ON THE DOT PRODUCT GRAPH OF A COMMUTATIVE RING

Abstract

Ayman Badawi Department of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE

Let A be a commutative ring with nonzero identity, $1 \leq n<\infty$ be an integer, and $R=A \times A \times \cdots \times A$ (n times). The total dot product graph of R is the (undirected) graph $T D(R)$ with vertices $R^{*}=R \backslash\{(0,0, \ldots, 0)\}$, and two distinct vertices x and y are adjacent if and only if $x \cdot y=0 \in A$ (where $x \cdot y$ denote the normal dot product of x and y). Let $Z(R)$ denote the set of all zero-divisors of R. Then the zero-divisor dot product graph of R is the induced subgraph $Z D(R)$ of $T D(R)$ with vertices $Z(R)^{*}=$ $Z(R) \backslash\{(0,0, \ldots, 0)\}$. It follows that each edge (path) of the classical zero-divisor graph $\Gamma(R)$ is an edge (path) of $Z D(R)$. We observe that if $n=1$, then $T D(R)$ is a disconnected graph and $Z D(R)$ is identical to the well-known zero-divisor graph of R in the sense of Beck-Anderson-Livingston, and hence it is connected. In this paper, we study both graphs $T D(R)$ and $Z D(R)$. For a commutative ring A and $n \geq 3$, we show that $\operatorname{TD}(\mathrm{R})(\mathrm{ZD}(\mathrm{R})$) is connected with diameter two (at most three) and with girth three. Among other things, for $n \geq 2$, we show that $Z(R)$ is identical to the zero-divisor graph of R if and only if either $n=2$ and A is an integral domain or R is ring-isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Key Words: Annihilator graph; Total graph; Zero-divisor graph.

2010 Mathematics Subject Classification: Primary: 13A15; Secondary: 13B99; 05C99.

1. INTRODUCTION

Let R be a commutative ring with nonzero identity, and let $Z(R)$ be its set of zero-divisors. Recently, there has been considerable attention in the literature to associating graphs with algebraic structures (see [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [17], [18], [19], [20], [21], [23], [24], [25], and [26]). Probably the most attention has been to the zero-divisor $\operatorname{graph} \Gamma(R)$ for a commutative ring R. The set of vertices of $\Gamma(R)$ is $Z(R)^{*}=Z(R) \backslash\{0\}$, and two distinct vertices x and y are adjacent if and only if $x y=0$. The concept of a zerodivisor graph goes back to I. Beck [13], who let all elements of R be vertices and was mainly interested in colorings. The zero-divisor graph $\Gamma(R)$ was introduced by David F. Anderson and Philip S. Livingston in [9], where it was shown, among other things, that $\Gamma(R)$ is connected with $\operatorname{diam}(\Gamma(R)) \in\{0,1,2,3\}$ and $\operatorname{gr}(\Gamma(R)) \in$ $\{3,4, \infty\}$. For a recent survey article on zero-divisor graphs, see [12].

[^0]Let A be a commutative ring with nonzero identity, $1 \leq n<\infty$ be an integer, and let $R=A \times A \times \cdots \times A$ (n times). Let $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in$ R. Then the dot product $x \cdot y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} \in A$. In this paper, we introduce the total dot product graph of R to be the (undirected) graph $T D(R)$ with vertices $R^{*}=R \backslash\{(0,0, \ldots, 0)\}$, and two distinct vertices x and y are adjacent if and only if $x \cdot y=0 \in A$. Let $Z(R)$ denote the set of all zero-divisors of R. Then the zerodivisor dot product graph of R is the induced subgraph $Z D(R)$ of $T D(R)$ with vertices $Z(R)^{*}=Z(R) \backslash\{(0,0, \ldots, 0)\}$. It follows that each edge (path) of the classical zerodivisor graph $\Gamma(R)$ is an edge (path) of $Z D(R)$. We observe that if $n=1$, then $T D(R)$ is a disconnected graph, where $Z D(R)$ is identical to $\Gamma(R)$ in the sense of Beck-Anderson-Livingston, and hence it is connected.

