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Adoption processes in socio-technological systems have been widely studied both
empirically and theoretically. The way in which social norms, behaviors, and even items
such as books, music, or other commercial or technological products spread in a
population is usually modeled as a process of social contagion, in which the agents of a
social system can infect their neighbors on the underlying network of social contacts.
More recently, various models have also been proposed to reproduce the typical
dynamics of a process of discovery, in which an agent explores a space of relations
between ideas or items in search for novelties. In both types of processes, the structure
of the underlying networks, respectively, the network of social contacts in the first case,
and the network of relations among items in the second one, plays a fundamental role.
However, the two processes have been traditionally seen and studied independently.
Here, we provide a brief overview of the existing models of social spreading and
exploration and of the latest advancements in both directions. We propose to look at
them as two complementary aspects of the same adoption process: on the one hand,
there are items spreading over a social network of individuals influencing each other,
and on the other hand, individuals explore a network of similarities among items to
adopt. The two-fold nature of the approach proposed opens up new stimulating
challenges for the scientific community of network and data scientists. We conclude by
outlining some possible directions that we believe may be relevant to be explored in the
coming years.
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1 INTRODUCTION

Networks constitute the backbone of complex systems, from the human brain to computer
communications, and from metabolic and protein systems to online and offline social systems.
Characterizing their structure improves our ability to understand the physical, biological, and social
phenomena that shape our world [1–4]. The structure of the network plays in fact a major role in the
dynamics of a complex system and characterizes both the emergence and the properties of its
collective behaviors [5, 6]. In particular, over the last twenty years, networks have been extensively
used to model human behavior, and such studies have attracted the attention of sociologists,
economists, physicists, and computer scientists. The network approach, eventually integrated with
the opportunities offered by the newly available data sources [7, 8], has largely contributed to the
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growth of new interdisciplinary fields such as those of
sociophysics [9–11] and computational social science [12–15].

In this study, we focus on network approaches that aim at
capturing andmodeling the fundamental mechanisms behind the
social dynamics of adoption [16, 17]. The processes through
which humans discover and adopt novel items—where by items
we indicate not only artifacts or new technological or commercial
products but also concepts, ideas, social norms, and
behaviors—can be described in two radically different ways,
both involving the presence of a complex network, whose
nature is different in the two cases.

Indeed, on the one hand, item adoption can be seen as a
contagion dynamics over a social network of individuals
influencing each other through their social connections. On
the other hand, it can be described as an exploration dynamics
over a network of similarities among the different possible items
that an individual can adopt. In the first case, a single item (a
single product, idea, or behavior) is considered at once, and the
transmission from one individual to another over a social system
is modeled as an epidemic-like spreading process [18, 19] across
the links of a social network [20–22]. Hence, the focus here is on
the complex structure of the underlying social network. In the
second case, the main focus is instead on the network of existing
relations between different items [23]. Hence, the modeling
attention is shifted toward the cognitive processes through
which single individuals explore the space of different
possibilities and produce sequences of explored items in search
of novelties [24–26]. In this latter way of interpreting adoption
dynamics, different exploration (and innovation) models have
been proposed to replicate the process of exploration, according
to which one idea, concept, or item leads to another, and a
discovery can trigger further ones [27, 28]. Here, we present a
brief overview of two different types of mechanisms that can
contribute to a process of adoption in socio-technological
systems, namely, social contagion on the one hand and item
exploration on the other. More specifically, in Section 2 and
Section 3, we will discuss the two different aspects of adoption
dynamics, briefly describing the various modeling approaches
that have been proposed and the latest advancements in both
directions. In Section 4, we will elaborate more on this duality,
illustrating the potential of constructing more elaborate models
that consider at the same time the two types of processes. Finally,
in Section 5, we will highlight various directions in which models
could be expanded by implementing more elaborated
mechanisms both at the level of the discovery dynamics and at
that of the social contagion process.

