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Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a glycoprotein belonging to the carcinoembryonic
antigen (CEA) family that is expressed on a wide variety of cells and holds a complex role in inflammation through its alternate
splicing and generation of various isoforms, mediating intricate mechanisms of modulation and dysregulation. Initially regarded
as a tumor suppressor as its expression shows considerable downregulation within the epithelia in the early phases of many
solid cancers, CEACAM1 has been linked lately to the progression of malignancy and metastatic spread as various papers point
to its role in tumor progression, angiogenesis, and invasion. We reviewed the literature and discussed the various expression
patterns of CEACAM1 in different types of tumors, describing its structure and general biologic functions and emphasizing the
most significant findings that link this molecule to poor prognosis. The importance of understanding the role of CEACAM1 in
cell transformation stands not only in this adhesion molecule’s value as a prognostic factor but also in its promising premise as
a potential new molecular target that could be exploited as a specific cancer therapy.

1. Introduction

The discovery of the carcinoembryonic antigen (CEA) as a
tumor marker for colorectal carcinoma in 1965 by Gold
and Freedman [1] was the milestone for identifying a much
wider family of 12 carcinoembryonic antigen-related cell
adhesion molecules (CEACAMs) which mediate intricate
mechanisms of modulation and dysregulation during com-
plex biological processes regarding cancer progression,
inflammation, metastasis, and angiogenesis [2].

The most vastly distributed protein within this family is
CEACAM1, being expressed on various normal epithelia

from the gastrointestinal tract (intestinal and colonic super-
ficial epithelial cells, duodenal Brunner glands, esophageal
glands, bile, and pancreatic ducts), prostatic glands, gall blad-
der, mammary ducts, endometrium, renal tubuli, extravillous
trophoblast, etc., as well as endothelial cells, natural killer
(NK) cells, T and B lymphocytes, and myeloid cells [3–9].

Subjected to alternative splicing, the CEACAM1 primary
transcript generates 12 different human isoforms, 3 of which
are secreted versions that play an important role in inhibition
of intercellular adhesion, being a marker of melanoma, pan-
creatic, and urothelial bladder carcinoma (UCB) progression
[10–12]. CEACAM1 alternative splicing also results in
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generation of two major cytoplasmic domains, the so-called
long (-L) and short (-S) tails, both of which have dysregulated
expression in colorectal (CRC), breast, and non-small-cell
lung carcinomas (NSCLC) [13–15].

CEACAM1 splice variants differ with respect to the
number of extracellular domains and type of intracellular
cytoplasmic domains [16]. The extracellular domains consist
of one amino-terminal immunoglobulin variable-region-like
(IgV-like) domain, which mediates hemophilic or heterophi-
lic interactions [17, 18], and a maximum of three immuno-
globulin constant-region-type-2-like (IgC2-like) domains,
whose roles are still unclear. Regarding the intracellular
cytoplasmic domains, splicing connects the various isoforms
to either a long cytoplasmic tail (-L) or a short cytoplasmic
tail (-S) [16]. (-L) tails contain two immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) that coordinate
inhibitory signaling via Src homology 2 domain-containing
tyrosine phosphatase- (SHP-) 1 or (SHP-) 2 recruitment
following phosphorylation by Src family tyrosine kinases
[19]; (-S) tails lack ITIMs [16].

SHP-1 and SHP-2 act as nonreceptor tyrosine phos-
phatases, which reverse critical tyrosine phosphorylation
reactions induced by the action of tyrosine kinases [20], thus
promoting signal inhibition. As a consequence, ITIM-
containing family members of CEACAM1 (CEACAM1-L)
generally mediate negative signaling, while ITIM-deficient
CEACAM1 (CEACAM1-S) isoforms do not [5]. An increase
of the CEACAM1-L/CEACAM1-S ratio is associated with
decreased proliferation of tumor cells [21].