In the second section, for an $1 \leq n<\infty$ and $R=A \times A \times \cdots \times A$ (n times) for some commutative ring A, we show (Theorem 2.2) that $Z D(R)=\Gamma(R)$ if and only if either $n=2$ and A is an integral domain or R is ring-isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. If $n=2$ and A is not an integral domain or $n=3$ and A is an integral, we show (Theorem 2.3 and Theorem 2.5(1)) that $Z D(R)$ is connected with diameter three. If $n \geq 4$, we show (Theorem 2.5(3)) that $Z D(R)$ is connected with diameter two. If $n \geq$ 3, we show (Theorem 2.4) that $T D(R)$ is connected with diameter two. We show (Corollary 2.8)that $Z D(R)$ contains no cycles if and only if $n=2$ and A is ringisomorphic to \mathbb{Z}_{2}. We show (Theorem 2.6) that if $n \geq 3$, then the girth of $Z D(R)$ is three (and hence the girth of $T D(R)$ is three).

We recall some definitions. Let Γ be a (undirected) graph. We say that Γ is connected if there is a path between any two distinct vertices. For vertices x and y of Γ, we define $d(x, y)$ to be the length of a shortest path from x to $y(d(x, x)=0$ and $d(x, y)=\infty$ if there is no path). Then the diameter of Γ is $\operatorname{diam}(\Gamma)=\sup \{\mathrm{d}(x, y) \mid x$ and y are vertices of $\Gamma\}$. The girth of Γ, denoted by $\operatorname{gr}(\Gamma)$, is the length of a shortest cycle in $\Gamma(\operatorname{gr}(\Gamma)=\infty$ if Γ contains no cycles). A graph Γ is complete if any two distinct vertices are adjacent.

Throughout, all rings are commutative with nonzero identity. Let R be a commutative ring. Then $Z(R)$ denotes the set of zero-divisors of R, and the distance between two distinct vertices a, b of $T D(R)(Z D(R))$ is denoted by $d_{T}(a, b)$ $\left(d_{Z}(a, b)\right)$. If $Z D(R)$ is identical to $\Gamma(R)$, then we write $Z D(R)=\Gamma(R)$; otherwise, we write $Z D(R) \neq \Gamma(R)$. As usual, \mathbb{Z} and \mathbb{Z}_{n} will denote the integers and integers modulo n, respectively. Any undefined notation or terminology is standard, as in [22] or [16].

2. BASIC PROPERTIES OF $T D(R)$ AND $Z R(D)$

We start this section with the following result.
Theorem 2.1. Let A be an integral domain and $R=A \times A$. Then $T D(R)$ is disconnected and $Z D(R)=\Gamma(R)$ is connected. In particular, if A is ring-isomorphic to \mathbb{Z}_{2}, then $Z D(R)$ is complete (i.e., $\left.\operatorname{diam}(Z D(R))=1\right)$ and $\operatorname{gr}(Z D(R))=\infty$. If A is not ring-isomorphic to \mathbb{Z}_{2}, then $\operatorname{diam}(Z D(R))=2$ and $\operatorname{gr}(Z D(R))=4$.

