
Tόhoku Math. J.
46 (1994), 427-433
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Abstract. We canonically define a square-distance-like function on each simply

connected 1-conformally flat statistical manifold and prove that the generalized

Pythagorean theorem holds if the statistical manifold has constant curvature.

Introduction. A manifold with a torsion-free affine connection V and a pseudo-

Riemannian metric h is called a statistical manifold if V/z is symmetric. Recently, it

has become recognized that the geometry of statistical manifolds is useful in statistics,

since each family of probability distributions with sufficient regularity has the statistical

manifold structure which is naturally determined by the family.

In 1982, through the geometric study of statistical inference, Nagaoka and Amari

showed that each flat statistical manifold has a canonical square-distance-like function,

which they called the divergence of the statistical manifold. Moreover, they proved that

the divergence locally satisfies the Pythagorean theorem for geodesic right triangles (see

[Al] and [A2]).

The purpose of this paper is to generalize their results to a wider class of statistical

manifolds from the view point of affine geometry. We shall show the following:

Divergences can be canonically defined for any simply connected l-conformally flat

statistical manifolds. If a statistical manifold has constant curvature, the divergence satisfies

the generalized Pythagorean theorem.

Sections 1 and 2 are devoted to collecting preliminary facts on statistical manifolds

and affine immersions, respectively. The main results are given in Section 3.

The author would like to thank the referee for his careful reading and kind

comments.

1. Statistical manifolds. Let V and h be a torsion-free affine connection and a

pseudo-Riemannian metric on a manifold M, respectively. The triple (M, V, h) is called

a statistical manifold if VΛ is symmetric.

When a statistical manifold (AT, V, h) is given, we can define another torsion-free

affine connection V by
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Xh{ Y, Z) = h(Vx Y, Z) + h{ Y, VXZ) ,

where X, Y and Z are arbitrary vector fields on M. It is easy to see that (M, V, h) is

also a statistical manifold. We call V the dual connection of V with respect to h, and

(M, V, h) the dual statistical manifold of (M, V, h).

We say that (M, V, h) has constant curvature K if the curvature tensor R of V satisfies

R(X, Y)Z=K {h(Y, Z)X-h{X9 Z)Y) ,

A statistical manifold with constant curvature 0 is said to be flat.

For a real number α, two statistical manifolds (M, V, /z) and (M, V, /Γ) are said to

be oL-conformally equivalent if there exists a function φ on M such that

, Z) + dφ(Y)h(X, Z)} .

It is easily verified that α-conformal equivalence is an equivalence relation on the class

of statistical manifolds. Two statistical manifolds (M, V, h) and (M, V, fi) are α-

conformally equivalent if and only if their dual statistical manifolds (M, V, h) and

(AT, V, Λ) are (— α)-conformally equivalent, since

γ, z)

=dφ(X)K( y, z)+h(v x Y, z)+Λ( y, v*z) - k(Vx y, z)

', Y) + dφ(X)h(Z, Y)}.
Δ Z

A statistical manifold (M, V, h) is said to be (V-)oc-conformally flat if (M, V, h)

is α-conformally equivalent to a flat statistical manifold in a neighbourhood of an

arbitrary point of M. By Proposition 9.1 in [NS], (M, V, h) is ( - l)-conformalΓy flat if

and only if V is a projectively flat connection with symmetric Ricci tensor. Hence the

following proposition holds.

PROPOSITION 1. A statistical manifold (M, V, h) is l-conformally flat if and only if

the dual connection V is a projectively flat connection with symmetric Ricci tensor.

The geometric meaning of V-α-conformal flatness (α Φ ± 1) is not clear even if α = 0.

The idea of α-conformal change was originally formulated by Okamoto, Amari and

Takeuchi [OAT], through the geometric consideration of sequential estimation theory

in statistical inference. In their study, however, it seems that Λ-α-conformal flatness,
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that is, conformal flatness of h in the usual sense is meaningful.