Isoform expression of CEACAM1 in tumoral tissue is
particularly dynamic showing considerable downregulation
within the epithelia in the early phases of many solid cancers
such as prostate [22], colon [23, 24], breast [25], and liver
[26] carcinomas. Restoration of CEACAM1 expression in
tumor cell lines often abolishes their oncogenicity in vivo as
indicated by studies in syngeneic or immune-deficient mice,
where reinsertion of various CEACAM1 isoforms in colo-
rectal or prostate CEACAM1-negative tumor cells proved
CEACAM1-L expression to be essential for maintaining a
normal phenotype with the inhibition of allograft or xeno-
graft tumor development [27, 28]. Therefore, this adhesion
molecule has been regarded as a tumor suppressor.

In contrast, studies showing CEACAM1-L overexpres-
sion in advanced stages of malignancies such as melanoma
[29], NSCLC [30], bladder [31], CRC [32, 33], thyroid [34],
and gastric [35] carcinomas correlate high abundance of
CEACAM1-L with potential of invasiveness and metastatic
spread [36], thus challenging the previously postulated con-
cept of a tumor suppressive effect of this adhesion molecule.

This discrepancy is partially explained by the fact that
ITIMs also bind Src family kinases (SFKs), which play critical
signaling roles in hematopoietic cell function, such as B cells,
T cells, NK cells, monocytes, granulocytes, and mast cell acti-
vation [37]. CEACAM1-SFK interactions contribute to cell
adhesion properties of eosinophils as well as tumor cells
[38–40]. Studies assessing CEACAM1 isoform expression
in human neoplastic mast cells (mastocytosis) and medullary
thyroid carcinoma cell (MTC) lines suggest that CEACAM1-
L enhances cell growth in association with preferential

interactions and activation of SFKs [16]. Thus, the domi-
nantly interacting proteins SHP1 or SFK determine whether
CEACAM1-L displays a positive or negative role in tumor
cells [16].

2. The Role of CEACAM1 in the Regulation of
Immune Surveillance, Immune Evasion,
and Inflammation

The decreased expression of CEACAM1 in early malignan-
cies and its upregulation in advanced cancers were difficult
to reconcile. Further arguments supporting the molecule’s
role in tumor growth and progression are revealed by closer
insights into the relationship of CEACAM1 with cells of the
immune compartment, particularly T and NK cells, which
illustrate its capacity to evade the immune system.

CEACAM1 homophilic interactions and the CEACAM1
heterophilic interactions with CEACAM5 inhibit NK-
mediated killing independently of major histocompatibility
complex (MHC) class I recognition and also interfere with
the interferon-γ (IFN-γ) release activities of NK cells, as
well as tumor-infiltrating lymphocytes (TILs) [6, 41–43].
These findings are supported by mouse cancer models,
where CEACAM1 silencing results in upregulated NK cell
activating ligands on the cancer cell surface [44]. In mouse
melanoma cell lines, CEACAM1-4L isoform downregulates
cell surface levels of NKG2D ligands MICA and ULBP2
[45] while CEACAM1-3S and -3L overexpressions in CRC
cell lines cause sequestration of MICA/B intracellularly,
preventing it from activating NK cells [44].

The essential interplay between CEACAM1 and cells of
the immune system is well documented in melanoma. High
percentages of circulating NK and CD8+ lymphocytes are
CEACAM1+ in melanoma patients [10]. CEACAM1 homo-
philic interactions between TILs and melanoma cells appear
to dampen in vivo TIL functions, limiting the efficacy of
TIL adoptive cell transfer therapy in melanoma patients
[46]. A study model investigating aspects of melanoma cell
long coincubation with antigen-specific TIL demonstrated
that the surviving melanoma cells increase their surface
CEACAM1 expression, which in turn confers enhanced
resistance against fresh TIL [46]. This appears to be an active
process, driven by specific immune recognition, and is at
least partially mediated by lymphocyte-derived IFN-γ [46].
These findings are consistent with results from CRC studies
where CEACAM1 expression on TILs in mice and humans
marks the most highly exhausted T cells [47]. Circulating
CD8+ T lymphocytes and TILs from CRC patients have
overexpression of CEACAM1 and TIM-3 compared with
normal tissue [47]. CRC tumors among the double-positive
(CEACAM1+TIM-3+) T cells exhibit a significant decrease
in IFN-γ production [47]. These well-defined inhibitory roles
of CEACAM1 in T and NK cells present the molecule as a
valuable target for cancer immunotherapy with monoclonal
antibodies in late-stage cancer.

