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Abstract. In this paper, we study a general formulation of linear prediction algorithms including a number of
known methods as special cases. We describe a convex duality for this class of methods and propose numerical
algorithms to solve the derived dual learning problem. We show that the dual formulation is closely related to
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Numerical examples will be given to illustrate various aspects of the newly proposed algorithms.
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1. Introduction

We consider linear prediction problems such as linear regression and classification. Al-
though nonlinear models such as neural networks have been extensively studied in the past,
there is renewed interest in linear prediction models, which include recently popularized
kernel methods such as Gaussian processes and support vector machines (Cristianini &
Shawe-Taylor, 2000).

From the theoretical point of view, this recent popularization of linear prediction methods
is related to their theoretical tractability. In particular, there has been a substantial amount
of work in generalization performance analysis for various linear function classes, which
provides valuable insights into theoretical properties of linear models. On the other hand,
nonlinear methods are often difficult to analyze.

From a more practical point of view, linear models can be used to learn nonlinear deci-
sions, by simply using pre-determined nonlinear functions as features. One intelligent way
to include such nonlinear functions as features is through the so-called kernel representa-
tion, such as in Gaussian processes or support vector machines. This type of kernel methods
rely on a form of convex duality, which converts a linear model in the original (possibly
infinite dimensional) “feature” space into a dual learning model in the corresponding (finite
dimensional) dual “sample” space.

However, the dual representation in a kernel method requires a very specific form of
linear model in the original feature space. A natural question to ask is whether it is possible
to extend this convex duality, so that it is applicable to a more general family of linear
models. This paper provides an affirmative answer to this question. In order to obtain
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such an extension, we introduce a general form of regularized linear prediction models
with convex risks. These models include support vector machines and Gaussian processes
as special cases. We then derive a dual representation of the proposed formulation, and
study numerical algorithms to solve the dual learning problem. We show that this dual
representation provides useful insights into existing schemes. In addition, new learning
algorithms can be obtained from the dual formulation.

The paper is organized as follows. In Section 2, we introduce a general linear prediction
model, motived from examples. The corresponding dual formulation will be obtained in
Section 3. We propose a relaxation algorithm in Section 4 to solve the dual learning problem.
In Section 5, we give a number of examples, and show that novel learning algorithms can
be obtained from the dual formulation. In Section 6, Numerical experiments are used to
illustrate various aspects of the newly proposed algorithms. Section 7 summarizes the paper.

2. Regularized generalized linear model

Assume we have a set of input vectors x1, . . . , xn , with corresponding desired output
variables y1, . . . , yn . For a generalized linear model (McCullagh & Neldor, 1989), one
is interested in obtaining a weight vector w such that y ≈ φ(wT x) for all future input
data x , where φ is called a link function. The degree of such an approximation can be
measured by a loss function L(φ(wT x), y). A practical method to compute a weight
vector ŵ from the data is to find the minimum of the empirical expectation of the loss:
ŵ = arg minw

1
n

∑n
i=1 L(φ(wT xi ), yi ). For computational purposes, the loss function is of-

ten matched with the link function φ so that L(φ(wT xi ), yi ) is convex (Helmbold, Kivinen,
& Warmuth, 1999; McCullagh & Nelder, 1989). In general, one can assume that the weight
ŵ is obtained by

ŵ = arg min
w

1

n

n∑
i=1

f (wT xi , yi ), (1)

where f (a, b) is a convex function of a.
In the literature, one often encounters a more general type of linear functional: wT x + b,

where b is called bias. However, one can easily convert this formulation into one in which b
is zero. This is achieved by letting x̃ = [x, 1], and w̃ = [w, b]: w̃T x̃ = wT x + b. Therefore
unless otherwise indicated, we assume a linear form with b = 0 throughout this paper.

In practice, one often encounters a situation that the dimension d of the input-vector space
is larger than the training sample size. In this case, the original problem in (1) is singular. This
is because there are infinitely many solutions of w such that wT xi = ŵT xi for all i , which
implies that they have the same expected loss. To eliminate this problem of uncertainty, one
may consider the following alternative formulation for regression problems:

ŵ = arg min
w

1

2
w2, s.t. wT xi = yi for i = 1, . . . , n.

Similarly, one can consider the following alternative formulation for binary-classification
problems with labels of ±1:

ŵ = arg min
w

1

2
w2, s.t. wT xi yi ≥ 1, for i = 1, . . . , n.
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In general, the above two formulations are quite sensitive to outliers since a single modi-
fication of any data point (xi , yi ) can violate the equality (or inequality) constraint, which
causes a large change in the estimated parameter ŵ. Another problem is that these constraints
may become un-satisfiable. For example, this is likely to happen when the dimension d is
smaller than the sample size n, The above mentioned problems can be remedied by using
a penalty type regularization method:

ŵ = arg min
w

[
1

n

n∑
i=1

f (wT xi , yi ) + λ

2
w2

]
,

where for regression, f (a, b) = (a − b)2 (ridge regression (Hoerl & Kennard, 1970)), and
for classification, f (a, b) = 1 − ab if ab ≤ 1 and f (a, b) = 0 otherwise (soft-margin SVM
(Vapnik, 1998)).

The above formulations use square regularization conditions. However, in practice, other
types of regularization are also useful. For example, in the maximum entropy framework
for density estimation, one seeks a density vector ŵ so that it is consistent with the data,
and the relative entropy is maximized:

ŵ = arg max
w

d∑
j=1

−w j ln
w j

µ j
s.t. wT xi = yi for i = 1, . . . , n,

where µ is a prior typically chosen to be uniform. We assume that w represents a probability
measure. That is:

∑d
j=1 w j = 1 and w j ≥ 0 for j = 1, . . . , d. The classification version of

maximum entropy has also been suggested (Jaakkola, Meila, & Jebara, 2000). As demon-
strated in Section 5, it is related to Winnow online algorithms (Littlestone, 1988).

Another interesting regularization condition is the 1-norm regularization used in basis
pursuit (Chen, Donoho, & Saunders, 1999), which in general can lead to a sparse weight
vector ŵ (thus automatic feature selection):

ŵ = arg min
w

‖w‖1, s.t. wT xi = yi for i = 1, . . . , n.

The 1-norm regularization condition has some interesting learning properties (Barron, 1993;
Bartlett, 1998), and has also been suggested for classification (Mangasarian, 1999).

In general, all of the above mentioned methods can be put into a penalty type regularized
form. Therefore in this paper, we consider the following system with convex loss that can
result from a regularized version of the generalized linear model in (1):

ŵ = arg min
w

[
1

n

n∑
i=1

f (wT xi , yi ) + λg(w)

]
. (2)

We assume that f (a, b) is a convex function of a, and g is a convex function of w. λ > 0 is
a regularization parameter.
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3. Duality

3.1. Duality in ridge regression

We would like to present a simple example to explain the concept of duality. Consider the
square regularization g(w) = 1

2w2. Assume f is differentiable, then by differentiating (2)
with respect to w, we see that at the optimal solution of (2), ŵ has a representation of the form

ŵ = 1

λn

n∑
i=1

α̂i xi .

This representation leads to the idea of Reproducing Kernel Hilbert Space (RKHS) method
(Wahba, 1999), and has recently been successfully applied to many learning problems
including Gaussian processes and support vector machines (Cristianini & Shawe-Taylor,
2000).

Equation (2) is called primal formulation, which involves the primal variable w. α̂ is the
dual variable. By using convex duality, it is possible to rewrite (2) in terms of α̂, which
leads to the dual formulation of (2).

As an example, we consider the ridge regression problem

ŵ = arg min
w

[
1

n

n∑
i=1

(wT xi − yi )
2 + λ

2
w2

]
.

By taking derivative with respect to w, and let α̂i = −2(wT xi − yi ), we obtain the following
system of equations

α̂i = −2(ŵT xi − yi ), i = 1, . . . , n,

ŵ = 1

λn

n∑
i=1

α̂i xi .

We can now eliminate ŵ and obtain

α̂i = −2

(
1

λn

n∑
k=1

α̂k xT
j xi − yi

)
, i = 1, . . . , n.

It is easy to verify that α̂ is the solution of the following dual optimization problem:

α̂ = arg min
α

[
n∑

i=1

1

n

(
1

4
α2

i − αi yi

)
+ 1

2λn2

n∑
i=1

n∑
k=1

αiαk xT
i xk

]
.

Since the dual formulation only requires the inner product xT
i xk , we may replace it by

a symmetric positive (semi)-definite Kernel function K (xi , xk), which leads to a form of
Gaussian process (Cristianini & Shawe-Taylor, 2000).

For square regularization, a relatively general duality theorem was given in Jaakkola and
Haussler (1999). They essentially extend the derivation presented in this section to include
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any smooth loss term f . Corresponding kernel methods can be obtained in this approach. Our
goal is to present a much more general analysis, so that a dual representation of the general
formulation (2) can be obtained, with general forms of loss term f and regularization term g.

