

ON THE DOT PRODUCT GRAPH OF A COMMUTATIVE RING

Ayman Badawi

Department of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE

Let A be a commutative ring with nonzero identity, $1 \le n < \infty$ be an integer, and $R = A \times A \times \cdots \times A$ (n times). The total dot product graph of R is the (undirected) graph TD(R) with vertices $R^* = R \setminus \{(0, 0, \ldots, 0)\}$, and two distinct vertices x and y are adjacent if and only if $x \cdot y = 0 \in A$ (where $x \cdot y$ denote the normal dot product of x and y). Let Z(R) denote the set of all zero-divisors of R. Then the zero-divisor dot product graph of R is the induced subgraph ZD(R) of TD(R) with vertices $Z(R)^* = Z(R) \setminus \{(0, 0, \ldots, 0)\}$. It follows that each edge (path) of the classical zero-divisor graph $\Gamma(R)$ is an edge (path) of ZD(R). We observe that if n = 1, then TD(R) is a disconnected graph and ZD(R) is identical to the well-known zero-divisor graph of R in the sense of Beck-Anderson-Livingston, and hence it is connected. In this paper, we study both graphs TD(R) and ZD(R). For a commutative ring A and $n \ge 3$, we show that TD(R) (ZD(R)) is connected with diameter two (at most three) and with girth three. Among other things, for $n \ge 2$, we show that ZD(R) is identical to the zero-divisor graph of R if and only if either n = 2 and A is an integral domain or R is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Key Words: Annihilator graph; Total graph; Zero-divisor graph.

2010 Mathematics Subject Classification: Primary: 13A15; Secondary: 13B99; 05C99.

1. INTRODUCTION

Let *R* be a commutative ring with nonzero identity, and let Z(R) be its set of zero-divisors. Recently, there has been considerable attention in the literature to associating graphs with algebraic structures (see [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [17], [18], [19], [20], [21], [23], [24], [25], and [26]). Probably the most attention has been to the *zero-divisor graph* $\Gamma(R)$ for a commutative ring *R*. The set of vertices of $\Gamma(R)$ is $Z(R)^* = Z(R) \setminus \{0\}$, and two distinct vertices *x* and *y* are adjacent if and only if xy = 0. The concept of a zerodivisor graph goes back to I. Beck [13], who let all elements of R be vertices and was mainly interested in colorings. The zero-divisor graph $\Gamma(R)$ was introduced by David F. Anderson and Philip S. Livingston in [9], where it was shown, among other things, that $\Gamma(R)$ is connected with diam($\Gamma(R)$) $\in \{0, 1, 2, 3\}$ and gr($\Gamma(R)$) \in $\{3, 4, \infty\}$. For a recent survey article on zero-divisor graphs, see [12].

Received May 1, 2013; Revised June 14, 2013. Communicated by E. Houston.

Address correspondence to Ayman Badawi, Department of Mathematics and Statistics, American University of Sharjah, P. O. Box 26666, Sharjah, UAE; E-mail: abadawi@aus.edu

BADAWI

Let A be a commutative ring with nonzero identity, $1 \le n < \infty$ be an integer, and let $R = A \times A \times \cdots \times A$ (n times). Let $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in$ R. Then the dot product $x \cdot y = x_1y_1 + x_2y_2 + \cdots + x_ny_n \in A$. In this paper, we introduce the *total dot product graph* of R to be the (undirected) graph TD(R) with vertices $R^* = R \setminus \{(0, 0, \ldots, 0)\}$, and two distinct vertices x and y are adjacent if and only if $x \cdot y = 0 \in A$. Let Z(R) denote the set of all zero-divisors of R. Then the *zerodivisor dot product graph* of R is the induced subgraph ZD(R) of TD(R) with vertices $Z(R)^* = Z(R) \setminus \{(0, 0, \ldots, 0)\}$. It follows that each edge (path) of the classical zerodivisor graph $\Gamma(R)$ is an edge (path) of ZD(R). We observe that if n = 1, then TD(R)is a disconnected graph, where ZD(R) is identical to $\Gamma(R)$ in the sense of Beck– Anderson–Livingston, and hence it is connected.

