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ABSTRACT Nanopositioning systems are very popular and playing an increasingly vital role in micro and

nano-scale positioning industry due to their unique ability to achieve high-precision and high-speed oper-

ation. However, hysteresis, commonly existing in piezoelectric actuators, degrades the precision seriously.

Uncertain dynamics and sensor noises also greatly affect the accuracy. To address those challenges, a variable

bandwidth active disturbance rejection control (VBADRC) is proposed and realized on a nanopositioning

stage. All undesired issues are estimated by a time-varying extended state observer (TESO), and cancelled out

by a variable bandwidth controller. Convergence of the TESO, advantages of a TESO over a linear extended

state observer (LESO), and the closed-loop stability of the VBADRC are proven theoretically. Improvements

of the VBADRC versus the linear active disturbance rejection control (LADRC) are validated by simulations

and experiments. Both numerical and experimental results demonstrate that the VBADRC is not only able to

provide the same disturbance estimation ability as the LADRC, but also more powerful in noise attenuation

and reference tracking.

INDEX TERMS Nanopositioning, active disturbance rejection control, time-varying extended state observer,

variable bandwidth control, noise attenuation

I. INTRODUCTION

Nanopositioning is a key technology in modern precision

and ultrahigh-precision manufacturing, such as atomic force

microscope (AFM), biological micromanipulation, and pre-

cision mirror alignment [1]–[3]. For sub-nanometer resolu-

tion, fast response, large stiffness, and large blocking force,

piezoelectric actuator (PZT) has been widely utilized as a

crucial component in nanopositioning stages [4]. However,

hysteresis, the dominant nonlinearity of a PZT, results in cur-

rent displacement of a PZT not only depending on its current

input signal but also depending on its past displacements [5].

In addition, for PZTs’ rate dependence, the frequency of

a PZT’s input also affects its dynamics. Therefore, when

the control signal changes, behaviors of PZTs also change

distinctly. Furthermore, creep and lightly damped resonant

dynamics introduced by a PZT will also decrease positioning
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performance. Those particular properties of a PZT make

desired nanopositioning be a challenge.

To address it, numerous control algorithms have been

proposed to improve the precision. Recently, state-of-art

surveys are presented in [4], [6], [7]. Control structure

can be classified into feed-forward control, feed-back con-

trol, feed-forward and feed-back control [4]. Basic ideas

are hysteresis inversion model based feed-forward and (or)

feed-back approaches [8]–[10], and hysteresis inversion

model free approaches, respectively [11]–[13]. Hysteresis

inversion model based approaches need accurate hystere-

sis model and inverse hysteresis model. It is time and

cost consuming. In addition, most inversion-based methods

only take effect in low-frequency cases [11]. Furthermore,

inversion-based methods are not robust to external distur-

bances and the inaccurate inversions [11].

For overcoming limitations of inversion-based approaches,

inversion free methods have been proposed. If hystere-

sis is viewed as a bounded disturbance, a nanopositioning
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system driven by a PZT can be treated as a system with

bounded disturbance. Numerous disturbance rejection or dis-

turbance attenuate approaches have been reported. Sliding

mode control (SMC) is adopted to attenuate disturbances

[12], [14], [15], and it presents good performance. However,

the infinite gain problem and the chattering phenomenon

involved in SMC [11] also limit its applications. Consid-

ering parametric uncertainties, model estimation errors and

un-modeled dynamics, adaptive perturbation estimation has

been proposed for the trajectory tracking in piezoelectric

position [16]. Active disturbance rejection control (ADRC)

has been exploited to estimate and suppress the uncertainties

arising from hysteresis, creep, and other unknown distur-

bances [17]. However, those ways do not take sensor noises

into consideration. The output is noisy, and noises do affect

performance. In presence of noises, a solution to estimate

disturbance effectively is more desired.

ADRC is a promising tool in dealing with disturbances

and uncertainties due to its powerful ability in estimation and

compensation. Above all, such ability is achieved before dis-

turbances and uncertainties affect the system output. So far,

there are a wide range of applications [18]–[21]. It is rea-

sonable that ADRC may be a suitable tool for a nanoposi-

tioning stage to get desired positioning. Actually, for ADRC,

the extended state observer (ESO) is critical to guaran-

tee the closed-loop performance. Numerous modified ESOs

[22]–[24] have been proposed to improve a classical ESO.

A nonlinear ESO with time varying gain is designed to avoid

the output of an ESO being large [22]. A special kind of

nonlinear ESO is put forward to ensure desired estimation

errors [23]. However, those results do not take consideration

of sensor noises, which are inevitable in practical processes.

To address noises, estimation errors can be minimized in

stochastic sense by using dynamic gains for an ESO [24].

Nevertheless, it usually needs some statistic information of

the measurement noises. On the other hand, some special

structures, such as filters, are necessary. However, if filters are

utilized, additional phase delays are inevitable. Absolutely,

it is unexpected for real time control.

To this end, in this paper, a modified ADRC is presented.

