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Inseveral experiments, observers tried to categorize stimuli constructed from two separable stimu­
lus dimensions in the absence of any trial-by-trial feedback. In all of the experiments, the observers
were told the number of categories (i.e., two), they were told that perfect accuracy was possible, and
they were given extensive experience in the task (i.e., 800 trials). When the boundary separating the
contrasting categories was unidimensional, the accuracy of all observers improved significantly over
blocks (i.e., learning occurred), and all observers eventually responded optimally. When the optimal
boundary was diagonal, none of the observers responded optimally. Instead they all used some sort of
suboptimal unidimensional rule. Ina separate feedback experiment, all observers responded optimally
in the diagonal condition. These results contrast with those for supervised category learning; they sup­
port the hypothesis that in the absence of feedback, people are constrained to use unidimensional rules.

There are three methodologically distinct types ofcat­

egorization experiments (see, e.g., Ashby & Maddox,

1998). In a supervised categorization task, the observer

is told the number ofcontrasting categories, and feedback

is provided after every trial. An unsupervised categoriza­

tion task is the same as a supervised task, except that no

feedback is provided. In other words, the observer is told

the number of contrasting categories, but feedback is

never provided. Finally, in afree sorting task, observers

are not provided feedback, and they are not told the num­

ber ofcontrasting categories. The typical free sorting in­

structions are to sort the stimuli into as many categories

as one desires. In addition, unsupervised and free sorting

tasks usually present the stimuli differently. In a typical

free sorting task, all the stimuli can be viewed simultane­

ously, whereas in unsupervised tasks, the stimuli are often

viewed sequentially (as they are in supervised tasks).

The vast majority of published categorization studies

have been supervised. When feedback is provided, people

can learn complex category structures, including those

that require integrating two or more stimulus dimensions

in a nonlinear fashion (Ashby & Maddox, 1992; McKin­

ley & Nosofsky, 1995). Category learning without feed­

back has been examined in relatively few studies, and free

sorting tasks have been used in most of these. In striking

contrast to the results from supervised studies, the con-
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sensus is that people use unidimensional rules in the ab­

sence offeedback (e.g., Ahn & Medin, 1992; Imai & Gar­

ner, 1965; Medin, Wattenmaker, & Hampson, 1987). In

other words, they ignore all but one stimulus dimension.

On the attended dimension, they generally set a criterion

and then assign all stimuli falling below that value into one

category and all stimuli falling above that value into the

other category.

Despite these results, little is known about the con­

straints on category learning that might exist in the ab­

sence of feedback. This is because, in addition to exper­

imental differences, frequently there are also substantial

differences in the goals of supervised and unsupervised

tasks. In supervised categorization studies, it is common

to ask whether observers can learn the underlying cate­

gory structures. If they fail to achieve some criterion ac­

curacy level after a sufficient amount ofpractice, we con­

clude that they have been unable to learn these structures.

In other words, some constraints on their category learn­

ing abilities have prevented success in this task. In contrast,

in unsupervised tasks, it is most common to ask about the

preferences ofobservers. Typically, little or no practice is

given, and the design of the experiment provides no mo­

tivation for the observers to try to discover the underlying

category structure (if one exists). In such experiments,

we learn only what categorization strategies people prefer

to use. The fact that John arranges books by height does

not mean that he cannot learn to arrange books by some

more sophisticated strategy.

Ifone is interested in constraints on unsupervised cat­

egory learning, rather than on preferences, then at least four

experimental design principles must be followed. First,

observers must be given extensive practice with the cate­

gory structures. Second, some underlying category struc­

ture must exist; that is, the exemplars ofeach contrasting

category must form a coherent cluster in stimulus space.'

For example, consider a free sorting or unsupervised cat-
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egorization task in which the stimuli are the integers 1,

2,3,4,5,6, and 7. All integers between 1 and 7 are rep­

resented, and all are equally frequent. Thus, there is no

underlying category structure to discover. Even ifthe ob­

server were told that there were two categories, there would

be no rational strategy for discovering these categories.

On the other hand, if the same experiment were repeated

with the integers 1, 2, 3, 5, 6, and 7, a rational strategy

would be to assign the integers 1,2, and 3 to one category

and the integers 5, 6, and 7 to a different category. Third,

the observer should be told that there is an underlying cat­

egory structure. Finally, the observer should be encour­

aged to respond as accurately as possible.

Unfortunately, even if these design principles are met,

there is no guarantee that the resulting data will provide

information about constraints on unsupervised category

learning. For example, observers might respond optimally

because their preferred response strategy was coinciden­

tally the optimal strategy. A simple condition that guar­

antees that one is studying constraints on learning rather

than preferences is that some learning actually occurs­

that is, that accuracy improves during the course of the

experiment because of some change in the observer's re­

sponse strategy. An observer who chooses a response strat­

egy because of preference has no reason to change strate­

gies during the experimental session.

There have been many reports of unsupervised cate­

gorization studies (e.g., Ahn & Medin, 1992; Boster &

D' Andrade, 1989; Homa & Cultice, 1984; Imai & Garner,

1965; Medin et al., 1987; Regehr & Brooks, 1995; Ross,

1996). However, almost none of these has met even two

of these four design criteria, and there have been very few

demonstrations of learning in unsupervised categoriza­

tion studies.? As a consequence, much is known about

preferred response strategies in unsupervised categoriza­

tion studies, but almost nothing is known about whether

there are limits on what people can learn in the absence of

feedback.

In this article, we study constraints on unsupervised

category learning. In particular, we focus on the follow­

ing important unanswered questions. What are the con­

straints on the kinds of decision rules that people use in

unsupervised categorization? Have people used unidi­

mensional rules in previous unsupervised studies because

ofsome preference (e.g., perhaps because unidimensional

rules are easy to use), or is this the only strategy that peo­

ple are able to implement in the absence of feedback? Is

category learning without feedback possible? And if so,

under what conditions should learning be expected?

Two separate unsupervised categorization studies are

described. The stimuli in both studies were lines that var­

ied continuously in length and orientation. In each ex­

perimental condition, two categories were formed from

widely separated coherent clusters of stimuli. In two con­

ditions, a unidimensional rule separated the categories

perfectly. In several other experimental conditions, the

best unidimensional rule failed badly. In each of the lat­

ter conditions, the categories were linearly separable, but
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the optimal rule had no simple verbal description. All ob­

servers in every experiment viewed 800 exemplars from

the two categories. There were three principal results.

First, all observers in the unidimensional conditions re­

sponded optimally during the last experimental block.

Second, accuracy in the unidimensional conditions im­

proved significantly over blocks. Thus, observers in the

unidimensional conditions learned without feedback.

Third, none of the observers in any nondimensional con­

dition responded optimally. Many observers used unidi­

mensional rules, but in contrast to what has been reported

in the literature, some observers used rules ofa more com­

plex nature. Even so, in contrast to the optimal strategy,

none of the observers in these conditions appeared to in­

tegrate information from the two stimulus dimensions.

In the next section of this paper, we will briefly review

the empirical literature on unsupervised categorization. In

the following three sections, we will present our experi­

mental results. The focus of all four of these sections is

atheoretical, in the sense that the goal is to describe the

empirical phenomena. Throughout these sections, we will

refer to theoretically evocative terms, such as unidimen­

sional rule, but we will use these terms only as convenient

summary descriptions of the data. For example, when we

say that people have used unidimensional rules in some

experiment, we mean only that their category responses

are nicely partitioned on some single stimulus dimension.

Specifically, such a statement is not a claim about a psy­

chological process. Indeed, it is well known that many dif­

ferent categorization theories can account for such "uni­

dimensional" responding (see, e.g., Ashby & Maddox,

1998). In the General Discussion (i.e., the sixth section),

we will explicitly consider the theoretical implications

ofour data. Finally, we will close with some general com­

ments and conclusions.

PREVIOUS CATEGORIZATION STUDIES

WITHOUT FEEDBACK

Before we describe the literature on unsupervised cat­

egorization, it is important to note that there have been

many studies in which no feedback was given and the

tasks were other than categorization; in some of these,

the tasks have been closely related to categorization. For

example, Clapper and Bower (1991, 1994) had observers

view exemplars of a category and then list the features

that were most informative for distinguishing each spe­

cific exemplar from the other category members. As an­

other example, Billman and Knutson (1996) had ob­

servers view pictures of imaginary animals. Next, the

observers were shown pictures of two new animals and

were asked to select the one most consistent with the an­

imals in the training set.