In the second section, for an $1 \le n < \infty$ and $R = A \times A \times \cdots \times A$ (*n* times) for some commutative ring *A*, we show (Theorem 2.2) that $ZD(R) = \Gamma(R)$ if and only if either n = 2 and *A* is an integral domain or *R* is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. If n = 2 and *A* is not an integral domain or n = 3 and *A* is an integral, we show (Theorem 2.3 and Theorem 2.5(1)) that ZD(R) is connected with diameter three. If $n \ge 4$, we show (Theorem 2.5(3)) that ZD(R) is connected with diameter two. If $n \ge$ 3, we show (Theorem 2.4) that TD(R) is connected with diameter two. We show (Corollary 2.8)that ZD(R) contains no cycles if and only if n = 2 and *A* is ringisomorphic to \mathbb{Z}_2 . We show (Theorem 2.6) that if $n \ge 3$, then the girth of ZD(R) is three (and hence the girth of TD(R) is three).

We recall some definitions. Let Γ be a (undirected) graph. We say that Γ is *connected* if there is a path between any two distinct vertices. For vertices x and y of Γ , we define d(x, y) to be the length of a shortest path from x to y (d(x, x) = 0 and $d(x, y) = \infty$ if there is no path). Then the *diameter* of Γ is $diam(\Gamma) = \sup\{d(x, y) | x \text{ and } y \text{ are vertices of } \Gamma\}$. The girth of Γ , denoted by $gr(\Gamma)$, is the length of a shortest cycle in Γ ($gr(\Gamma) = \infty$ if Γ contains no cycles). A graph Γ is *complete* if any two distinct vertices are adjacent.

Throughout, all rings are commutative with nonzero identity. Let R be a commutative ring. Then Z(R) denotes the set of zero-divisors of R, and the distance between two distinct vertices a, b of TD(R) (ZD(R)) is denoted by $d_T(a, b)$ ($d_Z(a, b)$). If ZD(R) is identical to $\Gamma(R)$, then we write $ZD(R) = \Gamma(R)$; otherwise, we write $ZD(R) \neq \Gamma(R)$. As usual, \mathbb{Z} and \mathbb{Z}_n will denote the integers and integers modulo n, respectively. Any undefined notation or terminology is standard, as in [22] or [16].

2. BASIC PROPERTIES OF TD(R) AND ZR(D)

We start this section with the following result.

Theorem 2.1. Let A be an integral domain and $R = A \times A$. Then TD(R) is disconnected and $ZD(R) = \Gamma(R)$ is connected. In particular, if A is ring-isomorphic to \mathbb{Z}_2 , then ZD(R) is complete (i.e., diam(ZD(R)) = 1) and $gr(ZD(R)) = \infty$. If A is not ring-isomorphic to \mathbb{Z}_2 , then diam(ZD(R)) = 2 and gr(ZD(R)) = 4.

Proof. Let $B = \{(a, a), (-a, a), (a, -a) | a \in A^*\}$, and let $x \in B$. Suppose that $y \in R^*$ and $x \cdot y = 0$. Since A is an integral domain, one can easily see that $y \in B$. Let $M = \{(a, 0), (0, a) | a \in A^*\}$ and let $w \in M$. Suppose that $w \cdot s = 0$ for some

 $s \in R^*$. Again, since A is an integral domain, we conclude that $s \in M$. Thus the vertices (1, 1) and (0, 1) are not connected by a path in TD(R). Hence TD(R) is disconnected. Since A is an integral domain, $Z(R)^* = M$. Let $x, y \in M$. Then $x \cdot y = 0$ iff xy = (0, 0). Thus $ZD(R) = \Gamma(R)$. Suppose that A is ring-isomorphic to \mathbb{Z}_2 . Then it is clear that diam(ZD(R)) = 1 and $gr(ZD(R)) = \infty$. Suppose A is not ring-isomorphic to \mathbb{Z}_2 . Since $ZD(R) = \Gamma(R)$ and A is an integral domain, diam(ZD(R)) = 2 by [24, Theorem 2.6] and gr(ZD(R)) = 4 by [10, Theorem 2.2].