3.2. A general dual representation

A general duality theory for (2) can be derived by using a procedure similar to what we
have done in ridge regression. In summary, we differentiate with respect to w to obtain the
first order condition at the optimal solution. An auxiliary variable αi can then be associated
with each data point xi . The optimal solution ŵ of the primal problem can be expressed
as a function of the linear combination

∑n
i=1 αi xi . ŵ can then be eliminated to obtain a

system of equations in α. Finally, we associate the solution of the system of equations to
the solution of a dual optimization problem.

However, since the rigorous derivation requires the theory of convex duality, it is more
convenient to directly introduce a dual variable, and then obtain the dual formulation from
the convex duality point of view.

In order to be general, we take the standard convex analysis point of view described in
Rockafeller (1970). We allow a convex function p(u) : Rd →R+ to take a value of +∞,
where R is the real line, and R+ denotes the extended real line R∪ {+∞}. However, we
assume that convex functions do not achieve −∞. We also assume that any convex function
p(u) in this paper contains at least one point u0 such that p(u0) < + ∞. Convex functions
that satisfy these conditions are called proper convex functions. This definition is very
general: virtually all practically interesting convex functions are proper. In this paper, we
only consider closed convex functions. That is, ∀u, p(u) = limε→0+ inf{p(v) : ‖v−u‖ ≤ ε}.
This condition essentially means that the convex set above the graph of u: {(u, y) : y ≥ p(u)}
is closed.

We also assume that (2) has a finite solution ŵ. However, we do not assume that the
solution is unique.

We say a point is feasible with respect to a convex function p if p(u) < + ∞. From the
computational point of view, a convex function p that takes values on the extended real line
R+ can be regarded as a convex function that takes values on the real line R, in the feasible
domain Dp = {u : p(u) < ∞}. This domain Dp imposes a constraint on p.

Let k(·, b) be the dual transform of f (·, b) (see Appendix A):

k(v, b) = sup
u

(uv − f (u, b)),

which implies that ∀i :

f (wT xi , yi ) = sup
αi

(−k(−αi , yi ) − αiw
T xi ). (3)

Using this formula, we can now introduce an auxiliary dual variable α, with component αi

for each data point xi . Consider the following convex-concave function:

R(w, α) = 1

n

n∑
i=1

(−k(−αi , yi ) − αiw
T xi ) + λg(w). (4)
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Using (3), the optimization problem (2) can be equivalently rewritten as

ŵ = arg inf
w

sup
α

R(w, α). (5)

It is valid to switch the order of infw and supα in the above minimax convex-concave
programming problem. A proof of this interchangeability, i.e. strong duality, is given in
Appendix B. The proof shows that given ŵ that is a solution of (5), there is a solution α̂ to
the following problem

α̂ = arg sup
α

inf
w

R(w, α), (6)

such that

∇g(ŵ) = 1

λn

n∑
i=1

α̂i xi , (7)

where ∇g(ŵ) denotes a subgradient of g at ŵ (see Appendix A for definition). ∇g(ŵ)

becomes the gradient if g is differentiable at ŵ. At the fixed value α̂, ŵ given in (7)
minimizes (6).

To simplify notations, we now consider the dual transform of g(·):

h(v) = sup
u

(uT v − g(u)),

where h(·) is also a convex function. By definition, (6) can be rewritten as the following
dual formulation:

α̂ = arg inf
α

[
1

n

n∑
i=1

k(−αi , yi ) + λh

(
1

λn

n∑
i=1

αi xi

)]
. (8)

From (7) and Proposition A.1, we see that the optimal solution ŵ to the primal problem
(2) is given by

ŵ = ∇h

(
1

λn

n∑
i=1

α̂i xi

)
. (9)

We use ∇h to denote a subgradient of h at 1
λn

∑n
i=1 α̂i xi . As a comparison, we also have

the following equation from Appendix B:

α̂i = − f ′
1(ŵ

T xi , yi ) (i = 1, . . . , n), (10)

where f ′
1 denotes a subgradient of f (a, b) with respect to a.

Since the role of w and α is symmetric in (4), the above derivation implies that if α̂ solves
(8), then there is a subgradient ∇h such that (9) gives a solution of (2).



ON THE DUAL FORMULATION 97

In the main body of this paper, we assume that h is differentiable for simplicity. This
implies that the subgradient ∇h in (9) is unique. However, it is possible to handle the case that
h is not differentiable every where. We leave the discussion of this situation in Appendix C.

4. Dual learning algorithm

We consider numerical algorithms for the dual learning problem (8). In this paper, we
consider a special type of relaxation algorithm, which is called Gauss-Seidel method in
numerical analysis. The algorithm cycles through components of the dual variable α, and
optimizes one component at a time (while keeping others fixed). Since each dual component
is associated with a data point, the algorithm is closely related to online learning algorithms
in that it learns by looking at one data at a time.

We first consider the simple case that h is differentiable without any constraint. The
Gauss-Seidel algorithm is given in Algorithm 1. We denote the dimension of w by d, and
the j-th component of a data point xi by xi j .

Algorithm 1 (Dual Gauss-Seidel )

let α = α0 and v j = 1
λn

∑n
i=1 α0

i xi j for j = 1, . . . , d
for k = 1, 2, . . .

for i = 1, . . . , n
find �αi by approximately minimizing

k(−αi − �αi , yi ) + λnh(v + 1
λn �αi xi ) (∗)

update v: v j = v j + 1
λn �αi xi j ( j = 1, . . . , d)

update α: αi = αi + �αi

end
end
let w = ∇h(v).

In Algorithm 1, the default choice of the initial value α0 is zero. At each inner iteration
i , one fixes all dual components αk with k �= i , and find an update �αi of αi to reduce the
dual objective function (8). If we ensure that the dual objective function is always reduced
at each step, then the algorithm will converge.

The main attractive feature of Algorithm 1 is its simplicity. As we have mentioned earlier,
it has a form that is similar to an online update algorithm. From the machine learning point of
view, this implies that we are able to convert certain online algorithms into batch algorithms
using the dual formulation. This point will be illustrated in Section 5.

A straight-forward method to solve (∗) approximately is gradient descent. In this paper,
we are especially interested in this scheme since it yields a very simple form that is closely
related to online updates (which usually can be regarded as a form of stochastic gradient
descent). Furthermore, in gradient descent, different regularization conditions share the
same update rule:

�αi

λn
= −ηi

( −k ′
1(−αi , yi ) + wT xi

)
, (11)

where w = ∇h(v). ηi > 0 is an appropriately chosen learning rate.
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Clearly, the only difference among algorithms with different regularization terms is the
transfer function w = ∇h(v) given in (9). The form of gradient descent update in (11)
remains unchanged.

Note that in some applications, k may contain a constraint. In this situation, we always
update αi so that the constraint is satisfied. The learning rate ηi can be selected in many
ways. One way is to fix ηi at a pre-selected small value for all i . Another way is to choose
ηi so that (11) corresponds to a form of Newton’s method. In some cases, ηi can also be
chosen to exactly minimize (∗). Examples will be given in Section 5.

If exact optimization is used in (∗), or if we appropriately choose sufficiently small ηi

in (11), then α converges to the true optimal solution α̂ of (8). In addition, if the Hessian
of (8) exists and is positive definite around α̂, then (8) can be locally approximated by a
quadratic function. In this case, if we select ηi that is asymptotically less than twice the
amount needed to optimize (∗) exactly, then locally around α̂, (11) can be regarded as
a successive over (or under) relaxation method (SOR) (Golub & Van Loan, 1996) for a
symmetric positive definite linear system. The convergence analysis of SOR implies that
asymptotically, Algorithm 1 has a linear convergence rate. However, the rate of this linear
convergence depends on the spectrum of the Hessian matrix of (8) at the optimal solution
α̂, as well as ηi .

One may also consider more sophisticated numerical algorithms with asymptotically
superlinear convergence rates, such as quasi-Newton or conjugate gradient (CG) methods
(Fletcher, 1987). However, such methods do not have direct connections with online al-
gorithms any more. From experiments in Section 5, we also observe that the generaliza-
tion performance with the linear weight w obtained from Algorithm 1 quickly stabilizes
after the first few iterations. This means that in practice, an asymptotically faster algo-
rithm is not more attractive. Furthermore, in many interesting situations (such as in an
SVM), k in (8) may contain constraints. It is relatively difficult to handle such con-
straints directly in a superlinear convergence optimization algorithm, unless additional
Lagrangian multipliers are introduced. These additional Lagrangian multipliers introduce
more complexity into numerical optimization, which may not be beneficial in many
problems.

On the other hand, for simple problems such as dual ridge regression (or problems with
sufficiently smooth dual objective functions in (8)), it is numerically preferable to use
a preconditioned CG with a symmetrized version of Algorithm 1 as the preconditioner
(Golub & Van Loan, 1996).