Success in either of these tasks required observers to

learn the frequencies ofvarious stimulus features and their

interrelationships. Even so, such knowledge does not

guarantee an ability to assign stimuli to categories. For ex­

ample, consider the category structures described by the
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Table 1
Category Structure Used by Medin,
Wattenmaker, and Hampson (1987)

Category A Category B
Dimension Dimension

Stimulus D1 D2 DJ D4 D1 D2 D3 D4

I 1 I 1 I 0 0 0 0

2 1 I I 0 0 0 0 I

3 I I 0 I 0 0 I 0

4 I 0 1 I 0 1 0 0

5 0 I 1 I 1 0 0 0

bottom two panels of Figure 2. Each point in these pan­

els describes a different line that varies in length and ori­

entation. The "+" signs indicate the lengths and orienta­

tions of the exemplars ofone category, and the "0" signs

describe the exemplars ofa contrasting category. An ob­

server who had no idea that there were two separate cat­

egories might still detect the correlation between length

and orientation that exists in the overall combined stimu­

lus ensemble (i.e., a positive correlation in the left panel,

and a negative correlation in the right panel). For exam­

ple, in the diagonal-positive condition, such an observer

would know that long lines tended to occur only with large

orientations, even though he or she would be at chance

in categorization. Thus, unsupervised studies in which ob­

servers try to learn about stimulus features provide only

limited information about unsupervised categorization.

The first major study ofcategorization behavior in the

absence of feedback was done by Imai and Garner

(1965). Each of their stimuli was a white card depicting

two dots that varied in overall position, interdot distance,

or orientation. On each trial, observers were shown ei­

ther eight or four cards and were asked to sort these into

two piles in any way that seemed reasonable. Stimuli on

eight-card trials were always constructed by factorially

crossing two levels from each of the three stimulus di­

mensions, and four-card trials were always constructed

by factorially crossing two levels from two of the three

stimulus dimensions. All observers showed a strong pref­

erence for unidimensional rules. With the factorial stim­

ulus design used by Imai and Garner, however, there are

no stimulus clusters. Thus, there is no a priori category

structure for observers to discover. For this reason, any

decision rule chosen by observers is as good as any other

rule.' Consequently, the results of Imai and Garner tell

us that humans prefer unidimensional rules, but they tell

us nothing about constraints on human category learning

in the absence offeedback or even whether learning with­

out feedback is possible.

Medin et al. (1987) introduced an experimental design

that has been used in a number ofsubsequent unsupervised

categorization studies (e.g., Regehr & Brooks, 1995).

The stimuli were insect-like creatures that varied on four

binary-valued dimensions. As in the Imai and Garner

(1965) study, Medin et al.'s observers showed a strong

tendency to use unidimensional rules. Table 1 shows the

structure of the two categories that Medin et al. used. The

separate categories form coherent clusters in the four di­

mensional binary-valued stimulus space. But consider

the perceived category structure for an observer unable

to attend to all four stimulus dimensions. For example,

suppose an observer is able to attend to only three ofthe

four stimulus dimensions. Examination of Table I indi­

cates that no matter which of the dimensions is ignored,

the perceived stimuli will have the structure shown in

Figure 1. The solid dots in Figure I represent perceived

stimuli that occur with a probability of .2, and the open

dots represent perceived stimuli that occur with a prob­

ability of .1. Given that the perceived stimulus structure

shown in Figure I does not contain separate clusters (see

note I), how could an observer decide which stimuli go

in which categories? If it was known that there were two

categories, an observer might hypothesize that the two

high-frequency stimuli belong to different categories, but

the category assignments for the other six stimuli would

have to be made on some arbitrary basis." Thus, the fact

that observers acting on the Table I design invariably used

unidimensional rules tells us little about whether they

could learn to use more than one stimulus dimension, un­

less we assume that they were able to attend perfectly to

all four stimulus dimensions.

Ahn and Medin (1992) improved on this design by

using stimulus dimensions that, although still discrete

valued, had more than two possible levels. This increased

the number of possible stimuli (i.e., to nd, where n is the

number of levels per dimension and d is the number of

dimensions), and so made it more likely that structures

like those shown in Table I would form coherent clusters

in cases in which observers attended only to some subset

of possible stimulus dimensions. Even so, the categories

used by Ahn and Medin each contained only five exem-

(1,1,1)
}-----------4.

(0,0,0)

Figure 1. Perceived stimulus structure in the unsupervised cat­
egorization experiment of Medin, Wattenmaker, and Hampson
(1987; see our Table 1) for an observer who ignores anyone ofthe
four stimulus dimensions.



plars. Furthermore, in each case an observer could achieve

perfect performance by using a unidimensional rule and

memorizing only two exceptions. Ahn and Medin found

unidimensional responding in some conditions, but in

other conditions the responses ofa majority ofobservers

were more consistent with a similarity-based (i.e., nondi­

mensional) rule. Because of the category structure, how­

ever, it is difficult to know whether observers in the lat­

ter conditions used a true similarity-based rule or used a

unidimensional rule and memorized the few exceptions.

The latter possibility is hypothesized, for example, by the

RULEX model ofcategory learning (Nosofsky, Palmeri,

& McKinley, 1994).

Thus, the literature on unsupervised categorization

clearly establishes that people typically use unidimen­

sional rules when there is no compelling reason to do

otherwise. There are few published data, however, on the

question ofwhether this tendency is a preference or a real

constraint on human performance. Another complication

is that in almost all of the published studies, discrete­

valued rather than continuous-valued stimulus dimensions

have been used. Binary-valued dimensions are especially

problematic, because they might encourage people to use

unidimensional rules in situations in which they might

normally use a rule that integrates information across di­

mensions. For example, in many cases in which binary­

valued dimensions are used, the two levels can be inter­

preted as the presence and absence of a stimulus feature

(e.g., has wings or not, has symptom X or not). Tversky

(1972, 1977) argued persuasively that the psychological

representation of such features is nonnumeric. If so, it

might be especially difficult for people to integrate in­

formation across such dimensions (or features)-as is

required, for example, to learn the category structures

shown in the bottom two panels of Figure 2. Thus, it is

important to study unsupervised categorization perfor­

mance with stimuli constructed from continuous-valued

dimensions.

Another important question, which is related to the

issue of whether people are constrained to use unidi­

mensional rules, is whether category learning is possible

without feedback. Few studies in the literature speak to

this issue. For example, each observer in the Ahn and

Medin (1992) study categorized a total ofonly 10 stimuli,

and these observers never categorized the same stimulus

more than once. Since learning is by definition a change

in performance across replications, Ahn and Medin and

other such studies say nothing about learning. A few older

studies showed modest levels of learning in free sorting

tasks (Aiken & Brown, 1971; Evans & Arnoult, 1967),

but perhaps the most dramatic examples ofunsupervised

category learning were reported by Fried and Holyoak

(1984) and by Homa and Cultice (1984). The stimuli in

both studies were complex visual patterns that varied on

many stimulus dimensions (lOX 10 grids of randomly

distributed light and dark squares; lines that connected
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nine randomly located dots), and in both cases the con­

trasting categories were created by randomly distorting

prototype patterns. Fried and Holyoak reported learning

in a variety ofunsupervised conditions, whereas Homa and

Cultice found no learning across trials in unsupervised

conditions in which the category exemplars were created

from moderate- or high-level distortions ofthe prototype.

However, when the categories contained only low-level

distortions ofthe prototype, learning was significant (ac­

curacy improved from 68% to 92% across trials).