CEACAM1’s crucial role in regulating autoimmunity and
antitumor immunity is also portrayed by analyzing its inter-
action with T cell immunoglobulin domain and mucin
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domain-3 (TIM-3), which endows TIM-3 with T cell inhibi-
tion capacity [18]. TIM-3 is an activation-induced inhibitory
molecule involved in tolerance shown to induce T cell
exhaustion in chronic viral infection and cancers [48–52],
which under some conditions may also be stimulatory.
Mouse adoptive transfer colitis models show CEACAM1-
deficient T cells to be hyperinflammatory with reduced cell
surface expression of TIM-3 as well as regulatory cytokines,
and this can be restored by T cell-specific CEACAM1 expres-
sion [53]. By forming heterodimeric interaction in both cis
and trans through their (IgV)-like N-terminal domains,
CEACAM1 facilitates the maturation and cell surface expres-
sion of TIM-3, resulting in its tolerance-inducing function
[18]. CRC cancer mouse models demonstrate that coblock-
ade of CEACAM1 and TIM-3 leads to enhancement of anti-
tumor immune responses and improved elimination of
tumors [18].

The involvement of CEACAM1 in angiogenesis is also
important for its protumorigenic effect. CEACAM1 was
shown to be a major effector of vascular endothelial growth
factor (VEGF) in early tumor microvessel formation [54].
Kilic and collaborators demonstrated that VEGF increases
CEACAM1 expression on both mRNA and protein levels,
and the administration of a monoclonal CEACAM1 anti-
body blocks in vitro VEGF-induced endothelial tube for-
mation [54, 55]. Furthermore, by using an experimental
mouse model of cutaneous leishmaniasis, a disease known
to produce severe local inflammation accompanied by
accumulation of CD11b cells at the site of infection, a
VEGF-independent role of CEACAM1 has been character-
ized [56]. Both blood and lymphatic vessel formation appear
to be affected by the loss of CEACAM1/CD11b cells, which
control angiogenesis during inflammation [56]. Due to its
capacity to evade the immune system, as well as its potent
proangiogenic effects, CEACAM1 appears to play an impor-
tant role in tumor growth and progression.

The emerging picture of CEACAM1 is extremely com-
plex as its role in tumor cells appears to be contradictory,
supporting both down- and upregulation. Detailed investiga-
tion of the expression patterns of this adhesion molecule in
different cancer types is crucial in determining CEACAM1
involvement in carcinogenesis and possible significance of
its altered expression in terms of diagnosis, prognosis, and
treatment of distinct human neoplasms.

Our review focuses on emphasizing recent insights into
the role of CEACAM1 in various cancer types due to their
importance in designing a more comprehensive role in cell
transformation of this adhesion molecule which may be a
feasible target potentially leading to promising strategies in
cancer treatment.

3. Malignancies Showing Early Phase
CEACAM1 Downregulation

3.1. Colorectal Carcinoma. CEACAM1-reduced expression
has been reported in more than 85% of early colorectal ade-
nomas and carcinomas [57, 58] leading to a supposed tumor
growth inhibitor function of this adhesion molecule in CRC
development. Hyperplastic polyp lesions and aberrant crypt

foci, the earliest stages of CRC, also have reduced levels of
expression of CEACAM1 [59]. Experimental murine models
show similar results, with CEACAM1 knockout mice devel-
oping a significantly greater number of colonic tumors than
their controls when treated with azoxymethane to induce
tumorigenesis [60].

However, studies using specific anti-CEACAM1 antibod-
ies revealed elevated expression in high-grade adenomas,
adenocarcinomas, and metastatic CRC [32, 33] suggesting a
bimodal role in CRC progression. In addition, Ieda et al.
highlighted the CEACAM1-L isoform presence as an inde-
pendent risk factor for CRC hematogenous and lymph node
metastasis and for a short survival time [61].