Proof. Let $B=\left\{(a, a),(-a, a),(a,-a) \mid a \in A^{*}\right\}$, and let $x \in B$. Suppose that $y \in$ R^{*} and $x \cdot y=0$. Since A is an integral domain, one can easily see that $y \in B$. Let $M=\left\{(a, 0),(0, a) \mid a \in A^{*}\right\}$ and let $w \in M$. Suppose that $w \cdot s=0$ for some
$s \in R^{*}$. Again, since A is an integral domain, we conclude that $s \in M$. Thus the vertices $(1,1)$ and $(0,1)$ are not connected by a path in $T D(R)$. Hence $T D(R)$ is disconnected. Since A is an integral domain, $Z(R)^{*}=M$. Let $x, y \in M$. Then x. $y=0$ iff $x y=(0,0)$. Thus $Z D(R)=\Gamma(R)$. Suppose that A is ring-isomorphic to \mathbb{Z}_{2}. Then it is clear that $\operatorname{diam}(Z D(R))=1$ and $\operatorname{gr}(Z D(R))=\infty$. Suppose A is not ringisomorphic to \mathbb{Z}_{2}. Since $Z D(R)=\Gamma(R)$ and A is an integral domain, $\operatorname{diam}(Z D(R))=$ 2 by [24, Theorem 2.6] and $\operatorname{gr}(Z D(R))=4$ by [10, Theorem 2.2].

Theorem 2.2. Let $2 \leq n<\infty, A$ be a commutative ring with $1 \neq 0$, and $R=A \times$ $A \times \cdots \times A$ (n times). Then $Z D(R)=\Gamma(R)$ if and only if either $n=2$ and A is an integral domain or R is ring-isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. If $n=2$ and A is an integral domain, then by Theorem 2.1 we have $Z D(R)=\Gamma(R)$. Suppose that R is ring-isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then by simple hand-calculations, for every $x, y \in Z(R)^{*}$, we have $x \cdot y=0$ iff $x y=(0,0,0)$, and hence $Z D(R)=\Gamma(R)$.

Conversely, suppose that $Z D(R)=\Gamma(R)$. Assume that A is not an integral domain. Then there is an $a \in Z(A)^{*}$. Hence $x=(1, a, 0,0, \ldots, 0), y=$ $(a,-1,0,0, \ldots, 0) \in Z(R)^{*}$, and $x \cdot y=0$, but $x y \neq(0,0, \ldots, 0)$. Thus $x-y$ is an edge of $Z D(R)$ that is not an edge of $\Gamma(R)$, a contradiction. Thus A must be an integral domain. Now assume that $n=3$ and A is not ring-isomorphic to \mathbb{Z}_{2}. Then there is an $a \in A \backslash\{0,1\}$. Let $x=(1, a, 0)$ and $y=(-a, 1,0)$. Then $x \neq y$ and it is clear that $x-y$ is an edge of $Z D(R)$ that is not an edge of $\Gamma(R)$, a contradiction again. Hence assume that $n \geq 4$. Let $x=(1,1,0,1,0,0, \ldots, 0)$ and $y=(-1,1,1,0,0, \ldots, 0)$. Then $x \neq y, x \cdot y=0$, but $x y \neq(0,0, \ldots, 0)$, a contradiction. Thus we conclude that either $n=2$ and A is an integral domain or R is ring-isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

In view of Theorem 2.1, we have the following result.
Theorem 2.3. Let A be a commutative ring with $1 \neq 0$ that is not an integral domain, and let $R=A \times A$. Then the following statements hold:
(1) $T D(R)$ is connected and $\operatorname{diam}(T D(R))=3$;
(2) $Z D(R)$ is connected, $Z D(R) \neq \Gamma(R)$, and $\operatorname{diam}(Z D(R))=3$;
(3) $\operatorname{gr}(Z D(R))=\operatorname{gr}(T D(R))=3$.