The results of Fried and Holyoak (1984) and Homa and

Cultice (1984) indicate that unsupervised category learn­

ing is possible, at least under certain conditions in which

category exemplars are created from random distortions

ofthe category prototype. This is an important result, but

although the stimuli that were used in these studies were

perceptually interesting, it is difficult to draw stronger

conclusions. The stimuli used by Fried and Holyoak var­

ied on 100 physical dimensions, and the Homa and Cul­

tice stimuli varied on 18 physical dimensions (i.e., 2 spa­

tial coordinates define each of the 9 dots). In both cases,

however, the dimensionality of the psychological repre­

sentation is unknown. In particular, there is good evidence

that the psychological dimensions of these complex

stimuli were not based in any simple way on the physi­

cal dimensions (Shin & Nosofsky, 1992), and it is not

known whether the stimuli used in either study could be

sorted successfully by observers using unidimensional

rules. Also, without knowing the psychological represen­

tation, it is impossible to know how widely separated the

category clusters were in psychological space.

In summary, there is overwhelming evidence that hu­

mans prefer to use unidimensional rules, at least when the

stimulus dimensions are binary or trinary valued. There

are even reports that, under certain conditions, people will

use nondimensional rules (e.g., Ahn & Medin, 1992), but

the design of these studies makes it difficult to rule out

augmented unidimensional strategies (e.g., unidimen­

sional rule plus exceptions). There is also evidence that,

under certain conditions, learning without feedback is pos­

sible, but it is not clear whether humans can learn nondi­

mensional rules without feedback. In addition, there has

been no attempt to compare systematically (I) the ability

ofpeople to learn unidimensional rules without feedback

with (2) the ability of people to learn nondimensional

rules without feedback.

EXPERIMENT lA

In Experiment lA, we compared the ability of people

to learn unidimensional categorization rules with the

ability of people to learn nondimensional categorization

rules, when the categories formed coherent clusters and

the stimulus dimensions were continuous-valued, but

when no feedback was provided. To ensure that failures

oflearning would be due to some constraint on the abili-
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Figure 2. Category structure ofthe four Experiment lA conditions. Each plus sign depicts the coordinates
of a stimulus in one category, and each circle depicts the coordinates of a stimulus in the contrasting category.
Upper left, unidimensional-length condition; upper right, unidimensional-orientation condition; lower left,
diagonal-positive condition; lower right, diagonal-negative condition.

ties of the observers, rather than on their preferences, ex­

tensive practice was given, and the observers were told that

perfect accuracy was possible.

The design ofall the experiments described in this ar­

ticle was based on the randomization technique introduced

by Ashby and Gott (1988). The stimuli in all experiments

were lines that varied continuously in length and orien­

tation. These dimensions are perceptually separable and

the transformation from the physical to the perceptual

space involves only minor distortions> (for discussions of

this point, see, e.g., Ashby & Lee, 1991; Ashby & Mad­

dox, 1990; Nosofsky, 1986). The category structures used

in Experiment lA are shown in Figure 2. Each symbol in

Figure 2 represents a single stimulus (the plus signs and

circles represent stimuli in the two different categories).

In each condition, there were two distinct categories that

did not overlap, so perfect accuracy was always possible.

The category structures in the four conditions were

generated by successively rotating the categories shown

in the upper left panel of Figure 2 by increments of 45°.

Thus, by any of the objective measures that are popular

in cluster analysis (e.g., Fukunaga, 1990), task difficulty

was invariant across the four conditions. Specifically,

maximum possible accuracy, within-category scatter,

between-category separation, and category coherence were

all identical in the four conditions. Also shown in Fig­

ure 2 are the decision bounds that maximized categoriza­

tion accuracy. These are the lines y = x - 175, x = 300,

y = 125, andy = -x + 425. In two conditions, the opti­

mal bound was unidimensional, and in two conditions, it

was diagonal. In the two diagonal conditions, the most ac­

curate unidimensional rule yielded a response accuracy

of about 80%. In addition, because of the continuous­

valued stimulus dimensions, it would have been difficult

or impossible to respond optimally in the diagonal condi­

tions by using a unidimensional rule and memorizing all

of the exceptions. Figure 3 shows a few exemplars from

each category in one unidimensional condition and one

diagonal condition.

Experiment 1A was subdivided into separate blocks of

80 trials each. On the odd-numbered blocks, observers pas­

sively viewed the 80 stimuli without responding. On the

even-numbered blocks, observers assigned each stimu­

lus to category A or B, by pressing an appropriate button.
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Figure 3. Category structure from the unidimensionaHrientation and diagonal-positive conditions of Experiment lA,

together with a few representative stimuli from each ofthe contrasting categories.

They were told that it made no difference which category

they called A, but that it was important to maintain con­

sistency in their definition. They were also told that there

were only two categories and that perfect accuracy was

possible. During the experiment, however, they were never

given feedback about their accuracy, either on single tri­

als or on blocks of trials.

Although it may be obvious, it is important to note that,

even if observers are constrained to use unidimensional

rules, they will respond optimally in the unidimensional

conditions only if they manage to solve two problems.

First, they must determine whether length or orientation

is the critical dimension; then, they must discover the op­

timal criterion value along that dimension (i.e., the opti­

mal intercept).

Method
Observers and Design. The observers in all experiments were

undergraduates at the University ofCalifornia at Santa Barbara who

received partial course credit in an introductory psychology course

for participating in the experiment. Twenty observers participated

in Experiment lA, Five observers were assigned to each of four ex­

perimental conditions, which differed according to the orientation

of the boundary that separated the two categories. The four condi­

tions are illustrated schematically in Figure 2.

Stimuli and Apparatus. The stimulus sets from the four differ­

ent experimental conditions are shown in Figure 2. Each point rep­

resents the position ofa stimulus in the orientation x length space.

The category A stimuli are plotted as plus symbols and the cate­

gory B stimuli are plotted as circles. In each condition, stimuli were

generated by randomly sampling from each oftwo bivariate normal

distributions. The two category distributions were specified by a

mean and variance on each dimension and a covariance between di­

mensions. The two categories always had different means but the

same variances and covariance. See Table 2 for the exact parameter

values.

Using the parameters listed in Table 2 for the unidimensional­

length condition, 200 random samples were drawn from the cate­

gory A population and 200 were sampled from the category B pop­

ulation. A linear transformation was then performed on each sample

so that the sample statistics exactly matched the Table 2 population
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Table 2
Parameter Values That Define the Categories Used in Experiment lA

Means

Condition

Length Orientation Variances

Category A CategoryB CategoryA CategoryB Length Orientation Covariance

Unidimensional
Orientation
Length

Diagonal
Positive
Negative

300
220

243
243

300
380

357
357

205
125

68
182

45
125

182
68

9,000
75

4,538
4,538

75
9,000

4,538
4,538

o
o

4,463
-4,463

parameters. For each of the 5 observers in the unidimensional­

length condition, this sample of 400 stimuli was randomly parti­

tioned into five blocks with 80 stimuli in each block. Each observer

was presented with a different random partitioning ofthese 400 tri­

als. These stimuli constituted the response blocks (i.e., the even­

numbered blocks) for each observer. Using these same procedures,

a second sample of 400 trials was generated for each observer. These

stimuli constituted the observation blocks (i.e., the odd-numbered

blocks).

For each observer, the stimuli from the response blocks and the

stimuli from the observation blocks were combined in one stimulus

set in such a way that the observation blocks constituted the odd­

numbered blocks and the response blocks constituted the even­

numbered blocks. The stimuli in the other three conditions were

generated by rotating the stimulus set from the unidimensional­

length condition: (1) 45° in the diagonal-positive condition, (2) 90°

in the unidimensional-orientation condition, and (3) -45° in the

diagonal-negative condition. The stimulus set for each observer

was centered about an orientation of 45° and a line length of 300

pixels. The distribution parameter values for each of the four con­

ditions are listed in Table 2.

The stimuli were computer generated and displayedon a Mitsubishi

Electric Color Display Monitor Model C-9918NB in a dimly lit

room. Each random sample (xI' x2) was converted to a stimulus by

letting X I determine length of the line and X2 determine orientation.
For example, the category A mean in the unidimensional-length con­

dition was converted to a line 220 pixels long, rotated 125 X (Jr/500)

radians counterclockwise from horizontal. The (Jr/500) scaling fac­

tor was chosen in an attempt to equalize the salience of orientation

and length. The stimuli were presented in white on a dark back­

ground, and the visual angle of the stimuli ranged from about 1.5°

to about 6.3°.

