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ON THE DIVERGENCE OF TAYLOR SERIES

IN DE BRANGES–ROVNYAK SPACES

PIERRE-OLIVIER PARISÉ AND THOMAS RANSFORD

Abstract. It is known that there exist functions in certain de Branges–
Rovnyak spaces whose Taylor series diverge in norm, even though poly-
nomials are dense in the space. This is often proved by showing that
the sequence of Taylor partial sums is unbounded in norm. In this note
we show that it can even happen that the Taylor partial sums tend to
infinity in norm. We also establish similar results for lower-triangular
summability methods such as the Cesàro means.

1. Introduction

The Hilbert function spaces now known as de Branges–Rovnyak spaces
were first introduced by de Branges and Rovnyak in the appendix of [3], in
relation to scattering models. Later on, thanks largely to Sarason’s work
culminating in [14], these spaces turned out to have deep connections with
operator theory. For a recent account of the theory of de Branges–Rovnyak
spaces, see the two-volume monograph [5, 6].

Let H∞ denote the space of bounded holomorphic functions on the open
unit disk D. Given b in the unit ball of H∞, the de Branges–Rovnyak space

H(b) is the (unique) reproducing kernel Hilbert space on D with kernel

kb(z, w) = (1 − b(w)b(z))/(1 − wz), for w, z ∈ D. It is a Hilbert space of
holomorphic functions on D, contractively contained in the Hardy space H2.

The properties enjoyed by H(b) depend strongly on whether b is or is not
an extreme point of the unit ball of H∞. In particular, H(b) contains the
polynomials if and only if b is non-extreme, and in this case the polynomials
are dense in H(b) (see [15, IV-3]). However, even if the polynomials are
dense in H(b), the Taylor series of functions in H(b) may diverge in norm.
In this note, we examine this phenomenon in detail.

It was shown in [2, Theorem 5.5] that there exists a non-extreme function
b in the unit ball of H∞ and a function f ∈ H(b) whose radial dilates satisfy

(1) lim sup
r→1−

‖fr‖H(b) = ∞.
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Somewhat later, in [4, Theorem 3.1], an example was given of a non-extreme
b and an f ∈ H(b) with the stronger property that

(2) lim inf
r→1−

‖fr‖H(b) = ∞.

Another construction of such an example can be found in [9, Theorem 1.1].
As was pointed out in [4, Corollary 3.4], the relation (1) implies that

(3) lim sup
n→∞

‖sn(f)‖H(b) = ∞ and lim sup
n→∞

‖σn(f)‖H(b) = ∞,

where sn(f) is the sequence of Taylor partial sums of f and σn(f) is the
sequence of their Cesàro means. However, the corresponding stronger form
of (3), namely

(4) lim inf
n→∞

‖sn(f)‖H(b) = ∞ and lim inf
n→∞

‖σn(f)‖H(b) = ∞,

does not immediately follow from (2). It raises the question as to whether
there exist examples where (4) holds. Our aim in this note is to present
an affirmative answer to this question. This is not a trivial endeavour
since, as we shall see, there exist de Branges–Rovnyak spaces H(b) in which
lim supn→∞ ‖sn(f)‖H(b) = ∞ for some f , yet lim infn→∞ ‖sn(f)‖H(b) < ∞
for all f .

2. Statement of main result

We shall treat the case of a general lower-triangular summability method.
Let Γ = (γnk)n,k≥0 be an infinite lower-triangular matrix of complex num-

bers. Given a formal power series f(z) =
∑

k≥0 f̂(k)z
k, for each n ≥ 0 we

define

SΓ
n(f)(z) :=

n∑

k=0

γnkf̂(k)z
k.

The following theorem is our main result.

Theorem 2.1. Let b be a non-extreme point of the unit ball of H∞, and let

Γ = (γnk)n,k≥0 be an infinite lower-triangular matrix of complex numbers.

(i) If supn≥0(|γnn|‖zn‖H(b)) = ∞, then there exists f ∈ H(b) such that

lim sup
n→∞

‖SΓ
n(f)‖H(b) = ∞.