2. Affine immersions. In this section, we recall several definitions and preliminary

facts on affine hypersurface theory. For more details, see [N] or [NP].

Let M be a manifold of dimension n > 2. A pair (x, ζ) is called an affine immersion

of M into the (n + l)-dimensional affine space Rn+ί iΐxis an immersion of M into Rn+1

and ξ is a transversal vector field along x. For a given affine immersion (x, ξ) of M,

the induced connection V and the second fundamental form h are determined by

where D is the standard affine connection of Rn + 1

9 and X and 7 are arbitrary vector

fields on M.

If h is non-degenerate everywhere on M, we say that (x, ξ) is non-degenerate. It is

easy to show that the definition is independent of the choice of ξ. We say that (x, ξ) is

equίaffine if (x*D)xζ is tangent to M for any vector field X on M, or equivalently,

if Vh is symmetric. Hence, (AT, V, /z) is a statistical manifold if and only if (x, ξ) is a

non-degenerate equiaffine immersion. In this case, we say that the non-degenerate

equiaffine immersion (x, ξ) realizes the statistical manifold (M, V, h) in Rn+ ί . It is known

that such an equiaffine immersion is uniquely determined up to affine transformations

of/T + 1 .

Conversely, Dillen, Nomizu and Vrancken proved the following theorem.

THEOREM (cf. [DNV]). A simply connected statistical manifold (M, V, h) can be

realized in Rn+1 if and only ifV is a projectίvely flat connection with symmetric Ricci

tensor.

By this theorem and Proposition 1 in Section 1, we have the following corollary.

COROLLARY. A simply connected statistical manifold can be realized in Rn + 1 if and

only if it is X-conformally flat.

When dim M > 3 , as in Riemannian geometry, (M, V, h) has constant curvature if

both V and V are projectively flat connections (see [K3]). Therefore both a statistical

manifold and its dual statistical manifold can be realized in Rn + 1 if and only if the

statistical manifold has constant curvature. This fact was shown in [Kl ] in a direct

way. The following result was also proved there.

THEOREM. A simply connected statistical manifold with constant curvature K can be

realized in Rn + 1 by an equiaffine immersion (x, ξ) such that ξ + Kx is constant on M.

The affine shape operator S of an equiaffine immersion (x, ξ) is the (1, l)-tensor

field on M defined by x*(S(X))= -(x*D)xξ for an arbitrary vector field X on M. The

statistical manifold realized by (x, ξ) has constant curvature K if and only if S=KI.

Let (x, ξ) be a non-degenerate equiaffine immersion of M into Rn + 1. We denote
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by Rn+1 the dual space of Rn+1 and by < w, U) the pairing of ύeRn + x and ueRn + 1. We

define the conormal map x from M to Rn + 1 by

<*(/?), x*X) = 0 for all Xe Tp{M\ and

<*(/?),£(/?)> = 1

f o r / ? E M . The conormal map has the following properties.

PROPOSITION 2. For arbitrary vector fields X and Y on M, we have

<xmx,ξy=o,

(x*Y,x#Xy=-h(Y,X), and

(x*D)x(x*Y) = x*(VxY)-h(Y, S(X))x.

For the proof and more information about conormal maps, see [NS], [NO] or

[K2].

3. Divergences. Let (M, V, h) be a simply connected 1-conformally flat statistical

manifold, and (x, ξ) a non-degenerate equiaffine immersion realizing (M, V, h) in Rn+1.

We define the divergence p of (M, V, h) by

P(P, Φ = <x(q), x(p) ~ x(qT> (p, qeM),

where x is the conormal map of (x, ξ). The definition of p is independent of the choice

of a realization of (M, V, h). The fucntion p(p, •) for fixed p is known as the affine dis-

tance function for (x, ξ) from the point x(p).