If h contains a constraint as discussed in Appendix C, the relationship (9) have to be
replaced by (35). Furthermore, Algorithm 1 can fail in this case since we may not be
able to modify any dual component αi individually, so that the constraint is still satisfied.
Modifications of Algorithm 1 are discussed in Appendix D.

5. Examples

We give example learning algorithms that can be obtained from the dual formulation (8).
We first discuss impacts of different regularization conditions. We then combine them with
different loss terms f to obtain various learning algorithms.
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5.1. Some regularization conditions

Square regularization. One of the most important regularization conditions is the square
penalty:

g(w) = 1

2
wT Kw, (12)

where K is a symmetric positive definite operator. In many applications, one choose
K = I —the identity matrix. The dual is given by

h(v) = 1

2
vT K −1v.

Therefore step (∗) in Algorithm 1 can be replaced by minimizing:

k(−αi − �αi , yi ) + c2�αi + c1

2
�α2

i , (13)

where

c1 = 1

λn
xT

i K −1xi , c2 = xT
i K −1v = wT xi . (14)

In a problem using regularization, the data dimension d can be very large. The compu-
tation of c1 and c2 can thus be time consuming. An interesting property of (13) is that no
matter what the loss term f (and thus k) is, the data dependent computation is only in c1 and
c2. Therefore, as long as c1 and c2 are obtained, the optimization of (13) can be considered
as a small problem of constant size that is independent of the data dimension d. As a result,
when d is large, we can afford to use more sophisticated nonlinear optimization methods
in (13).

If we do not compute v (and w) explicitly, but rather express it as
∑n

i=1
1
λn αi xi , then

vT x = ∑n
i=1

1
λn αi xT

i K −1x . In the computation of c1 and c2 in (13), we only need to evaluate
inner products of the form xT K −1 y. This observation implies that we can replace xT K −1 y
with a symmetric positive definite kernel function K (x, y), which results to a class of dual
kernel methods. In this case, the computation of c1 and c2 in (13) are given by

c1 = 1

λn
K (xi , xi ), c2 = 1

λn

n∑
k=1

αk K (xi , xk). (15)

Specific examples of kernel methods can be found in Cristianini and Shawe-Taylor (2000),
Jaakkola and Haussler (1999) and Vapnik (1998). This paper generalizes earlier works on
kernel methods so that an arbitrary form of convex function k(−αi , yi ) can be used.

Sparse regularization. We have mentioned that the 1-norm regularization condition
g(w) = ‖w‖1 leads to a sparse ŵ. This phenomenon can be understood from the dual
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formulation. From Appendix E, we see that the dual h of g is h(v) = 0 with constraint
max j |v j | ≤ 1. If |v j | < 1, then the j-th component of the subgradient ∇h(v) is zero. Let
v̂ = 1

λn

∑n
i=1 α̂i xi in (9), then the j-th component of ŵ is exactly zero as long as |v̂ j | < 1.

This characteristics shows why the computed ŵ is sparse in general.
From the computational point of view, the dual constraints max j |v j | ≤ 1 require d La-

grangian multipliers, one for each component. To avoid the complication of dealing with
these Lagrangian multipliers, we may include a quadratic term to g, and modify the sparse
regularization condition as

g(w) = ε‖w‖1 + 1

2
w2, (16)

where ε > 0 is a parameter to control the degree of sparsity. In this case,

h(v) =
d∑

j=1

h j (v j ),

where

h j (v j ) =
{

0 if |v j | ≤ ε,

1
2 (|v j | − ε)2 otherwise.

Let v̂ = 1
λn

∑n
i=1 α̂i xi , then Eq. (9) becomes

ŵ j =
{

0 if |v̂ j | ≤ ε,

sgn(v̂ j )(|v̂ j | − ε) otherwise.

Clearly, a component of ŵ is exactly zero as long as |v̂ j | ≤ ε. Therefore with this modified
regularization term, the computed primal variable ŵ is still sparse. In addition, the degree
of sparsity can be controlled by adjusting ε.

Interestingly, the reason we provide for the potential sparsity of the primal estimate ŵ is
dual to the reason that a support vector machine formulation can lead to a sparse dual estimate
α̂: observe that a support vector machine has a loss function f (a, b) such that f (a, b) is a
constant in an interval of a. In such an interval, the subgradient f ′

1(a, b) becomes zero. By
Eq. (10), we see that if ŵT xi belongs to the interval, then the dual component α̂i is exact
zero.

Entropy regularization. Normalized entropy frequently occurs in distribution related es-
timation problems. Such a regularization condition can be written in general as:

g(w) =
d∑

j=1

w j ln
w j

µ j
, s.t. w j ≥ 0,

d∑
j=1

w j = A,
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where µ j > 0 gives the prior. A > 0 is a normalization constant given by A = ∑d
j=1 µ j .

From Appendix E, the dual function is

h(v) = A ln
d∑

j=1

µ j

A
ev j ,

which leads to the following relationship in (9):

ŵ j = A
µ j exp

(
1
λn

∑n
i=1 α̂i xi j

)
∑d

k=1 µk exp
(

1
λn

∑n
i=1 α̂i xik

) .

This formula corresponds to the exponentiated gradient (EG) transfer function in Kivinen
and Warmuth (1997). Using this transfer function, we see that the gradient descent update
(11) for the dual variable α in Algorithm 1 can be regarded as an exponentiated gradient
descent rule in the primal variable w. Therefore this relationship suggests a systematic
method to convert EG online methods into the corresponding batch methods.

In the online learning literature, besides the normalized entropy condition, one often
considers the following unnormalized entropy regularization, which leads to EGU rules
(Kivinen & Marmuth, 1997):

g(w) =
d∑

j=1

w j ln
w j

eµ j
, w j ≥ 0. (17)

Its dual is

h(v) =
d∑

j=1

µ j exp(v j ).

Using this dual function, Eq. (9) gives an EGU transfer function:

ŵ j = µ j exp

(
1

λn

n∑
i=1

α̂i xi j

)
.

The gradient descent update (11) on α can thus be regarded as an EGU update on ŵ j .

q-norm regularization. We use a regularization condition of the form:

g(w) = 1

q ′ ‖w‖q ′
q ,

where q, q ′ ∈ (1, +∞). From Appendix E, we obtain its dual transform:

h(v) = 1

p′ ‖v‖p′
p ,
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where 1/p + 1/q = 1, and 1/p′ + 1/q ′ = 1. The transfer function in (9) becomes

∇h(v) j = sgn(v j )|v j |p−1‖v‖p′−p
p ,

where ∇h(v) j denotes the j-th component of ∇h(v). This formulation is related to the so-
called p-norm algorithm in online learning (Gentile & Littlestone, 1999; Grove, Littlestone,
& Schuurmans, 1997), where the transfer function has a form of

w j = sgn(v j )|v j |p−1‖v‖2−p
p .

This particular transfer function clearly corresponds to the case p′ = 2.
In addition to their relationship with online learning algorithms, this class of regularization

conditions can have many practical applications. For example, if the data are bounded in
p-norm, then it is reasonable to regularize using ‖w‖q since the linear prediction wT x
remains bounded by the Hölder’s inequality. Furthermore, in many engineering applications,
the solution w may be bounded. This requires an infinity-norm regularization, which can
be approximated by a q-norm regularization with a large q. In some robust formulations,
one may also prefer a regularization condition ‖w‖q with q < 2.

5.2. Some learning formulations

Regression. We consider a generalized form of Vapnik’s ε-sensitive loss with ε > 0:

f (a, b) =
{

0 if |a − b| ≤ ε,

1
p (|a − b| − ε)p otherwise,

(18)

where 1 ≤ p < + ∞. Its dual is

k(−αi , yi ) = ε|αi | + 1

q
|αi |q − yiαi ,

where 1/p+1/q = 1. If ε > 0, then by (10), this formulation produces a sparse dual estimate.
In the general case with p > 1, the corresponding gradient descent in (11) becomes

�αi

λn
= −ηi (sgn(αi )(ε + |αi |q−1) + wT xi − yi ), (19)

where w = ∇h(v).
If p = 1, k(·, ·) becomes a constrained convex function:

k(−αi , yi ) = ε|αi | − yiαi , αi ∈ [−1, 1].