(ii) If
∑

n≥0(|γnn|−2‖zn‖−2
H(b)) < ∞, then there exists f ∈ H(b) such that

lim inf
n→∞

‖SΓ
n(f)‖H(b) = ∞.

(iii) If
∑

n≥0(|γnn|−1‖zn‖−1
H(b)) < ∞, then there exist f, g ∈ H(b) such

that

lim inf
n→∞

|〈SΓ
n (f), g〉H(b)| = ∞.
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An important special case is obtained by taking γnk =
(
n
k

)
/
(
n+α
k

)
for

0 ≤ k ≤ n, where α ≥ 0. Then SΓ
n(f) is just the generalized Cesàro mean

σα
n(f). In particular SΓ

n(f) = sn(f) if α = 0 and SΓ
n(f) = σn(f) if α = 1.

Since

|γnn| =
(
n+ α

n

)−1

≍ n−α (n → ∞),

we immediately obtain the following corollary.

Corollary 2.2. Let b be a non-extreme point of the unit ball of H∞, and

let α ≥ 0.

(i) If supn≥0(n
−α‖zn‖H(b)) = ∞, then there exists f ∈ H(b) such that

lim sup
n→∞

‖σα
n(f)‖H(b) = ∞.

(ii) If
∑

n≥0(n
2α/‖zn‖2H(b)) < ∞, then there exists f ∈ H(b) such that

lim inf
n→∞

‖σα
n(f)‖H(b) = ∞.

(iii) If
∑

n≥0(n
α/‖zn‖H(b)) < ∞, then there exist f, g ∈ H(b) such that

lim inf
n→∞

|〈σα
n (f), g〉H(b)| = ∞.

Remark. Part (i) of Corollary 2.2 was already known. It was established
in [7, Theorem 6.10]. Our proof here is quite different, and also leads to
parts (ii) and (iii), which we believe to be new, even in the special cases of
sn(f) and σn(f).

3. Proof of main result

The proof is based on the following uniform boundedness principles from
functional analysis.

Theorem 3.1. Let (Tn) be a sequence of bounded operators on a complex

Hilbert space H.

(i) If supn ‖Tn‖ = ∞, then there exists x ∈ H such that

lim sup
n→∞

‖Tnx‖ = ∞.

(ii) If
∑

n 1/‖Tn‖2 < ∞, then there exists x ∈ H such that

lim inf
n→∞

‖Tnx‖ = ∞.

(iii) If
∑

n 1/‖Tn‖ < ∞, then there exist x, y ∈ H such that

lim inf
n→∞

|〈Tnx, y〉| = ∞.

Proof. Part (i) is just the standard uniform bounded principle. Parts (ii)
and (iii) are proved in [12, Theorems 3 (ii) and 6 (ii)], where they are derived
as a consequence of Ball’s solution to the complex plank problem [1]. �
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We are going to apply these results with Tn = SΓ
n and H = H(b). Each SΓ

n

is a bounded linear operator on H(b). The following lemma provides a lower
bound for its operator norm. Once this lemma is established, Theorem 2.1
will follow immediately.

Notice that b is a non-extreme point of the unit ball of H∞ if and only if
there exists an outer function a ∈ H∞ with a(0) > 0 such that |b|2+ |a|2 = 1
a.e. on T. The function a is then uniquely determined. For more details,
see [14, Chapter IV]. We call (b, a) a Pythagorean pair.

Lemma 3.2. Let (b, a) be a Pythagorean pair, and let Γ = (γnk) be a lower-

triangular matrix of complex numbers. Then, for all n ≥ 0,

‖SΓ
n : H(b) → H(b)‖ ≥ a(0)|γnn|‖zn‖H(b).