3.2. Mammary Gland Carcinoma. While expressed promi-
nently on the luminal side of healthy mammary epithelia,
CEACAM1 becomes randomly distributed on the cell surface
or is completely lost during mammary cancer progression
when typical architectural features of polarized tissues
decline [62]. Similar to previous observations made with
colorectal cancer, a low CEACAM1 expression was found
in about 65% cases among breast cancer tissues in compari-
son to adjacent normal breast tissue [63]. A study by Wang
et al. shows cancer tissues from 60 patients with mammary
carcinoma to exhibit no CEACAM1 staining (12/60 patients
20%) or weak CEACAM1 expression (13/60 patients 21.7%)
while the adjacent breast tissues show moderate to intense
staining in most cases, without negative expression [63].

On the other hand, a study by Gerstel and collaborators
comparing the intratumoral vascular tree in spontaneous
and transplanted mammary adenocarcinomas in CEACAM1
competent mice with CEACAM1 null hosts shows the
former to have increased vascular densities and pericyte
coverage, with increased tumor vascularization and angio-
genesis [64]. CEACAM1 was only expressed in peritumoral
vessels [64]. The authors conclude that endothelial expres-
sion of CEACAM1 in the vasculature of the mammary tumor
periphery appears to be an important component building a
proangiogenic microenvironment that supports tumor vessel
stabilization [64].

3.3. Bladder and Prostate Carcinomas. Immunohistochemi-
cal studies conducted by Oliveira-Ferrer and coworkers
[31] in 2004 on nonmalignant urinary bladder tissues
revealed “umbrella cells”-epithelial cells lining the luminal
surface of transitional epithelium to exhibit CEACAM1
staining, while blood vessels of the normal bladder appeared
negative. On the contrary, in early tumor stage pTa, CEA-
CAM1 immunostaining became negative in tumoral cells,
whereas the majority of blood vessels closely associated with
or growing into the epithelial layer containing tumor cells
were found CEACAM1-positive. As for invasive bladder
tumors, all cases showed CEACAM1-positive blood vessels
in close association with the tumor cell groups, with few
tumoral cells and neighboring normal urothelial area still
exhibiting CEACAM1 expression. Thus, CEACAM1 expres-
sion appears to be downregulated in bladder cancer cells,
while concurrently upregulated in endothelial cells of
tumoral adjacent blood vessels.
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Tilki and collaborators made similar observations in
prostate cancer, conducting electron microscope studies on
prostate intraepithelial neoplasia (PIN) specimens [65].
CEACAM1 expression was found to be downregulated in
epithelial dysplastic cells and upregulated in adjacent
endothelial cells, with concurrent VEGF-A, -C, and -D
upregulation, indicating activation of angiogenesis.

Studies from Ergün and coworkers support the previous
observations that the differential switch in CEACAM1
expression stimulates VEGF and fibroblast growth factor-
dependent proangiogenic activities such as neocapillary
formation, proliferation, and chemotaxis, thus, promoting
angiogenesis [54].

Interestingly, CEACAM1 upregulation during endothe-
lial cell angiogenic activation can be detected in both
membrane-bound forms and supernatant of endothelial
cells, suggesting that during this process, soluble CEACAM1
forms might be released into body fluids [54].

Based on this finding, another study conducted by Tilki
and collaborators [12] attempted to assess whether CEA-
CAM1 urinary levels could help differentiate patients with
UCB from healthy subjects. After performing western blot
analysis on urinary samples from 135 subjects (93 with
UCB and 42 with no UCB), they concluded that urinary
bladder carcinoma and an invasive stage are associated with
higher urinary levels of CEACAM1.

The data presented displays the disappearance of CEA-
CAM1 in the dysplastic epithelium as one of the earliest signs
of tumors switching from superficial noninvasive and non-
vascularized to invasive and vascularized [31]. This supports
the previously postulated hypothesis that the CEACAM1
presence in normal epithelia functions as a tumor suppressor
[27, 66, 67]. However, epithelial CEACAM1 downregulation
increases the expression of proangiogenic factors [54, 55] and
favors endothelial CEACAM1 upregulation [31], promoting
invasiveness, hence the dual role of CEACAM1 expression
in these malignancies.