2 MODELING SOCIAL CONTAGION

Quantitative studies of contagion phenomena have helped
shading light on the similar dynamics at which information,
viruses, knowledge, rumors, and innovations spread in a
population [18, 29–31]. Contagion processes are usually
mediated by interactions that should therefore be taken into
account into the modeling framework [32–35]. As a consequence,
as for other landmark dynamical processes widely studied within

the complex system community, the interplay between the social
structure and the contagion dynamics that unfolds upon it has
been the focus of many studies [34, 36, 37]. The mechanisms of a
basic contagion dynamics are illustrated in Figure 1. Given a
single behavior, like smoking [38], the diffusion of the habit can
be thought as a spreading process over a network of social
relationships, in which individuals influence each other toward
the adoption of the behavior, thus going from Figure 1A to
Figure 1B. In this basic representation, the spreading dynamics
through a population of interacting individuals is similar to the
one of pathogens [18], and the typical modeling approach, akin to
the one of disease spreading, relies on compartments into which
individuals are classified according to their status: adopters/
infected (I) and non-adopters/susceptible (S).
Susceptible–Infected (SI) is thus the simplest model in this
setting, where an individual can move—after a contact with an
I—from compartment S to I with a given probability of infection.
In the Susceptible–Infected–Susceptible (SIS) variation, the
infection process is reversible, and infected individuals can
recover. This transition involves a second parameter, the
recovery rate. These models can be very informative, but their
simple mechanisms work only at a first approximation. In fact,
when dealing with human systems, there is a variety of behavioral
aspects influencing the social dynamics that cannot be overlooked
[39]. In many cases, the dynamics cannot be simply explained in
terms of basic disease epidemic models, which would result too
reductive. Instead, the social nature of the contacts mediating
these processes deserves special attention, calling for ad hoc
modeling adjustments and tailored experimental techniques to
measure social effects [40, 41].

Along this line, recent investigations have empirically shown
that simple contagion rules (SI→2I) are not appropriate to
describe the more complex mechanisms of social influence
that are at work when humans interact [22, 38, 42, 43]. This
evidence, mostly provided by digital traces, relates to different
contexts, ranging from the adoption of applications [42, 44] and
technologies [45, 46] to the spreading of obesity [47] and
happiness [48]. These considerations gave rise to new streams
of research focused on translating theories coming from the social
sciences into mechanistic models. Among these, complex
contagion is a particularly popular theory according to
which—differently from simple contagion—multiple stimuli
are necessary to trigger a behavioral change in a population of
interacting individuals [22, 49]. Current efforts in this direction
have been summarized by Guilbeault et al. in Ref. 50. Although
supported by a mounting body of empirical studies [22, 43, 44, 51,
52], complex contagion is not the only theory out there, and
alternative mechanisms have been theorized. For example, [51]
proposed structural diversity, a local measure of the
neighborhood of a node, quantified in terms of the number of
connected components having at least one adopter. When
empirically tested on data of adoption of online platforms
upon invitation, this measure turned out to be a better
predictor of the probability of adoption with respect to more
conventional measures like the number of adopters among the
peers. Complex contagion and structural diversity have also been
tested against embeddedness and tie strength theories, in which

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6041022

Iacopini and Latora On the Dual Nature of Adoption Processes

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


friendship overlap and intensity are the key drivers of social
contagion instead [53, 54].

While most of the works mentioned so far focused on the
adoption mechanism from the single-sided transition that leads
to the adoption, some attention has been also given to the
opposite process, in which adopters abandon the new product
or technology and become “susceptible” again (I→S). Recently, it
has been shown that differences between the recovery rates of the
nodes, that is, considering heterogeneous distributions of
parameters instead of constant, can also dramatically change
the epidemiological dynamics [55–57]. In addition, models of
complex recovery, in which the social influence mechanism acts
on the recovery rule rather than on the infection one, showed that
this change of perspective might lead to explosive adoption
dynamics [58]. This behavior is especially pronounced in
spatial systems, whose effects on the contagion dynamics have
also been the focus of several studies [59–62]. Yet, among
humans, communication interactions can occur in groups of
three or more agents, and often cannot be simply factored into a
collection of dyadic contacts. Expanding the pairwise
representation given by graphs in favor of a non-pairwise one,
like simplicial complexes or hypergraphs, is a recent research
direction that finds in social systems a particularly suitable
playground [4]. A paradigmatic example is the model of
simplicial contagion that shows how the inclusion of these
higher-order group interactions can dramatically alter the
spreading dynamics and lead to the emergence of novel
phenomena, such as discontinuous transitions and bistability
[63]. Similar results can be also found when hypergraphs are
used to encode social patterns underneath the spreading process
instead [64, 65].

