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1. Introduction.

Meny authors - particularly in the physical and engineering sciences -
have considered the problem of obtaining the distribution of the time between
successive axis-crossinks by a stochastic process. This interest dates back
to the pioneering work of S. O. Rice [h], who developed a series expression
and used a very simple approximation for the case of axis crossings by a
stationary normal process.

More generally, one may consider the distribution of the time between
an axis-crossing and the nth subsequent axis-crossing, or between, say, an
upcrossing of the axis and the nth subsequent downcrossing. Problems of this
type have been discussed by Longuet-Higgins [3], with particuler reference
to the normal case. In particular he obtains series expressions which are
varients and generalizations of that given by Rice [4, Eqn 3.4-11]., For
example, Longuet-Higgins calculetes (by somewhat heuristic methods) a
series for the probability density for the time between en "arbitrary
upcrossing of zero to the (r+1)st subsequent upcrossing. (A precise defi-
pition of what is meant by such a density is usually not given, in the rele-
vant literature. This difficulty, and one method of overcoming it, will be
discussed in Section 2). The series just referred to may be written in the

form

W =z ey ] W(0,bye .t L, T)/W(0) .. .dt
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where W(ty...ty)dty...dtn represents the "probability of an upcrossing of
the axis in each of the intervals (tj,ti+dtj)." For a normel stationary
process, the functions W(tj...tp) may be written in terms of the finite-
dimensional distributions of the process. It is this fact which leads to
the usefulness of the series expansions, when approximated by & small number
of terms.

The upcrossings of the axis by, say, & stationary normal process, form a
stationary stream of events (point process). Equation (1) then applies to

(1) This research was supported by the Office of Naval Research under
Contract Number Nonr 855(09).

i



this point process and gives the probability density for the time from an
"artitrary" event to the (r+l)st subsequent event. One of our objects in this
paper is to generalize resuits of this form to include arbitrary stationary
streams of events.

Further, it is sometimes of interesi to differentiate between two or
more types of events in a stationary stream and to obtein distributions for
the time between an event of the Cirst type and a subsequent event of
another type. A simple example of this situation is given by the upcrossings
and downcrossings of the axis by & stationary stochastic process. Again
certain series expressions are available ([3%) for the desired distributions
in this particular case and it will be our aim here to generalize this type
of result also. An appropriate framework for such a generalization is that
of & "mixture" of two streams. Briefly, a stationary stream of events will
be called a mixture of two component stationary streams if the events of the
component streams alternate in forming the mixture. (For properties of
mixtures in this sense, see Leadbetter [2]).

The integrands occurring in the terms of (1) do not necessarily have
strictly equivalent counterparts within a more general framework than the
axis-crossing case. Hence it is not immediately clear what type of results
should be sought in the more general framework of streams of events. How-
ever the integrals occurring in (1) are closely related to the factorial
moments of the number of upcrossings of the axis in (0,T) by, say, a stationary
normal process (Cramér and Leadbetter [1] Eqn. 10.6.2). Hence it is natural
to seek formulee in terms of factorial moments of the numbers-of events in
a given time interval for the case of & more general stream. This also has
the advantage of making possible a more satisfying and rigorous development
than is at present available in the literature concerned with exis-crossings.
The situation for mixtures of streams is just a little more complicated, but
similar results may be obtained.

In Section 2 we shall briefly describe the framework and notation to
be used. Section 3 will be concerned with the case of a stationary stream
of events, and Section 4 with a mixture of two such streams.

2. Pramework and Notation.

It is not our purpose here to discuss the basic structure of a
stetionary stream of events. (A convenient account of this mey be found in
[l, Section 3.8], and references therein). We shall take the basic structure
as given and write N(s,t) for the number of events occurring in the interval
(s,t). It will be assumed that the stream is regular (orderly) in the sense
that P{N(0,t) > 1} = o(t) as t | 0. Write v, = vy (8] = p{N(0,t) = kJ.

