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A general Hermitian scalar field, assumed to be an operator-valued tempered distribution, is 

considered. A theorem which relates certain complex Lorentz transformations to the T C P 

transformation is stated and proved. With reference to this theorem, duality conditions are 

considered, and it is shown that such conditions· hold under various physically reas<mable 

assumptions about the field. A theorem analogous to Borchers' theorem on relatively local fields is 

stated and proved. Local internal symmetries are discussed, and it is .shown that any such symmetry 

commutes with the Poincare group and with the T C P transformation. 

t INTRODUCTION AND OUTLINE 

The so-called duality condition in quantum field theory 

and in the theory of algebras of ·local observables has 

been discussed by many authors. 1-
8 From these studies 

it appears that it would be a desirable, if not essential, 

: feature of a local theory that such a condition holds. 

VerJ• roughly stated the duality condition for a region R 

in spacetime says that the set of all operators which 

commute with all operators locally associated with R is 

equal to the set of all operators locally associated with 

the causal complement of R. It was first shown by 

Arake that conditions of this nature do hold for a class 

of suitably restricted regions R in the case of a free 

Hermitian scalar field. It is the purpose of this paper 

to discuss the duality condition in quantum field theory 

in the general case, i. e. , without making the as sump-. 

tion that the field is free. 

Our considerations are within the framework of con

ventional quantum field theory, as formulated by 

Wightman and others. 9-
11 We shall restrict our discus

sion to the case of a single local Hermitian scalar field, 

assumed to be an operator-valued tempered distribu

tion. We will state the assumptions in some detail in 

Sec. n, in which we also explain the notation to be fol

lowed. Our discussion can readily be extended to more 

general cases, but, in order to avoid complications· 

- which might obscure the main line of argument, we pre

sent our ideas in what appears .to us to be the siinplest 

possible setting. 

In Sec. m we consider some implications of the 

.. spectral condition", i. e. , the assumption that the 

spectrum of the 4- momentum operator P associated 

with the translation subgroup of the Poincare group is 

contained in the closed forward light cone. We here re

view some facts, by andlarge well known, which will 

be of interest in the subsequent discussion, and we con

sider a slightly modified version of a well-known theo

rem of Reeh and Schlieder. 12 

In Sec. IV we co'lsider complex Lorentz transforma- · 

tions, and a connection between these and the anti unitary. 

inversion transformation (TCP-operation). Since the 

Hilbert space of physical states carries a strongly con

tinuous unitary .representation of the Poincare group, it 
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· follows that there exist dense sets of analytic vectors of 

the associated Lie algebra and of sub-Lie algebras of 

this Lie algebra. It is a characteristic feature of quan

tum field theory that such sets of analytic vectors can 

be constructed "naturally" in terms of suitable multi

linear expressions in the fields and the vacuum state 

vector n. We shall in particular consider the following 

issue. Let WR be the wedge-shaped region WR={xlx 3 

> lx4 1} in Minkowski space, and let P0 (WR) be the poly

nomial algebra generated by field operators averaged 

with test functions with support in WR. Let V(e3, t), t 
real, denote the velocity transformation in the Poincare 

group whose action on Minkowski space is described by 

the four x four matrix 

V(e3, t) = 
.[

1 0 
0 1 
0 0 
0 0 

0 0 J 0 . 0 

cosh(t) sinh(t) 

sinh(t) cosh(t) 
I 

The set or ail V(e3, t)· ls thus a one-parameter 

(1) 

Abelian group of velocHy ~ransfonmtt.ions ln the 3-
directlon which maps the wedge region WR ont.o Itself. 

To the element V(e3, t) corresponds the unitary operator 

rJ(V(e3, f), 0)-== exp(- itK3) on the Hilbert space, where 

K 3 is ait (unbounded) self-adjoint operator. We shall 

show that every vector Xfl, withXEP0 CWR), is in the 

domain of the normal operators exp(- izK3) for the com

plex variable z in the closed strip 7T?-! Im(z)?-! 0. The 

vector-valued function exp(- izi<3)XQ is a strongly con

tinuous function of z on the above closed strip, and an 

analytic function of z on the (open) interior of the strip. 

We shall furthermore show that for any such vector 

exp(1TK3)XQ =JX*n 

where J is the anti unitary inwlution defined by 

J = U(R(e3, 1r), O)eo 

(2). 

(3) 

where R(e3, 1r) is the rotation by angle 1T about the 3-axis 

[and U(R(e3, 1T), 0) the corresponding unitary operator on 

the Hilbert space], and where e0 is the TCP-operator. 

The relation (2) is the main result of Sec. IV. It 

holds, in fact, for a somewhat larger class of field 

operators, as stated precisely in Theorem 1. 