3 MODELING DISCOVERY PROCESSES

Novelties are part of our daily life. The discovery dynamics at
which an individual consumes goods or listens to songs can be
described, using the words by Thomas Kuhn [66], in terms of the
essential tension between exploitation and exploration. This
eternal trade-off recurs in a variety of different systems. For

example, people move between different locations, mostly
switching between already known places, but also visiting new
ones from time to time [67–70]. The individual propensity
toward “uncharted seas” enters in each discovery processes
and enables classifications, such as the returners vs. explorer
dichotomy for human mobility [67]. If we think of each visit of a
place, listening of a song, or, more in general, collection of an item
as the addition of a symbol to a symbolic sequence, the series of
actions of an individual (agent) can be represented as a sequence
that grows in time, over an alphabet that represents a space of
possibilities. Symbolic sequences have a long history in text
analysis, but recently, sequences of item adoptions have been
used to study human behavior, leveraging sequences of purchases
as tracked by credit card data [71] or supermarket fidelity cards
[72, 73]. Any process involving individuals and objects that can
be encoded into a sequence of actions can be framed in this way.
People explore a space, adopt new items, and often return on their
steps. Every time a new item enters the sequence, it can thus be
seen as a novelty.

This precise mechanism of exploration and exploitation
becomes particularly relevant at the collective level, where
novelties can be interpreted as innovations [74]. In fact, the
first discovery by any individual of a population represents a
novelty for everybody. In this scenario, the essential tension
between tradition and innovation has been the focus of many
studies that analyzed the collective action of researchers
determining scientific progress [75–79]. On the same line,
patent data have been largely used to explore the dynamics of
technological ecosystems [80, 81] with the aim of predicting the
innovation dynamics and eventually detecting the best strategies
that could influence the rate of innovation [80, 82, 83].
Researchers have been tackling the problem of the emergence
of innovation from different angles. For example, some studies
have been focusing on the dynamics of substitutive systems, in
which the new always replaces the old [84]. Here instead, we keep
the focus on the dynamics leading to the emergence of the new;
we frame the problem in a cumulative way such that the new,
intentionally very broadly defined always comes as an addition to
the existing. More precisely, the existing environment is actually a
necessary condition that paves the way to the emergence of the

FIGURE 1 | Illustration of a contagion process. The adoption of norms, behaviors, ideas, technological items, etc. is typically modeled as a spreading process over
a network of social contacts. Red and blue nodes of the social network denote, respectively, the adopters (or infected individuals) and the non-adopters (or susceptible)
of the item that is spreading. For example, in (A), a smoker transmits the—bad—habit to its neighboring agents, which in turn can transmit it again through their social
links (B).
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new. In fact, from Parmenides to modern evolutionary biology,
“nothing comes from nothing” is a dictum at the essence of each
process involving real-world systems. Thus, even if we neglect
that new items might arise from the recombination of existing
ones [85, 86], there is still an essential ingredient that models
should take into account, that is, the structure underneath these
items which determines the way in which individuals can
navigate it [87, 88] moving from one item to the next. For
example, knowing the bestseller of a book writer is often a
condition that puts us in the position of deepening our
research toward minor novels of the same author. Similarly, in
scientific production, early research on the properties of random
walks enabled further studies on biased random walks. In this
setting, one can think of knowledge as an unexplored space of
relationships between concepts and objects to be discovered
by—more or less “innovative”—investigations and experiments
[89, 90]. These could be interpreted either as an exploration
process of an abstract space of concepts, ideas, and items [91], or
as a knowledge acquisition process [92–94], like people acquiring
information through online searches [95, 96]. Research
experiments in this direction aim at understanding how
humans explore and build mental representations of these
spaces through the experience of sequential items. Ref. 97 is a
review of the recent efforts, framed under the graph learning
paradigm. An important aspect in this scenario is that the
structure of this space does matter, since some portions of the
space are only visible from certain positions. This concept
resonates with the evolutionary theory of the adjacent possible
developed by Stuart Kauffman [98]. According to this framework,
we can split the knowledge space into what has already been
discovered (the actual) and what is left to explore (the possible).
Notice, however, that only one tiny fraction of the possible is
achievable from the actual, and this is precisely the adjacent
possible, that is situated one step away from what is
already known.