We are interested in the distribution function for the time between an
"arbitrary’ event and the nth subsequent event. The word "arbitrary" is,
however, not well defined (though often used) within this present context
and hence we prefer to use a slightly different but precise definition for
the distribution functions of interest. (This and related points are dis-
cussed in more detail in [2]). Specifically we write

(2) F (+) = 1im P(N(0,t) >n| W(-7,0) > 1}
T—> 0



This limit exists (see [2]) and is interpreted as the conditionel probability
that the nth event after time zero occurs before 1, given that an event
occurred "at" time zero. It is know (for example cf. [2]) that

n-1

+¢y -1
(3) F () =1+D{x kio(n-k)vk

(t)}

where D+ denotes the right hand derivative and A the mean number of events
per unit time,

For the case of a mixture of two stationary streams, considered in
Section 4 we shall use the notation of [2]. Specifically let N(s,t) refer
to the mixture and Nfs,t), i = 1,2, refer to the component streams con-
sisting of events of "type 1" and "type 2." Write for i = 1,2,

(4) vﬁl)(t) = P{N(0,t) = k and first event after time zero is of type il

Fl({i)(t) = 1m PN(O,%) > k| N (-7,0) > 1]
> 0 .

may oe interpreted as "the distribution function of the time between an arbi-
trary event of type i, to the kth followink event, of whatever type."
The relation corresponding to (3) which we shall need in this case is

(5) Féllgzl(t) =1+ hilD’Lw}(:i(t), kK =1,2,...

where

(6) Wil)(t) = Véi) + véizl + 2(véi?2 + Véizj + oeee + k(vée) + v§2))

+ (k+1)vf,2) + véitil + Véizg * 2("&25 * "égu

+ e + k(v§1)+vél))

)



and xl(zx/e) denotes the mean number of events of type 1, per unit time.
(A derivation of Equation 5 has been given in [2]). Clearly Féizl (t) may be

interpreted as the "distribution function for the time from an arbitrary type
1 event to the kth following type 2 event."

3, Series expansions for a single stream.

As noted in Section 1 we shall be interested in series expression invol-
ving the factorial moments of the number N(O,t) of events in the interval
(0,t). We shall accordingly assume that N(O,t) has finite moments of all

orders - indeed that the probebility generating function

o)
P(z)(:Pt(z)) = g vk(t)zk exists for each t, in the region |z| < p, for some
o > 2. This assumption may probably be weakened but facilitates the

calculation of the results, which are thus obtained as absolutely convergent
series. Let un(t) denote the nth factorial moment of N(O,t). That is

® x
(7) b (£)/nl = = ()

v.(t).
Z (%)

The probabilities vk(t) are normally regarded as fundamental in specifying

the properties of the stream of events. However we may, of course, regard
the factorial moments un(t) as fundamental quantities since they determine

the vk(t) under the given assumptions. Specifically if W(z)(=¢t(z)) denotes
the factorial moment genersting function for N = N(O,t) we have

N Qo
1(z-1) = €z = réo ur(z—l)r/rl, an expansion valid for |z-l| < p-1l. But

since P(z) = ¥(z-1) and the circle |z-1| < p-1 includes the origin (p > 2)
we have ‘

loo) K
k r-k,r
(8) v (8) = 2SN oy =z (TEOE,
k kir.!

r=k

the latter series converging absolutely.
Writ V. =V (t) $° (t) (£) - ® F_(u)a
rite, now, V =V = n v y a8, =8, = Jo o lu)du.

Then it follows from (3) that for n > 1,
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Hence for k > 1,

b (£) /Kt = nik (W, -V )
o n-1
- nik (k-l) Vn
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In this calculation some obvious and easily Jjustified series manipulations
have been used. It follows by inversion of the summation and integration
signs (for the positive quantities involved) that uk(t) is absolutely con-
tinuous, being the integral of ui(t), say, where u&(t) may (and will) be
taken to be non decreasing in t.

From (10) we have for t > 0O

o0 n+l

® K
5 E¥ = Az a =z (n';)tk
k=2 n=1 % k=2 X

since the double series has positive terms, which reduces to

" ©
E% £ =nt? £ a (14t)T

(11)
k=2 n=1 °.