The corresponding gradient descent in (11) becomes

�αi

λn
= −ηi (sgn(αi )ε + wT xi − yi ), αi + �αi ∈ [−1, 1], (20)

where w = ∇h(v).
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If |wT xi − yi | < ε, and w is close to the optimal solution ŵ, then the relationship (10)
indicates that αi should be (close to) zero. However, The right hand side of (19) or (20)
may not be close to zero, which causes oscillation in the update �αi . This problem can
be avoided if we choose an update |�αi | ≤ |αi | when |wT xi − yi | < ε. Also if αi = 0 and
|wT xi − yi | ≥ ε, then sgn(αi ) is not well-defined. We can set sgn(αi ) = − sgn(wT xi − yi )

in this situation.
If the square regularization (12) is employed, and p = 1 or p = 2 in (18), then the exact

solution of (∗) can be obtained.
When p = 1, (13) becomes

inf
�αi

[
ε|αi + �αi | − yi�αi + c2�αi + c1

2
�α2

i

]
s.t. αi + �αi ∈ [−1, 1].

Let

�1 = −ε + c2 − yi

c1
, �2 = −−ε + c2 − yi

c1
,

where c1 and c2 are given by (14) or (15). The exact solution of (∗) is

�αi =




min(�1, 1 − αi ) if αi + �1 ≥ 0,

max(�2, −1 − αi ) if αi + �2 ≤ 0,

−αi otherwise.

When p = 2, (13) becomes

inf
�αi

[
ε|αi + �αi | + 1

2
(αi + �αi )

2 − yi�αi + c2�αi + c1

2
�α2

i

]
.

Let

�1 = −ε + αi + c2 − yi

c1 + 1
, �2 = −−ε + αi + c2 − yi

c1 + 1
,

where c1 and c2 are given by (14) or (15). The exact solution of (∗) is

�αi =




�1 if αi + �1 ≥ 0,

�2 if αi + �2 ≤ 0,

−αi otherwise.

The case p = 1 corresponds to robust estimation. Its robustness is naturally explained
in the dual formulation since αi ∈ [0, 1] is bounded for each i . From the relationship w =
∇h( 1

λn

∑n
i=1 αi xi ), we see that the contribution of any single data point xi in the summation

cannot exceed | 1
λn xi |. This means that a small percentage of outliers in the data do not have

a significant impact on w.
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Binary classification. In binary classification, yi = ±1. We consider a general form of
SVM style loss function (1 ≤ p < +∞):

f (a, b) =
{

0 if ab ≥ 1,
1
p (1 − ab)p otherwise.

(21)

Its dual is given by

k(−αi , yi ) = 1

q
|αi |q − αi yi (αi yi ≥ 0),

where 1/p + 1/q = 1.
For p > 1 with a general regularization transfer function ∇h, the corresponding gradient

descent in (11) becomes

�αi

λn
= −ηi (sgn(αi )|αi |q−1 + wT xi − yi ), (αi + �αi )yi ≥ 0. (22)

where w = ∇h(v).
When p = 1, the dual can be written equivalently as:

k(−αi , yi ) = −αi yi (αi yi ∈ [0, 1]).

The corresponding gradient descent in (11) becomes

�αi

λn
= −ηi (w

T xi − yi ), (αi + �αi )yi ∈ [0, 1], (23)

where w = ∇h(v).
As a comparison, a family of online update algorithms for classification have been in-

troduced in (Grove, Littlestone, & Schuurmans, 1997). This family of algorithms can be
equivalently written as the following update at step (∗) in Algorithm 1:

�αi =
{

0 if wT xi yi > 0,

ηyi otherwise,
(24)

where w = ∇h(v). η > 0 is a learning rate.
This online update does not correspond to a true gradient descent rule with respect to any

dual formulation (8). However, it has a form that is very similar to the true gradient descent
rule in (22) and (23). Conceptually, (22) and (23) can be regarded as different large margin
versions of (24) using g-regularization.

From the online learning point of view, update rule (24) gives the Perceptron algorithm
if we let h(v) = 1

2v2; it gives the Winnow family of online algorithms (Littlestone, 1988) if
we let ∇h(v) take exponential forms; it gives the p-norm algorithm if h corresponds to the
dual of a q-norm regularization term g.
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Therefore, we can obtain regularized large margin versions of these online algorithms
simply by choosing different regularization conditions in (22) and (23). For example, with
entropy regularization, an additive update in α leads to an multiplicative update in w. This
gives regularized Winnows. With q-norm regularization, we obtain large margin versions of
a p-norm algorithm. Specifically, if we let q = 2, then we obtain large margin Perceptrons.
In fact, this connection with the Perceptron update is already known. For example, see
Platt (1999) and Cristianini and Shawe-Taylor (2000). Furthermore, we can use a transfer
function ∇h(v) that vanishes in a region, which leads to a sparse representation on w.

In general, the above discussion shows that with the same gradient descent rule, we
can modify the transfer function w = ∇h(v) to obtain different methods. Furthermore, the
transfer function w = ∇h(v) can be chosen to enforce desired properties on w (such as
sparsity, positivity, etc). Due to the simplicity of this approach, we may even conjecture
that with a transfer function that does not correspond to the gradient of a convex function,
the resulting method could still be interesting, although there is no convex duality theory
to reconstruct the corresponding primal problem.

It is interesting to compare (22) and (23) to the corresponding update rules (20) and (20)
for regression problem with ε = 0. We observe that the only difference is the additional
constraint αi yi ≥ 0 in classification. This observation can be applied to convert other dual
regression formulations into classification formulations.

If we consider the square regularization (12) and let p = 1 or p = 2 in (21), then the exact
solution of (∗) can be obtained.

When p = 1, (13) becomes

inf
�αi

[
−yi�αi + c2�αi + c1

2
�α2

i

]
s.t. (αi + �αi )yi ∈ [0, 1].

The exact solution of (∗) is

�αi = yi max

(
min

(
αi yi − c2 − yi

c1
yi , 1

)
, 0

)
− αi , (25)

where c1 and c2 are given by (14) or (15). In 1999, Platt also derived this update rule.
However, his derivation employed Bregman’s technique (Bregman, 1967) suitable only
for some specific problems. In particular, the technique of convex duality which we have
adopted in this paper generalizes Bregman’s approach. This specific update formula (25)
has also appeared in Jaakkola, Diekhans, and Haussler (2000).

When p = 2, (13) becomes

inf
�αi

[
1

2
(αi + �αi )

2 − yi�αi + c2�αi + c1

2
�α2

i

]
s.t. (αi + �αi )yi ≥ 0.

The exact solution of (∗) is

�αi = yi max

(
− αi + c2 − yi

c1 + 1
yi , −αi yi

)
, (26)

where c1 and c2 are given by (14) or (15).
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Note that if p = 1, then αi yi ∈ [0, 1]. If p = 2, αi can be large. This difference means that
the case p = 1 is more robust in the sense that an outlier will not have a significant impact
on the primal estimate. However, for practical problems with few outliers, this difference is
non-essential. In fact, we observe that in many problems, the p = 2 formulation is preferable.

Finally, we mention that the dual formulation can also be used to solve another popular
binary classification method—logistic regression.

f (a, b) = ln(1 + exp(−ab)),

Its dual is

k(−αi , yi ) = αi yi ln(αi yi ) + (1 − αi yi ) ln(1 − αi yi ) s.t. αi yi ∈ [0, 1].

It is interesting to observe that compared with the SVM style loss with p = 1 in (21), the
dual of logistic-loss replaces the term −αi yi in the dual of SVM-loss by an entropy term.
The −αi yi term favors αi yi ≈ 1, while the entropy term favors αi yi ≈ 0.5. Conceptually,
the difference is quite small. Due to the constraint αi yi ∈ [0, 1], logistic regression is also
robust to outliers.

We have seen that all classification loss-terms f (a, b) studied in this section have duals
k(−αi , yi ) of the following shape: k(−αi , yi ) = +∞ when αi yi < 0; as αi yi increases,
k(−αi , yi ) first decreases at αi yi = 0; it achieves the minimum at αi yi = a > 0, and then
increases. This means that a classification-loss favors a fixed positive value of αi yi = a. The
overall effect is to favor a linear weight of the form w = ∇h( a

λn

∑n
i=1 xi yi ), which can be

regarded as a transformed centroid. This implies that the main difference among different
classification loss-terms is how this transformed centroid is favored.

Un-regularized bias term. We have mentioned in Section 2 that one often encounters a
linear model of the form wT x + b. Although the bias b can be absorbed into the weight w

by appending a constant 1 to x , it is typically un-regularized in the literature. Note that in
the previous discussion, we essentially assume that b is also regularized. In our experience,
this extra regularization does not introduce any practical difference for learning problems.
However, it is still useful to consider the special case that b is un-regularized.

We replace wT xi in (2) by wT xi + b. In this case, the regularization condition g(w) is
independent of b. The dual of g(w) in the space [w, b] has a form

h̃([v, vb]) = sup
w,b

[wT v + vbb − g(w)].

Therefore if vb = 0, h̃([v, vb]) = h(v) where h(v) is the dual of g(w); if vb �= 0, h̃([v, vb]) =
+∞.