Proof. (1). Let $x=(a, b), y=(c, d) \in R^{*}$, where $x \neq y$, and assume that $x \cdot y \neq$ 0 . Since A is not an integral domain, there are $f, g \in A^{*}$ (not necessarily distinct) such that $f g=0$. Let $w=(-b f, a f)$ and $v=(-d g, c g)$. Note that $w, v \in Z(R)$. Clearly $x \cdot w=w \cdot v=v \cdot y=0$. Since $x \cdot y \neq 0, w \neq y$ and $v \neq x$. First, assume that $v, w \in Z(R)^{*}$. If $x \cdot y=0$ or $y . w=0$, then $x-v-y$ or $x-w-y$ is a path of length 2 in $T D(R)$ from x to y. Assume that neither $x \cdot y=0$ nor $y \cdot w=0$. Then x, w, v, y are distinct, and hence $x-w-v-y$ is a path of length 3 in $T D(R)$ from x to y. Now assume that $w=(0,0)$ or $v=(0,0)$. If $w=(0,0)$, then replace w by $(f,-f) \in$ $Z(R)^{*}$, and hence $x \cdot w=(a, b) \cdot(f,-f)=0$. Similarly, if $v=(0,0)$, then replace v by $(g,-g) \in Z(R)^{*}$. Hence if $w=(0,0)$ or $v=(0,0)$, then we are able to redefine w and v so that $w, v \in Z(R)^{*}$ and $x \cdot w=w \cdot v=v \cdot y=0$. Thus as in the earlier
argument, we conclude that there is a path of length at most 3 in $T D(R)$ from x to y. Thus $T D(R)$ is connected and $d_{T}(x, y) \leq 3$ for every $x, y \in R^{*}$. Now, let $x=(1,1)$ and $y=(1,0)$. We show $d_{T}(x, y)=3$, and hence $\operatorname{diam}(T D(R))=3$. Let $w \in R^{*}$ such that $x \cdot w=0$. Then $w=(a,-a)$ for some $a \in A^{*}$. Since $w \cdot y=a \neq 0, d_{T}(x, y)>2$. Hence $d_{T}(x, y)=3$. In particular, let $k, t \in A^{*}$ such that $k t=0, w=(k,-k)$, and $v=(0, t)$. Then $x-w-v-y$ is a path of length 3 in $T D(R)$ from x to y.
(2). Since A is not an integral domain, $Z D(R) \neq \Gamma(R)$ by Theorem 2.2. Let $x, y \in Z(R)^{*}$, and assume that $x \cdot y \neq 0$. In view of the proof of (1), we are able to find $w, v \in Z(R)^{*}$ such that either $x-w-y$ is a path in $Z D(R)$ or $x-v-y$ is a path in $Z D(R)$ or $x-w-v-y$ is a path in $Z D(R)$. Hence $\operatorname{diam}(Z D(R)) \leq$ 3. Let $a \in Z(A)^{*}$. Then $x=(1, a), y=(0,1) \in Z(R)^{*}$. We show $d_{Z}(x, y)=3$, and thus $\operatorname{diam}(Z D(R))=3$. Since $x \cdot y \neq 0, d_{Z}(x, y)>1$. Suppose there is a $v=(g, h) \in$ $Z(R)^{*}$ such that $x-v-y$ is a path of length 2 in $Z D(R)$ from x to y. Since $v \cdot y=$ 0 , we have $h=0$, and hence $v=(g, 0)$. Since $x \cdot y=0$, we have $g=0$, and thus $v=(0,0)$, a contradiction. Thus $d_{Z}(x, y)=3$, and hence $\operatorname{diam}(Z D(R))=3$.
(3). Since A is not an integral domain, there are $a, b \in A^{*}$ (not necessarily distinct) such that $a b=0$. Then $x=(a, 0), y=(0, b), w=(b, a) \in Z(R)^{*}$. Hence $x-y-w-x$ is a cycle of length 3 in $Z D(R)$. Thus $\operatorname{gr}(T D(R))=\operatorname{gr}(Z D(R))=3$.

Theorem 2.4. Let A be a commutative ring with $1 \neq 0,3 \leq n<\infty$, and let $R=A \times$ $A \times \cdots \times A(n$ times). Then $T D(R)$ is connected and $\operatorname{diam}(T D(R))=2$.