Theorem 2.2. Let $2 \le n < \infty$, A be a commutative ring with $1 \ne 0$, and $R = A \times A \times \cdots \times A$ (*n* times). Then $ZD(R) = \Gamma(R)$ if and only if either n = 2 and A is an integral domain or R is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. If n = 2 and A is an integral domain, then by Theorem 2.1 we have $ZD(R) = \Gamma(R)$. Suppose that R is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Then by simple hand-calculations, for every $x, y \in Z(R)^*$, we have $x \cdot y = 0$ iff xy = (0, 0, 0), and hence $ZD(R) = \Gamma(R)$.

Conversely, suppose that $ZD(R) = \Gamma(R)$. Assume that A is not an integral domain. Then there is an $a \in Z(A)^*$. Hence $x = (1, a, 0, 0, \dots, 0), y = (a, -1, 0, 0, \dots, 0) \in Z(R)^*$, and $x \cdot y = 0$, but $xy \neq (0, 0, \dots, 0)$. Thus x - y is an edge of ZD(R) that is not an edge of $\Gamma(R)$, a contradiction. Thus A must be an integral domain. Now assume that n = 3 and A is not ring-isomorphic to \mathbb{Z}_2 . Then there is an $a \in A \setminus \{0, 1\}$. Let x = (1, a, 0) and y = (-a, 1, 0). Then $x \neq y$ and it is clear that x - y is an edge of ZD(R) that is not an edge of $\Gamma(R)$, a contradiction again. Hence assume that $n \ge 4$. Let $x = (1, 1, 0, 1, 0, 0, \dots, 0)$ and $y = (-1, 1, 1, 0, 0, \dots, 0)$. Then $x \neq y$, $x \cdot y = 0$, but $xy \neq (0, 0, \dots, 0)$, a contradiction. Thus we conclude that either n = 2 and A is an integral domain or R is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

In view of Theorem 2.1, we have the following result.

Theorem 2.3. Let A be a commutative ring with $1 \neq 0$ that is not an integral domain, and let $R = A \times A$. Then the following statements hold:

- (1) TD(R) is connected and diam(TD(R)) = 3;
- (2) ZD(R) is connected, $ZD(R) \neq \Gamma(R)$, and diam(ZD(R)) = 3;
- (3) gr(ZD(R)) = gr(TD(R)) = 3.

Proof. (1). Let x = (a, b), $y = (c, d) \in R^*$, where $x \neq y$, and assume that $x \cdot y \neq 0$. Since A is not an integral domain, there are $f, g \in A^*$ (not necessarily distinct) such that fg = 0. Let w = (-bf, af) and v = (-dg, cg). Note that $w, v \in Z(R)$. Clearly $x \cdot w = w \cdot v = v \cdot y = 0$. Since $x \cdot y \neq 0$, $w \neq y$ and $v \neq x$. First, assume that $v, w \in Z(R)^*$. If $x \cdot y = 0$ or y.w = 0, then x - v - y or x - w - y is a path of length 2 in TD(R) from x to y. Assume that neither $x \cdot y = 0$ nor $y \cdot w = 0$. Then x, w, v, y are distinct, and hence x - w - v - y is a path of length 3 in TD(R) from x to y. Now assume that w = (0, 0) or v = (0, 0). If w = (0, 0), then replace w by $(f, -f) \in Z(R)^*$, and hence $x \cdot w = (a, b) \cdot (f, -f) = 0$. Similarly, if v = (0, 0), then replace v by $(g, -g) \in Z(R)^*$. Hence if w = (0, 0) or v = (v, v) = 0. Thus as in the earlier w and v so that $w, v \in Z(R)^*$ and $x \cdot w = w \cdot v = v \cdot y = 0$.