Procedure. Each observer was run individually. The observers
were told that the stimuli would be presented one at a time on a

monitor and that their task was to separate the stimuli into two cat­

egories of equal size. Five observation-only blocks alternated with

five response blocks. During each observation block, the observers

were instructed simply to look at 80 sequentially presented stimuli

and to try to learn about the two categories. Each stimulus was pre­

sented for I sec with a 500-msec interstimulus interval. During each

response block, the observers were instructed to select a category
for each stimulus and to press a button labeled "A" or a button la­

beled "B" to show which category had been selected. The observers

were informed that the category labels were arbitrary and were

warned to be consistent about what they called a member of cate­
gory A and what they called a member of category B. Since category

assignment to the labels "A" and "B" was arbitrary, each observer

was assumed to have assigned category labels in the manner that re­

sulted in the highest calculated percent correct within each block.

With this assumption, it was impossible for observers to score less
than 50% correct. The observers were told that perfect accuracy

was possible, but they were never given any feedback about their

performance. During the response blocks, the stimuli were response

terminated (with a 5-sec maximum exposure duration), and the in­

terstimulus interval was 1 sec. The break between blocks was ob­

server paced.

Results and Discussion
Accuracy analysis. Recall that 5 observers were run

in each of the four conditions and that by using the opti­

mal decision bound, observers in any of the four condi­

tions could achieve perfect accuracy. Also, recall that each

observer was assumed to have assigned category labels

in the manner that resulted in the highest calculated per­

cent correct during each response block. Table 3 shows the

percent correct for each observer during the last response

block. Note that accuracy averages 98% correct in the

unidimensional conditions, but only 62.4% correct in the

diagonal conditions. Fifteen ofthe 20 observers performed

better in some block other than the last. Recomputing the

average percent correct using the best block for each ob­

server does not eliminate the substantial advantage ofthe

unidimensional conditions (99.13% vs. 75.5%). Similarly,

overall accuracy was higher for observers in the unidi­

mensional conditions than for observers in the diagonal

conditions (91.7% vs. 65.3%). These results indicate that

by the end of the session, observers in the unidimen­

sional conditions were responding almost perfectly. In

contrast, observers in the diagonal conditions performed

poorly throughout the experiment. In fact, the accuracy

data provide no evidence that observers in the diagonal

conditions ever integrated information across stimulus

dimensions. In 49 of the 50 response blocks in the diag­

onal conditions (i.e., 10 observers X 5 blocks), accuracy

Table 3
Percent Correct for Each Observer During
the Last Response Block of Experiment lA

Observer

Condition 2 3 4 5

Unidimensional
Orientation 96.3 100 100 90 97.5
Length 98.8 98.8 98.8 100 100

Diagonal
Positive 51.3 75 76.3 71.3 62.5
Negative 56.3 66.3 55 53.8 65
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Figure 4. Mean percent correct by block in each of the four conditions of Experiment lAo

was poorer that one would expect if the observers had

used the most accurate unidimensional rule.

Figure 4 shows the average percent correct during

each response block in all four conditions. Note that no

learning occurred in either diagonal condition; average

accuracy was no higher in the last block than in the first.

In contrast, in both unidimensional conditions, accuracy

increased dramatically during the course ofa single block,

from about 84% correct to almost perfect accuracy. By

definition, such an increase in accuracy implies that learn­

ing occurred, and it suggests some sort of change in the

response strategies used by observers. Thus, observers

in the unidimensional conditions did not persist in using

the same rule that they initially preferred. Although all

observers in both unidimensional conditions eventually

responded with almost perfect accuracy, learning oc­

curred more quickly in the unidimensional-orientation

condition than in the unidimensional-length condition

(i.e., on Block 2 vs. Block 4). One reason for the quicker

learning in the unidimensional-orientation condition

might be that the criterion orientation that separated the

two categories was close to 45° (see Figure 3). Although

there was no natural linguistic marker for this orientation

(unlike 0° and 90°), it still might have served as a pre­

learned reference point. On the other hand, it is impor­

tant to note that despite this possibility, the performance

ofobservers in the unidimensional--orientation condition

did improve, which indicates that their eventual optimal

performance was not due simply to an initial preference

for the optimal decision rule.

Figures 5-8 show the actual responses of each ob­

server during the last experimental block. A plus indicates

a response ofone type, and a circle indicates the other type

of response. For the moment, the lines may be ignored.

These figures show clearly the dramatic difference in per­

formance in the unidimensional as opposed to the diag­

onal conditions. Whereas observers responded almost

perfectly in the last block of the unidimensional condi­

tions, the responses in the diagonal conditions show no ev­

idence that any observers detected the underlying category

structure.

Model-based analysis. To get a more detailed picture

of how observers categorized the stimuli, a number of

different models derived from decision bound theory

(Ashby, 1992; Maddox & Ashby, 1993) were fit to each

observer's responses. Decision bound theory assumes

that each observer partitions the perceptual space into re­

sponse regions by constructing a decision bound. On

each trial, the observer determines which region the per­

cept is in and then emits the associated response. Despite

this deterministic decision rule, decision bound models

predict probabilistic responding because oftrial-by-trial

perceptual and criterial noise. Wefit five different versions

of decision bound theory to the data collected in Exper­

iment 1A. All of the models, except for the interval-based

unidimensional classifier, are described in detail by

Ashby (1992).

The goal of the analyses reported in this section is to

obtain the best possible description ofthe data from each

individual observer. For example, this analysis will allow
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Figure 5. Category responses during the last block for all observers in the unidimensional­
length condition of Experiment IA.

us to determine whether the violations from unidimen­
sional responding for any given observer are statistically

significant. It is important to note, however, that a good
fit ofany specific model provides only limited information
about psychological process. In particular, it is likely that
some model making very different process assumptions
(e.g., an exemplar-based model) might fit as well as the
best of these five decision bound models. With this caveat
in mind, we proceed with a description ofthe five decision

bound models.
General linear classifier. The general linear classifier

(GLC) assumes that the decision bound is linear. Mad-

dox and Ashby (1993) found that the GLC accounted for
categorization data about as well as the most powerful
exemplar models in experiments in which the optimal
decision bound was linear. In the present applications,
the GLC has three free parameters: the slope and inter­

cept of the linear decision bound and the variance of in­
ternal (perceptual and criterial) noise (i.e., 0-2 ) .

Unidimensional classifiers. The unidimensional clas­
sifiers assume that observers use a unidimensional rule
(i.e., a vertical or horizontal decision bound). These

models each have two free parameters: the intercept of
the decision bound and 0-

2•
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Figure 6. Category responses during the last block for all observers in the unidimensional­
orientation condition of Experiment 1A.

Optimal classifier. This model assumes that observers
use the decision bound that maximizes accuracy (shown
in Figure 2). With the category structures used in Exper­

iment IA, the optimal decision bounds are all linear.
This model has only a single free parameter (i.e., 0-2 ) .

Interval-based unidimensional classifier. Some ofthe
observers in the diagonal conditions appeared to use a
generalized unidimensional strategy in which all stimuli
with orientations within some interval (e.g., OO~900) are

assigned to one category and all stimuli with orientations
out of this interval are assigned to the contrasting cate-

gory. To test this hypothesis, we developed an interval­
based unidimensional model with two horizontal deci­
sion bounds (since the y-axis is orientation) (see also

Nosofsky, Clark, & Shin, 1989). This model has three
free parameters: the intercepts of the two horizontal

bounds and 0-2 .

Using an iterative maximum likelihood parameter es­
timation procedure, each ofthese models was fit separately
to the data from each response block of every observer.
Data from separate blocks were fit because it was appar­

ent that observers sometimes switched strategies from
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block to block. To select the best-fitting model, we used

the A information criterion (AIC) of Akaike (1974; see

also Takane & Shibayama, 1992):

AIC = -2L + 2v,

where v is the number of free parameters and L is the log

likelihood of the data, given the model. The AIC statistic

penalizes a model for extra free parameters in such a way

that the smaller the AIC, the closer a model is to the "true

model," regardless of the number of free parameters. As

a result, to find the best model among a given set ofcom-

petitors, one simply computes an AIC value for each

model and chooses the model associated with the small­

est AIC.