This means that the dual problem is still given by (8), but under an additional constraint

vb = 1

λn

n∑
i=1

αi = 0.
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From Appendix C and Appendix D, this constraint can be handled by solving the following
augmented Lagrangian problem

α̂ = arg inf
α

[
1

n

n∑
i=1

k(−αi , yi ) + λh

(
1

λn

n∑
i=1

αi xi

)
(27)

+ s
n∑

i=1

1

n
αi + 1

2µn

(
n∑

i=1

αi

)2]
,

where the Lagrangian parameter s is chosen so that
∑n

i=1 α̂i = 0. The optimal primal solution
[ŵ, b̂] is given by

ŵ = ∇h

(
1

λn

n∑
i=1

α̂i xi

)
, b̂ = s. (28)

We may now use Algorithm 3 to solve (27). Similar to (11), the α-update in (∗∗) can be
approximately solved using a gradient descent method:

�αi

λn
= −ηi

(
−k ′

1(−αi , yi ) + wT xi + s + 1

µ

n∑
k=1

αk

)
, (29)

where w = ∇h(v).
Compared with (11), the only difference we have is the extra two terms s + 1

µ

∑n
i=1 αi .

The first term corresponds to the bias b. The second term favors a direction �αi that makes
| ∑n

i=1 αi | small.
A special but interesting case is the standard SVM formulation, where f is given by (21)

with p = 1, and g is given by the square regularization (12). Similar to (25), we can obtain
the exact solution to (∗∗) as

�αi = yi max

(
min

(
αi yi −

c2 + s + 1
µ

∑n
i=1 αi − yi

c1 + 1
µ

yi , 1

)
, 0

)
− αi , (30)

where c1 and c2 are given by (14) or (15).
The s-update in Algorithm 3 is given by

s = s + η

µ

n∑
i=1

αi . (31)

Intuitively, this shifts the bias b towards the current estimate of the extra bias given by∑n
i=1 αi . Due to this compensation, it has the effect of shrinking

∑n
i=1 αi towards zero.
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6. Experiments

In this section, we study various aspects of the proposed dual algorithms. Due to the gen-
erality of algorithms that can result from this formulation, it is not possible to study all
specializations of (8) mentioned in this paper. Therefore, we only use a few example dual
formulations to illustrate aspects of Algorithm 1 that are common to the general dual learn-
ing problem.

6.1. Effect of different regularization conditions

In the engineering literature, non-square regularization conditions are widely used. A spe-
cific choice of regularization condition reflects certain domain dependent data properties.
For example, if sparse weight is required, then 1-norm regularization should be used. In ma-
chine learning, it is also known that different regularization should be employed in different
situations. For example, the maximum entropy principle is used in density estimation. In
online learning, if the data has many irrelevant attributes and the target linear separator is
one-norm bounded, then the Winnow algorithm is preferred to the Perceptron algorithm.

The conclusion of this online learning analysis also holds in batch learning. In this
section, we use an artificial binary classification problem to show that if the data are ∞-
norm bounded, and the target hyperplane is sparse, then the regularized Winnow with
entropy regularization is superior to the regularized Perceptron with 2-norm regularization.
Note also that there is no obvious way to employ a kernel method that can enhance the
simple 2-norm regularization. This example shows that in practice, different regularization
conditions are suitable for different learning problems.

The data in this experiment are generated as follows. We select an input data dimension
d, with d = 500 or d = 5000. The first 5 components of the target linear weight w are set
to be ones; the 6th component is −1; and the remaining components are zeros. The bias
b is −2. Data are generated as random vectors with each component randomly chosen to
be either 0 or 1 with probability 0.5 each. Five percent of the data are given wrong labels
(noise). The remaining data are given correct labels, but we remove data with margins that
are less than 1. One thousand training and one thousand test data are generated.

Note that Winnow algorithms with entropy regularization require positive weights. A
variant called balanced Winnow can be used to overcome this problem. We embed the input
space into a higher dimensional space as: x̃ = [x, −x]. This modification allows the positive
weight Winnow algorithm for the augmented input x̃ to have the effect of both positive and
negative weights for the original input x . Balanced Winnows are used throughout our
experiments. As mentioned in Section 2, we append a constant 1 to each data point to
compensate the effect of bias b, so that the decision rule can be written as y ≈ sgn(wT x)

with zero bias.
We use UWin and NWin to denote the basic unnormalized and normalized Winnows

respectively. LM-UWin and LM-NWin denote the corresponding large margin versions.
The SVM style large margin Perceptron is denoted as LM-Perc.

We use 200 iterations over the training data for all algorithms. The initial values for the
Winnows are set to be the priors: µ j = 0.01. Since our main purpose is to examine different
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Table 1. Testset accuracy (in percentage) on the artificial dataset.

Dimension Perceptron LM-Perc UWin LM-UWin NWin LM-NWin

500 82.2 87.1 82.4 94.0 82.4 94.3

5000 67.9 69.8 69.7 87.4 69.7 88.6

regularization conditions, we chose the SVM style soft-margin loss in (21) with p = 1 for
all regularized algorithms.

For online algorithms, we fix the learning rates at 0.01. For large margin Winnows, we
use learning rates ηi = 0.01 in the gradient descent update (23). For (2-norm regularized)
large margin Perceptron, we use the exact update given in (25).

Accuracies (in percentage) of different methods are listed in Table 1. For regularization
methods, accuracies are reported with the optimal regularization parameters. The superiority
of the regularized Winnows is obvious, especially for high dimensional data. Accuracies of
regularized algorithms with different regularization parameters are plotted in figure 1. The
behavior is very typical for regularized algorithms. In practice, the optimal regularization
parameter can be found by cross-validation.

6.2. Convergence of the dual Gauss-Seidel algorithm

We study the convergence behavior of Algorithm 1. In this experiment, we use a more
realistic dataset in text categorization, where support vector machines have been successfully
applied.

In text categorization, it frequently happens that each category contains only a small
percentage of documents. When this happens, the standard classification error measurement
is often not very indicative, because one can get a low error rate simply by saying no item is
in any class. The standard performance measures of a classification method are the precision
and recall:

precision = true positive

true positive + false positive
× 100

recall = true positive

true positive + false negative
× 100

If a classification algorithm contains a parameter that can be adjusted to facilitate a trade-
off between precision and recall, then one can compute the break-even point (BEP), where
precision equals recall, as an evaluation criterion for the performance of a classification
algorithm.

The standard data set for comparing text categorization algorithms is the Reuters set of
news stories, publicly available at http://www.research.att.com/∼lewis/reuters21578.html.
We use Reuters-21578 with Mod-Apte split to partition the documents into training and
validation sets. This dataset contains 118 non-empty classes (in addition, there are some
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Figure 1. Testset accuracy (in percentage) as a function of λ.

documents that are not categorized), with 9603 documents in the training set and 3299
documents in the test set.

The micro-averaged (that is, the precision and the recall are computed by using statistics
summed over the confusion matrices of all classes) performances of the algorithms over
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Table 2. Micro-averaged break-even performance on Reuters.

Algorithm Perceptron LM-Perc UWin LM-UWin NWin LM-NWin Spars

BEP 78.5 85.7 79.2 87.0 79.2 87.1 86.7

all 118 classes are reported in Table 2. The results are comparable with the state of the art
achieved on Reuters. Each BEP is computed by first adjusting the linear decision threshold
individually for each category to obtain a BEP for the category, and then micro-averaged
over all 118 classes. The regularization parameters are determined by cross-validation.

The “Spars” algorithm in Table 2 is a version of sparse regularization in (16) with ε = 0.1.
To be consistent with other algorithms, we still use the SVM style soft-margin loss in (21)
with p = 1. This algorithm is solved by using the gradient descent update (23) with ηi = 0.01.

We use binary word occurrences as input features, and append a constant feature of 1. As
explained before, the constant feature is used to offset the effect of the bias b. The step-up
of each algorithm is the same as that for the artificial dataset in Section 6.1. Note that in
this experiment, no feature selection or stop-word removal is used. Due to the presence of
some irrelevant features, the Winnow family of algorithms has a slight advantage.

Since the “Spars” algorithm produces a sparse weight, it has an effect of automatic feature
selection. Therefore in this case, it is not surprising to see that the algorithm achieves a better
performance than a large margin Perceptron. Furthermore, the average non-zeros in linear
weights obtained from the Spars algorithm is 400 over all 118 categorizes (and 1500 over
top 10 categories). This is a significant reduction compared with the 45000 features we start
with.

Convergence curve. We study the convergence behavior of Algorithm 1 as the number
of Gauss-Seidel iterations increases. Two measures are used: duality gap and BEP on the
test set. Let w̃ and α̃ be the current estimate of the optimal primal and dual variables. The
duality gap measurement is based on the fact that

G(w̃, α̃) = sup
α

R(w̃, α) − inf
w

R(w, α̃) ≥ 0.