Proof. Let $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in R^{*}$, and suppose that $x \cdot y \neq 0$. Then let $M=\left\{i \mid x_{i}=y_{i}=0,1 \leq i \leq n\right\}$. Suppose that M is not the empty set. Then choose a $k \in M$, and let $w=\left(w_{1}, \ldots, w_{n}\right) \in R^{*}$, where $w_{k}=1$ and $w_{i}=0$ if $i \neq$ k. Then $x-w-y$ is a path of length 2 in $T D(R)$ from x to y. Thus suppose that M is the empty set. Then let $f(x)=\min \left\{i \mid x_{i} \neq 0,1 \leq i \leq n\right\}$ and $f(y)=$ $\min \left\{i \mid y_{i} \neq 0,1 \leq i \leq n\right\}$. Since M is the empty set, we conclude that $f(x)=1$ or $f(y)=1$. We may assume that $f(x)=1$. Let $v=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-\right.$ $\left.x_{2} y_{1}, 0,0,0, \ldots, 0\right) \in R$. Suppose that $v \neq(0, \ldots, 0)$. Then it is easy to check that $x \cdot y=v \cdot y=0$. Since $x \cdot y \neq 0, v \neq x$ and $v \neq y$. Hence $x-v-y$ is a path of length 2 in $T D(R)$ from x to y. Suppose that $v=(0, \ldots, 0)$. Then $x_{1} y_{2}-x_{2} y_{1}=0$. Let $w=\left(-x_{2}, x_{1}, 0,0, \ldots, 0\right) \in R$. Since $x_{1} \neq 0, w \in R^{*}$. Hence $x \cdot w=-x_{1} x_{2}+x_{1} x_{2}=$ 0 and $w \cdot y=x_{1} y_{2}-x_{2} y_{1}=0$. Since $x \cdot w=w \cdot y=0$ and $x \cdot y \neq 0, x \neq w$ and $y \neq$ w. Thus $x-w-y$ is a path of length 2 in $T D(R)$ from x to y. Hence $T D(R)$ is connected and $\operatorname{diam}(T D(R))=2$.

Theorem 2.5. Let A be a commutative ring with $1 \neq 0$. Then the following statements hold:
(1) If A is an integral domain and $R=A \times A \times A$, then $Z D(R)$ is connected $(Z D(R) \neq$ $\Gamma(R)$ by Theorem 2.2) and $\operatorname{diam}(Z D(R))=3$;
(2) If A is not an integral domain and $R=A \times A \times A$, then $Z D(R)$ is connected $(Z D(R) \neq \Gamma(R)$ by Theorem 2.2) and $\operatorname{diam}(Z D(R))=2$;
(3) If $4 \leq n<\infty$ and $R=A \times A \times \cdots \times A$ (n times), then $Z D(R)$ is connected $(Z D(R) \neq \Gamma(R)$ by Theorem 2.2) and diam $(Z D(R))=2$.