Table 4 shows the number of times each of the five

competing models provided the best fit to the last block

of data, and Table 5 shows the number of times each

model provided the best fit to any block of data. The de­

cision bounds from the best-fitting model are illustrated

for the last block by the solid lines in Figures 5-8. To

begin, consider the results from fitting the models to the

data collected from the unidimensional conditions. In
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Figure 8. Category responses during the last block for all observers in the diagonal­
negative condition of Experiment IA.

this case, the optimal model uses a unidimensional rule,
so Tables 4 and 5 show that, for every response block in
the experiment, the data ofevery observer was best fit by

a model that assumed unidimensional responding. The
learning that occurred is also apparent. During the last
block, the best account of the data is that observers re­
sponded optimally.Table 5 indicates, however,that the data
coIlected during I3 of the blocks in the unidimensional
conditions was best described by some suboptimal unidi-

mensional rule. In fact, during 5 ofthese blocks, observers
were apparently attending to the wrong dimension.

In the diagonal conditions, the data from the last block
were best fit by a model assuming a unidimensional rule

for 9 of 10 observers. When all blocks are included, this
ratio is 43 of 50. Ofthe 7 blocks for which the GLC pro­
vided the best fit, the best-fitting bound was always closer
in slope to a unidimensional rule than to the optimal
rule." Two of the 7 best-fitting GLC bounds were almost
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Table 4

Number of Times Each Model Was Best Fitting
for the Last Block of Data From Experiment lA

Unidimensional

Condition GLC Orientation Length Interval-Based Optimal

Unidimensional

Orientation 0 0 o-, 0 5

Length 0 0 0 0 5

Diagonal

Positive I 3 0 1 0
Negative 0 I I 3 0

Note-GLC, general linear classifier.

Unidimensional

Note-GLC, general linear classifier.

o
o

18

19

6
1

7

14

Condition GLC Orientation Length Interval-Based Optimal

Unidimensional

Orientation 0 0

Length 0 4

Diagonal

Positive 4 14 0

Negative 3 3 5

the GLC in which the slope of the decision bound was

negative.

Conclusions. These data strongly support the hypoth­

esis that observers in the diagonal conditions never

learned the underlying category structure and that, in the

absence of noticeable structure, they relied instead on

unidimensional or interval-based rules to define the cat­

egories. These rule types are similar in that they both re­

quire attention to only one dimension. Observers in the

unidimensional conditions also used unidimensional

rules. However, they eventually learned to select the uni­

dimensional rule that corresponded to the true underlying

category structure. Furthermore, there is good evidence

that the success ofthe observers in the unidimensional con­

ditions was not due to the coincidence that they all hap­

pened to prefer the optimal rule. If this had been true, ac­

curacy would have been perfect throughout the entire

experimental session. Instead, the data indicate that a num­

ber of observers first tried a unidimensional rule of the

wrong type (e.g., a unidimensional orientation rule in the

length condition) and then spontaneously switched to the

optimal rule (e.g., see Figure 4 and Tables 4 and 5).

In addition, at the end of their participation, each ob­

server was queried about his or her response strategy. In

virtually every case, observers in the unidimensional con­

ditions expressed strong confidence that they had been

categorizing the stimuli correctly at the end ofthe session.

In contrast, virtually all observers in the diagonal condi­

tions were confident that they had failed to categorize the

stimuli correctly. This indicates that observers were able

to generate some sort of internal feedback signal, and that

they were trying to maximize accuracy. The fact that only

the observers in the unidimensional conditions were sue-

Table 5

Number of Times Each Model Was Best Fitting

for All Blocks of Data From Experiment lA

horizontal (differing from horizontal by 0.5° and 10°, re­

spectively), and 4 were nearly vertical (differing from ver­

tical by 6°,8°, 12°, and 16°). Of the 7, only one differed

sharply from a unidimensional bound. This was in the

last block for Observer 5 in the diagonal-positive condi­

tion (i.e., 23° off vertical; see Figure 7). As can be seen

in Figure 7, the best-fitting bound in this case is nearly

orthogonal to the optimal bound, so this observer clearly

had not discovered the underlying category structure.

There are two interesting possibilities that might ex­

plain the significant departure from a unidimensional rule

seen in the last block of Observer 5 in the diagonal­

positive condition. The first is that this observer might

have become aware of the positive correlation between

length and orientation that existed for all stimuli in the ex­

periment, even though he or she was never aware of the

two separate clusters of stimuli. In this case, a reasonable

strategy would have been to use a bound orthogonal to

the optimal bound, because this would separate the set of

all stimuli into two categories with the property that at

least some of the exemplars in each category were far

from the decision bound. This possibility is difficult to rule

out for this data set, but it fails to account for any of the

other data sets that were best described by the GLC.

A second possibility is that this observer tried to use a

unidimensional rule on length, but was especially suscep­

tible to the horizontal-vertical illusion. Because ofthis il­

lusion, vertical lines appear longer than horizontal lines

ofthe same length. In Figure 7, horizontal lines correspond

to a value of 0 on the orientation dimension and vertical

lines correspond to a value of250. Suppose the observer

sets a criterion on length, with the property that a 45° line

that is 300 pixels long is exactly on the bound that sepa­

rates the two categories. When a horizontal line oflength

300 pixels is presented, it will appear shorter than the 45°

line, so it will be assigned to the "short" category. On the

other hand, when a vertical line of length 300 pixels is

presented, it will appear longer than the 45° line, and so

it will be assigned to the "long" category. As a result, the

bound that best fits such data will have a negative slope.

This horizontal-vertical illusion hypothesis is especially

attractive since it can also account for the four data sets

in which the best-fitting bound was nearly vertical. Specif­

ically, as predicted by the horizontal-vertical illusion,

each of these four data sets was best fit by a version of



cessful is consistent with the hypothesis that people are

constrained to use rules that operate on a single stimulus

dimension during unsupervised category learning (e.g.,

unidimensional rules, interval-based unidimensional

rules). An interesting question is whether performance

would have been better if conditions had been arranged

so that the best unidimensional rules had performed even

more poorly in the diagonal conditions (i.e., worse than

80% correct). The idea is that this might make it easier

for observers to learn that the optimal rule was not uni­

dimensional. However, observers in the diagonal condi­

tions already knew they were performing poorly, yet

could do nothing about it, so it seems unlikely that such

a manipulation would significantly improve performance.

EXPERIMENT IB

The observers in Experiment 1A were unable to learn

the nondimensional category structures, even with ex­

tensive practice. This result contrasts sharply with find­

ings from supervised categorization experiments, which

have shown that people can learn some complex (i.e.,

nonlinear) categorization rules (e.g., Ashby & Maddox,

1992; McKinley & Nosofsky, 1995). Before we conclude

that there are some fundamental differences in the con­

straints on supervised and unsupervised category learn­

ing, however, it is important to be convinced that super­

vised learning is possible in the diagonal conditions of

Experiment IA.

Past research with the randomization technique used

in Experiment lA (i.e., normally distributed categories)

suggests that, when given feedback on each trial, people

learn to respond almost optimally in conditions in which

the optimal bound is linear but not unidimensional, even

with highly overlapping categories (Ashby & Maddox,

1990; Maddox & Ashby, 1993). Since no feedback was

provided in Experiment lA, we chose categories that were

widely separated in an attempt to make the category

structure apparent. Because ofthe past research with this

paradigm, we assumed that with supervision (i.e., with

feedback), people would respond optimally in all condi­

tions of Experiment 1A. Certainly, the success of ob­

servers in the unidimensional conditions supported this

assumption. However, in addition to the use offeedback,

there was another important difference between Experi­

ment lA and the earlier studies (i.e., of Ashby & Mad­

dox, 1990; Maddox & Ashby, 1993). The observers in the

earlier studies were trained over multiple days and re­

sponded to more than 800 stimuli by the end of training.

It was possible, then, that Experiment 1A was a more dif­

ficult task than intended, simply because the number of

trials was smaller (i.e., 800) and learning did not occur

across multiple days. In Experiment 1B, we tested whether

the categories used in the diagonal-positive condition of

Experiment lA could be learned with feedback," given

the experimental conditions used in Experiment l A.

Thus, Experiment 1B replicated the diagonal-positive

UNSUPERVISED CATEGORIZATION 1191

condition of Experiment 1A, except that feedback was

provided on every trial.