BADAWI

argument, we conclude that there is a path of length at most 3 in TD(R) from x to y. Thus TD(R) is connected and $d_T(x, y) \le 3$ for every $x, y \in R^*$. Now, let x = (1, 1) and y = (1, 0). We show $d_T(x, y) = 3$, and hence diam(TD(R)) = 3. Let $w \in R^*$ such that $x \cdot w = 0$. Then w = (a, -a) for some $a \in A^*$. Since $w \cdot y = a \ne 0$, $d_T(x, y) > 2$. Hence $d_T(x, y) = 3$. In particular, let $k, t \in A^*$ such that kt = 0, w = (k, -k), and v = (0, t). Then x - w - v - y is a path of length 3 in TD(R) from x to y.

(2). Since A is not an integral domain, $ZD(R) \neq \Gamma(R)$ by Theorem 2.2. Let $x, y \in Z(R)^*$, and assume that $x \cdot y \neq 0$. In view of the proof of (1), we are able to find $w, v \in Z(R)^*$ such that either x - w - y is a path in ZD(R) or x - v - y is a path in ZD(R) or x - v - y - y is a path in ZD(R) or x - w - v - y is a path in ZD(R). Hence $diam(ZD(R)) \leq 3$. Let $a \in Z(A)^*$. Then $x = (1, a), y = (0, 1) \in Z(R)^*$. We show $d_Z(x, y) = 3$, and thus diam(ZD(R)) = 3. Since $x \cdot y \neq 0, d_Z(x, y) > 1$. Suppose there is a $v = (g, h) \in Z(R)^*$ such that x - v - y is a path of length 2 in ZD(R) from x to y. Since $v \cdot y = 0$, we have h = 0, and hence v = (g, 0). Since $x \cdot y = 0$, we have g = 0, and thus v = (0, 0), a contradiction. Thus $d_Z(x, y) = 3$, and hence diam(ZD(R)) = 3.

(3). Since A is not an integral domain, there are $a, b \in A^*$ (not necessarily distinct) such that ab = 0. Then $x = (a, 0), y = (0, b), w = (b, a) \in Z(R)^*$. Hence x - y - w - x is a cycle of length 3 in ZD(R). Thus gr(TD(R)) = gr(ZD(R)) = 3.

Theorem 2.4. Let A be a commutative ring with $1 \neq 0, 3 \leq n < \infty$, and let $R = A \times A \times \cdots \times A$ (*n* times). Then TD(R) is connected and diam(TD(R)) = 2.

Proof. Let $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n) \in R^*$, and suppose that $x \cdot y \neq 0$. Then let $M = \{i \mid x_i = y_i = 0, 1 \le i \le n\}$. Suppose that M is not the empty set. Then choose a $k \in M$, and let $w = (w_1, \ldots, w_n) \in R^*$, where $w_k = 1$ and $w_i = 0$ if $i \ne k$. Then x - w - y is a path of length 2 in TD(R) from x to y. Thus suppose that M is the empty set. Then let $f(x) = min\{i \mid x_i \ne 0, 1 \le i \le n\}$ and $f(y) = min\{i \mid y_i \ne 0, 1 \le i \le n\}$. Since M is the empty set, we conclude that f(x) = 1 or f(y) = 1. We may assume that f(x) = 1. Let $v = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1, 0, 0, 0, \ldots, 0) \in R$. Suppose that $v \ne (0, \ldots, 0)$. Then it is easy to check that $x \cdot y = v \cdot y = 0$. Since $x \cdot y \ne 0$, $v \ne x$ and $v \ne y$. Hence x - v - y is a path of length 2 in TD(R) from x to y. Suppose that $v = (0, \ldots, 0)$. Then $x_1y_2 - x_2y_1 = 0$. Let $w = (-x_2, x_1, 0, 0, \ldots, 0) \in R$. Since $x \cdot w = w \cdot y = 0$ and $x \cdot y \ne 0$, $x \ne w$ and $y \ne w$. Thus x - w - y is a path of length 2 in TD(R) from x to y. Suppose that 0 and $x \cdot y = 0$, $x \ne w$ and $y \ne w$. Thus x - w - y is a path of length 2 in TD(R) from x to y. Hence TD(R) from x to y. Hence TD(R) from x to y. Hence TD(R) from x to y = 0. Since $x \cdot w = w \cdot y = 0$ and $x \cdot y \ne 0$, $x \ne w$ and $y \ne w$. Thus x - w - y is a path of length 2 in TD(R) from x to y. Hence TD(R) from x to y. Hence TD(R) is connected and diam(TD(R)) = 2.