To enhance the performance in presence of noises, a time

varying extended state observer (TESO) is utilized [25].

By comparison with those available ESOs, the TESO can

recover the estimation performance in initial phase and

achieving better noise filtering in steady phase. Addition-

ally, based on the control errors, a variable bandwidth

controller (VBC) is also designed. A TESO and a VBC

constitute a variable bandwidth active disturbance rejection

control (VBADRC). In order to verify the VBADRC, a linear

ADRC (LADRC) has been presented for comparisons. Both

numerical and experimental results have been given to con-

firm the proposed approach.

The major contribution of this paper is the development

of a VBC and a VBADRC algorithm. Without introducing

any filter or other special structures, the TESO can address

sensor noises in its unique way, and no extra phase delay

is introduced. In addition, based on control errors, the VBC

guarantees tracking performance. Advantages of a TESO and

a VBC ensure advantages of the VBADRC, and it is validated

on a piezo-driven nanopositioning platform. Realtime control

responses coincide with the theoretical results.

The paper is organized as follows. Section II presents

the concerned problem. The LADRC is introduced and the

VBADRC is developed in Section III. Numerical results

and experimental results are given out in Section IV and

Section V, respectively. Conclusions are summarized in

Section VI.

II. PROBLEM STATEMENTS

A model describing dynamics of a nanopositioning stage can

be written as [4], [12], [26]

Mẍ(t) + Bẋ(t) + Kx(t) = Du(t) + H (t) + Q(t) (1)

where t is the time variable. M ,B,K and D are mass, damp-

ing coefficient, stiffness, and piezoelectric coefficient of a

nanopositioning stage, respectively. Additionally, u is the

control signal that drives the stage to track desired trajecto-

ries, x is the output displacement of the stage, H represents

the hysteresis of a system, and Q(t) denotes disturbances and

uncertainties.

A cascaded model structure of a piezo-actuated nanoposi-

tioning stage can be depicted in Fig. 1 [26].

FIGURE 1. A cascade model of a piezoelectric driven nanopositioning
system.

System dynamics can be rewritten as

ẍ(t) + a1ẋ(t) + a0x(t) = q0u(t) + d(t) (2)

where a1 =
B

M
, a0 =

K

M
, q0 =

D

M
, d(t) =

H (t) + Q(t)

M
.

In this paper, instead of identifying exactmodels of the hys-

teresis and other uncertainties, hysteresis and uncertainties

are regarded to be a part of the generalized disturbance. By

estimating and compensating them as a signal, from the view

of active disturbance rejection control, desired trajectories

can be tracked.

To simplify the representation, time variable t is omitted in

following sections.

III. TIME VARYING ACTIVE DISTURBANCE

REJECTION CONTROL

In this section, linear active disturbance rejection con-

trol (LADRC) is introduced first. Then, considering both dis-

turbance rejection and sensor noises suppressing, a variable

bandwidth active disturbance rejection control (VBADRC) is

proposed.
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A. LINEAR ACTIVE DISTURBANCE REJECTION CONTROL

Actually, system (2) can be rewritten as










ẋ1 = x2

ẋ2 = f (x1, x2, u, d, t) + b0u

y = x1 + n

(3)

if one let x = x1, ẋ = x2, f (x1, x2, u, d, t) = −
K

M
x1 −

B

M
x2

+(
D

M
− b0)u+

H (t) + Q(t)

M
.

Here x1, x2 are system states, u is the control input, n is the

sensor noise, y is the output, b0 is the tunable coefficient of a

control input, d is the disturbance, t is the time variable, and

f (x1, x2, u, d, t) represents the uncertain dynamics, it is also

known as a generalized disturbance.

Control law of the LADRC for system (3) can be designed

as [27]

u =
kpl(yr − zl1) − kdlzl2 − zl3

b0
(4)

where kpl, kdl and b0 are tunable parameters, yr is the desired

output, and zl1, zl2, zl3 are states of a LESO, which can be

designed as [27]










żl1 = zl2 + β1(y− zl1)

żl2 = zl3 + β2(y− zl1) + b0u

żl3 = β3(y− zl1)

(5)

where β1, β2 and β3 are tunable gains, y is the system output,

and u is the control input. zl1, zl2 and zl3 estimate x1, x2 and

the generalized disturbance f (x1, x2, u, d, t), respectively.

Control block diagram of the 3rd order LADRC is given

in Fig. 2.

FIGURE 2. Structure of the 3rd order LADRC.

Substituting control law (4) into system (3), one has the

closed-loop system
{

ẋ1 = x2

ẋ2 = −kpl(x1 − yr ) − kdlx2 + kpl ē1 + kdl ē2 + ē3

where estimation errors ē1, ē2, ē3 are defined as










ē1 = x1 − zl1

ē2 = x2 − zl2

ē3 = f − zl3

Obviously, if parameters of the controller (4) and the

LESO (5) are properly chosen, i.e. the controller works and

the LESO converges, the closed-loop system is stable. Fur-

thermore, for nonlinear system (3), better linearization can be

obtained, if much smaller estimation errors ē1, ē2 and ē3 can

be guaranteed. In other words, by choosing proper parameters

kpl, kdl, βi(i = 1, 2, 3), one can get desired system perfor-

mance.