Method

The stimuli used in Experiment IB were the same as those in the

diagonal-positive condition in Experiment IA. Five observers par­

ticipated in this experiment. The procedure was the same as that for

Experiment lA, except that the displays were always response ter­

minated, the interstimulus interval was 1.5 sec, observers re­

sponded during all 10 blocks, and they received feedback after each

of the 800 trials. A short high-pitched tone sounded after each cor­

rect response, and a longer low-pitched tone sounded after each in­

correct response.

Results and Discussion

Recall that if observers responded optimally, they

could achieve 100% accuracy on this task and that during

the last block, observers in the corresponding condition

in Experiment lA achieved no better than 76% correct.

The percentages ofcorrect responses for the 5 observers

during the last block ofExperiment 1B were, respectively,

88.8%, 100%, 92.5%, 86.3%, and 98.8%. Thus, the av­

erage percent correct during the last block was 93.3%. The

average accuracy during the most accurate block was

96%. For each observer, these accuracy values are con­

siderably higher than is predicted for the most accurate

unidimensional rule. The actual responses made by each

observer during the last block of trials and the best-fitting

decision bounds are shown in Figure 9.

The accuracy data suggest that observers responded al­

most optimally in this task. To test this hypothesis more

rigorously, we fit the five models described in the last sec­

tion to the data from each even-numbered response block

(i.e., the same blocks that the models were fit to in Exper­

iment lA). Of these 25 data sets, the optimal model pro­

vided the best fit in 11 cases, the GLC fit best in 9 cases,

the interval-based unidimensional model fit best 3 times,

and the unidimensional-orientation and unidimensional­

length models each fit best once. For every observer, the

data from the last block was best fit by either the optimal

model (three times) or the GLC (twice). For 4 of the 5 ob­

servers, the optimal model provided the best fit to the data

from either the 8th or the l Othblock ofdata. Thus, these

analyses provide convincing evidence that the category

structure used in the diagonal-positive condition in Ex­

periment 1A can be learned when feedback is provided.

EXPERIMENT 2

In Experiment 1A, observers attended to a single stim­

ulus dimension, even when the categories could be sep­

arated only by a rule that integrated information across

both dimensions. We tried to induce observers to respond

optimally by telling them that perfect accuracy was pos­

sible. Clearly, these instructions were insufficient. Would

any other experimental conditions induce optimal re­

sponding in the diagonal conditions of Experiment lA?

Regehr and Brooks (1995) tried a number of manipula-
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Figure 9. Category responses during the last block for all observers in Experiment lB.

tions intended to diminish the tendency of observers in

unsupervised experiments to rely on a single stimulus di­
mension. They were finally successful with a procedure
in which the two category prototypes were displayed to
the observer continuously. Under these conditions, ob­
servers appeared to assign stimuli to the category with
the most similar prototype. Presumably, the same manip­

ulation would succeed here, because in all four Experi­
ment lA conditions, the optimal categorization rule was
equivalent to a similarity-to-prototype rule. One danger
with this intervention, however, was that the task would
become one of similarity judgment rather than category

learning. Also, in natural settings, category prototypes

are virtually never available, so an important practical
question to ask was whether we could give general in­

structions to the observers that would induce optimal re­

sponding. An obvious possibility was to provide in­
structions that unidimensional rules are incorrect. If an
observer knows in advance that a unidimensional rule is
incorrect, he or she need not waste time experimenting
with unidimensional rules. If observers are capable of
learning and implementing nondimensional rules in the
absence of feedback, such instructions should induce op­
timal responding. Experiment 2 tests this hypothesis.
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Table 6
Percent Correct for Each Observer During

the Last Response Block of Experiment 2

Method
Experiment 2 was identical to the diagonal conditions of Exper­

iment IA in every detail, except for the initial instructions (i.e., sep­

arate diagonal-positive and diagonal-negative conditions were run;

see Figure 2). In addition, observers in Experiment 2 were also told

that the stimuli they were about to see varied in length and orienta­

tion and that in order to achieve 100% accuracy, they would have to

use both the length and orientation information when selecting a re­

sponse. Five observers participated in the diagonal-positive condi­

tion, and 6 participated in the diagonal-negative condition.

Results
The response accuracy of each observer during the

last response block is shown in Table 6, and the actual re­
sponses and best-fitting decision bounds during the last
block are shown in Figures 10 and 11. The results ofEx­

periment 2 paralleled those of Experiment 1A. The average
percent correct in the last block was only 67.3% in the
diagonal-positive condition and 66.7% in the diagonal­
negative condition.

The same five models that had been used in Experi­
ment 1were fit separately to the data from each observer's

five response blocks. In addition, a visual inspection of
the data indicated that some observers may have used a
conjunctive rule during one or more response blocks (e.g.,
see Observer 1 in Figure 11). Therefore, in addition to

the five models described above, we also fit a series of
conjunctive rule models that assumed a decision rule of
the following form (Ashby, 1992; Nosofsky et aI., 1989):

Respond A if length < Xl

AND if orientation < Yo' otherwise respond B,

where XI and Yo were free parameters (along with the
noise parameter). Four different versions of this model
were created by systematically replacing the two "<."

signs with all possible combinations of "<;" and ">?

Models that assume a conjunctive rule are theoretically
more similar to models that assume some form ofunidi­
mensional rule than to the GLC. This is because, with a
conjunctive rule, observers never integrate information

from the two stimulus dimensions. Instead they make

Observer

separate decisions about the two dimensions and then se­
lect a response on the basis of the outcomes of these de­

cisions (Ashby & Gott, 1988; Shaw, 1982). In contrast,
in the GLC, the stimulus information is integrated (via
some linear combination rule) and a response is made on
the basis of this integrated value.

The results offitting these six different model types to

the data from each response block for every observer are
shown in Table 7. Across the two conditions, the data
from only 7 of 55 blocks were best fit by a model which

assumed that observers integrated information across the
stimulus dimensions (i.e., the GLC). In 6 of these 7
cases, the best-fitting decision bound was closer to a uni­

dimensional rule than to the optimal rule. In 2 of the 7
cases, the best-fitting bound was within 10° of horizon­
tal. In the other 5 cases, the best-fitting bounds were all

closer to vertical than to horizontal and in every case had
a negative slope. Four of these 5 were within 13° ofver­
tical, and 1 was within 27° of vertical. Thus, one possi­

bility is that during these 5 blocks, the observers were
trying to use a unidimensional rule on length but were
especially susceptible to the horizontal-vertical illusion.

In 48 of the 55 data sets, the best fit was provided by a
model that assumed some sort ofunidimensional respond­

ing (i.e., the unidimensional and interval-based models)
or that observers based their responses on separate uni­
dimensional judgments (i.e., the conjunctive model).

Figures 10 and 11 show that during the last response
block, the data from 2 observers were best fit by a simple
unidimensional rule on orientation, the data from 6 ob­
servers were best fit by an interval-based unidimensional
rule, and the data from 2 observers were best fit by a con­

junctive rule. Only one data set was best fit by a model
that assumed integration of information across stimulus
dimensions (Observer 2, diagonal-negative condition),

and these data are not inconsistent with the hypothesis that
this observer tried to use a unidimensional rule but was
especially susceptible to the horizontal-vertical illusion.
Thus, the modeling analysis strongly supports the con­

clusion that none of the observers learned the category
structure and that instead of integrating information,
they tended to focus on a single stimulus dimension.

Experiment 2 indicates that, even when observers are
explicitly encouraged to use information from both di­

mensions, they fail to integrate information across sepa­
rable stimulus dimensions in the absence of feedback.
Encouraging observers to use information from both di­
mensions did draw some observers away from the use of
simple unidimensional rules. However, rather than re-

5 6

53.8
50.0 52.5

4

57.5
76.3

3

73.8
50.0

2

72.5

86.3
78.8
85.0

Positive
Negative

Condition

Table 7
Number of Times Each Model Was Best Fitting

for All Blocks of Data From Experiment 2

Unidimensional

Condition Optimal OLC Orientation Length IntervalBased Conjunctive

Diagonal positive 0 3
Diagonal negative 0 4

5 I 15 I

4 5 13 4

Note-OLC, general linear classifier.
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Figure 10. Category responses during the last block for all observers in the diagonal­
positive condition of Experiment 2.

sponding optimally, these observers used conjunctive
rules-that is, they used separate unidimensional rules

to classify each stimulus component before selecting a
response.