Proof. It is known that, if h ∈ H2, then ah ∈ H(b) and ‖ah‖H(b) ≤ ‖h‖H2

(see [13, Lemma 4]). In particular, setting gn(z) := zna(z), we have that
gn ∈ H(b) and ‖gn‖H(b) ≤ 1. Also gn(z) = a(0)zn+(terms of higher degree),

so SΓ
n(gn) = γnna(0)z

n. Combining these observations, we deduce that

‖SΓ
n : H(b) → H(b)‖ ≥

‖SΓ
n(gn)‖H(b)

‖gn‖H(b)
≥

|γnna(0)|‖zn‖H(b)

1
.

This proves the lemma. �

4. Examples

In order to exploit the results of the preceding section, we need to be able
to calculate, or at least estimate, the norms of monomials ‖zn‖H(b). There
is a well-known formula that enables us to do this. The following result was
established in [13, p.81].

Proposition 4.1. Let (b, a) be a Pythagorean pair and let φ := b/a, say

φ(z) =
∑∞

j=0 cjz
j. Then

‖zn‖2H(b) = 1 +

n∑

j=0

|cj |2 (n ≥ 0).

Clearly, if (b, a) is a Pythagorean pair, then φ := b/a ∈ N+, the Smirnov
class. Conversely, given φ ∈ N+, then there exists a unique Pythagorean
pair (b, a) such that φ = b/a (see [16, Proposition 3.1]). Thus we can identify
H(b) by specifying the corresponding function φ ∈ N+, and this is what we
shall do in the examples below.

Example 4.2. Let φ(z) := z/(ζ − z), where ζ ∈ T.
The Taylor coefficients cj of φ satisfy c0 = 0 and |cj | = 1 for j ≥ 1, so

by Proposition 4.1 we have ‖zn‖H(b) =
√
n+ 1. Corollary 2.2 implies that

there exists f ∈ H(b) such that lim supn→∞ ‖sn(f)‖H(b) = ∞. However,
this result does not permit us to deduce the existence of an f ∈ H(b) with
lim infn→∞ ‖sn(f)‖H(b) = ∞ or lim supn→∞ ‖σn(f)‖H(b) = ∞. In fact, we
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claim that no f ∈ H(b) satisfies either of these conclusions, indicating the
Corollary 2.2 is rather sharp, at least for this function φ.

To justify the claim, we note that, for this particular φ, it is known that
b(z) = (1 − τ)z/(ζ − τz), where τ = (3 −

√
5)/2, and that H(b) is equal to

the local Dirichlet space Dζ , with equality of norms (see [15, Proposition 2]).
It was proved in [11, Theorem 2.4] that

(5) lim inf
n→∞

‖sn(f)‖Dζ
= ‖f‖Dζ

(f ∈ Dζ).

Also, it was shown in [10, Theorem 1.6] that ‖σn(f) − f‖Dζ
→ 0 for all

f ∈ Dζ , so in particular

(6) lim sup
n→∞

‖σn(f)‖Dζ
= ‖f‖Dζ

(f ∈ Dζ).

Since Dζ = H(b), it follows that both (5) and (6) hold with Dζ replaced
everywhere by H(b), confirming the claim made above.

Example 4.3. Let φ(z) = zM/(1 − z)N , where M,N are integers with
M ≥ 0 and N ≥ 1.

In this case |cj | ≍ jN−1, so by Proposition 4.1 we have ‖zn‖H(b) ≍ nN−1/2

as n → ∞. Applying Corollary 2.2, we deduce that, if 0 ≤ α < N − 1, then
there exists f ∈ H(b) such that ‖σα

n(f)‖H(b) → ∞ as n → ∞. In particular,
if N ≥ 2, then there exists f ∈ H(b) with ‖sn(f)‖H(b) → ∞. Likewise, if
N ≥ 3, then there exists f ∈ H(b) with ‖σn(f)‖H(b) → ∞. This answers the
question posed in the introduction.

Example 4.4. Let φ(z) = exp(β/(1 − z)γ), where β > 0 and γ ∈ (0, 1).
In this case, it can be shown that

cj ≍
exp(Cjγ/(γ+1))

j(γ+2)/(2γ+2)
(j → ∞),

where C is a positive constant depending on β, γ (see Appendix A below).
By Proposition 4.1, it follows that

‖zn‖2H(b) &
exp(Cnγ/(γ+1))

n(γ+2)/(2γ+2)
(n → ∞).