Identifying the tangent space M x M a t (/?, q) with the direct sum Tp(M)@Tq(M),

we use the following notation:

P\X1 - xtI Y,- γj](p)=(x1,o) -(xi9oχo, yx) (o, y > ι ( P i p ) ,

where Xu , Xh Yt, , Y} (i,j>0) are arbitrary vector fields on M.

PROPOSITION 3. The divergence p has the following properties:

(1) p is identically zero on the diagonal set of Mx M.
(2) For arbitrary vector fields X, Y and Z on M,

p[X\r\=-h{X9Y), and

plXY\Zl=-h(VxY,Z).

PROOF. We shall prove (2). By definition, we have

((X, 0)p)(p, q) = <*(<?), (xtX)py, ((X, 0)(0, Y)p)(p, q) = <(jc# Y)q,

and
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0)(F, 0)(0, Z)p)(p, q) = <(xφZ)q9 ((x*D)x(x*Y))p)

Setting q=p, we obtain the required equalities from the definition of the conormal map

x and Proposition 2 in Section 2. •

In the geometric study of statistics, a function p on M x M with the properties in

Proposition 3 is called a normalized yoke of the statistical manifold (M, V, h) (see, e.g.,

[BNJK]). A normalized yoke p is called a contrast function if it vanishes only on the

diagonal set of M x M (see [E]). Recently, Matumoto [M] showed that each statistical

manifold, not necessarily simply connected, has a contrast function. The divergence

defined above is a contrast function when the realization is globally strictly convex.

REMARK. Let p be a normalized yoke of a statistical manifold (M, V, h). For a

fuction φ on M, a function p on MxM defined by

>, q) (p,qe M)

is a normalized yoke of a statistical manifold (M, V, h) which is 1-conformally equivalent

to (M, V, h) as in Section 1. In particular, if p is the divergence of (M, V, h), the

divergence of (M, V, /Γ) coincides with p.

The following is an easy consequence of Proposition 3.

COROLLARY. For arbitrary vector fields X, Y and Z on M,

L\l, and
plY\XZl=-h(Y,VxZ).

According to this corollary, the function p(p9 q) = p(q,p) is a normalized yoke of

the dual statistical manifold (M, V, h).

LEMMA 4. For three distinct points p, q and r of M, let P be a 2-plane of Rn+1

through x(p) and x(q) parallel to ξ(q), and F a 2-plane of Rn+1 through x(q) and x(r)

parallel to x(q). If P is vertical to P, then

P(J>, r) = p(p, q) + p(q, r)-p(p, ?)(l-<x(r

PROOF. The assumption implies

<(*(r) - x(q)) A x(q) , (χ(p) - x(q)) A ξ(q)} = 0 .

Calculating directly the left-hand side of this equation, we obtain the desired result. •

LEMMA 5. Suppose that a non-degenerate equiaffine immersion (x, ξ) realizes a

statistical manifold with constant curvature K. Then ξ and the conormal map x of (x, ξ)

satisfies
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1 -<x(r), ξ(q)} = Kp(q, r) for any points q,reM.

PROOF. By assumption, ξ + Kx is constant everywhere on M. Therefore

1 - <jc(r), ξ(q)} = <x(r), ξ(r) -ξ(q)) = K(x(r), *(?) " *W> = ̂ P(ft r)
D

REMARK. Conversely, if 1 -<Jc(r), ξ(q)} = Kp(q, r) holds for any points q, reM,
then -h(S(X), Y) = Kp[X\ Y]=-Kh{X, Y) for arbitrary vector fields X and Y. This
implies that the statistical manifold realized by (x, ξ) has constant curvature K.

Our main result is the following theorem.

MAIN THEOREM. Suppose that (M, V, h) is a simply connected statistical manifold
with constant curvature K. Let y be a V-geodesic joining two points p and q of M, and
y a V-geodesic joining q and a point rofM.Ify and yare mutually orthogonal at q with
respect to h, then the divergence p satisfies

p(p, r) = p(p, q) + p(q, r)-Kp(p, q)p(q, r) .