G(w̃, α̃) is zero when w̃ is an optimal solution to (2), and α̃ is an optimal solution to (8).
By definition, the duality gap G(w̃, α̃) equals the sum of the value of (2) at w̃, and the value
of (8) at α̃.

We only report results on the Reuters “acq” and “trade” categories. The “acq” category
has a BEP of about 95; and “trade” has a BEP of about 75. These choices thus reflect
convergence behaviors of Algorithm 1 for relatively clean data and for relatively noisy
data. To save space, we only consider LM-Perc, LM-NWin, and Spars. Since LM-Perc has
been used in practice, and corresponds to the exact optimization of (∗), we regard it as
the base-line for the purpose of studying behaviors of the gradient descent rule (11) for
a general formulation in (8). We would also like to point out that with the default initial
values, the corresponding duality gaps for all algorithms considered in this section are
ones.



112 T. ZHANG

Figure 2. Convergence curves on the “acq” category.

Figure 2 and figure 3 show the convergence behavior of the algorithms, measured by
duality gap and test-set BEP performance. They reflect typical behavior of the dual Gauss-
Seidel algorithm. Results from the two figures are consistent, and they reveal a number of
interesting properties.
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Figure 3. Convergence curves on the “trade” category.

One observation is that for every algorithm, the duality gap quickly drops from the initial
value of 1 after the first few iterations over the data. At the same time, the classification
performance goes up to a level that is more or less stabilized. That is, further optimiza-
tion has a relatively small impact on the classification accuracy. We can also see that the



114 T. ZHANG

algorithms converge at similar rates, even though some use gradient descent, and some
exact optimization.

It is also interesting to observe that the duality gap for the LM-Perc algorithm does
not always decrease. However, as a result of using the exact update rule (25), the dual
objective function value in (8) always decreases (which we have verified numerically).
From the figures, we also see that this unstable behavior of duality gap is correlated with
a deterioration of classification performance. In the next experiment, we show that this
non-monotonic duality gap problem can be remedied by using a smaller update step size.
Even though this problem does not lead to any contradiction (the duality gap will eventually
goes to zero), it is not desirable. We do not have a definite explanation for this phenomenon.
Our only conjecture is that due to the constraint αi ∈ [0, 1] for each αi (which introduces
some non-smoothness), the large step size given by the exact update rule (25) makes αi to
oscillate.

Influence of learning rate. We study the impact of different learning rates on the three
algorithms. To save space, we only use the “trade” category in Reuters.

For the LM-UWin and Spars algorithms, we plot the convergence curves with learning
rates ηi = 0.0001, 0.001, 0.01, 0.1. The results are shown in figure 5 and figure 6. We see
that even with every small learning rates, these algorithms converge rather quickly. The
Winnow algorithm is quite stable with respect to these learning rates. However, for the
Spars algorithm, with a large learning rate such as 0.1, the algorithm oscillates.

For the LM-Perc algorithm, we use an update that is a scale t of the exact solution (25),
where t = 0.01, 0.1, 1, 10. The update is modified from (25) as below:

�αi = yi max

(
min

(
αi yi − t

c2 − yi

c1
yi , 1

)
, 0

)
− αi .

Interestingly, if we use a step-size that is ten time smaller than the exact solution, the
convergence curve becomes much smoother (see figure 4). This indicates that it is desirable
to use a learning rate that is smaller than the exact solution of (∗) given in (25).

This experiment indicates that we can use an update that is ten or even a hundred time
smaller than the update that solves (∗) exactly (or the update from Newton’s method). A
smaller update will not significantly slow down the convergence. However, it is dangerous
to use a large learning rate. Therefore in practice, one should make sure that the selected
learning rate is not larger than the update implied from Newton’s method. Roughly speaking,
for entropy regularized algorithms, the rate should be inversely proportional to ‖x‖2

∞. For
2-norm regularized algorithms, the rate should be inversely proportional to ‖x‖2

2. It is usually
not difficult to find a good learning rate for a specific application, as long as appropriate
care is taken to prevent oscillation or slow convergence.

6.3. Augmented Lagrangian

In this experiment, we study the convergence behavior of augmented Lagrangian for prob-
lems with un-regularized bias term. We use the standard SVM formulation with α-update
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Figure 4. Impact of learning rate for LM-Perc on the “trade” category.

given by (30), and s-update given by (31). From the previous experiment, we know that
the exact α-update rule does not give a very desirable convergence behavior. Therefore we
use an update that is ten times smaller than the update given in (30). This choice leads to a
more desirable convergence curve.
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Figure 5. Impact of learning rate for Spars on the “trade” category.

We study the convergence of duality gap and the quantity | ∑n
i=1

αi
λn | for the feasibility

condition
∑n

i=1
αi
λn = 0. Since the feasibility condition is not satisfied during the com-

putation, formula (8) cannot be used to calculate the duality gap—it gives the value +∞
when the feasibility condition is not satisfied. We thus consider the following modification:
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Figure 6. Impact of learning rate for LM-UWin on the “trade” category.

with the current Lagrangian multiplier s, we set b = s in the primal formulation (2), where
we replace wT xi by wT xi + b. The dual of (2) with fixed b is given by (27) with the
augmented Lagrangian term 1

2µn (
∑n

i=1 αi )
2 dropped. Their duality gap can be obtained

accordingly.
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Figure 7. Convergence of augmented Lagrangian with different s-update learning rates on the “trade” category.

We still use the “trade” category in Reuters in order to be consistent with other experi-
ments. µ is chosen to be 1. We vary the s-update learning rate η in the s-update formula
(31), and plot the corresponding convergence curves in figure 7. As we can see, with a large
η, the algorithm becomes unstable. With an appropriate η, the algorithm converges fast (in
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terms of both feasibility and duality-gap). It seems that the choice of η = 0.1 is reasonable in
many applications. The reason that the feasibility curve stops converging after a few dozen
iterations (with η = 0.1, 1) is due to the error associated with the more slowly convergent
duality gap, which appears as noise in the feasibility curve.

Compared with some earlier approaches to solve an SVM (such as SMO (Platt, 1999)), an
advantage of the augmented Lagrangian approach is its simplicity and generality. There is
also a very clear intuition for the α-update and the s-update in this scheme. In an augmented
Lagrangian algorithm, we do not require the feasibility condition

∑n
i=1 αi = 0 to be satisfied.

This allows simple α-update rules. However, in SMO style algorithms, this dual feasibility
condition

∑n
i=1 αi = 0 should always be satisfied. As a result, each time two data points

have to be selected simultaneously for optimization. This data selection task has to be
implemented carefully, and can be quite time consuming.

7. Conclusion

Kernel methods have been successfully applied in many applications. Their foundation relies
on the dual representation of a 2-norm regularized linear prediction method. In engineering,
other regularized formulations have been used. It is thus useful to study dual representations
of these methods.

In this paper, we consider a general form of regularized linear prediction methods. We
extend the duality analysis in 2-norm regularization, and obtain a convex duality for linear
models under general regularization conditions. Our discussion is very general. We allow a
convex function to take the +∞ value, which can be equivalently regarded as a constraint
on the function. The only essential assumption required in this analysis is that the primal
form has a feasible solution.

We show that for a general regularized linear system with convex risk in (2), a dual
formulation (8) exists. An optimal solution ŵ to the primal problem and the corresponding
optimal solution α̂ to the dual problem satisfy the relationships (9) and (10). Therefore we
can solve the dual learning problem and then obtain the primal solution through (9).

In Section 4, we present a Gauss-Seidel style numerical algorithm to solve the dual
problem. There are two distinctive properties of this algorithm. The first property is that the
algorithm updates the dual variable by examining one data at a time, which is very similar
to an online algorithm. This update style establishes a connection between certain online
learning methods and dual formulations of batch learning methods. The second property
is that if we write a gradient descent rule to approximately solve each Gauss-Seidel step,
algorithms with different regularization conditions have the same basic form of gradient
descent rule (11). Their difference is reflected by the transfer function (9) which maps the
dual variable into the primal variable. This unique feature implies that we can essentially
keep the same update rule, but use a different transfer function to obtain the effect of
different regularization. From a practical point of view, the transfer function (9) can be used
to enforce various conditions on w such as positivity and sparsity.

In Section 5, we give a number of dual learning formulations. We show that this du-
ality provides useful insights into learning algorithms such as robustness and sparsity,
etc. We show that using an entropy regularization term, the gradient descent in the dual
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variable leads to an exponentiated gradient descent in the primal variable. This provides a
batch learning foundation for online exponentiated gradient descent algorithms (Kivinen &
Warmuth, 1997). By using the relationship of dual representation and online learning, we
are able to convert general online updates for linear classification in Grove, Littlestone, and
Schuurmans (1997) into corresponding large margin batch algorithms. In particular, Per-
ceptron can be converted into regularized Perceptron (SVM) and Winnow can be converted
into regularized Winnow.