Many models have been put forward. At their essence,
there is often a reinforcement mechanism, akin to the rich-
get-richer paradigm [99], that accounts for self-reinforcing
properties. This is an essential ingredient that allows to
recover the scaling laws emerging from discovery processes
in real-world systems [27, 100], like the well-known Heaps’,
Zipf’s, and Taylor’s laws [101–103], for example, via sample
space–reducing mechanisms [104]. The Yule process [105] is
one of the first mechanisms employed to generate the
empirically observed power laws. From there, many
processes with reinforcement have been developed [106].
At their root, there are the famous standard urn processes
[107], like the ones of Pólya and Hoppe [108, 109]. However,
these basic processes have been slowly modified and tuned
with empirical data in order to better capture the observed
patterns. An example is the generalization of the Yule–Simon
process developed to mimic the dynamics of collaborative
tagging, where online users associate tags (descriptive
keywords) to items, generating fat-tailed frequency
distributions of tags [110]. Later, the urn framework has
been further enriched in order to account for the dynamics
of correlated novelties. In fact, empirical traces of human

activities show that discoveries come in clusters, and the
symbolic sequences generated by discovery processes are
thus correlated [27, 100]. Models can mimic this behavior
by letting the space grow together with the process, such that
novelties increase the number of possible discoveries via
triggering mechanisms. A review of these models of
expanding spaces can be found in Ref. 111. Leveraging the
concept of the adjacent possible, triggering mechanisms
showed good agreement with empirical data in
reproducing both the scaling laws associated to the
discovery processes and the correlated nature of the
sequences they produce. This is the case of the urn model
with triggering mechanism [27] that incorporates the
adjacent possible within the urn process, or the edge-
reinforced random walk model [28] that encodes it into
the topology of a network of concepts and ideas. It is easy
to see how the network representation of the space of items
naturally accounts for the adjacent possible, since paths are
restricted to existing connections, and the discovery (visit) of
a given node can provide access to a different set of nodes not
directly accessible before. This is illustrated in Figure 2. The
use of networks as an underlying structure for search
strategies and navigation is strictly linked to the literature
in random walks and optimal foraging [112], but lately, it has
been applied to various contexts. For example, in cognitive
sciences, networks have been used at length to encode the
patterns behind mental representations [113–116]. There, as
for contagions, understanding the influence of these
structures on the process of discovery that unfolds on top
remains a fascinating problem.

