ON THE DIVISOR PRODUCTS AND PROPER DIVISOR PRODUCTS SEQUENCES*

Liu Hongyan and Zhang Wenpeng
Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China

Abstract

Let n be a positive integer, $p_{d}(n)$ denotes the product of all positive divisors of $n, q_{d}(n)$ denotes the product of all proper divisors of n. In this paper, we study the properties of the sequences $\left\{p_{d}(n)\right\}$ and $\left\{q_{d}(n)\right\}$, and prove that the Makowski \& Schinzel conjecture hold for the sequences $\left\{p_{d}(n)\right\}$ and $\left\{q_{d}(n)\right\}$.

1. Introduction

Let n be a positive integer, $p_{d}(n)$ denotes the product of all positive divisors of n. That is, $p_{d}(n)=\prod_{d \mid n} d$. For example, $p_{d}(1)=1, p_{d}(2)=2, p_{d}(3)=3, p_{d}(4)=8$, $p_{d}(5)=5, p_{d}(6)=36, \cdots, p_{d}(p)=p, \cdots . q_{d}(n)$ denotes the product of all proper divisors of n. That is, $q_{d}(n)=\prod_{d \mid n, d<n} d$. For example, $q_{d}(1)=1, q_{d}(2)=1$, $q_{d}(3)=1, q_{d}(4)=2, q_{d}(5)=1, q_{d}(6)=6, \cdots$. In problem 25 and 26 of [1], Professor F.Smarandach asked us to study the properties of the sequences $\left\{p_{d}(n)\right\}$ and $\left\{q_{d}(n)\right\}$. About this problem, it seems that none had studied it, at least we have not seen such a paper before. In this paper. we use the elementary methods to study the properties of the sequences $\left\{p_{d}(n)\right\}$ and $\left\{q_{d}(n)\right\}$, and prove that the Makowski \& Schinzel conjecture hold for $p_{d}(n)$ and $q_{d}(n)$. That is, we shall prove the following:
Theorem 1. For any positive integer n, we have the inequality

$$
\sigma\left(\phi\left(p_{d}(n)\right)\right) \geq \frac{1}{2} p_{d}(n),
$$

where $\phi(k)$ is the Euler's function and $\sigma(k)$ is the divisor sum function.
Theorem 2. For any positive integer n, we have the inequality

$$
\sigma\left(\dot{\phi}\left(q_{d}(n)\right)\right) \geq \frac{1}{2} q_{d}(n) .
$$

[^0]
2. Some Lemmas

To complete the proof of the Theorems, we need the following two Lemmas:
Lemma 1. For any positive integer n, we have the identities

$$
p_{d}(n)=n^{\frac{d(n)}{2}} \quad \text { and } \quad q_{d}(n)=n^{\frac{d(n)}{2}-1}
$$

where $d(n)=\sum_{d \mid n} 1$ is the divisor function.
Proof. From the definition of $p_{d}(n)$ we know that

$$
p_{d}(n)=\prod_{d \mid n} d=\prod_{d \mid n} \frac{n}{d}
$$

So by this formula we have

$$
\begin{equation*}
p_{d}^{2}(n)=\prod_{d \mid n} n=n^{d(n)} \tag{1}
\end{equation*}
$$

From (1) we immediately get

$$
p_{d}(n)=n^{\frac{d(n)}{2}}
$$

and

$$
q_{d}(n)=\prod_{d \mid n, d<n} d=\frac{\prod_{d \mid n} d}{n}=n^{\frac{d(n)}{2}-1}
$$

