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ON THE DIVISIBILITY OF THE CLASS NUMBER

OF QUADRATIC FIELDS

N. C. ANKENY AND S. CHOWLA

1. Introduction. It is well known that there exist infinitely many quadratic

extensions of the rationale each with class number divisible by 2. In facf, if

the discriminant of the field contains more than two prime factors, then 2

divides the class number. Max Gut [ l ] generalized this result to show that

there exist infinitely many quadratic imaginary fields each with class number

divisible by 3. In this present paper we prove that there exist infinitely many

quadratic imaginary fields each with class number divisible by g where g is

any given rational integer.

The method extends to yield certain results about quadratic real fields, but

these are not as sharp as on quadratic imaginary fields.

2. Theorem. In the following we may assume without loss of generality

that g is positive, sufficiently large, and even.

LEMMA 1. Denote by N the number of square-free integers of the form

3 S - * 2 , where 2 | x, 0 < x < (2 .3^ ι ) l / z .

Then, for g sufficiently large,

JV > —
- 25

Proof. Denote by d the expression

(1) d = tf-

where

(2) 2 I * , 0 <x <
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The number of such d is

1 ( 2 . 3 S - 1 ) 1 7 2 + 0 ( 1 ) .
2

As 2 I x, none of the d's are divisible by 2. The number of d divisible by 3,

and, hence, by 9, is less than

i ( 2 . 3 S - ι ) 1 / 2 + O ( l ) .
6

For p an odd prime greater than 3, the number of d divisible by p 2 is less

than

— ( 2 . 3 £ " ι ) 1 / 2 + 2.
2p2

Hence the number of square-free d is

N > - ( 2 . 3 « - 1 ) 1 / 2 - i ( 2 . 3 ^ 1 ) 1 / 2 + O ( l ) ^ Σ — ( 2 . 3 « " ι ) 1 / 2 + 2)
2 6

 P > 5 2p 2

4
p > 5 P

by the prime-number theorem. Hence

3 4/ \g / - 25

THEOREM 1. For the square-free integers d which satisfy ( 1 ) and ( 2 )

we have g \ h% where h denotes the class number of the field R (\/ -c? ).

Proof. Consider the quadratic extension of the rationale /?(γ~cί). Since

where x is prime to 3 as d is square free, we see that
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x2

Hence, by the well-known criterion for the splitt ing of rational primes in quad-

ratic extensions, ( 3 ) = P ι P 2 where ( 3 ) denotes the principal ideal generated

by 3 in R(yf^d), and Pu P2 are two dist inct conjugate prime ideals in R(\/~d).

Let m be the leas t positive integer such that P™ is a principal ideal in

R{y/~d). If possible let m < g, and P™ =(Cί) for some integer Cί G / ? / ^

Since 2 I g, we have 2 | x9 and, by ( 1 ) , d = 1 (mod 4 ) . Then

Cί = u + vy —d

for rational integers u and v.

Then

( 3 m ) = P™P2

m = U + vy/^d) (u - υy/^d) = (u2 + v2d),

or

(3) Zm=u2 +v2d.

By ( 1 ) a n d ( 2 ) , we h a v e d > 3&" 1 ; b u t if m < g, ( 3 ) i m p l i e s

3Z ι >u2 + v2d,

so υ = 0. But then

or

which is false as P t, P2 are two distinct prime ideals in R{\/-d)

Thus we have shown that m >_ g; but as 3# = x2 + d9 m = g. Hence, there

exists in R(y/~d) a prime ideal ?! whose gth power but none lower is a princi-

pal ideal. This immediately implies g | h.

3. Application. To show that there exist infinitely many fields each with

class number divisible by g, we proceed as follows. Theorem 1 shows that there

are at least (1/25) 3^ with class number divisible by g. Let gt = gχ be such

that the class number of none of these fields is divisible by g t Then, as be-

fore, we find at least (1/25) 3 fields with class number divisible by g t

These fields must be distinct from the previous fields. Repeating this method

we see there exist infinitely many quadratic fields with class number divisible
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by g.

4. A further result. We shall prove:

THEOREM 2. If H is square free number of the form d = n2& + 1, where

n > 4, then g \ h, where h is the class number of the field R {yd).

Proof. We need only outline the proof of Theorem 2, as in most aspects

it is very similar to the proof of Theorem 1. We first show that

( * ) = « « ' in R(yfl)t

where 21, 21' are two relatively prime conjugate ideals. We then show that

u2 - dv2 {u, v integers) represents no integer other than 0 and 1 whose ab-

solute value is less than yd. This follows from the fact that d is of the form

d-w2 + 1. Hence the least power of 21 which is a principal ideal is the gth

power. This immediately implies g \ h.

The interest of Theorem 2 is somewhat lessened by the fact that it is un-

known at present if there exists an infinite number of square-free numbers of

the form n2^ + 1. Hence we are unable to prove a theorem similar to Theorem 1

with regard to quadratic real extensions of the rationals.
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