4 COUPLING THE DYNAMICS OF
DISCOVERY AND CONTAGION

The two previous sections have shown that adoption processes
can be approached from two different angles. However, this
has turned into a sort of dual nature of adoption processes, as
most of the studies have proposed either to model how an
individual explores a network of items or how one item spreads
over a social network. Focusing either on one item or on one
individual at a time means neglecting a fundamental aspect of
socio-technological systems, that is, their multi-agent nature.
In a scenario with non-substitutive items, the interactions
between multiple items (or behaviors) simultaneously
spreading on a social network can ultimately affect the
process, eventually favoring or inhibiting the adoption, as it
happens for the spreading of multiple infectious diseases over a
population [117]. This mechanism would be less pronounced
in competitive environments, when at each time, nodes can
take only one of many possible states [118], and different states
would correspond, for example, to the items agents are
presently trying to share. However, even in this case, the
state of the neighboring nodes could influence the adoption
process as well. In fact, people do not live and work in
isolation, and social ties can shape their behaviors [119]. As
such, discovery processes of different individuals are surely not
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independent from one another. For example, a higher
similarity has been found in the mobility patterns (extracted
from the sequences of visited cell phone towers) of individuals
who share a social tie—when compared to the case of strangers
[23]. In music listening habits, it has been found that going to a
concert increases the amount of post-event plays of that artist
for both attendees and attendees’ friends who did not even
attended the concert [120]. Thus, these purely social effects
would also have an impact on the dynamics of novelties, as it
has been recently shown with a model of interacting discovery
processes [121]. When urn processes (representing individual
explorers) are coupled through the links of a social network, so
that explorers can exploit opportunities (possible discoveries)
coming from their social contacts, the position in the network
affects the ability to discover novelties; individuals with large
values of centrality over the social network have a higher
discovery pace, in general.

Despite some preliminary and promising results in this
direction, a comprehensive framework that bridges together
the dual nature of adoption processes, namely, discovery and
contagion, is still missing. Ideally, a general model should
consider and couple together two different networks,
namely, the network of social relations among the agents of
a social system and the network of relations among items. As
discussed in Section 2, contagion occurs through social
interactions, and thus the process of contagion would use a
social network as a substrate. In parallel, there could be an
exploration process with reinforcement—akin to those
introduced in Section 3—that takes place over a different
network of relations/similarities between items. Individuals
could perform independent searches over the space of items,
[90, 111] modeled, for example, as random walks with
reinforcement. In this case, the strength of the links could
vary across different explorers according to their personal
history. By using edge-reinforced random walks [28],
walkers would share the same structure of the network of
items, while the strengths of the connections would coevolve
with the dynamics of the walkers, highlighting the fact that
different walkers can prefer to move toward different items
(i.e., can prefer certain cognitive associations more than others)

also according to their memory. The reinforcement
mechanism, which quantifies the tendency of each explorer
to go back on her/his steps, reflects the fact that some
individuals might be more inclined to the exploration, while
others might be less keen to adventure and would rather prefer
to exploit the already known [67]. Thus, while the results in
Ref. 121 stress the impact of the social network, as given by the
node centrality, in determining the speed at which identical
individual discover new items, the impact of having
heterogeneous individual “memory” remains a fascinating
aspect to be explored. In addition, due to the reinforcement,
discovering new ideas would become more and more difficult,
and walkers will often return on their steps. This implies that
the last novelty found will remain unchanged for some time.
As for processes of individual and collective attention in social
and substitutive systems [84], individuals will focus on a single
novelty at the time. A simple way to couple discovery and
contagion is illustrated in Figure 3, where each individual tries
to spread this last novelty to her/his neighbors through the
links of the social network by means of a simple SI contagion
process. If such a novelty will spread enough, it will eventually
become popular. This could be linked to recent works that have
shown how simple mathematical models can accurately
describe processes of topics and memes that compete for
collective attention, displaying bursts and decays [122–125].
In a novelty-driven scenario, every time that a walker finds
a novelty, she would consequently try to spread it to a neighbor
in the social network. If the neighbor will adopt such a novelty
(this might depend on an individual “susceptibility”), then
she would immediately move to the correspondent node on
the network of items, ultimately adding long jumps to the
random walk process. Without these jumps, the exploration
probability of the individuals would decrease over time due
to the reinforcement. However, this would be in contrast
with the long-term evolution of the strains of activities that
has been empirically observed on human mobility traces [70].
Thus, while standard mechanisms to overcome this issue
involve the use of finite memory and recency [126], the
social benefits induced by the coupling could represent
an alternative mechanism, where individuals “stuck” with a

FIGURE 2 | Illustration of an exploration process. The cognitive process through which an individual agent explores the space of possibilities in search of novel
items (novel ideas and technological discoveries) is usually modeled as a walk over a network of relations (similarities or proximity) among items. For example, in (A), the
agent discovers item β and then continues the exploration over the links of the network by sequentially moving to node γ and then to node δ. In (B), three items have been
discovered, and the exploratory walk can be seen as a sequence of symbols representing the visited nodes.
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certain set of established items may evolve their preferences
due to social influence.