This completes the proof of Lemma 1.
Lemma 2. For any positive integer n, let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ with $\alpha_{i} \geq 2$ ($i=$ $1,2, \cdots, s), p_{j}(j=1,2, \cdots, s)$ are some different primes with $p_{1}<p_{2}<\cdots<p_{s}$, then we have the estimate

$$
\sigma(\phi(n)) \geq \frac{6}{\pi^{2}} n .
$$

Proof. From the properties of the Euler's function we have

$$
\begin{align*}
\phi(n) & =\phi\left(p_{1}^{\alpha_{1}}\right) \phi\left(p_{2}^{\alpha_{2}}\right) \cdots \phi\left(p_{s}^{\alpha_{s}}\right) \\
& =p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{s}^{\alpha_{s}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{s}-1\right) \tag{2}
\end{align*}
$$

Let $\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{s}-1\right)=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{s}^{\beta_{s}} q_{1}^{r_{1}} q_{2}^{\tau_{2}} \cdots q_{t}^{r_{t}}$, where $\beta_{i} \geq 0, i=$ $1,2, \cdots, s, r_{j} \geq 1, j=1,2, \cdots, t$ and $q_{1}<q_{2}<\cdots<q_{t}$ are different primes. Then
from (2) we have

$$
\begin{aligned}
\sigma(\phi(n)) & =\sigma\left(p_{1}^{\alpha_{1}+\beta_{1}-1} p_{2}^{\alpha_{2}+\beta_{2}-1} \cdots p_{s}^{\alpha_{s}+\beta_{s}-1} q_{1}^{r_{1}} q_{2}^{\tau_{2}} \cdots q_{t}^{r_{t}}\right) \\
& =\prod_{i=1}^{s} \frac{p_{i}^{\alpha_{i}+\beta_{i}}-1}{p_{i}-1} \prod_{j=1}^{t} \frac{q_{j}^{r_{j}+1}-1}{q_{j}-1} \\
& =p_{1}^{\alpha_{1}+\beta_{1}} p_{2}^{\alpha_{2}+\beta_{2}} \cdots p_{s}^{\alpha_{s}+\beta_{s}} q_{1}^{r_{1}} q_{2}^{r_{2}} \cdots q_{t}^{r_{t}} \prod_{i=1}^{s} \frac{1-\frac{1}{p_{i}^{\alpha_{i}+\beta_{i}}}}{p_{i}-1} \prod_{j=1}^{t} \frac{1-\frac{1}{q_{j}^{r_{j}+1}}}{1-\frac{1}{q_{j}}} \\
& =n \prod_{i=1}^{s}\left(1-\frac{1}{p_{i}^{\alpha_{i}+\beta_{i}}}\right) \prod_{j=1}^{t} \frac{1-\frac{1}{q_{j}^{r_{j}+1}}}{1-\frac{1}{q_{j}}} \\
& =n \prod_{i=1}^{s}\left(1-\frac{1}{p_{i}^{\alpha_{i}+\beta_{i}}}\right) \prod_{j=1}^{t}\left(1+\frac{1}{q_{j}}+\cdots+\frac{1}{q_{j}^{r_{j}}}\right) \\
& \geq n \prod_{i=1}^{s}\left(1-\frac{1}{p_{i}^{\alpha_{i}+\beta_{i}}}\right) \\
& \geq n \prod_{i=1}^{s}\left(1-\frac{1}{p_{i}^{2}}\right) \\
& \geq n \prod_{p}\left(1-\frac{1}{p^{2}}\right) .
\end{aligned}
$$

Noticing $\prod_{p} \frac{1}{1-\frac{1}{p^{2}}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\zeta(2)=\frac{\pi^{2}}{6}$, we immediately get

$$
\sigma(\phi(n)) \geq n \cdot \prod_{p}\left(1-\frac{1}{p^{2}}\right)=\frac{6}{\pi^{2}} n
$$

This completes the proof of Lemma 2.