Theorem 2.5. Let A be a commutative ring with $1 \neq 0$. Then the following statements *hold*:

- (1) If A is an integral domain and $R = A \times A \times A$, then ZD(R) is connected $(ZD(R) \neq \Gamma(R)$ by Theorem 2.2) and diam(ZD(R)) = 3;
- (2) If A is not an integral domain and $R = A \times A \times A$, then ZD(R) is connected $(ZD(R) \neq \Gamma(R)$ by Theorem 2.2) and diam(ZD(R)) = 2;
- (3) If $4 \le n < \infty$ and $R = A \times A \times \cdots \times A$ (*n* times), then ZD(R) is connected $(ZD(R) \ne \Gamma(R) \text{ by Theorem 2.2})$ and diam(ZD(R)) = 2.

Proof. (1). Since $\Gamma(R)$ is connected and every path in $\Gamma(R)$ is a path in ZD(R), we conclude that ZD(R) is connected. Since $diam(ZD(R)) \leq diam(\Gamma(R))$ and $diam(\Gamma(R)) = 3$ by [24, Theorem 2.6], we conclude that $diam(ZD(R)) \leq 3$. Let $x = (1, 0, -1), y = (0, 1, -1) \in Z(R)^*$. Then $x \cdot y = 1 \neq 0$. We show $d_Z(x, y) = 3$. Let $w = (w_1, w_2, w_3) \in R$ such that $x \cdot w = w \cdot y = 0$. Then a trivial calculation leads to $w_1 = w_2 = w_3$. Since A is an integral domain, $w \in Z(R)$ if and only if w = (0, 0, 0). Thus $d_z(x, y) = 3$. Hence diam(ZD(R)) = 3.

(2). (Similar to the proof of Theorem 2.4). Let $x = (x_1, x_2, x_3)$, $y = (y_1, y_2, y_3) \in Z(R)^*$, and suppose that $x \cdot y \neq 0$. Then let $M = \{i \mid x_i = y_i = 0, 1 \le i \le 3\}$. Suppose that M is not the empty set. Then choose a $k \in M$, and let $w = (w_1, w_2, w_3) \in Z(R)^*$, where $w_k = 1$ and $w_i = 0$. If $i \neq k$, then x - w - y is a path of length 2 in ZD(R) from x to y. Thus suppose that M is the empty set. Then let $f(x) = min\{i \mid x_i \neq 0, 1 \le i \le n\}$ and $f(y) = min\{i \mid y_i \neq 0, 1 \le i \le 3\}$. Since M is the empty set, we conclude that f(x) = 1 or f(y) = 1. We may assume that f(x) = 1. Let $v = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) \in R$. Suppose that $v \in Z(R)^*$. Then it is easy to check that $x \cdot y = v \cdot y = 0$. Since $x \cdot y \neq 0$, $v \neq x$ and $v \neq y$. Hence x - v - y is a path of length 2 in ZD(R) from x to y. Suppose that $v \in (-x_2, x_1, 0) \in Z(R)$. Since $x_1 \neq 0$, $w \in Z(R)^*$. Hence $x \cdot w = -x_1x_2 + x_1x_2 = 0$ and $w \cdot y = x_1y_2 - x_2y_1 = 0$. Since $x \cdot w = w \cdot y = 0$ and $x \cdot y \neq 0$, $x \neq w$ and $y \neq w$. Thus x - w - y is a path of length 2 in ZD(R) from x to y. Hence ZD(R) is connected and diam(ZD(R)) = 2.

(3). The proof is similar to the proof of Theorem 2.4. Just observe that if $n \ge 4$, then v as in the proof of Theorem 2.4 is in Z(R).

