Pacific Journal of
Mathematics

ON THE DIVISIBILITY OF THE CLASS NUMBER OF QUADRATIC FIELDS

Nesmith Cornett Ankeny and S. Chowla

ON THE DIVISIBILITY OF THE CLASS NUMBER OF QUADRATIC FIELDS

N. C. Ankeny and S. Chomla

1. Introduction. It is well known that there exist infinitely many quadratic extensions of the rationals each with class number divisible by 2 . In fact, if the discriminant of the field contains more than two prime factors, then 2 divides the class number. Max Gut [1] generalized this result to show that there exist infinitely many quadratic imaginary fields each with class number divisible by 3 . In this present paper we prove that there exist infinitely many quadratic imaginary fields each with class number divisible by g where g is any given rational integer.

The method extends to yield certain results about quadratic real fields, but these are not as sharp as on quadratic imaginary fields.
2. Theorem. In the following we may assume without loss of generality that g is positive, sufficiently large, and even.

Lemma 1. Denote by N the number of square-free integers of the form

$$
3^{g}-x^{2}, \text { where } 2 \mid x, 0<x<\left(2.3^{g-1}\right)^{1 / 2} .
$$

Then, for g sufficiently large,

$$
N \geq \frac{1}{25} 3^{g / 2}
$$

Proof. Denote by d the expression

$$
\begin{equation*}
d=3^{g}-x^{2} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
2 \mid x, \quad 0<x<\left(2 \cdot 3^{g-1}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

Received September 28, 1953.
Pacific J. Math. 5 (1955), 321-324

The number of such d is

$$
\frac{1}{2}\left(2 \cdot 3^{g-1}\right)^{1 / 2}+O(1)
$$

As $2 \mid x$, none of the d 's are divisible by 2 . The number of d divisible by 3 , and, hence, by 9 , is less than

$$
\frac{1}{6}\left(2 \cdot 3^{g-1}\right)^{1 / 2}+O(1)
$$

For p an odd prime greater than 3 , the number of d divisible by p^{2} is less than

$$
\frac{1}{2 p^{2}}\left(2 \cdot 3^{g-1}\right)^{1 / 2}+2
$$

Hence the number of square-free d is

$$
\begin{aligned}
N & \left.\geq \frac{1}{2}\left(2 \cdot 3^{g-1}\right)^{1 / 2}-\frac{1}{6}\left(2 \cdot 3^{g-1}\right)^{1 / 2}+O(1)<\sum_{\substack{p \geq 5 \\
p^{2}<3^{g}}} \frac{1}{2 p^{2}}\left(2 \cdot 3^{g-1}\right)^{1 / 2}+2\right) \\
& \geq \frac{1}{2}\left(2 \cdot 3^{g-1}\right)^{1 / 2}\left(1-\frac{1}{3}-\sum_{p \geq 5} \frac{1}{p^{2}}\right)-2 \sum_{p^{2}<3^{g}} 1+O(1) \\
& \geq \frac{1}{2}\left(2 \cdot 3^{g-1}\right)^{1 / 2}\left(1-\frac{1}{3}-\sum_{n=5} \frac{1}{n^{2}}\right) \pm O\left(\frac{1}{g} 3^{g / 2}\right)
\end{aligned}
$$

by the prime-number theorem. Hence

$$
N \geq \frac{1}{2}\left(2 \cdot 3^{g-1}\right)^{1 / 2}\left(1-\frac{1}{3}-\frac{1}{4}\right)+O\left(\frac{1}{g} 3^{g / 2}\right) \geq \frac{1}{25} 3^{g / 2}
$$

Theorem l. For the square-free integers d which satisfy (1) and (2) we have $g \mid h$, where h denotes the class number of the field $R(\sqrt{-d})$.

Proof. Consider the quadratic extension of the rationals $R(\sqrt{-d})$. Since

$$
3^{g}=x^{2}+d,
$$

where x is prime to 3 as d is square free, we see that

$$
x^{2}+d \equiv O(\bmod 3)
$$

Hence, by the well-known criterion for the splitting of rational primes in quadratic extensions, (3) $=P_{1} P_{2}$ where (3) denotes the principal ideal generated by 3 in $R(\sqrt{-d})$, and P_{1}, P_{2} are two distinct conjugate prime ideals in $R(\sqrt{-d})$.

Let m be the least positive integer such that P_{1}^{m} is a principal ideal in $R(\sqrt{-d})$. If possible let $m<g$, and $P_{1}^{m}=(\alpha)$ for some integer $\alpha \in R(\sqrt{-d})$. Since $2 \mid g$, we have $2 \mid x$, and, by $(1), d \equiv 1(\bmod 4)$. Then

$$
a=u+v \sqrt{-d}
$$

for rational integers u and v.
Then

$$
\left(3^{m}\right)=P_{1}^{m} P_{2}^{m}=(u+v \sqrt{-d})(u-v \sqrt{-d})=\left(u^{2}+v^{2} d\right),
$$

or

$$
\begin{equation*}
3^{m}=u^{2}+v^{2} d . \tag{3}
\end{equation*}
$$

By (1) and (2), we have $d>3^{g-1}$; but if $m<g$, (3) implies

$$
3^{g-1} \geq u^{2}+v^{2} d
$$

so $v=0$. But then

$$
P_{1}^{m}=(u), P_{2}^{m}=(u), \quad \text { or } \quad P_{1}^{m}=P_{2}^{m}, P_{1}=P_{2},
$$