B. VARIABLE BANDWIDTH ACTIVE DISTURBANCE

REJECTION CONTROL

Although LADRC is commonly used for its satisfied perfor-

mance and practical design, measurement noises are not con-

sidered in its design. However, the noises definitely affect the

tracking accuracy and control energies. Therefore, a TESO

is designed to deal with both the generalized disturbance

and the sensor noises. At the same time, a VBC is also

proposed to guarantee the tracking performance. In other

words, a VBADRC, which consists of a TESO and a VBC,

is able to guarantee the tracking accuracy and reduce the

control energies in presence of sensor noises.

1) VARIABLE BANDWIDTH ACTIVE DISTURBANCE

REJECTION CONTROL DESIGN

From Section III. A, one can see clearly that the key point of

LADRC is to convert the nonlinear uncertain system into an

approximately linear system by a LESO. If a LESO is capable

of estimating system states and the generalized disturbance

faster and more accurately, the disturbance and uncertainties

can be cancelled out timely and effectively. Thus, the closed-

loop system performance can be greatly improved.

Generally, gains of a LESO are designed to be functions

of a bandwidth parameter [27]. Larger bandwidth generates

faster convergence of the estimation error, but it also means

that the output is corrupted by the sensor noise worse.

Actually, for an ESO, generalized disturbance estimation

is the main purpose in the initial state, and noise filtering

is the key task in the steady state [25]. Therefore, an ESO

with time-varying gains, which is able to guarantee both

estimation in the transient process and filtration in the steady

state, can be designed as










ż1 = z2 + β1(y− z1)

ż2 = z3 + β2ρ(t)(y− z1) + b0u

ż3 = β3ρ(t)(y− z1)

(6)

where z1, z2 and z3 are states of the TESO, which estimate

x1, x2 and the generalized disturbance of system (3), y is the

output of (3), β1, β2, β3 are tunable gains of the TESO, u is

the control input, and ρ(t) is a smoothly decreasing function.

In this paper, ρ(t) is chosen to be

ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞ (7)

where l is the decreasing rate, and














ρ0
1= ρ(0) > 0

ρ∞
1= lim

t→∞
ρ(t) > 0, ∀t ≥ 0

ρ̇(t) ≤ 0

(8)

Obviously, gains of z2 and z3 in a TESO are smoothly

decreasing with respect to time variable t . ρ∞ determines
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final gains of z2 and z3. It can be seen later that the noise

attenuation level is determined by ρ∞.

For a TESO, a controller, which is able to adapt to control

errors, is necessary to guarantee the closed-loop tracking

performance. In this paper, a variable bandwidth control law

is designed, and it can be depicted as,

u =
kp(yr − z1) − kd z2 − z3

b0
(9)

Here, kp and kd are time-varying control gains, which are

changing with control errors. They are designed to be

kp = (ωc + 1ω)2, kd = 2(ωc + 1ω) (10)

where 1ω is defined as

1ω = G|yr − z1| (11)

where G is a positive gain.

By such design, controller bandwidths, which are changing

with control errors, make the system response be more robust

to disturbance.

Remark 1: LESO (5) is a particular case of the TESO (6),

if ρ0 = ρ∞ = 1, ρ̇(t) ≡ 0.

Remark 2: According to [27], let β1 = 3ωo, β2 =
3ω2

o, β3 = ω3
o. Here,ωo is the observer bandwidth. If a proper

observer bandwidth ωo is chosen, system performance can be

greatly promoted.

Remark 3:With the help of a variable bandwidth controller,

closed-loop tracking performance will be strengthened, espe-

cially in the steady phasewhen observer bandwidth is reduced

so as to minimize the influence of sensor noises.

Closed-loop scheme of the VBADRC is given in Fig. 3.

Next, the convergence of a TESO is discussed.

FIGURE 3. Structure of the 3rd order VBADRC.

2) CONVERGENCE OF A TESO

Let estimation errors of a TESO be










e1 = x1 − z1

e2 = x2 − z2

e3 = f − z3

(12)

According to system (3) and TESO (6), the estimation error

dynamical system is

ė(t) = Ae(t)e(t) + B2 ḟ (·) − B̄e(t)n(t) (13)

where

Be =





0

β2

β3



 ,Ce =





1

0

0



 ,

B2 =





0

0

1



 , B̄e(t) =





β1

β2ρ(t)

β3ρ(t)



 ,

Āe =





−β1 1 0

−β2 0 1

−β3 0 0



 , e(t) = [e1, e2, e3]
T ,

Ae(t) =





−β1 1 0

−β2ρ(t) 0 1

−β3ρ(t) 0 0



 = Āe − BeC
T
e (ρ(t) − 1)

where n(t) is the measurement noise. For an engineering

system, it is reasonable to make following assumptions.