Copyright© 1975 American Institute of Physics 985 
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Section V is devoted to a discussion of some mathema

tical questions relating to (2). We consider families of 

operators which satisfy the relation (2), and, in particu

lar, we discuss the properties of any von Neumann alge

Qra AR,of;bounded operators X which satisfy (2), and 

~uch 1 tliat' furthermore J;I/RJ =Ak. where A~ denotes the: 

commutant afAR" The main results, relative to the sub

sequent discussion in Sees. VI and Vll, are stated in 

Theorem 2 and Lemma 15. Our discussion is closely 

related to a theory of Tomita13 on the structure of von 

Neumann algebras (and of modular Hilbert algebras), 

and we discuss the connection. 

In Sec. VI we discuss a particulm· duality condition, 

for the wedge region W R· Let W L be the causal c omple

ment of W R• i.e., the wedge region WL ={x lx3 <- lx4
1 }, 

and let p0(WL) be the polynomial algebra generated by 

field operators averaged with test functions with support 

in WL. We consider fourparticular conditions on the 

quantum field under which the polynomial algebras 

P0(WR), respectively P0(WL), of unbounded operators 

define von Neumann algebrasA(WR), respectivelyA(WL), 
of bounded operators which can be regarded as locally 

associated with the wedge regions W R and WL, and we 
prove that these von Neumann algebras satisfy the dual

ity conditionA(WR)' =A(WL). We also show that the TCP

symmetry of the field carries over to the system of 
bounded loc<i.l operators in the sense that JA (WR) J 

=A (W L). These results are formulated in Theorems 3 

and 4. 

Theorem 3 includes in particular the following re.:. 

sult, which holds generally, i.e., without any addi
tional assumption about the quantum field beyond the 

minimum assumptions discussed in Sec. II. If X is a 
bounded operator which commutes with all (linear) field 

operators averaged with test functions with support in 

W L• and if Y is a bounded operator which commutes with 

all field operators averaged with test functions with sup

port in W R• then X commutes with Y. This statement is 

. analogous to a well-known theorem of Horclwrs on the 
local nature of fields which are loeal t·elal:lve to a local 

irreducible field. 14 

We have not solved the probleth of whethet the von 

Neumann algebras (of bounded opei·ators) associated 

with wedge regions, or other regions, always exist, and 
we. are thus forced to make additional ass1unptlons, 
which, however, are not unr.easonable physically. This 

question appears to be intimately related to the hitherto 

unsolved problem of whether a sufficiently large set of 

quantum field operators have local self-adjoint exten

sions (within the framework of the customary minimal 

assumptions of quantum field theory). We discuss the 

notion of a local self-adjoint extension of the field, and 

we sb~w that it implies the existence of a system of 

local von Neumann algebras which satisfies the duality · 

condition. We also show that the existence of such a 
system follows from other conditions which appear to 

be less restrictive than the condition that the field has 

a local self-adjoint extension. 

In Sec. VII we discuss the duality condition for a 

particular set of bounded regions, namely the set of 

all so-called double cones. The von Neumann algebras 

associated with the bounded regions are constructed 
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from the von Neumann algebras associated with the 

wedge regions. We describe the properties of these 

algebras in Theorems 5 and 6, and we show that the 

duality condition for the algebras associated with the 

wedge regions implies an appropriate duality condition 

for the algebras associated with double cones. 

Finally, . we consider the notion of a local internal 

symmetry, and we prove (Theorem 7) that if the duality 
condition holds for the wedge algebras, then every local 

internal symmetry commutes with the Poincare group, 

and with the TCP-transformation" 

II. BASIC .ASSUMPTIONS; DISCUSSION OF. 

NOTATION 

Minkowski space /11 is parametrized by the customary 

Cartesian coordinates x=(x\x2,x3,x4
). The Lorentz 

"metric" is so defined that x • y =x4y4
- xtv1- x 2y 2

- x3y 3. 

'!he elements A =A(M,y) of the p1·oper Poincare group 

L 0 are parametrized by a four-by-four Lorentz matrix 
M, and a real 4-vector y, such that the image Ax of a 

point x E /)1 under any A E L0 is given by Ax =A(M, y)x 

=Mx+y. 

The Hilbert space H of physical states is assumed to 

be separable~ It is assumed to carry a strongly contin

uous unitary representation A- U(A) of the Poincare 

group L0• We write U(A(M,x)} = U(M,x), and we employ 

the special notation T(x) = U(I,x) for the representatives 

of the translation subgroup. The translations have the 
common spectral resolution 

T(x) = U(I,x) = J exp(ix • p) 1J.(d4p) (4) 

and it is assumed that the support of the spectral mea

sure j.L is contained in the closed forward light cone v. 
(in momentum space). This assumption abou1 the sup

port of ll will be referred to as the "spectral condition" 
in what foilows. · 

We assume the existence of a vacuum state, repre

Serlted by the unit vector n, uniquely characterized by 

U.s tnvariunce undei· all Poincare translations: thus 
U(A)n,o. .. 