PROOF. We may assume that y(O) = y(O) = q. Let P be a 2-plane of Rn+1 through
x(q) parallel to x*{y{ϋ)) and ξ(q). In the theory of affine hypersurfaces, it is known that
the image of the geodesic y under x is contained in P. In a same manner, we observe
that the curve x o y is contained in a 2-plane P of Rn + 1 through x{q) parallel to
and x(q). As a consequence, we know that x(p)eP and x{r)eP.

Using Proposition 2 in Section 2, we can easily verify that

x(q), x,(y(0)) Λ ξ(q)} = 0 .

This implies that P is vertical to P. Therefore the theorem follows from Lemma 4 and
Lemma 5. •

In the case K^O, the formula in the main theorem can be rewritten as

(l-Kp(p, r)) = (l -Kp(j>, q))(l -Kp(q, r)) .

When (M, V, h) is either the standard sphere (K= 1), the Euclidean space (K=Q) or the
hyperbolic space (K= -1), our result reduces to the well-known Pythagorean theorem
on each space: If a geodesic triangle Apqr has a right angle at the vertex q,

if K=ί ,

if K=0,
| = cosh|/?<7| cosh|$?| if K= — l.

REFERENCES

[Al] S.-I. AMARI, Differential Geometrical Methods in Statistics, Lecture Notes in Statist. 28, Springer-



1-CONFORMALLY FLAT STATISTICAL MANIFOLDS 433

Verlag, New York, 1985.

[A2] S.-I. AMARI, Differential geometrical theory of statistics, Differential Geometry in Statistical

Inference, IMS Lecture Notes-Monograph Series, vol. 10, Inst. Math. Statist., Hayward,

California, 1987.

[BNJK] O. E. BARNDORFF-NIELSEN, P. E. JUPP AND W. S. KENDALL, Stochastic calculus, statistical

asymptotics, Taylor strings and phyla, Dept. of Theoretical Statistics, Institute of Mathematics,

Univ. of Aarhus, Research Reports 236, 1991.

[DNV] F. DILLEN, K. NOMIZU AND L. VRANCKEN, Conjugate connections and Radon's theorem in affine

differential geometry, Monatsh. Math. 109 (1990), 221-235.

[E] S. EGUCHI, Geometry of minimum contrast, Hiroshima Math. J. 22 (1992), 631-647.

[Kl] T. KUROSE, Dual connections and affine geometry, Math. Z. 203 (1990), 115-121.

[K2] T. KUROSE, On the Minkowski problem in affine geometry, Results Math. 20 (1991), 643-649.

[K3] T. KUROSE, Dual connections and projective geometry, Hiroshima Math. J. 23 (1993), 327-332.

[M] T. MATUMOTO, Any statistical manifold has a contrast function—On the C3-functions taking the

minimum at the diagonal of the product manifold—, preprint.

[N] K. NOMIZU, Introduction to affine differential geometry, Part I, MPI preprint MPI 88-37, 1988.

[NO] K. NOMIZU AND B. OPOZDA, On normal and conormal maps for affine hypersurfaces, Tόhoku

Math. J. 44 (1992), 425-431.

[NP] K. NOMIZU AND U. PINKALL, On the geometry of affine immersions, Math. Z. 195 (1987), 165-178.

[NS] K. NOMIZU AND U. SIMON, Notes on conjugate connections, in Geometry and Topology of

Submanifolds, IV (F. Dillen and L. Verstraelen, eds.), World Scientific, 1992, pp. 152-173.

[OAT] I. OKAMOTO, S.-I. AMARI AND K. TAKEUCHI, Asymptotic theory of sequential estimation: differential

geometrical approach, Ann. Statist. 19 (1991), 961-981.

DEPARTMENT OF APPLIED MATHEMATICS

FUKUOKA UNIVERSITY

FUKUOKA 814-80

JAPAN