Proof. (1). Since $\Gamma(R)$ is connected and every path in $\Gamma(R)$ is a path in $Z D(R)$, we conclude that $Z D(R)$ is connected. Since $\operatorname{diam}(Z D(R)) \leq \operatorname{diam}(\Gamma(R))$ and $\operatorname{diam}(\Gamma(R))=3$ by $[24$, Theorem 2.6], we conclude that $\operatorname{diam}(Z D(R)) \leq 3$. Let $x=(1,0,-1), y=(0,1,-1) \in Z(R)^{*}$. Then $x \cdot y=1 \neq 0$. We show $d_{Z}(x, y)=$ 3. Let $w=\left(w_{1}, w_{2}, w_{3}\right) \in R$ such that $x \cdot w=w \cdot y=0$. Then a trivial calculation leads to $w_{1}=w_{2}=w_{3}$. Since A is an integral domain, $w \in Z(R)$ if and only if $w=$ $(0,0,0)$. Thus $d_{z}(x, y)=3$. Hence $\operatorname{diam}(Z D(R))=3$.
(2). (Similar to the proof of Theorem 2.4). Let $x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right)$ $\in Z(R)^{*}$, and suppose that $x \cdot y \neq 0$. Then let $M=\left\{i \mid x_{i}=y_{i}=0,1 \leq i \leq 3\right\}$. Suppose that M is not the empty set. Then choose a $k \in M$, and let $w=$ $\left(w_{1}, w_{2}, w_{3}\right) \in Z(R)^{*}$, where $w_{k}=1$ and $w_{i}=0$. If $i \neq k$, then $x-w-y$ is a path of length 2 in $Z D(R)$ from x to y. Thus suppose that M is the empty set. Then let $f(x)=\min \left\{i \mid x_{i} \neq 0,1 \leq i \leq n\right\}$ and $f(y)=\min \left\{i \mid y_{i} \neq 0,1 \leq i \leq 3\right\}$. Since M is the empty set, we conclude that $f(x)=1$ or $f(y)=1$. We may assume that $f(x)=1$. Let $v=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right) \in R$. Suppose that $v \in Z(R)^{*}$. Then it is easy to check that $x \cdot y=v \cdot y=0$. Since $x \cdot y \neq 0, v \neq x$ and $v \neq y$. Hence $x-v-y$ is a path of length 2 in $Z D(R)$ from x to y. Suppose that $v \notin Z(R)$. Then choose an $a \in Z(A)^{*}$. Then $a v \in Z(R)^{*}$ and $x-a v-y$ is a path of length 2 in $Z D(R)$ from x to y. Suppose that $v=(0,0,0)$. Then $x_{1} y_{2}-x_{2} y_{1}=0$. Let $w=\left(-x_{2}, x_{1}, 0\right) \in Z(R)$. Since $x_{1} \neq 0, w \in Z(R)^{*}$. Hence $x \cdot w=-x_{1} x_{2}+x_{1} x_{2}=0$ and $w \cdot y=x_{1} y_{2}-x_{2} y_{1}=$ 0 . Since $x \cdot w=w \cdot y=0$ and $x \cdot y \neq 0, x \neq w$ and $y \neq w$. Thus $x-w-y$ is a path of length 2 in $Z D(R)$ from x to y. Hence $Z D(R)$ is connected and $\operatorname{diam}(Z D(R))=2$.
(3). The proof is similar to the proof of Theorem 2.4. Just observe that if $n \geq 4$, then v as in the proof of Theorem 2.4 is in $Z(R)$.

Theorem 2.6. Let A be a commutative ring with $1 \neq 0,3 \leq n<\infty$, and $R=A \times$ $A \times \cdots \times A(n$ times $)$. Then $\operatorname{gr}(Z D(R))=\operatorname{gr}(T D(R))=3$.

Proof. Let $a=(1,0, \ldots, 0), b=(0,1,0, \ldots, 0)$, and $c=(0,0,1,0, \ldots, 0)$. Then $a-b-c-a$ is a cycle of length 3 .

Corollary 2.7. Let A be a commutative ring with $1 \neq 0,2 \leq n<\infty$, and $R=A \times$ $A \times \cdots \times A(n$ times $)$. Then the following statements are equivalent:
(1) $\operatorname{gr}(Z D(R))=3$;
(2) $\operatorname{gr}(T D(R))=3$;
(3) A is not an integral domain and $n=2$ or $n \geq 3$.

Proof. This is clear by Theorem 2.3 and Theorem 2.6.
Corollary 2.8. Let A be a commutative ring with $1 \neq 0,2 \leq n<\infty$, and $R=A \times$ $A \times \cdots \times A$ (n times). Then the following statements are equivalent:
(1) $\operatorname{gr}(Z D(R))=\infty$;
(2) A is ring-isomorphic to \mathbb{Z}_{2} and $n=2$;
(3) $\operatorname{diam}(Z D(R))=1$.