3. Proof of the Theorems

In this section, we shall complete the proof of the Theorems. First we prove Theorem 1. We separate n into prime and composite number two cases. If n is a prime, then $d(n)=2$. This time by Lemma 1 we have

$$
p_{d}(n)=n^{\frac{d(n)}{2}}=n .
$$

Hence, from this formula and $\phi(n)=n-1$ we immediately get

$$
\sigma\left(\dot{\varphi}\left(p_{d}(n)\right)\right)=\sigma(n-1)=\sum_{d \mid n-1} d \geq n-1 \geq \frac{n}{2}=\frac{1}{2} p_{d}(n)
$$

If n is a composite number, then $d(n) \geq 3$. If $d(n)=3$, we have $n=p^{2}$, where p is a prime. So that

$$
\begin{equation*}
p_{d}(n)=n^{\frac{d(n)}{2}}=p^{d(n)}=p^{3} . \tag{3}
\end{equation*}
$$

From Lemma 2 and (3) we can easily get the inequality

$$
\sigma\left(\phi\left(p_{d}(n)\right)\right)=\sigma\left(\phi\left(p^{3}\right)\right) \geq \frac{6}{\pi^{2}} p^{3} \geq \frac{1}{2} p_{d}(n) .
$$

If $d(n) \geq 4$, let $p_{d}(n)=n^{\frac{d(n)}{2}}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ with $p_{1}<p_{2}<\cdots<p_{s}$, then we have $\alpha_{i} \geq 2, i=1,2, \cdots, s$. So from Lemma 2 we immediately obtain the inequality

$$
\sigma\left(\phi\left(p_{d}(n)\right)\right) \geq \frac{6}{\pi^{2}} p_{d}(n) \geq \frac{1}{2} p_{d}(n) .
$$

This completes the proof of Theorem 1.
The proof of Theorem 2. We also separate n into two cases. If n is a prime, then we have

$$
q_{d}(n)=n^{\frac{d(n)}{2}-1}=1
$$

From this formula we have

$$
\sigma\left(\phi\left(q_{d}(n)\right)\right)=1 \geq \frac{1}{2} q_{d}(n) .
$$

If n is a composite number, we have $d(n) \geq 3$, then we discuss the following four cases. First, if $d(n)=3$, then $n=p^{2}$, where p is a prime. So we have

$$
q_{d}(n)=n^{\frac{d(n)}{2}-1}=p^{d(n)-2}=p .
$$

From this formula and the proof of Theorem 1 we easily get

$$
\sigma\left(\phi\left(q_{d}(n)\right)\right) \geq \frac{1}{2} q_{d}(n) .
$$

Second, if $d(n)=4$, from Lemma 1 we may get

$$
\begin{equation*}
q_{d}(n)=n^{\frac{d(n)}{2}-1}=n \tag{4}
\end{equation*}
$$

and $n=p^{3}$ or $n=p_{1} p_{2}$, where p, p_{1} and p_{2} are primes with $p_{1}<p_{2}$. If $n=p^{3}$, from (4) and Lemma 2 we have

$$
\begin{align*}
\sigma\left(\phi\left(q_{d}(n)\right)\right) & =\sigma(\phi(n))=\sigma\left(\phi\left(p^{3}\right)\right) \\
& \geq \frac{1}{2} p^{3}=\frac{1}{2} q_{d}(n) . \tag{5}
\end{align*}
$$

If $n=p_{1} p_{2}$, we consider $p_{1}=2$ and $p_{1}>2$ two cases. If $2=p_{1}<p_{2}$, then $p_{2}-1$ is an even number. Supposing $p_{2}-1=p_{1}^{3_{1}} p_{2}^{\beta_{2}} q_{1}^{r_{1}} \cdots q_{t}^{r_{t}}$ with $q_{1}<q_{2}<\cdots<q_{t}$,
$q_{i}(i=1,2, \cdots, t)$ are different primes and $r_{j} \geq 1(j=1,2, \cdots, t), \beta_{1} \geq 1, \beta_{2} \geq 0$. Note that the proof of Lemma 2 and (4) we can obtain
(6)

$$
\begin{aligned}
\sigma\left(\phi\left(q_{d}(n)\right)\right) & =\sigma(\phi(n)) \\
& =n \prod_{i=1}^{2}\left(1-\frac{1}{p_{i}^{1+\beta_{i}}}\right) \prod_{j=1}^{t}\left(1+\frac{1}{q_{j}}+\cdots+\frac{1}{q_{j}^{r_{j}}}\right) \\
& \geq n\left(1-\frac{1}{p_{1}^{2}}\right)\left(1-\frac{1}{p_{2}}\right) \\
& \geq n\left(1-\frac{1}{4}\right)\left(1-\frac{1}{3}\right) \\
& =\frac{1}{2} q_{d}(n) .
\end{aligned}
$$