GENERAL DISCUSSION

The observers in Experiments land 2 learned to re­
spond optimally without feedback when they were given
enough practice and were shown categories that were de­
fined by coherent clusters of stimuli, but only when the

optimal rule was unidimensional. When the optimal rule
was diagonal, they responded with unidimensional or
conjunctive rules, even when told that both stimulus di­

mensions must be used, and even under conditions in
which optimal performance was quickly achieved when
feedback was provided. Ofcourse, our results do not rule
out the possibility that, with enough experience, observers
would eventually have discovered the correct category

structure in the diagonal conditions. Nor do they rule out
the possibility that observers in the diagonal conditions
would have been more successful with some qualita-
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Figure 11. Category responses during the last block for all observers in the diagonal­
negative condition of Experiment 2.

tively different stimuli. Even so, our results demonstrate
a striking bias in favor of rules that operate on one stim­

ulus dimension at a time. In a number of supervised cat­
egorization studies, it has been reported that people are
often biased toward unidimensional rules (e.g., Ashby,
Alfonso-Reese, Turken, & Waldron, 1998; McKinley &

Nosofsky, 1996), so there is considerable converging ev­
idence that unidimensional rules have some privileged
status in human categorization behavior.

To perform optimally in the unidimensional conditions,
observers had to determine which of the two stimulus di-

mensions was critical, and they had to learn the correct
value of the response criterion (i.e., the intercept of the
vertical or horizontal decision bound). Unfortunately,
our results shed little light on how either of these prob­
lems was solved. For example, we cannot rule out the pos­

sibility that observers were drawn to the dimension with
less overall variability or to a criterion setting that was at
the midpoint of the stimulus values on the attended di­
mension. On the other hand, the randomization technique
used in the studies reported above makes it easy to answer
these questions. For example, within-category variance
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on the critical stimulus dimension could be increased (in

the unidimensional conditions) to make the overall vari­

ability larger on the critical dimension than on the irrel­

evant dimension. Ifpeople are drawn to the stimulus di­

mension with less overall variability, then learning should

fail in this condition.

In comparison with the number of models of super­

vised categorization, there are relatively few models of

unsupervised categorization. For example, although ex­

emplar theory has been widely used to model categoriza­

tion data from supervised experiments (see, e.g., Brooks,

1978; Estes, 1986; Medin & Schaffer, 1978; Nosofsky,

1986), there is no well-developed exemplar-based ac­

count of unsupervised categorization (e.g., Billman,

1992; Wattenmaker, 1992). Perhaps the two best-known

models ofunsupervised categorization are Ahn and Med­

in's (1992) two-stage model and Anderson's (1991) ra­

tional model (for another interesting model.f see Billman

& Heit, 1988).

The two-stage model of Ahn and Medin (1992) as­

sumes that during unsupervised categorization, observers

apply a unidimensional rule to the most salient stimulus

dimension. If this strategy fails to separate the stimuli

into coherent clusters, the stimuli with intermediate val­

ues on the critical dimension are compared with the stim­

uli with extreme values. The intermediate stimuli may

then be reassigned to categories on the basis of these

similarity computations. By placing special emphasis on

unidimensional rules, the two-stage model seems to be

in a good position to account for the major results of Ex­

periment IA. Unfortunately, however, the model was

never formalized, so it is unclear what predictions it

would make for the diagonal conditions. Also, it is strictly

a model of unsupervised categorization, so it is not clear

how the two-stage model would account for the differ­

ences between the data from Experiment IB and the data

from the diagonal-positive condition in Experiment IA.

In Anderson's (1991) rational model, the observer par­

tit ions the stimuli into clusters in a sequential fashion.

To create the partitions, on each trial the observer com­

putes the probability that the presented stimulus is a

member of each existing cluster, together with the proba­

bility that the stimulus is a member ofa new cluster. The

stimulus is assigned either to an existing cluster or to a

new cluster, depending on which ofthese probabilities is

highest. This algorithm is order sensitive, since a different

set of clusters could be formed if the order of stimulus

presentation was changed. In the rational model, the clus­

ters that are formed are required to have values on dif­

ferent stimulus dimensions that are statistically indepen­

dent. Except for this constraint, the model assumes that

observers are approximately optimal in their use ofavail­

able information during unsupervised categorization. Al­

ternatively, it is essentially a multiple prototype model,

with each prototype defining its own cluster of stimuli.

What predictions does the rational model make for the

experiments reported in this article? In the unidimensional

conditions, statistical independence holds within each cat-

egory, so presumably the rational model correctly predicts

optimal responding in these conditions. In the diagonal

conditions, however, independence fails. How the model

responds to this violation ofindependence depends on the

value of its coupling parameter. If the coupling param­

eter is large, the observer will perceive only a single

cluster of stimuli in the experiment and so will respond

randomly. The problem with this explanation is that such

a large value of the coupling parameter would cause the

observer also to respond randomly in the unidimensional

conditions. With a smaller value of the coupling param­

eter, the rational model predicts that the observer would

perceive the stimuli in the diagonal conditions as belong­

ing to a number ofclusters, with the property that within

each cluster, statistical independence holds. Such clusters

would have a circular shape, or they would be ellipses with

either a horizontal or a vertical orientation. The model

could predict a difference between the unidimensional

and diagonal conditions only if at least some of the clus­

ters that emerged in the diagonal conditions were ellipses

that included members ofthe two separate categories. This

might occur if the value of the coupling parameter was

large enough to ignore the vertical or horizontal distance

between categories (see Figure 2). However, the vertical

distance between categories in the unidimensional­

orientation condition and the horizontal distance between

categories in the unidimensional-length condition are

smaller than the analogous vertical and horizontal dis­

tances in the diagonal conditions. Thus, it seems that the

rational model could not account for the qualitative differ­

ence in performance observed in the diagonal and unidi­

mensional conditions with the same value ofthe coupling

parameter.

Given that our results present problems for current

theories ofunsupervised category learning, it makes sense

to ask what basic assumption should be used to construct

such a theory. One obvious possibility is that unsupervised

learning can occur in simple, but not complex, tasks. The

idea here is that the unidimensional conditions are con­

siderably simpler than the diagonal conditions, and this

complexity difference is the critical factor, rather than the

unidimensional versus nondimensional distinction, per se.

The argument that the unidimensional conditions are sim­

pler than the diagonal conditions seems reasonable, since

the unidimensional structures require observers to attend

to only one dimension, whereas the diagonal structures

require observers to attend and integrate information from

two dimensions. Also, when feedback is given, observers

learn more quickly in the unidimensional conditions than

in the diagonal conditions (Ashby et aI., 1998). One bar­

rier to testing the simplicity hypothesis rigorously, how­

ever, is that, in contrast to the concept of a "unidimen­

sional rule," there is no generally accepted definition of

a "simple rule." Developing such a definition and testing

whether simplicity predicts unsupervised learning should

be a high priority for future research.

Another possibility is suggested by a recent neuropsy­

chological theory of category learning, called COVIS



(competition between verbal and implicit systems), which

assumes that category learning is a competition between

separate explicit and implicit categorization systems

(Ashby et aI., 1998). The explicit system is a logical rea­

soning system under conscious control that engages in a

systematic process of hypothesis testing (as postulated,

e.g., by Bruner, Goodnow, & Austin, 1956) or theory con­

struction and testing (as postulated, e.g., by Murphy ~ J ,

Medin, 1985). Explicit rules were defined operationally

as those rules that are easy to describe verbally (hence the

acronym COVIS). The implicit system is assumed to en­

gage in a form of procedural learning. COVIS assumes

that the explicit system initially dominates, presumably

because it is controlled by consciousness. With feedback

and experience, however, the potential of the implicit sys­

tem for superior performance often eventually overcomes

the initial bias in favor of the explicit system. From the

perspective of COVIS, the main difference between the

unidimensional and diagonal conditions of Experiment IA

is that the optimal rules in the unidimensional conditions

were explicit (e.g., they could easily be verbalized),

whereas the optimal rules in the diagonal conditions

were not. For example, in the unidimensional-length con­

dition, the optimal rule could easily be verbalized as "give

one response if the length exceeds some criterion value,

and give the other response if it does not." As mentioned

above, at the end oftheir participation, every observer was

queried about his or his response strategy. Every observer

in all four conditions of Experiment IA correctly de­

scribed the unidimensional rule that best fit his/her data.