By Corollary 2.2, for each α ≥ 0, there exist functions f, g ∈ H(b) such that
|〈σα

n(f), g〉H(b)| → ∞. In particular, ‖σα
n (f)‖H(b) → ∞.

This raises the following question: does there exist a function f ∈ H(b)
such that ‖σα

n(f)‖H(b) → ∞ for all α ≥ 0?

Appendix A. The Taylor coefficients of exp(β/(1 − z)γ))

Let φ(z) := exp(β/(1 − z)γ), where β > 0 and γ ∈ (0, 1). This function
belongs to the Smirnov class, since it is the exponential of a function in the
Hardy space H1. To estimate its Taylor coefficients, we use the following
generalization of Stirling’s formula due to Hayman [8, p.69].
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Theorem A.1. Let f(z) =
∑∞

n=0 cnz
n be an admissible holomorphic func-

tion on D such that f(r) > 0 for all r ∈ (0, 1). For r ∈ (0, 1), define

M(r) := sup
|z|=r

|f(z)|,

A(r) := r(logM(r))′,

B(r) := rA′(r).

Then, as n → ∞,

(7) cn ∼ f(rn)

rnn
√
2πB(rn)

,

where rn ∈ (0, 1) is the unique solution to the equation A(rn) = n.

The definition of admissible function is complicated, and we do not give it
here. However, the function φ(z) defined above is admissible (see [8, p.93]),
so Theorem A.1 does indeed apply to it. Here is what we deduce.

Theorem A.2. Let φ(z) = exp(β/(1 − z)γ), where β > 0 and γ ∈ (0, 1).
Then φ(z) =

∑∞
n=0 cnz

n, where

(8) cn ∼ exp(Cnγ/(γ+1))

Dn(γ+2)/(2γ+2)
(n → ∞),

and where

(9) C = (βγ)1/(γ+1)(1 + 1/γ) and D =

√
2π(γ + 1)

(βγ)1/(γ+1)
.

Proof. We apply Theorem A.1. Simple computations give

M(r) = exp
( β

(1− r)γ

)
, A(r) =

βγr

(1− r)γ+1
, B(r) =

βγr(1 + γr)

(1− r)γ+2
.

Also, the relation A(rn) = n is equivalent to βγrn/n = (1− rn)
γ+1. Writing

sn := 1− rn, we obtain

sn =
(βγ

n

)1/(γ+1)
(1− sn)

1/(γ+1).

In particular sn = O(n−1/(γ+1)) as n → ∞, and so

sn =
(βγ

n

)1/(γ+1)(
1 +O(n−1/(γ+1))

)
.

A computation gives that

log φ(rn) =
β

(1− rn)γ
=

β

sγn
= β

( n

βγ

)γ/(γ+1)(
1 +O(n−1/(γ+1))

)

= β
( n

βγ

)γ/(γ+1)
+ o(1),

so

(10) φ(rn) ∼ exp
(β1/(γ+1)

γγ/(γ+1)
nγ/(γ+1)

)
.
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Also,

log(rnn) = n log(1− sn) = −nsn +O(ns2n)

= −n
(βγ
n

)1/(γ+1)(
1 +O(n−1/(γ+1))

)
+O(n(γ−1)/(γ+1)

)

= −(βγ)1/(γ+1)nγ/(γ+1) + o(1),

so

(11) rnn ∼ exp
(
−(βγ)1/(γ+1)nγ/(γ+1)

)
.

Lastly, we have

(12) B(rn) =
βγrn(1 + γrn)

(1− rn)γ+2
∼ βγ(1 + γ)

sγ+2
n

∼ 1 + γ

(βγ)1/(γ+1)
n(γ+2)/(γ+1).

Feeding (10), (11) and (12) into (7), we obtain (8) and (9). �
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