Assumption 1:
∣

∣ḟ (·)
∣

∣ ≤ Df [28], |n(t)| ≤ Dn, where

Df and Dn are positive constants.

Remark 4: It is impossible for displacements, velocity,

mass, damping coefficient, and generation processes of hys-

teresis to change suddenly. Therefore, it is reasonable to

assume change rate of the total disturbance is bounded.

Remark 5: For the measurement noise, it can be described

in stochastic mathematics or deterministic mathematics.

No matter what description approach is utilized, it is impossi-

ble for the noises to be unbounded in an engineering system.

In addition, considering that the energy of a sensor is limited,

the power of measurement noises is also limited in engi-

neering. Therefore, like any other engineering system, it is

reasonable to assume that the measurement noises introduced

by sensors are bounded in a nanopositioning system.

Theorem 1: If Assumption 1 holds and let 0 < ρ∞ ≤
ρ0 < 3, then estimation error e(t) satisfies

‖e(t)‖ ≤ γ1 exp(−γ2t) ‖e(t0)‖ + γ3(Df + Dn)

where γ1, γ2, γ3 are positive constants.

Proof: is given in Appendix A.

Theorem 1 depicts that estimation error of a TESO is

bounded. From Theorem 1 and its proof, one can see that

the upper bound of estimation errors consist of two parts.

The first part depends on the initial error and the exponential

decay rate. The Second one is related to tunable bandwidth of

the observer (see the Proof in Appendix A for details), bound

of the generalized disturbance and the measurement noise,

respectively. Therefore, by choosing proper parameters, one

can guarantee the convergence of a TESO. Moreover, it is

worth pointing out that the limitation on the time-varying

factor ρ(t) is so mild that a practitioner only needs to keep

ρ(t) ∈ (0, 3).

3) TRANSIENT PERFORMANCE OF A TESO

Estimation and compensation of the generalized disturbance

is crucial for the satisfied system performance. Numerous

cases have confirmed that a LESO based LADRC ensure

satisfactory transient performance. Thus, in initial state,

the TESO should also guarantee the desired transient perfor-

mance. This is confirmed as follows.

Let estimation errors of a LESO be ē1, ē2, ē3, one has

˙̄e(t) = Āeē+ B2 ḟ (·) − B̄len(t) (14)

where ē = [ē1, ē2, ē3]
T , B̄le = [β1, β2, β3]

T .
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Lemma 1 depicts the transient performance of a TESO.

Lemma 1 [25]: Let ρ(t0) = 1 and ē(0) = e(0), then

estimation error of a TESO defined in (13) and estimation

error of a LESO defined in (14) satisfies

sup
t∈[t0,t∗]

‖e(t) − ē(t)‖ ≤ γ4(t
∗ − t0) sup

t∈[t0,t∗]
|ρ̇(t)|

where t∗ is an any given positive constant.

Lemma 1 confirms that difference between esti-

mated errors of a TESO and those of a LESO is

bounded.Additionally, the upper bound depends on the time

span and the change rate of time-varying factor ρ(t). When

ρ0 = ρ∞ = 1, the change rate of ρ(t) is zero, estimation

errors of a TESO equal those of a LESO. By tuning ρ̇(t),

t ∈ [t0, t
∗], estimation errors of a TESO can be arbitrarily

close to those of a LESO when t ∈ [t0, t
∗]. It signifies that,

in the initial state, a TESO is similar to a LESO in estimating

the generalized disturbance.

4) STEADY PERFORMANCE OF A TESO

Assume that estimation error of a TESO, e(t), converges to

e(t) as t → ∞.

Let e(t) = [e1(t), e2(t), e3(t)]
T , then

{

ė(t) = Ae,∞e(t) + B2 ḟ (·) − B̄e,∞n(t)
e(0) = e(0)

where Ae,∞ = Āe − BeC
T
e (ρ∞ − 1), B̄e,∞ = lim

t→∞
B̄e(t).

For a TESO, one has Lemma 2.

Lemma 2 [25]: By Assumption 1, lim
t→∞

∥

∥e(t) − e(t)
∥

∥ = 0.

Lemma 2 shows that e(t) → e(t), as t → ∞. In other

words, in steady state, estimation error of a TESO is e(t).

On the other hand, estimation error of a LESO is ē(t). There-

fore, if one wants to see the difference of estimation error

between a TESO and a LESO in steady state, one can just

compare e(t) and ē(t).

Thus, in steady state, by comparing e(t) with ē(t),

the advantage of a TESO on noise filtering can be clarified.

Define following Laplace transformations,

L[ē1(t)] =Ē1(s),L[ē2(t)] =Ē2(s),L[ē3(t)] =Ē3(s)
L[e1(t)] =E1(s),L[e2(t)] =E2(s),L[e3(t)] =E3(s)

and L[n(t)] =N (s).