Proof. (1) $\Rightarrow(2)$. Suppose $g r(Z D(R))=\infty$. Then $n=2$ by Theorem 2.6. Hence A is an integral domain by Corollary 2.7. Hence $Z D(R)=\Gamma(R)$ by Theorem 2.2. Thus A is ring-isomorphic to \mathbb{Z}_{2} by [10, Theorem 2.4]. (2) \Rightarrow (3). It is clear. (3) \Rightarrow (1). Since $\operatorname{diam}(Z D(R))=1$, we conclude that $n=2$ and A is an integral domain by Theorems 2.3 and 2.5. Thus A is ring-isomorphic to \mathbb{Z}_{2} by Theorem 2.1. Thus $g r(Z D(R))=\infty$.

Corollary 2.9. Let A be a commutative ring with $1 \neq 0$ such that A is not ringisomorphic to $\mathbb{Z}_{2}, 0 \leq n<\infty$, and $R=A \times A \times \cdots \times A$ (n times). Then the following statements are equivalent:
(1) $\operatorname{gr}(Z D(R))=4$;
(2) $Z D(R)=\Gamma(R)$;
(3) $T D(R)$ is disconnected;
(4) $n=2$ and A is an integral domain.

Proof. This is clear by Theorem 2.1, Theorem 2.2, Corollary 2.7, and Corollary 2.8.

Corollary 2.10. Let A be a commutative ring with $1 \neq 0,2 \leq n<\infty$, and $R=A \times$ $A \times \cdots \times A$ (n times). Then the following statements are equivalent:
(1) $\operatorname{diam}(Z D(R))=3$;
(2) Either A is not an integral domain and $n=2$ or A is an integral domain and $n=3$.

Proof. This is clear by Theorem 2.1, Theorem 2.3, and Theorem 2.5.
Corollary 2.11. Let A be a commutative ring with $1 \neq 0,2 \leq n<\infty$, and $R=A \times$ $A \times \cdots \times A$ (n times). Then the following statements are equivalent:
(1) $\operatorname{diam}(Z D(R))=2$;
(2) Either A is an integral domain that is not ring-isomorphic to \mathbb{Z}_{2} and $n=2, A$ is not an integral domain, and $n=3$, or $n \geq 4$.

Proof. This is clear by Theorem 2.1, Theorem 2.5, and Corollary 2.10.
Corollary 2.12. Let A be a commutative ring with $1 \neq 0,2 \leq n<\infty$, and $R=A \times$ $A \times \cdots \times A$ (n times). Then $\operatorname{diam}(T D(R))=3$ if and only if A is not an integral domain and $n=2$.

Proof. This is clear by Theorem 2.1, Theorem 2.3, and Theorem 2.4.
Corollary 2.13. Let A be a commutative ring with $1 \neq 0,2 \leq n<\infty$, and $R=A \times$ $A \times \cdots \times A$ (n times). Then the following statements are equivalent:
(1) $\operatorname{diam}(T D(R))=2$;
(2) $T D(R)$ is connected and $n \geq 3$;
(3) $n \geq 3$.

Proof. The proof is clear by Theorem 2.3 and Theorem 2.4.

Corollary 2.14. Let A be a commutative ring with $1 \neq 0,2 \leq n<\infty$, and $R=A \times$ $A \times \cdots \times A(n$ times $)$. Then $\operatorname{diam}(T D(R))=\operatorname{diam}(Z D(R))=3$ if and only if A is not an integral domain and $n=2$.

Proof. This is clear by Corollary 2.10 and Corollary 2.12.

ACKNOWLEDGMENT

I would like to thank the referee for several helpful suggestions.

