measuring the performance of the system. The

 method based on the analytical derivation of the distribu-
 tion provides correct results for typical transfer line models
 encountered in real applications. Moreover, the iterative
 algorithms coded in Maple V environment seem to be
 efficient: in all examples we test, it always converges
 and, in general, very rapidly. Furthermore, an experiment
 is designed in order to compare the analytical models with
 the state-space representations and simulation models in
 which the results verified the accuracy of the methodology
 developed in this paper.

 This research should be extended to develop analytical
 methods for the analysis of more complicated systems such
 as longer transfer lines with non-exponential distributions
 and multiple-part types. Furthermore, line design issues,

 pull-type systems, and general networks can be studied by
 making use of this method.
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