Theorem 2.6. Let A be a commutative ring with $1 \neq 0$, $3 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (*n* times). Then gr(ZD(R)) = gr(TD(R)) = 3.

Proof. Let a = (1, 0, ..., 0), b = (0, 1, 0, ..., 0), and c = (0, 0, 1, 0, ..., 0). Then a - b - c - a is a cycle of length 3.

Corollary 2.7. Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent:

(1) gr(ZD(R)) = 3;(2) gr(TD(R)) = 3;(3) *A* is not an integral domain and n = 2 or $n \ge 3$.

Proof. This is clear by Theorem 2.3 and Theorem 2.6.

Corollary 2.8. Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent:

- (1) $gr(ZD(R)) = \infty;$
- (2) A is ring-isomorphic to \mathbb{Z}_2 and n = 2;
- (3) diam(ZD(R)) = 1.

Proof. $(1) \Rightarrow (2)$. Suppose $gr(ZD(R)) = \infty$. Then n = 2 by Theorem 2.6. Hence A is an integral domain by Corollary 2.7. Hence $ZD(R) = \Gamma(R)$ by Theorem 2.2. Thus A is ring-isomorphic to \mathbb{Z}_2 by [10, Theorem 2.4]. $(2) \Rightarrow (3)$. It is clear. $(3) \Rightarrow (1)$. Since diam(ZD(R)) = 1, we conclude that n = 2 and A is an integral domain by Theorems 2.3 and 2.5. Thus A is ring-isomorphic to \mathbb{Z}_2 by Theorem 2.1. Thus $gr(ZD(R)) = \infty$.

Corollary 2.9. Let A be a commutative ring with $1 \neq 0$ such that A is not ringisomorphic to \mathbb{Z}_2 , $0 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent:

- (1) gr(ZD(R)) = 4;
- (2) $ZD(R) = \Gamma(R);$
- (3) TD(R) is disconnected;
- (4) n = 2 and A is an integral domain.

Proof. This is clear by Theorem 2.1, Theorem 2.2, Corollary 2.7, and Corollary 2.8. \Box

Corollary 2.10. Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent:

(1) diam(ZD(R)) = 3;

(2) Either A is not an integral domain and n = 2 or A is an integral domain and n = 3.

Proof. This is clear by Theorem 2.1, Theorem 2.3, and Theorem 2.5.

Corollary 2.11. Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent:

- (1) diam(ZD(R)) = 2;
- (2) Either A is an integral domain that is not ring-isomorphic to \mathbb{Z}_2 and n = 2, A is not an integral domain, and n = 3, or $n \ge 4$.

Proof. This is clear by Theorem 2.1, Theorem 2.5, and Corollary 2.10. \Box

Corollary 2.12. Let A be a commutative ring with $1 \neq 0, 2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (*n* times). Then diam(TD(R)) = 3 if and only if A is not an integral domain and n = 2.

Proof. This is clear by Theorem 2.1, Theorem 2.3, and Theorem 2.4. \Box

Corollary 2.13. Let A be a commutative ring with $1 \neq 0, 2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent:

(1) diam(TD(R)) = 2;(2) TD(R) is connected and $n \ge 3;$ (3) $n \ge 3.$

Proof. The proof is clear by Theorem 2.3 and Theorem 2.4.

Corollary 2.14. Let A be a commutative ring with $1 \neq 0$, $2 \leq n < \infty$, and $R = A \times A \times \cdots \times A$ (*n* times). Then diam(TD(R)) = diam(ZD(R)) = 3 if and only if A is not an integral domain and n = 2.

Proof. This is clear by Corollary 2.10 and Corollary 2.12.

ACKNOWLEDGMENT

I would like to thank the referee for several helpful suggestions.