Remark 6: It is reasonable to assume the measurement

noise n(t) is bounded. Based on such assumption, accord-

ing to the existence of a Laplace transformation [29], for a

bounded signal n(t), its Laplace transformation N (s) exists

for the real part of complex variable s is positive, i.e.

Re(s) > 0.

Then, the transfer functions between Ē(t),E(t) and n(t)

can be defined as








Ē1(s)
N (s)
Ē2(s)
N (s)
Ē3(s)
N (s)









=
−1

s3 + β1s2 + β2s+ β3





β1s
2 + β2s+ β3

β2s
2 + β3s

β3s
2



N (s)

and






E1(s)

N (s)
E2(s)

N (s)
E3(s)

N (s)






=

−ρ∞
s3 + β1s2 + ρ∞β2s+ ρ∞β3





1
ρ∞

β1s
2 + β2s+ β3

β2s
2 + β3s

β3s
2



N (s)

Thus,

lim
s→∞

E2(s)

N (s)

/

Ē2(s)

N (s)
= ρ∞ < 1

and

lim
s→∞

E3(s)

N (s)

/

Ē3(s)

N (s)
= ρ∞ < 1

It quantitatively reveals that a TESO has better filtering

performance than a LESO at high frequency range. In other

words, the TESO can achieve better filtering performance in

steady state.

From Lemma 1 and Lemma 2, one can see clearly that

a TESO is able to obtain both similar estimation ability of

the generalized disturbance in initial state and better noises

filtering performance in steady state. Additionally, cooper-

ated with a VBC, a VBADRC is constructed, and satisfied

closed-loop tracking performance can also be guaranteed in

the case of reducing the observer bandwidth.

Design procedures of the VBADRC are summarized in the

subsequent section.

5) CLOSED-LOOP STABILITY BY THE VBADRC

Substituting control law (9) into system (3), one has
{

ẋ1 = x2

ẋ2 = kp(yr − x1) − kdx2 + kpe1 + kde2 + e3
(15)

Define r1 = yr , r2 = ẏr and tracking errors εi = ri − xi,

i = 1, 2. Then,










ε̇1 = ṙ1 − ẋ1 = ε2

ε̇2 = ṙ2 − ẋ2

= ṙ2 + kd r2 − kpε1 − kdε2 − kpe1 − kde2 − e3

(16)

Define ε = [ε1, ε2]
T , and

Aε =
[

0 1

−kp −kd

]

,Br =
[

0

1

]

,

Aε+1 =
[

0 0 0

−kp −kd −1

]

For 1ω ≥ 0, one has

‖Aε‖ ≥
∥

∥Aε

∥

∥ , ‖Aε+1‖ ≥
∥

∥Aε+1

∥

∥ ,

Aε =
[

0 1

−kpl −kdl

]

,Aε+1 =
[

0 0 0

−kpl −kdl −1

]

.

Then, dynamics of tracking errors (16) can be rewritten as

ε̇(t) = Aεε(t) + Brr0 + Aε+1e(t) (17)
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where r0 = ṙ2 + kd r2. For a bounded set-value yr , r0 is also

bounded.

Theorem 2: By the VBADRC, the closed-loop system is

bounded input and bounded output (BIBO) stable, if proper

parameters of the variable bandwidth controller and the

time-varying extended state observer are chosen.

Proof Solving (17), one has

ε(t) = exp(Aεt)ε(0)

+
∫ t

0

exp(Aε(t − τ ))(Aε+1e(t) + Brr0)dτ (18)

When 0 < λ̄1 < λ̄2 are the eigenvalues of Aε and T is an

invertible matrix, one has

exp(Aεt) = Tdiag{exp(−λ̄1t), exp(−λ̄2t)}T−1

‖exp(Aεt)‖ ≤ ‖T‖
∥

∥T−1
∥

∥ exp(−λ̄1t) = β̄ exp(−λ̄1t)

and

||ε(t)|| = || exp(Aεt)ε(0)+
∫ t

0

exp(Aε(t − τ ))(Aε+1e(t) + Brr0)dτ ||

≤ || exp(Aεt)ε(0)||+

||
∫ t

0

exp(Aε(t − τ ))(Aε+1e(t) + Brr0)dτ ||

≤
∥

∥β̄ exp(−λ̄1t)
∥

∥ ‖ε(0)‖ +
(‖Aε+1‖ ‖e0‖ + ‖Br‖ ‖r0‖)

∥

∥β̄
∥

∥

∥

∥

∥

∫ t
0 exp(−λ̄1(t − τ ))dτ

∥

∥

∥

≤
∥

∥β̄
∥

∥ ‖ε(0)‖ +

(‖Aε+1‖ ‖e0‖ + r0)
∥

∥β̄
∥

∥

∥

∥

∥

∥

1

λ̄1
[1 − exp(−λ̄1t)]

∥

∥

∥

∥

≤
∥

∥β̄
∥

∥ ‖ε(0)‖ + (‖Aε+1‖ ‖e0‖ + r0)
∥

∥β̄
∥

∥

∥

∥

∥

∥

1

λ̄1

∥

∥

∥

∥

= ε0

It shows that the control errors of a VBADRC are bounded,

if estimation errors of a TESO are bounded. Moreover,

the tracking errors are associated with initial tracking error

ε(0), controller parameters kp, kd and estimation error e0 of

the TESO.