Both sides of (11) are finite if O <t <p. Tt follows from this that the

functions
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are each regular in z|< p - 1 and identical on the real axis between z =1
and z = p - 1 (p > 2). Thus the two functions in (12) are identical in
Jz] < p-1 and we obtain

vl

-1 k-n-1 ,k-2 k
a_ = A z (=) ( ) =
n k=n+1 n-17 k.
or
t W t
(13) - (u) du = Atos (—)k'n'l(k'z) r w! (x)ax/x! .
J n n-1/ J k
o) k=n+1 o

The series in (13) is absolutely convergent and it follows from Fubini's
Theorem that

t t 00 u! (x)
r - -N- -
j F(w au= Jf' S l(ﬁ_i) k—l,“—-]dx
o o k=n+1 :
whence, for n > 1,
© w!(t)
- k-n-1,k-2
(14) F(e) =nt 5 (FPEE) S
k=n+1 )

This equation initially holds a.e. but may be taken to hold everywhere by
our choice of nondecreasing forms for the uk(t), provided ui(t) is also

chosen to be continuous to the right at any discontinuity points. Thus
Equation (1k4) expresses Fn(t) in terms of (derivatives of) the factorial
moments of N(O,t).

4, Mixtures of streams.

In this section we shall consider the distribution function for the time
between an "arbitrary” type 1 event and the kth following type 2 event, in a
mixture of two stationary streams. That is we shall be concerned with the
function Féi)l(t) defined in Section 2 and our aim will be to express this
function in terms of certain factorial moments.



Define a random varialbe M = M(0,t) such that M-1 is the number of
type~-one events in (0,t) for which the immediately following type-2 event is
also in (0,t). That is M - 1 is the number of complete pairs of events in
(0,t) starting with a type-1 event. It is the factorial moments vn(t) of M

which will be relevant in the series expression for FQk-l(t)' Let un=P{M=n}.

Then, with the notation of Section 2, a little calculation shows that for
n>2,

(1, 1 @

_ (2)
(15) Uy = Vonol T Vono2 T Von * Von-1

whereas for n = 1 an additional term vée) must be added to the right of (15).

Meking the same assumptions as in Section 3 concerning the existence of
generating functions, we have in particular that

ZEEEZ = ;O (%) u
' =
k. n=k k" n
o0
n-1
= 5 (L)
n=k k-1""n
a0 _lCO
where U =U (t) = £ u. Now if A=A (t) =X s U_ it follows that
n n r n n 1 S
r=n s=n+1
v. (1) 00
k n-1
= A .
(16) &7 1 = G Ay
n=k-1

Now it is shown in the appendix that

an) R e U OISO
which, by (5) yields

t
(18) An+l = I F2n+l (u) du
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Equation (16) has the same form as (10) and an inversion along the same lines
as that leading to (14) yeilds

-1 @ k-n-1 k-2, _, ,
(19) Fopa(8) =M I ) i G IV S

subject to the same comments as made after Equation (14).

Since the (factorial) moments determine the distribution from which they
are obtained under less restrictive conditions than those assumed here, it is
likely that the results obtained are valid, at least in part, under weaker
conditions. We hope to discuss such questions and further generalizations in

a future paper.
Appendix. Proof of Equation (17).

From the definition of An we have,

1 n+l
A =A"(6- 2 U)
n+l 1 s=1 B
00 8-1
where 6§ =2 U.. Now since U_ =1 - ¥ u_ it follows that
s s r
1 r=1
n+l
= (n+1) - v
Z U (n+1) (un+2un_l + nuy
s=1
(A.1) = (n+l) - wél)(t) + vég) (t)
foe) o
by (6) and (15). Also § = I U, = I ru, =¢E&M. This may be evaluated by
1 1

substituting for U, from (15). However it is perhaps a little simpler to
note that if Qél) denotes the probability that the first event after time
zero is of type i and that there are exactly n type 2 events in (0,t), then



(o o] QO
=1+Z nen - Z eﬁe)
1 1
(1) , ,(2) e .
= = = . = & = A
where 8 = 6.7 + 8- P{NE(O,t) n}. Thus i ne N,(0,8) = Mt

by virtue of the fact that the mean number of events per unit time is the
same for each of the component streams (cf.[2], Section 4). On the other

00
hand, & eig) is the probability that the first event after time zero is
1

of type 2 and that at least one such event occurs before time t. Hence it

may be written as vée)(o) - vég)(t). Gathering these facts we see that
(2) (2)
8 =1+ Mt - vy (0) + v, (t)
From this relation and Equation (A.l) it follows that

A=t xil [wél)(t) -n - vgg)(o)]

which yields (17) since vil) (0) = 0 for k > 0 and hence, by (6),

D (0) = (@+1) v/ (0) + wiP(0) = n + v{P0).
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