4. Malignancies with CEACAM1Overexpression

4.1. Non-Small-Cell Lung Carcinoma. Immunohistochemical
and serum assessments of CEACAM1 in NSCLC revealed
it is a valuable prognostic biomarker [68]. CEACAM1-S
isoform and the CEACAM1S/CEACAM1-L ratio appear to
be significantly higher in tumors than in normal tissue [68].

Sienel and collaborators found significant association
between CEACAM1 expression and tumoral status, while
trying to elucidate the role of CEACAM1 in the progression
and survival of patients with operable NSCLC [69]. They
analyzed the immunohistochemical expression of CEA-
CAM1 in tumor samples from 145 patients with completely
resected NSCLC. All sections of normal bronchiolar epithe-
lium stained negative, 73 tumors (50.4%) displayed between
1 and 66% CEACAM1-positive tumoral cells, and the
remaining 72 tumors (49.6%) showed even greater percent-
age of positive cells. Following a detailed statistical analysis,
the authors concluded that the absence of CEACAM1 in nor-
mal lung tissue and its expression in tumor cells argue against
a tumor suppressive role of CEACAM1 in NSCLC.

Furthermore, elevated CEACAM1 expression correlates
with severe disease and tendency to reduced cancer-related
survival of the total population, rather indicating CEACAM1
as a promoter of lung cancer progression [69]. In addition,
urinary levels of CEACAM1 represent an excellent bio-
marker for NSCLC patients when considered alongside other
signature proteins [70].

4.2. Pancreatic Adenocarcinoma. Various studies indicate
CEACAM1 to be a useful biomarker for pancreatic adeno-
carcinomas (PAC), being present in both tumor specimens
and serum of patients compared to healthy individuals
[11, 71–73]. CEACAM1 is more sensitive and specific than
the already consecrated CA 19-9 in differentiating cancer
from normal controls, and this is improved by combining
CEACAM1 and CA 19-9 [11].

Furthermore, CEACAM1 appears to be present early in
the development of the disease, with most pancreatic intra-
ductal neoplasia 3 (PanIN-3) lesions, representing pancreatic
carcinoma in situ, showing elevated expression by immuno-
histochemical analysis [11]. As PACs have high lethality
associated due to appearance of clinical manifestations late
in the natural course of the disease [74], development of
blood-based biomarkers capable of detecting PAC at early,
preclinical stages is a necessity. A study conducted by Nolen
et al. indicates CEACAM1 and prolactin as the earliest serum
biomarkers to be detected at significantly altered levels, up to
35 months prior to diagnosis [75].

CEACAM1 has also been strongly correlated with distant
metastasis of PAC [73].

4.3. Thyroid Carcinoma. CEACAM1 is not appreciably
expressed in normal human thyroid tissue and is rarely pres-
ent in benign tumors [4] but highly upregulated in thyroid
carcinomas, especially in metastatic tumors [34]. To investi-
gate the role of CEACAM1 in thyroid carcinomas, Liu and
coworkers [34] compared the effects of this adhesion mole-
cule in WRO cells (usually devoid of CEACAM1 expression)
and clones with forced CEACAM1 expression. In vitro anal-
ysis revealed that forced expression of CEACAM1 caused a
significant G0/G1 phase arrest, with enhanced cell–matrix
adhesion and increased cell invasion, resulting in diminished
tumor growth and increased tumor invasiveness when
applied to a xenograft mouse model. Conversely, CEA-
CAM1 downregulation stimulated MRO cell tumor growth
with reduced invasiveness. They concluded CEACAM1 is
an important cell proliferation inhibitor, retarding several
parameters of tumoral growth while mediating invasion.

These findings are consistent with CEACAM1 expression
correlation to invasiveness in cutaneous malignant mela-
noma [29] and to the molecule’s implication in mediating
trophoblast/endometrial interactions during trophoblastic
invasion of the endometrium [76, 77].