6) DESIGN PROCEDURES OF THE VBADRC

For theVBADRC, b0, kp, kd ,G, β1, β2, β3, ρ0, ρ∞, l are tun-

able parameters. Design procedures can be summarized as,

Step 1. Controller and observer can be designed according

to (9), (10), (11), and (6);

Step 2. Let kp = (ωc + 1ω)2, kd = 2(ωc + 1ω), β1 =
3ωo, β2 = 3ω2

o, β3 = ω3
o, here, ωc is the controller band-

width, and ωo is the observer bandwidth;

Step 3. Determine 1ω and G according to (11);

Step 4. Determine ρ0, ρ∞, l and b0;

Step 5. Adjust b0, ωc,G, ωo, ρ0, ρ∞, l so as to satisfy the

requirements.

Based on the analysis and design procedures, numerical

and experimental results are presented in following Sections.

IV. SIMULATION RESULTS

In this section, the VBADRC is verified by numerical simu-

lations. Here, a Bouc-Wen hysteresis model [30] is utilized

to simulate physical properties of the hysteresis. After the

identification, one has the Bouc-Wen model,
{

xh = 0.91u+ 0.45h

ḣ = −0.87u̇+ 0.14|u̇||h|2h+ 0.13u̇|h|3
(19)

The first equation of (19) depicts the relationship among

a driving signal u, a hysteretic variable h and the hysteresis

output signal xh. The second state equation shows that the

hysteretic variable h varies depending on the input u and its

changing rate u̇. A hysteresis curve is given in Fig. 4, and the

root mean square error (RMSE) is 0.6740.

FIGURE 4. Hysteresis loops between the experimental data and the
model output.

Similarly, after the identification, linear dynamics of the

stage is

G(s) =
9.207 × 105

s2 + 332.4s+ 1.296 × 106
(20)

According to the cascade structure of a piezo-actuated

nanopositioning stage shown in Fig. 1 [26], hysteresis model

depicted by (19) and linear model depicted by (20) are con-

nected in series to simulate the dynamics of a positioning

stage in simulations. The LADRC and the VBADRC are

designed respectively. Numerical studies has been performed

to evaluate the motion tracking performance.

To quantify the tracking performance, mean absolute error

(MAE), root mean square error (RMSE), and integral of time

multiplied absolute value of error (ITAE) are defined as


















































MAE =
1

k

k
∑

i=1

etrack_i

RMSE =

√

√

√

√

1

k

k
∑

i=1

e2track_i

ITAE =
k

∑

i=1

∣

∣etrack_i
∣

∣ tiT

(21)

where k is the number of the tracking error etrack = yr − y,

ti is the very time corresponding to the tracking error etrack_i,

T is the sample period. In simulations, the sample time inter-

val is selected to be T = 0.0001 s.

Step signal and sine signal listed in Table 1 are taken as the

desired trajectories (set-values). Control parameters are given

in Table 2. Performance indexes defined in (21) are presented
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TABLE 1. Set-values taken in simulations and experiments.

TABLE 2. Control parameters of the LADRC and the VBADRC (Simulation
cases).

FIGURE 5. Step responses (for simulations). (a) Tracking performance.
(b) Disturbance rejection. (c) Control efforts.

in Table 3. A random number with variance of 6 × 10−4 is

taken to simulate the sensor noises. A constant disturbance

with amplitude of 1 is introduced at t = 1.5s. Simulation

results are shown in Figs. 5 and 6.

Figs. 5 (a) and 6 (b) show that responses of the

VBADRC are much faster than the one of the LADRC.

Figs. 5 (b) and 6 (c) present that the VBADRC is able to

recover faster in presence of disturbance, even if the band-

width of a TESO is reduced. From Figs. 5 (c) and 6 (d), one

can see that, by a TESO, control signals of the VBADRC is

less influenced by sensor noises. Numerical results show that

the VBC is able to strengthen the tracking and disturbance

FIGURE 6. Sinusoidal responses (for simulations). (a) Tracking
performance. (b) Rising performance. (c) Disturbance rejection.
(d) Control efforts.

rejection ability, when a TESO reduces its bandwidth so as

to minimized the effect of sensor noises. Via the cooperation

of a VBC and a TESO, the VBADRC is able to guarantee

desired performance. Tracking performance quantified by

MAE, RMSE and ITAE is also utilized to compare the differ-

ence between the VBADRC and the LADRC. Much smaller

MAE, RMSE and ITAE values listed in Table 3 confirm the

advantages of the VBADRC.

In Section V, experimental results are also presented to

verify the VBADRC.

V. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

In this section, a series of experimental studies have been

performed on a piezoelectric-driven nanopositioning system.
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TABLE 3. Performance indexes of tracking errors: comparisons of
tracking performance (Simulation cases).

FIGURE 7. Experimental setup of a piezoelectric nanopositioning system.

TABLE 4. Set-values and control parameters (Experiment cases).

TABLE 5. Performance indexes of tracking errors: comparisons of
tracking performance (Experiment cases).

The experimental setup taken in this work is given in Fig. 7.

Experiments have been performed on a commercial PZT

driven stage (P-561.3CD, Physik Instrumente, Karlsruhe,

Germany). It is connected to a voltage amplifier. The stage

can perform horizontal movements up to 100µm. Output

displacements are measured by a built-in capacitive displace-

ment sensor (resolution: 0.8µm). A LINKS-RT hardware-

in-the-loop system controlled by a host computer produces

voltages to drive the stage. The sampling interval in experi-

ments is set to be 0.0001 s.

B. RESULTS

In this section, signals listed in Table 1 are also taken as the

desired trajectories (set-values). Control parameters are given

in Table 4. Experimental results are presented in Fig. 8 and

Fig. 9. Performance indexes are shown in Table 5.

From Fig. 8, one can see that, with the same b0,ωc, andωo,

the VBADRC has a much faster response than the LADRC.

FIGURE 8. Step responses (for experiments). (a) Tracking performance.
(b) Disturbance rejection. (c) Control efforts.

Rising time of the VBADRC is less than 0.1 seconds, on the

other hand, rising time of the LADRC is almost three times

than the one of the VBADRC. Figs. 8 (b) and Fig. 9 (b)

present the disturbance rejection ability. Although observer

bandwidth of the TESO is reduced half in the steady state,

the disturbance rejection ability is not weakened as a result of

the variable bandwidth controller designed in the VBADRC.

Fig. 8 (c) and Fig. 9 (c) illustrate that, by comparison with

the LADRC, less fluctuations exist in control signals of the

VBADRC. MAE, RMSE, and IAE values defined in (21)

are listed in Table 5. From the data presented in Table 5,

it is obvious that, by the VBADRC, smaller MAE, RMSE,

and IAE values can be obtained for both step and sine ref-

erences. It means that better precision can be achieved by

the VBADRC. Moreover, Fig. 9 (d) shows that not only the

chattering range but also the peaks of control signals are

reduced by the VBADRC.

C. DISCUSSIONS

Accuracy is a key issue in precision and ultrahigh-precision

manufacturing. PZT introduces inherent hysteresis, creep and

lightly damped resonant dynamics, which greatly decrease

the accuracy of positioning. At the same time, the sensor noise

is also a critical factor in determining the accuracy. Therefore,
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FIGURE 9. Sinusoidal responses (for experiments). (a) Tracking
performance. (b) Disturbance rejection. (c) Control efforts. (d) Magnified
of (c).

it is significant that addressing both nonlinearities of a PZT

and the sensor noises.

From Figs. 8-9, and Table 5, a distinct view can be drawn.

The VBADRC can track reference signals as accurate as the

LADRC does. Exactly, it is more accurate than the LADRC.

Simultaneously, it is also more effective in reducing the

impact of noises. Figs. 5(c), 6(d), 8(c), 9(c), and 9(d) depict

a vivid picture that, as a result of the TESO, influence of the

noises on control signals is reduced effectively. Table 6 lists

the root mean square error of control signals in steady state.

RMSU is short for the root mean square error of the control

signal u, and it is calculated as

RMSU =

√

√

√

√

1

N − N0

N
∑

i=N0

(ui − ūi)
2

TABLE 6. RMSUs of LADRC and VBADRC.

where, N = 30000,N0 = 20000, ui is the control signal

of the ith time, and ūi is the mean of a hundred continuous

control signals.

Both figures and data given in Table 6 confirm that the

impact of noises is greatly decreased. Moreover, it is worth

pointing out that no filter or other special structures are nec-

essary to deal with noises. Therefore, there is no additional

phase delays. A time-varying factor ρ(t) guarantees desired

performance.

In simulations and experiments, parameters of the

VBADRC and the LADRC are similar. Specially, ρ0, ρ∞
and l are taken the same values. Data listed in Table 3 differs

from the ones listed in Table 5. It means that the model

of a nanopositioning stage and the stage itself are different.

Fortunately, both the VBADRC and the LADRC are powerful

in dealing with uncertainties and unmodelled dynamics of the

stage.

Nevertheless, it is admitted that the TESO is sensitive to

external disturbances, since its bandwidth is narrowed down.

Therefore, ρ0, ρ∞ and l are critical to the performance of

a TESO. If PD controller is still utilized, then there should

be some trade-off between the disturbance rejection and the

noise tolerance. However, in this paper, a variable bandwidth

controller is designed. Controller bandwidth is increased

to guarantee the tracking performance when the observer

bandwidth is narrowed down to minimize the influence of

sensor noises. Therefore, by combination of the VBC and the

TESO, both tracking accuracy and noise suppression can be

addressed to some extent.