which is false as P_{1}, P_{2} are two distinct prime ideals in $R(\sqrt{-d})$.
Thus we have shown that $m \geq g$; but as $3^{g}=x^{2}+d, m=g$. Hence, there exists in $R(\sqrt{-d})$ a prime ideal P_{1} whose g th power but none lower is a principal ideal. This immediately implies $g \mid h$.
3. Application. To show that there exist infinitely many fields each with class number divisible by g, we proceed as follows. Theorem 1 shows that there are at least $(1 / 25) 3^{g / 2}$ with class number divisible by g. Let $g^{t}=g_{1}$ be such that the class number of none of these fields is divisible by g_{1}. Then, as before, we find at least $(1 / 25) 3^{g_{1} / 2}$ fields with class number divisible by g_{1}. These fields must be distinct from the previous fields. Repeating this method we see there exist infinitely many quadratic fields with class number divisible
by g.
4. A further result. We shall prove:

The orem 2. If d is square free number of the form $d=n^{2 g}+1$, where $n>4$, then $g \mid h$, where h is the class number of the field $R(\sqrt{d})$.

Proof. We need only outline the proof of Theorem 2, as in most aspects it is very similar to the proof of Theorem 1. We first show that

$$
(n)=\mathfrak{A Z}_{2} \mathfrak{U}^{\prime} \text { in } R(\sqrt{d}),
$$

where ${ }^{2}$, \Re^{2} are two relatively prime conjugate ideals. We then show that $u^{2}-d v^{2}$ (u, v integers) represents no integer other than 0 and 1 whose absolute value is less than \sqrt{d}. This follows from the fact that d is of the form $d=w^{2}+l$. Hence the least power of \mathfrak{l} which is a principal ideal is the g th power. This immediately implies $g \mid h$.

The interest of Theorem 2 is some what lessened by the fact that it is unknown at present if there exists an infinite number of square-free numbers of the form $n^{2 g}+1$. Hence we are unable to prove a theorem similar to Theorem 1 with regard to quadratic real extensions of the rationals.

Reference

1. Max Gut, Kubische Klassenkörper über quadratischimaginären Grundkörpern, Nieuw Arch. Wiskunde (2) 23 (1951), 185-189.
```
Johns Hopkins University,
University of Colorado
```


PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H.L. ROYDEN
Stanford University
Stanford, California
E. HEWITT
University of Washington
Seattle 5, Washington

R.P. DILWORTH
California Institute of Technology
Pasadena 4, California
* Alfred Horn
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

H, BUSEMANN	P.R. HALMOS	R.D. JAMES	GEORGE POLLYA
HERBERT FEDERER	HEINZ HOPF	BøRGE JESSEN	J.J. STOKER
MARSHALL HALL	ALFRED HORN	PAUL LEVY	KOSAKU YOSIDA
SPONSORS			
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORN			
CALIFORNIA INSTITUTE OF TECHNOLOGY		STANFORD RESEARCH INSTITUTE STANFORD UNIVERSITY	
UNIVERSITY OF CALIFORNIA, BER KELEY			
UNIVERSITY OF CALIFORNIA, DAVIS		UNIVERSITY OF. UTAH	
UNIVERSITY OF CALIFORNIA, LOS ANGELES UNIVERSITY OF CALIFORNIA, SANTA BARBARA		WASHINGTON STATE COLLEGE	
		UNIVERSITY OF WASHINGTON	
UNIVERSITY OF CALIFORNIA, SANTA BARBARA MONTANA STATE UNIVERSITY		* *	
MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA		AMERICAN MATHEMATICAL SOCIETY	
OREGON STATE COLLEGE		HUGHES AIRCRAFT COMPANY	
UNIVERSITY OF OREGON SHELL DEVELOPMENT COMPANY			

UNIVERSITY OF SOUTHERN CALIFORNIA

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any of the editors. Manuscripts intended for the outgoing editors should be sent to their successors. All other communications to the editors should be addressed to the managing editor, Alfred Horn, at the University of California Los Angeles 24, California.

50 reprints of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50 .

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is $\$ 12.00$; single issues, $\$ 3.50$; back numbers (Volumes $1,2,3$) are available at $\$ 2.50$ per copy. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $\$ 4.00$ per volume; single issues, $\$ 1.25$.

Subscriptions, orders for back numbers, and changes of address should be sent to the publishers, University of California Press, Berkeley 4, California.

Printed at Ann Arbor, Michigan. Entered as second class matter at the Post Office, Berkeley, California.

* During the absence of E.G. Straus.
Pacific Journal of Mathematics
Vol. 5, No. 3 November, 1955
Nesmith Cornett Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields 321
Cecil Edmund Burgess, Collections and sequences of continua in the plane 325
Jane Smiley Cronin Scanlon, The Dirichlet problem for nonlinear elliptic equations 335
Arieh Dvoretzky, A converse of Helly's theorem on convex sets 345
Branko Grünbaum, On a theorem of L. A. Santaló 351
Moshe Shimrat, Simple proof of a theorem of P. Kirchberger 361
Michael Oser Rabin, A note on Helly's theorem 363
Robert E. Edwards, On factor functions 367
Robert E. Edwards, On certain algebras of measures 379
Harley M. Flanders, Methods in affine connection theory. 391
Alfred Huber, The reflection principle for polyharmonic functions 433
Geoffrey Stuart Stephen Ludford, Generalised Riemann invariants 441
Ralph Gordon Selfridge, Generalized Walsh transforms 451