If $2<p_{1}<p_{2}$, then both $p_{1}-1$ and $p_{2}-1$ are even numbers. Let $\left(p_{1}-1\right)\left(p_{2}-1\right)=$ $p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} q_{1}^{r_{1}} q_{2}^{r_{2}} \cdots q_{t}^{\tau_{t}}$ with $q_{1}<q_{2}<\cdots<q_{t}, q_{i}(i=1,2, \cdots, t)$ are different primes and $r_{j} \geq 1(j=1,2, \cdots, t), \beta_{1}, \beta_{2} \geq 0$, then we have $q_{1}=2$ and $r_{1} \geq 2$. So from the proof of Lemma 2 and (4) we have

$$
\begin{aligned}
\sigma\left(\phi\left(q_{d}(n)\right)\right) & =\sigma(\phi(n)) \\
& =n \prod_{i=1}^{2}\left(1-\frac{1}{p_{i}^{1+\beta_{i}}}\right) \prod_{j=1}^{t}\left(1+\frac{1}{q_{j}}+\cdots+\frac{1}{q_{j}^{r_{j}}}\right) \\
& \geq n \prod_{i=1}^{2}\left(1-\frac{1}{p_{i}}\right)\left(1+\frac{1}{2}+\frac{1}{2^{2}}\right) \\
& \geq n \prod_{i=1}^{2}\left(1-\frac{1}{p_{i}}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right) \\
& \geq n \prod_{i=1}^{2}\left[\left(1-\frac{1}{p_{i}}\right)\left(1+\frac{1}{p_{i}}\right)\right] \\
& \geq n \prod_{p}\left(1-\frac{1}{p^{2}}\right) \\
& \geq n \frac{6}{\pi^{2}} \\
& \geq \frac{1}{2} q_{d}(n) .
\end{aligned}
$$

Combining (5), (6) and (7) we obtain

$$
\sigma\left(\phi\left(q_{d}(n)\right)\right) \geq \frac{1}{2} q_{d}(n) \quad \text { if } \quad d(n)=4
$$

Third, if $d(n)=5$, we have $n=p^{4}$, where p is a prime. Then from Lemma 1 and Lemma 2 we immediately get

$$
\sigma\left(\phi\left(q_{d}(n)\right)\right)=\sigma\left(\phi\left(p^{6}\right)\right) \geq \frac{6}{\pi^{2}} p^{6}=\frac{1}{2} q_{d}(n) .
$$

Finaly, if $d(n) \geq 6$, then from Lemma 1 and Lemma 2 we can easily obtain

$$
\sigma\left(\phi\left(q_{d}(n)\right)\right) \geq \frac{1}{2} q_{d}(n) .
$$

This completes the proof of Theorem 2.

References

1. F. Smarandache, Only problems, not Solutions, Xiquan Publ. House, Chicago, 1993, pp. 24-25.
2. Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
3. R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1994, pp. 99.
4. "Smarandache Sequences" at http://www.gallup.unm.edu/ "smarandache/snaqint.txt.
5. "Smarandache Sequences" at http://www.gallup.unm.edu/"smarandache/snaqint2.txt.
6. "Smarandache Sequences" at http://www.gallup.unm.edu/" smarandache/snaqint3.txt.

[^0]: Key words and phrases. Makowski \& Schinzel conjecture: Divisor and proper divisor product.

 * This work is supported by the N.S.F. and the P.S.F. of P.R.China.