REFERENCES

- Akbari, S., Maimani, H. R., Yassemi, S. (2003). When a zero-divisor graph is planar or a complete r-partite graph. J. Algebra 270:169–180.
- [2] Alizadeh, M., Dasb, A. K., Maimanic, H. R., Pournaki, M. R., Yassemi, S. (2012). On the diameter and girth of zero-divisor graphs of posets. *Disc. Appl. Math.* 160: 1319–1324.
- [3] Anderson, D. F. (2008). On the diameter and girth of a zero-divisor graph, II. *Houston J. Math.* 34:361–371.
- [4] Anderson, D. F., Badawi, A. (2008). On the zero-divisor graph of a ring. Comm. Algebra (36):3073-3092.
- [5] Anderson, D. F., Badawi, A. (2008). The total graph of a commutative ring. J. Algebra 320:2706–2719.
- [6] Anderson, D. F., Badawi, A. (2012). The total graph of a commutative ring without the zero element. J. Algebra Appl. 11(4):2500740. (18pgs). DOI:10.1142/S0219498812500740.
- [7] Anderson, D. F., Badawi, A. (2013). The generalized total graph of a commutative ring. J. Algebra Appl. 12(5):1250212. (18pgs). DOI:10.1142/S021949881250212X.
- [8] Anderson, D. F., LaGrange, J. D. (2012). Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph. J. Pure Appl. Algebra 216:1626–1636.
- [9] Anderson, D. F., Livingston, P. S. (1999). The zero-divisor graph of a commutative ring. *J. Algebra* 217:434–447.
- [10] Anderson, D. F., Mulay, S. B. (2007). On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210:543–550.
- [11] Anderson, D. F., Levy, R., Shapiro, J. (2003). Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra 180:221–241.
- [12] Anderson, D. F., Axtell, M. C., Stickles, J. A. Jr., (2011). Zero-divisor graphs in commutative rings. In: Fontana, M., Kabbaj, S.-E., Olberding, B., Swanson, I., eds. *Commutative Algebra, Noetherian and Non-Noetherian Perspectives*. New York: Spring-Verlag, pp. 23–45.
- [13] Beck, I. (1988). Coloring of commutative rings. J. Algebra 116:208–226.
- [14] Behboodi, M., Rakeei, Z. (2011). The annihilator-ideal graph of commutative rings I. J. Algebra Appl. 10(4):727–739.
- [15] Behboodi, M., Rakeei, Z. (2011). The annihilator-ideal graph of commutative rings II. J. Algebra Appl. 10(4):741–753.
- [16] Bollaboás, B. (1998). Modern Graph Theory. New York: Spring-Verlag.
- [17] Ghalandarzadeh, Shirinkam, S., Rad, P. M. (2013). Annihilator ideal-based zerodivisor graphs over multiplication modules. *Comm. Algebra* 41(3):1134–1148.
- [18] Tamizh Chelvam, T., Asir, T. (2011). Domination in the total graph on Z_n . Discrete Math. Algorithms Appl. 3(4):413–421.

BADAWI

- [19] Tamizh Chelvam, T., Asir, T. (2013). The intersection graph of gamma sets in the total graph of a commutative ring I. J. Algebra Appl. 12(4):1250198. (18pgs). DOI:10.1142/S0219498812501988.
- [20] Tamizh Chelvam, T., Asir, T. (2013). The intersection graph of gamma sets in the total graph of a commutative ring II. J. Algebra Appl. 12(4):1250199. (14pgs). DOI:10.1142/S021949881250199X.
- [21] Chiang-Hsieh, H.-J. (2008). Classification of rings with projective zero-divisor graphs. J. Algebra 319:2789–2802.
- [22] Huckaba, J. A. (1988). Commutative Rings with Zero Divisors. New York/Basel: Marcel Dekker.
- [23] Maimani, H. R., Pournaki, M. R., Tehranian, A., Yassemi, S. (2011). Graphs attached to rings revisited. Arab. J. Sci. Eng. 36:997–1012.
- [24] Lucas, T. G. (2006). The diameter of a zero-divisor graph. J. Algebra 301:3533–3558.
- [25] Wang, H.-J. (2006). Zero-divisor graphs of genus one. J. Algebra 304:666-678.
- [26] Wickham, C. (2009). Rings whose zero-divisor graphs have positive genus. J. Algebra 321:377–383.