Inthe diagonal conditions, however, the optimal rule had

no salient verbal description. For example, a verbal de­

scription ofthe optimal rule in the diagonal-positive con­

dition might be "give one response if the orientation ex­

ceeds the length, and give the other response if it does

not." However, orientation and length are in different units,

so it is not clear what such a rule would mean. None of

the observers in Experiment IB described their behavior

in such language, even though their data were well de­

scribed by such a rule. Thus, COVIS predicts that in Ex­

periment IB, the observer's explicit system will try to

discover the most accurate unidimensional rule (since

these are the only rules that it can easily describe") at the

same time as the implicit system is performing an un­

constrained search for the optimal rule among all possi­

ble (linear) bounds.

An unsupervised categorization version ofCOVIS has

not been developed, but given its emphasis on explicit

rules, the present results indicate that COVIS might pro­

vide a promising foundation on which to build a power­

ful model of unsupervised categorization. 10 In the past,

the literature on unsupervised categorization has empha­

sized unidimensional rules. COVIS suggests that this is

because unidimensional rules are almost always the most

salient explicit rules. However, many other rules are also

explicit, so COVIS predicts that occasionally, people

should adopt rules that are not unidimensional. In fact,

we found evidence of this in Experiments IA and 2. In
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many response blocks (see Tables 5 and 7), observers in

these experiments used an interval-based unidimensional

rule ofthe following type: "Respond A if the orientation

is between horizontal (i.e., 0°) and vertical (i.e., 180°),

otherwise respond B." Although this rule involves only

one dimension, it seems more complex than the simple

unidimensional rules that have been identified in the lit­

erature. Even more striking is the fact that the data from

five of the response blocks in Experiment 2 were best fit

by a conjunctive model which assumes that observers

used a rule of the following type: "Respond A if length

< XI AND if orientation < Yo, otherwise respond B." This
rule is explicit, but it is very different from the unidi­

mensional rules identified in the unsupervised category

learning literature. The present results (and COVIS) are

consistent with the hypothesis that the success of unsu­

pervised category learning depends on whether the opti­

mal rule is explicit, rather than on whether it is unidimen­

sional. Obviously, however, much more work is needed to

test this idea. Most important would be experiments in

which the optimal rule is explicit, but not unidimensional.

CONCLUSIONS

In the studies described above, category learning was

strikingly different, depending on whether feedback was

provided. With feedback, observers in Experiment IB

learned a diagonal rule that required integrating infor­

mation from perceptually separable stimulus dimen­

sions. This result is consistent with a number of similar

findings in the literature (e.g., Ashby & Maddox, 1990,

1992; McKinley & Nosofsky, 1995). Without feedback,

observers in Experiments IA and 2 were only able to learn

unidimensional rules, and they persisted in using unidi­

mensional and conjunctive rules even when such rules

failed to separate the stimuli into obvious clusters.

Although these results provide new insights into the

limits on unsupervised category learning, they also raise

many interesting new empirical questions. Important

among these are the following. Do the constraints on cat­

egory learning observed in our studies generalize to other,

qualitatively different stimuli (e.g., those constructed from

integral dimensions)? What is the nature of unsupervised

criterion learning? What role do simplicity and verbal­

ization play in unsupervised category learning? We be­

lieve that the randomization technique used here provides

an excellent vehicle from which to attack these impor­

tant questions.

Finally, there are many practical implications of this

work. Most of the hundreds of categorization responses

that we make every day are unsupervised. Children (and

adults) learning about categories often receive either no

feedback or feedback that is inaccurate or untrustworthy

(e.g., from siblings and playmates). Our results suggest

that in such cases, learning will still often occur. However,

the rules that are learned will tend to be unidimensional (or

perhaps conjunctive). With widely separated categories,
such rules might work perfectly. Inmany cases, however,
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the rules that are learned will correctly assign most, but not

all, exemplars to their proper category. In such cases, the

person may appear to understand the differences among a

particular set ofcontrasting categories, but on some crit­

ical subset of examples, he or she will fail consistently.
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NOTES

I. By "coherent cluster," we mean that such clusters are readily ap­

parent under visual inspection. For example, it is obvious that there are

two coherent clusters of stimuli in each experimental condition shown

in Figure 2. A more rigorous definition could be derived from the ob­

ject recognition literature, where it has been argued that low spatial fre­

quency channels play an important role in object segmentation (e.g.,

Julesz, 1981; Julesz & Bergen, 1983). As the high spatial frequencies

are gradually removed from Figure 2, a point is eventually reached at

which only two objects (i.e., category "blobs") remain in each experi­

mental condition. Thus, the Figure 2 conditions each contain two co­

herent clusters. In contrast, in Figure I, this same process initially yields

eight blobs (i.e., one for each stimulus), which at some point simulta­

neously merge into a single blob. Thus, depending on one's criterion,

Figure I contains either one or eight coherent clusters of stimuli, but it

does not contain two clusters.

2. Perhaps the studies that came closest to these criteria were reported

by Fried and Holyoak (1984), Homa and Cultice (1984), and McKinley

and Nosofsky (1995). We will discuss the former two studies in the next

section. The McKinley and Nosofsky (1995) study was a sidebar to a

more general investigation of the ability of people to learn categories of

stimuli constructed from two continuous-valued dimensions under su­

pervised conditions. Each category was composed of separate clusters,

or subcategories. On the last day of one experiment, observers were told

that each category was composed of two subcategories, and they were

asked to make an unsupervised subcategorization response after mak­

ing their supervised categorization response. Although the unsuper­

vised categorization data were not presented, McKinley and Nosofsky

(1995) reported that observers used unidimensional rules, even though

the optimal subcategorization rule was a quadratic function of the di­

mensional values.

3. With the possible exception that there might be a natural tendency

to equate the size (i.e., the cardinality) of the contrasting categories.

Even so, this requirement places no constraint on the form of the deci­

sion rule.

4. For example, a sorting based on overall similarity to the two high­

frequency stimuli produces a different category structure from one in

which the categories are constructed under the constraint that all mem-

bers ofthe same category share a common value on one of the stimulus

dimensions.

5. It is important to note that from the observer's perspective, a line

of00 orientation is identical to a line of 1800 orientation. Thus, the psy­

chological representation of length and orientation lies on a cylinder

(with the orientation dimension wrapping back around on itself). To

minimize this problem, we restricted the range of orientation to be less

than 1800 (500 orientation units in Figure 2).

6. More specifically, the amount of rotation needed to align the best­

fitting bound with the nearest unidimensional bound was always less

than the amount of rotation needed to align it with the optimal bound.

7. Only the diagonal-positive condition was run, because Maddox

and Ashby (1993) found this condition to be more difficult for ob­

servers to learn than the diagonal-negative condition.

8. Billman and Heit (1988) developed their model for application to

tasks in which the category exemplars vary on many discrete-valued di­

mensions. It is not immediately clear how to generate predictions from

the model for the experiments reported here (since the category exem­

plars in our experiments varied on two continuous-valued dimensions).

9. Of course, many other rule types can be described verbally, in­

cluding any rules that apply logical operations to the two separate di­

mensions (e.g., conjunctive rules, disjunctive rules). However, Alfonso­

Reese (1996) found that, when no special instructions are given, rules

of this more complicated type have extremely low salience. As a result,

when one is deriving predictions from COVIS for Experiment I, con­

junctive and disjunctive rules can be safely ignored. It seems likely,

however, that the Experiment 2 instructions to use both stimulus di­

mensions could increase the salience of conjunctive rules. Therefore, in

applications ofCOVIS to Experiment 2, it is likely that a more complex

model of the verbal system will be needed.

10. COVIS assumes that the striatum (a structure in the basal ganglia)

is a key structural component of the implicit system. The best available

evidence suggests that learning in the striatum is mediated by a dopa­

mine-based reward signal (e.g., Wickens, 1993). Thus, in the absence of

feedback, it is expected that striatal learning will be severely impaired.
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