In Section 5, we examine various aspects of the newly proposed dual algorithms. We
show that the choice of regularization condition can be important in machine learning.
This provides a reason for investigating issues related to non-square regularization. We also
show that Algorithm 1 can converge very fast in practice, even with a small learning rate
in the gradient descent update rule (11). The generality, algorithmic simplicity and the nice
convergence behavior of the augmented Lagrangian method in Algorithm 3 also suggests
that it can be regarded as an alternative to previously proposed SVM algorithms.

In summary, the convex duality presented in this paper generalizes the convex duality in
kernel methods. We show that the derived dual formulation has many interesting properties.
It leads to interesting new learning algorithms, and it provides useful insights into existing
learning formulations.

Appendix

A. Dual transform and subgradient

The material in this appendix can be found in Rockafellar (1970). We include them here
for completeness.

Let p be a closed proper convex function, as those considered in this paper. We define
its dual q as

q(v) = sup
u

(uT v − p(u)).

It is well known that q is a closed proper convex function, and its dual is p:

p(u) = sup
v

(uT v − q(v)).

In this paper, we use ∇ p(u) to denote a subgradient of a convex function p at u, which
is a vector that satisfies the following condition:

∀u′, p(u′) ≥ p(u) + ∇ p(u)T (u′ − u).

The set of all subgradients of p at u is called the subdifferential of p at u and is denoted by
∂p(u).

The following fact is very useful in our discussion. It can be found in Rockafellar (1970),
Section 23.
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Proposition A.1. Let p and q be dual transforms, then the following conditions are equiv-
alent:

1. v0 ∈ ∂p(u0).
2. uT v0 − p(u) achieves its supremum in u at u0.
3. p(u0) + q(v0) = uT

0 v0.
4. u0 ∈ ∂q(v0).

Proof: The subgradient inequality defining condition 1 can be rewritten as uT v0 − p(u) ≤
uT

0 v0 − p(u0). By definition, this is the same as condition 2. Condition 2 is the same as
condition 3 by the definition of dual transform. Finally note that condition 3 is symmetric
in p and q . Thus dually, its equivalence with condition 1 implies its equivalence with
condition 4. ✷

B. Strong duality

It is well-known (for example, see (Rockafellar, 1970) Section 36) that the duality gap

G = inf
w

sup
α

R(w, α) − sup
α

inf
w

R(w, α) ≥ 0.

Clearly, the non-negativity of duality gap implies that if there exist ŵ and α̂ such that

R(ŵ, α̂) = sup
α

R(ŵ, α) = inf
w

R(w, α̂), (32)

then ŵ is a solution to (5), and α̂ is a solution to (6). It also implies that it is valid to
interchange the order of infw and supα in (5) since G = 0. If (32) holds, then (ŵ, α̂) is called
a saddle point.

Let ŵ be a solution to (5). In the following, we construct α̂ that satisfies (7) and (32).
By definition, a convex function achieves its minimum at a point where 0 is a subgradient.
Using the subgradient algebra in Rockafellar (1970), Section 23 (specifically Theorem 23.8
and Theorem 23.9), we obtain

1

n

n∑
i=1

f ′
1(ŵ

T xi , yi )xi + λ∇g(ŵ) = 0,

where f ′
1 denotes a subgradient of f (a, b) with respect to a, and ∇g denotes a subgradient

of g. Now, let α̂i = − f ′
1(ŵ

T xi , yi ), we obtain:

∇g(ŵ) = 1

λn

n∑
i=1

α̂i xi .

This gives (7). We only need to show that (32) holds.
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By Proposition A.1 and (7), ŵ achieves the minimum of

g(w) − wT 1

λn

n∑
i=1

α̂i xi .

That is,

R(ŵ, α̂) = inf
w

R(w, α̂).

Also by the construction of −α̂i as a subgradient of f (·, yi ) at ŵT xi and Proposition A.1,
we know that for all i , α̂i achieves the maximum of

−αi ŵ
T xi − k(−αi , yi ).

That is,

R(ŵ, α̂) = sup
α

R(ŵ, α).

This finishes the proof.

C. Dual constraint

If h is not differentiable at every feasible point, then the subgradient of h may not be unique.
This causes problems when we attempt to obtain the primal solution ŵ of (2) from (9). This
situation is related to the degeneracy of Eq. (7) at ŵ. The following situations may occur
when a convex function p(v0) is not differentiable at a point v0:

• p is continuous but not differentiable.
• p is not continuous at v0. In this case, p achieves +∞ in any neighborhood of v. That

is, u0 belongs to the boundary of the feasible region Dp = {v : p(v) < ∞}.

In this paper, we are not interested in the first situation since the chance this happens at the
optimal solution in (9) is very rare. Furthermore, one can always slightly modify h so that it
does not contain any continuous non differentiable point. However, in practice, the second
situation can occur frequently. Since finding a feasible solution of the dual optimization
problem (8) is equivalent to minimizing (8) in Dh , it is quite possible that the optimal
solution lies on the boundary of Dh .

In order to obtain a useful computational procedure, we impose the following assump-
tions:

• There is a convex function h̄ such that h̄ = h in Dp, and h̄ is differentiable on the boundary
of Dp.
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• We assume that the convex set Dh can be equivalently written as the following constraints:

C1v − b1 = 0, c2(v) ≤ 0.

C1 is a matrix, b is a vector, and c2 is a differentiable vector valued function with
convex components. Note that since Dh is convex, therefore an associated non-trivial
equality constraint has to be linear: the line segment connecting two points that satisfy
the equality constraint also satisfies the constraint.

To solve (8) numerically, we use the Lagrangian multiplier method, which is very popular
in numerical optimization (Fletcher, 1987). We introduce Lagrangian multiplier vectors s1

and s2, where s1 corresponds to the equality constraint C1v−b1 = 0, and s2 ≥ 0 corresponds
to the inequality constraint c2(u) ≤ 0. We modify h using the Lagrangian variables as:

hs1,s2(v) = h̄(v) + sT
1 (C1v − b1) + sT

2 c2(v).

Clearly, hs1,s2(v) ≤ h(v) for all v. Let gs1,s2(u) be the dual transform of hs1,s2(v), then by
definition, gs1,s2(u) ≥ g(u) for all u.

We now consider Lagrangian variables s1 and s2 that solve (8). That is, the solution
α̂(s1, s2) of

α̂(s1, s2) = arg inf
α

[
1

n

n∑
i=1

k(−αi , yi ) + λhs1,s2

(
1

λn

n∑
i=1

αi xi

)]
(33)

belongs to Dh , under the complementarity condition:

s2 · c2

(
1

λn

n∑
i=1

αi xi

)
= 0, s2 ≥ 0. (34)

We use · to denote component-wise multiplication of two vectors.
It is easy to check that if s1 and s2 solve (8), then α̂ in (33) also solves (8). This is because

hs1,s2 ≤ h, and at the optimal solution α̂ of (33), hs1,s2 = h.
The existence of such Lagrangian multipliers s1 and s2 that solve (8) forms a central topic

in mathematical programming. It can be regarded as a part of the general convex duality
theory (see Rockafellar (1970), Section 28). For simplicity, we skip the related analysis.

We now assume that there exist s1 and s2 that solve (8). We also assume that hs1,s2 is
differentiable at 1

λn

∑n
i=1 α̂i xi , so that its subgradient is unique. Then (9) can be modified

to obtain a solution of (2) as

ŵ = ∇hs1,s2

(
1

λn

n∑
i=1

α̂i xi

)
. (35)

The proof is given below.
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Since hs1,s2 is differentiable, vector ŵ given in (35) solves the primal problem (2) with g
replaced by gs1,s2 . We have

1

n

n∑
i=1

f (ŵT xi , yi ) + λgs1,s2(ŵ) = −
[

1

n

n∑
i=1

k(−α̂i , yi ) + λhs1,s2

(
1

λn

n∑
i=1

α̂i xi

)]
.

This equality follows from the fact that at the optimal solution, the duality gap is zero (see
Appendix B).

Note that hs1,s2(v) ≤ h(v) for all v by construction. Therefore by the definition of dual
transformation, gs1,s2(u) ≥ g(u) for all u. Since

hs1,s2

(
1

λn

n∑
i=1

α̂i xi

)
= h

(
1

λn

n∑
i=1

α̂i xi

)
,

we obtain

1

n

n∑
i=1

f (ŵT xi , yi ) + λg(ŵ) ≤ −
[

1

n

n∑
i=1

k(−α̂i , yi ) + λh

(
1

λn

n∑
i=1

α̂i xi

)]
.

This inequality means that the duality gap is less than or equal to zero. However, since a
duality gap can never be negative, the equality must hold. This implies that ŵ is a solution
to (2).