REFERENCES

[1] Akbari, S., Maimani, H. R., Yassemi, S. (2003). When a zero-divisor graph is planar or a complete r-partite graph. J. Algebra 270:169-180.
[2] Alizadeh, M., Dasb, A. K., Maimanic, H. R., Pournaki, M. R., Yassemi, S. (2012). On the diameter and girth of zero-divisor graphs of posets. Disc. Appl. Math. 160: 1319-1324.
[3] Anderson, D. F. (2008). On the diameter and girth of a zero-divisor graph, II. Houston J. Math. 34:361-371.
[4] Anderson, D. F., Badawi, A. (2008). On the zero-divisor graph of a ring. Comm. Algebra (36):3073-3092.
[5] Anderson, D. F., Badawi, A. (2008). The total graph of a commutative ring. J. Algebra 320:2706-2719.
[6] Anderson, D. F., Badawi, A. (2012). The total graph of a commutative ring without the zero element. J. Algebra Appl. 11(4):2500740. (18pgs). DOI:10.1142/S0219498812500740.
[7] Anderson, D. F., Badawi, A. (2013). The generalized total graph of a commutative ring. J. Algebra Appl. 12(5):1250212. (18pgs). DOI:10.1142/S021949881250212X.
[8] Anderson, D. F., LaGrange, J. D. (2012). Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph. J. Pure Appl. Algebra 216:1626-1636.
[9] Anderson, D. F., Livingston, P. S. (1999). The zero-divisor graph of a commutative ring. J. Algebra 217:434-447.
[10] Anderson, D. F., Mulay, S. B. (2007). On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210:543-550.
[11] Anderson, D. F., Levy, R., Shapiro, J. (2003). Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra 180:221-241.
[12] Anderson, D. F., Axtell, M. C., Stickles, J. A. Jr., (2011). Zero-divisor graphs in commutative rings. In: Fontana, M., Kabbaj, S.-E., Olberding, B., Swanson, I., eds. Commutative Algebra, Noetherian and Non-Noetherian Perspectives. New York: SpringVerlag, pp. 23-45.
[13] Beck, I. (1988). Coloring of commutative rings. J. Algebra 116:208-226.
[14] Behboodi, M., Rakeei, Z. (2011). The annihilator-ideal graph of commutative rings I. J. Algebra Appl. 10(4):727-739.
[15] Behboodi, M., Rakeei, Z. (2011). The annihilator-ideal graph of commutative rings II. J. Algebra Appl. 10(4):741-753.
[16] Bollaboás, B. (1998). Modern Graph Theory. New York: Spring-Verlag.
[17] Ghalandarzadeh, Shirinkam, S., Rad, P. M. (2013). Annihilator ideal-based zerodivisor graphs over multiplication modules. Comm. Algebra 41(3):1134-1148.
[18] Tamizh Chelvam, T., Asir, T. (2011). Domination in the total graph on Z_{n}. Discrete Math. Algorithms Appl. 3(4):413-421.
[19] Tamizh Chelvam, T., Asir, T. (2013). The intersection graph of gamma sets in the total graph of a commutative ring I. J. Algebra Appl. 12(4):1250198. (18pgs). DOI:10.1142/S0219498812501988.
[20] Tamizh Chelvam, T., Asir, T. (2013). The intersection graph of gamma sets in the total graph of a commutative ring II. J. Algebra Appl. 12(4):1250199. (14pgs). DOI:10.1142/S021949881250199X.
[21] Chiang-Hsieh, H.-J. (2008). Classification of rings with projective zero-divisor graphs. J. Algebra 319:2789-2802.
[22] Huckaba, J. A. (1988). Commutative Rings with Zero Divisors. New York/Basel: Marcel Dekker.
[23] Maimani, H. R., Pournaki, M. R., Tehranian, A., Yassemi, S. (2011). Graphs attached to rings revisited. Arab. J. Sci. Eng. 36:997-1012.
[24] Lucas, T. G. (2006). The diameter of a zero-divisor graph. J. Algebra 301:3533-3558.
[25] Wang, H.-J. (2006). Zero-divisor graphs of genus one. J. Algebra 304:666-678.
[26] Wickham, C. (2009). Rings whose zero-divisor graphs have positive genus. J. Algebra 321:377-383.

[^0]: Received May 1, 2013; Revised June 14, 2013. Communicated by E. Houston.
 Address correspondence to Ayman Badawi, Department of Mathematics and Statistics, American University of Sharjah, P. O. Box 26666, Sharjah, UAE; E-mail: abadawi@aus.edu