VI. CONCLUSION

Hysteresis, external disturbances andmeasurement noises are

challenges in improving the positioning accuracy of a piezo-

electric actuator driven nanoposotioning stage. In this paper,

an active disturbance rejection control is designed to address

those challenges. In order to minimize the influence of mea-

surement noises, a time-varying extended state observer is

proposed. Simultaneously, for the sake of guaranteeing the

tracking performance in presence of reducing the observer

bandwidth, a variable bandwidth controller is proposed to

keep the tracking accuracy by changing the controller band-

width with the control errors. Theoretical results on the TESO

and the VBADRC guarantees convergence of the TESO and

closed-loop stability of the VBADRC. Numerical and exper-

imental results show advantages of the VBADRC over the

LADRC. From the results, one can see that the VBADRC

is a practical solution to deal with both disturbances and

measurement noises existing in a nanopositioning stage.
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APPENDIX I. PROOF OF THEOREM 1

Proof Firstly, it will be shown that there exists a positive

constant matrix Pe and a positive constant c0 such that

ATe (t)Pe + PeAe(t) ≤ −c0Pe

Define Q1(s) = CT
e (sI − Āe)

−1Be, it can be verified that

Q1(jω) =
ωo

3

(jω + ωo)
3

=
1

(j ω
ωo

+ 1)3

=
1

(

∥

∥

∥

ω
ωo

∥

∥

∥

2
+ 1

)3/2
e−jθ

and θ = arctan(
ω

ω0
), θ ∈ (0,

π

2
).

Note that the Nyquist plot of
1

(j ω
ωo

+ 1)3
lies in the closed

disk Dn(−0.5, 1), whose diameter is the line segment con-

necting points −0.5+ j0 and 1+ j0. Thus, the circle criterion

means thatQ2(s)
1=

1 + α4Q1(s)

1 + α3Q1(s)
is strictly positive real when

[α3, α4] ⊂ (−1, 2).

Since Q2(s) has following state-space realization

{

ζ̇ = (Āe − α4BeC
T
e )ζ + Beū

∗

ȳ∗ = (α3 − α4)C
T
e ζ + ū∗

There exists a positive matrix Pe and a vector L such that















(Āe − α4BeC
T
e )

TPe + Pe(Āe − α4BeC
T
e )

= −LLT − c0Pe

PeBe = (α3 − α4)Ce −
√
2L

Note that −1 < lim
t→∞

ρ(t) − 1 ≤ ρ(t) − 1 ≤ ρ0 − 1 < 2,

then

Ae
TPe + PeAe

= (Āe − BeC
T
e (ρ(t) − 1))TPe + Pe(Āe − BeC

T
e (ρ(t) − 1))

≤ −LLT − c0Pe − CeB
T
e Pe(ρ(t) − 1 − α4)

−PeBeCT
e (ρ(t) − 1 − α4)

≤ −c0Pe−LLT −Ce[(α3−α4)Ce−
√
2L]T (ρ(t)−1−α4)

−[(α3 − α4)Ce −
√
2L]CT

e (ρ(t) − 1 − α4)

= −c0Pe − (
√
2(α4 − (ρ(t) − 1))Ce − L)T (

√
2(α4

−(ρ(t) − 1))Ce − L) ≤ −c0Pe

Let V (e) = eTPee, then

dV (e)

dt

= eT (PeAe + Ae
TPe)e− 2eTPeBeρ(t)n+ 2eTPeB2 ḟ (·)

≤ c0V (e) + 2 ‖e‖ ‖Pe‖ (‖Be‖ + ‖B2‖)(Df + Dn)

which leads to

d
√
V (e)

dt
≤−

c0

2

√

V (e)+
‖e‖

√
V (e)

‖Pe‖ (‖Be‖+‖B2‖)(Df +Dn)

Let the maximal eigenvalue and minimal eigenvalue of Pe
be c1 and c2, respectively. One has

d
√
V (e)

dt
≤ −

c0

2

√

V (e) +
√

c2

c1
(‖Be‖ + ‖B2‖)(Df + Dn)

Then, the comparison principle shows

√

V (e) ≤ exp(−
c0

2
t)

√

V (e(t0)) +
2
√
c2

c0
√
c1
(‖Be‖ + ‖B2‖)

×(Df + Dn)

Consequently,

‖e(t)‖ ≤
√
c2√
c1

exp(−
c0

2
t) ‖e(t0)‖ +

2
√
c2

c0
√
c1
(‖Be‖ + ‖B2‖)

×(Df + Dn)

Let γ1 =
√
c2√
c1

, γ2 =
c0

2
, γ3 =

2
√
c2

c0
√
c1
(‖Be‖ + ‖B2‖), one

has

‖e(t)‖ ≤ γ1 exp(−γ2t) ‖e(t0)‖ + γ3(Df + Dn).
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