D. Augmented Lagrangian algorithm

Assume that h contains a constraint in (8). We would like to extend Algorithm 1 so that the
Gauss-Seidel style update is preserved. By Appendix C, if we can find Lagrangian variables
s1 and s2 that solve (8), then we can directly replace h in (8) by hs1,s2 , and use Algorithm 1
to obtain the optimal solutions α̂ and ŵ.

The difficulty is to determine the appropriate Lagrangian multipliers s1 and s2. We would
like to use an algorithm that automatically adjusts α, s1 and s2. The general idea is to use a
two step procedure:

1. Fix s1 and s2. Use Algorithm 1 to obtain the optimal α̂(s1, s2) in (33).
2. Check if α̂(s1, s2) satisfies the complementarity condition (34), and the feasibility con-

dition α̂(s1, s2) ∈ Dh . Update s1 and s2 accordingly to reduce violations.

To implement the procedure, even though one may directly work with the Lagrangian
hs1,s2 , it is numerically preferable to work with an augmented Lagrangian function. The
resulting method is called augmented Lagrangian method, which has been used in state of
art numerical optimization packages such as LANCELOT (Conn, Gould, & Toint, 1992).
The basic augmented Lagrangian update works only for equality constrained systems,
although it can be modified to deal with inequality constraints (for example, see Conn,
Vicente, and Visweswariah (1999) for a recent development).
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For simplicity, in this paper, we only give numerical procedures for the equality con-
strained situation. We consider the following form of equality constraint for Dh :

Cv − b = 0. (36)

We now consider a modification of h by augmented Lagrangian as

h̄s,µ(v) = h̄(v) + sT (Cv − b) + λn

2µ
(Cv − b)2,

where µ > 0 is a positive real number. The third term is used to stabilize the system: h̄s,µ(v)

is strictly convex in a direction that is perpendicular to the constraint surface Cv − b. This
extra stability is helpful in numerical computation.

We can now modify (33) using the augmented Lagrangian function as follows:

α̂µ(s) = arg inf
α

[
1

n

n∑
i=1

k(−αi , yi ) + λh̄s,µ

(
1

λn

n∑
i=1

αi xi

)]
. (37)

Since the term λn
2µ

(Cv−b)2 vanishes when α is feasible (i.e. α ∈ Dh), a Lagrangian parameter
s such that α̂µ(s) ∈ Dh is also a Lagrangian parameter in (33) that solves (8). This implies
that if α̂µ(s) is feasible, α̂µ(s) is a solution of (8), and

ŵ = ∇h̄

(
1

λn

n∑
i=1

α̂µ(s)i xi

)
+ CT s (38)

gives a solution of (2).
The following algorithm is a standard Augmented Lagrangian update that solves (8) un-

der constraint (36) (cf. Fletcher (1987), p. 292):

Algorithm 2 (Dual Augmented Lagrangian)

let α = α0, v j = 1
λn

∑n
i=1 α0

i xi j for j = 1, . . . , d, s = 0, and µ = µ0 > 0
let �s = +∞
for k = 1, 2, . . .

solve (8) with h(·) replaced by hs,µ(·) in Algorithm 1
(use the current (α, v) as the initial point, and update (α, v))

if ‖Cv − b‖∞ > 0.5‖�s‖∞
�s = Cv − b
µ = µ/4

else
�s = Cv − b
s = s + λn

µ
�s

end
end
ŵ = ∇h(v) + CT s.
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To understand the intuition behind the update formula

snew = sold + λn

µ
�s (�s = Cvold − b)

used in Algorithm 2, we observe that ∀vnew = vold + �v:

sT
new(Cvnew − b) − sT

old(Cvnew − b) = λn

µ

(
�sT �s + �sT C�v

)
.

Due to the term �sT C�v, the solution vnew with the new Lagrangian parameter snew favors
a change �v that is in the opposite direction of �s. In fact, by comparing the value of the old
solution of (37) before the s-update, and that of the new solution after the s-update, we can
see that the new solution of (37) leads to a change �v = vnew −vold such that �sT C�v < 0.
Note that (C(vnew − b))2 = (C(vold − b))2 + 2�sT C�v + O(�v2). Therefore under the
assumption that �v is small, the s-update formula attempts to make the constraint Cv−b = 0
to be more satisfied with the new Lagrangian parameter snew.

A nice property of the Augmented Lagrangian approach is that if the augmented dual
problem can be solved by Algorithm 1 to a sufficiently high accuracy, then the step µ = µ/4
can only be executed a finitely number of times. This means that upon termination, µ is
bounded away from zero.

However, an disadvantage of Algorithm 2 is that the augmented dual problem needs to
be solved fairly accurately, which may require a significant amount of iterations in Algo-
rithm 1. In practice, it is useful to update s more often, but with a smaller step size.

Algorithm 3 (Modified Dual Augmented Lagrangian)

let α = α0, v j = 1
λn

∑n
i=1 α0

i xij for j = 1, . . . , d, s = 0, and µ = µ0 > 0
let �s = +∞
for k = 1, 2, . . .

for i = 1, . . . , n
find �αi by approximately minimizing

k(−αi − �αi , yi ) + λnh̄s,µ(v + 1
λn �αi xi ) (∗∗)

update v: v j = v j + 1
λn �αi xi j ( j = 1, . . . , d)

update α: αi = αi + �αi

end
update s: s = s + η λn

µ
(Cv − b)

end
ŵ = ∇h(v) + CT s.

For simplicity, we do not update µ in Algorithm 3. The positive number η > 0 in the
s-update is a learning rate. It can be shown that as long as η is sufficiently small, the algorithm
converges to a correct solution. Furthermore, under moderate regularity conditions, the
asymptotic rate of convergence, which depends on η, is linear. Due to the space limitation,
we skip the analysis.
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An advantage of Algorithm 3 is its clear intuition: the update formula for α is to minimize
the augmented Lagrangian objective function (37); the update formula for s is to make the
constraint (36) more satisfied.

E. Examples of dual pairs

We use p(u) to denote a convex function with variable u, and q(v) to denote its dual
transform with dual variable v.

For many simple convex functions, their dual transforms can be expressed in closed
forms. It is often not difficult to calculate the dual transform q(v) from p(u). As an example,
we consider p(u) = 1

2 uT K u, where K is a symmetric positive definite operator. Given v,
assume that the maximum of supu uT v − p(u) is achieved at u0, then v = ∇ p(u0) = K u0.
Therefore u0 = K −1v. This implies that q(v) = uT

0 v − p(u0) = 1
2vT K −1v.

In the following, we list a number of duality pairs. The p-norm ‖·‖p of a vector is defined
as ‖u‖p = (

∑
i ‖ui‖p)1/p.

1. p(u) = 1
2 uT K u; q(v) = 1

2vT K −1v.
K is a symmetric positive definite operator.

2. p(u) = 1
p′ ‖u‖p′

p ; q(v) = 1
q ′ ‖v‖q ′

q .
p ≥ 1 and q ≥ 1 are dual pairs: 1/p + 1/q = 1; p′ ≥ 1 and q ′ ≥ 1 are dual pairs:
1/p′ + 1/q ′ = 1.

3. p(u) = ∑
j u j ln u j

eµ j
(u j ≥ 0); q(v) = ∑

j µ j exp(v j ).
{µ j > 0} is a set of positive prior.

4. p(u) = ∑
j u j ln u j

µ j
(u j ≥ 0,

∑
j u j = A); q(v) = A ln(

∑
j

µ j

A exp(v j )).

{µ j > 0} is a set of positive prior such that
∑

j µ j = A.
5. p(u) = ln(1 + exp(u)); q(v) = v ln v + (1 − v) ln(1 − v) (0 ≤ v ≤ 1).
6. p(u) = − ln u; q(v) = −1 − ln(−v).
7. p(u) = 1

2 u2 if |u| ≤ 1, and p(u) = |u| − 1
2 otherwise;

q(v) = 1
2v2 (|v| ≤ 1).

8. p(u) = 0 if |u| ≤ ε, and p(u) = 1
p (|u| − ε)p otherwise;

q(u) = ε|v| + 1
q |v|q .

ε > 0. p ≥ 1 and q ≥ 1 are dual pairs: 1/p + 1/q = 1.
9. p(u) = 1

2 u2 if 0 ≤ u ≤ 1, p(u) = u − 1
2 if u > 1, and p(u) = 0 if u < 0;

q(v) = 1
2v2 (0 ≤ v ≤ 1).

10. p(u) = 1
p u p if u ≥ 0 and p(u) = 0 otherwise;

q(v) = 1
q vq (v ≥ 0).

p ≥ 1 and q ≥ 1 are dual pairs: 1/p + 1/q = 1.

In the calculation of dual transformation, it is also convenient to note that if

p′(u) = ap(ST u + b),
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where S is a non-singular linear transform, then the dual transform q ′ of p′ is

q ′(v) = aq

(
1

a
S−T v

)
− bT S−T v.
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