5 PERSPECTIVEAND FUTUREDIRECTIONS

Discovery and contagion are two important processes in
social systems, whose basic mechanisms and dynamical
behaviors have been extensively studied both empirically
and theoretically. However, with very few exceptions,
these two processes have always been seen and studied
separately.

In this perspective, we have shown that the two processes
can be considered as two different aspects of a single process
of adoption in a social system. The dynamics of adoption of
items, which can either be concrete objects or behaviors and
social norms, can indeed be seen from two different angles as:
1) a contagion process occurring over a network of
individuals influencing one another or 2) as an
exploration dynamics over a network of items that an
individual can adopt. This means considering either the
point of view of a single item spreading over a social
network of individuals or the point of view a single
individual sequentially moving from adopting one item to
adopting a similar one. In this work, we have discussed such a
duality, the latest modeling advancements, and we have
proposed an example of how to couple these two
complementary processes of discovery and contagion in a
single social adoption model. Merging together discovery
and contagion models would enable to explore the effects of
social influence on the mechanisms behind the exploration of
new items [121]. However, while the coupled dynamics of
discovery and contagion proposed here relies on simple
contagion mechanisms, future research could make use of
more sophisticated contagion mechanisms, such as threshold
models. It would also be interesting to investigate whether
the jumps induced by the social contagion can disrupt the
composition of the set of exploited items, as it happens in
social networks [127]. We hope that the ideas introduced
here can represent only the first step of what can be a long
journey. In fact, different important aspects need to be

further explored on both sides, and many existing models
of discovery and contagion could be coupled. Regarding
discovery processes, an essential mechanism that should
be included in future works is the dynamics of item
recombinations. In processes of semantic associations, the
combination of remote ideas can lead to Eureka moments
[128]. Similarly, in real-world systems, new items can be
generated and thus discovered by combining existing ones.
An example is the model of Schumpeterian economic
dynamics proposed by Ref. 85 that relies on creation and
destruction tables. More interestingly, the action of creating
compounds of items could be influenced by complementary
skills that become available once exploiting the social
network. Some early works in this direction involve the
combination of medicinal plants to generate novel drugs
in an innovation model of hunter-gatherers [129] and the
creation of scientific knowledge from the combination of
different expertise to generate high-impact science [130]. In
addition, some recent advances in the foundation of complex
systems have started to consider the higher-order nature of
interactions in real-world systems [4]. While the role of these
higher-order structures with respect to the dynamics of
spreading and diffusion has started to be explored [63],
most of the literature on discovery processes is still
limited to pairwise representations. Instead, the
fundamental units of scientific productivity are research
groups and teams [131, 132], and thus higher-order
approaches could naturally be used when studying
processes of collective scientific discoveries and teamwork
[133–135]. In fact, scientific collaborations are the perfect
examples of higher-order system whose representation
demands for non-pairwise building blocks [136, 137].
Finally, more sophisticated discovery mechanisms could be
included in the models. For example, explorers could interact
in different ways with each other and with different items
[138, 139]. Alternatively, the exploration mechanism could
rely on an intrinsic fitness for possible discoveries [140, 141],
and one could add a parameter controlling for the strength of
the coupling to further investigate the relation between the
coupling of the two networks and the distribution of item
popularity [142].

FIGURE 3 | Coupling the dynamics of discovery and contagion. (A) A walker explores the space of items. Every time a node is visited, the corresponding item is
added to the sequence associated to the agent. Walking on δ represents the discovery of a novelty, since it never appeared in the sequence of before. (B) At this point,
the new item δ can spread from the walker to his neighbors through the link of a social network following a process of social contagion. In particular, in (C), a neighbor
discovers δ through the social contagion dynamics. As a consequence, her position on the network of items is updated by means of a flight (D).
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