4.4. Melanoma. Normally, melanocytes do not exhibit
CEACAM1 [78, 79]. Concerning CEACAM1 expression
in melanocytic nevi, few data is available. While assessing
CEA family expression in melanocytic nevi using mono-
clonal and polyclonal panels of antibodies (none of which
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directed only towards CEACAM1), Egawa et al. demon-
strated an increased expression of this protein family on
the surface of both acquired and congenital melanocytic
nevi, in a similar distribution pattern [79]. Interestingly,
blue nevi, which are melanocytes from the neural crest
that failed reaching the epidermis during embryological
migration, do not stain positive for CEA [79].

Immunohistochemical studies conducted by Gambichler
and collaborators comparing CEACAM1 expression in
benign and malignant melanocytic tumors and normal
peritumoral skin reported a progressive increase of median
CEACAM1 expression from 1% in benign nevi and 9.6% in
dysplastic nevi to 18% in thin superficial melanomas
(defined asmelanomaswith Breslow tumor thickness<1mm)
and 74% in thick superficial spreading melanomas (defined
as melanomas with Breslow tumor thickness>1mm)
(p < 0 0001) [80]. Peritumoral melanocytes from normal skin
stained negative [80].

In melanoma, the role of CEACAM1 is well established,
with a significant number of studies unanimously demon-
strating its prognostic value in diagnosis, progression, and
metastasis [29, 80, 81]. There is an overwhelming expression
of the CEACAM1-L isoform on melanoma cells [45, 82], and
elevated serum CEACAM1 levels were found to positively
correlate with decreased patient’s survival, failure to respond
to immunotherapy, and decreased efficacy of autologous
vaccination [10, 83, 84].

In metastatic cutaneous melanoma, 89% of lesions
express CEACAM1, and CEACAM1 expression increases
during tumor progression [82], while soluble CEACAM1
levels significantly correlate with the level of LDH [10].

The overwhelming evidence of CEACAM1 importance
in melanoma solidify the claim that this adhesion molecule
could be applied as an improved prognostic and predictive
biomarker for melanoma patients over the commonly used
Breslow depth [85].

4.5. Squamous Cell Carcinoma (SCC). There is a lack of data
concerning CEACAM1 expression in keratinocytic tumors.
A study by Wang and collaborators demonstrated that
CEACAM1 overexpression and abundance of neutrophils
could predict a poor clinical outcome in tongue squamous
cell carcinoma (TSCC) patients [86]. In this study, CEA-
CAM1 expression on tumor cells and increased neutrophils
infiltration were associated. The proposed mechanism of
CEACAM1 overexpression attracting more neutrophils to
tumor sites is through IL-8 and CXCL-6 upregulation. This
finding is consistent with results from other studies that
link cytokine-induced CEACAM1 expression on keratino-
cytes to a prolonged lifespan of neutrophils [87].

However, the role of CEACAM1 appears to be dependent
of its distribution in oral squamous cell carcinoma. Zhou
et al. showed membranous CEACAM1 expression inhibits
angiogenesis and lymphangiogenesis and is associated with
well-differentiated SCC [88]. Conversely, cytoplasmic CEA-
CAM1 expression, which is associated with poorly and
moderately differentiated SCCs, promotes angiogenesis and
lymphangiogenesis by mediating the transformation of
vascular endothelial cells into lymphatic endothelial cells.

5. Conclusions

The emerging picture of CEACAM1 in the context of cancer
and the immune system is very complex. Even though
decades of studies have tried to characterize its role in carci-
nogenesis, there is no general agreement upon this adhesion
molecule’s behaviour in human tumors. CEACAM1 works
together with specific signaling factors, proteins and recep-
tors, dependent on the various contexts in which it occurs;
therefore, its role should be interpreted separately in each
of these different cell types, tissues, and pathological condi-
tions. CEACAM1 appears to be a valuable prognostic factor
in various tumors through its different expression patterns
on cancer cells. In addition, its roles in tumor progression,
immune evasion, angiogenesis, and invasion make it a prom-
ising molecular target that can be exploited alongside other
existing immunotherapeutics as specific cancer therapies.
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