We denote by 0(R") the set of all complex-valued in
finitely differentiable function of compact support on n

dimenslonal Euclidean spaceR", and we denote by S(R") 

the space of test functions on R" in terms of which tcm:. 

pered distributions are defined. The space S(.R") is re

garded as endowed with the particular topology appropri

ate to the definition of tempered distributions, 15 and we 

employ the notation 

S-limfa=O ...... . 
(5) 

to state that a sequence of test functions fa converges 

to zero relative to this topology. We shall be concerned 

with test functions on R4
", where R4

" is regarded as the 
direct sum of an ordered n-tuplet of replicas of 

Minkowski space, and the points of R4
" are accordingly 

parametrized by an ordered n-tuplet (xhx2, •• , ,x,.) of 

4-vectors x". A specific interpretation of R4
" in this 

manner is always understood, as reflected in the above 

parametrization of the space. In accordance with the 

above we define an action of L0 on 5(R4
") by 

f{xt. ••• , x,.)- Af(xt, ••• , x,.) =/(A -t;xh ••. , A -ixn). (6) 

J.J. Bisognano and E. H. Wichmann 986 
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This mapping is continuous relative to the test 

function space topology, 'and 

S-lim Af=f. 
A~r 

0 

(7) 

Throughout this paper it will be important to keep . 

track of the domains of unbounded operators. To deal 

effectively with such issues vie shall frequently employ 

the unorthodox notation (..\';D) for an operator X defined 

on a domain D. The adjoint of (X, D) is denoted (X, D)* 

and if D(X*) is the domain of the adjoint we can write 

(X, D)*= (X*; D(X*)). If (X, D) is closable we write 

(X, D)**= (X**, D(X**)) for the closure. This notation is 

never employed for manifestly bounded operators, which 

are regarded as defined on the entire Hilbert space. 

We shall consider a theory of a single local Hermitian 

scalar field cp(x), assumed to be an operator-valued 

_tempered distribution. 9-
11

•
16 -Such a theory is charac

terized by the following features: 

(a) There exists a linear manifold D1t dense in the 

Hilbert space H, and an algebra P(JYJ) of operators 
(X, D1) defined on D1• The domain D1 contains the vacu

um state vector n. For each n ~ 1 there exists a linear 

mapping of S(R4
") into p(JYJ). The image of any /ES(R4") 

under this mapping is denoted cp{j}. We note here that 

cp{j} is the operator which is customarily defined sym
bolically by the integral at right in 

cp{j}= f<..,ld4{xt) • • •d4(xn)f(x1> ••• ,xn) cp(xt) • • • cp{x0 ). (8) 

The domain D1 is Pr:ecisely equal to p(JYJ) n, and the 
algebra p(JYJ) is precisely equal to the linear span of 

the identity operator I and the set of all operators cp{J} •. 
lf/ES(R4

") andgES(R4m), and if heS(R4n+4m) is given · 

by 

=f(xto • • • ,xn)g(xn•h • • • ,.xn+m), 

then 

cp[t}cp{g}=cp{h} onDt. 

We note that this is consistent with the symbolic 

definition in (8). 

(9) 

fiO) 

(b) Let (X, 1>1)- (Xt, D1) denote the mttilinem· involu

tory mapping of P<IH) onto itself uniquely deterl1lllled by 

rt =I, cp{J}t = cp{Jt}, (11) 

where 

ft{xt>x2, • •• ,.xn) =J*(x,., .. • ,x2,x1) 

-for any /ES(R4
") • 

(12) 

The domain D1 is contained in the domain of the ad
joint (X, D1)* of every (X, D1) E p(JYJ ), and 

. \ 

·(Xf, D1) =(X*, D1) c (X, D1)*. (13a) 

In particular, 

(cp{Jt}, Dt) c (cp{J}, Dt)*. (13b) 

Every operator (X, D1) E p(JYJ) is thus closable, and 

(xt, D1) is the Hermitian conjugate of (X, D1). 

(c) The domain D 1 is invariant u'nder the Poincare 
group: U(A) D1 = D1 for all A E L0• The action of I 0 by 
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2 ' I conjug1tion on P(JYJ) (and hence the action of L 0 of the 

Hilbert space H) is uniquely determined by the condition 

(14) 

(d) The mapping J- cp{J} is such that if{/"' I fa E S(R1
"), 

o = 1,_ ••• , oo} is any sequence of test functions which 

tends to zero in the sense of the test function space 
topology, i.e., such that (5) holds, then 

s-lim xcp{Jah = 0 (15) 
QC•<O 

for any (X, D1) E P(JYJ) and any 1/JE D1• 

(e) Let R be any open subset of Minkowski space: Let 

(J(R) denote the linear span of the identity operator I 

and all operators (cp{j}, D1), where /E S(R4
") for some 

n~ 1 and such that supp{f)c{{x1, ••• ,x 0 )lx~ER, 
k=1, ... ,n}. 

Then, if R1 and R 2 are any two open subsets of 
Minkowski space which are spacelike separated [i. e. , 

(x - y) • (i- y) < 0 for any x E Rt. y E R2 ], we have 

[X,Y]l/!=0, alllJ;EDt> (16) 

for all X E p(R1) and all Y E (J(R2). 

Our purpose with the preceding account was to state 

precisely what we assume, and not to formulate a mini

mal set of postulates for field theory. It will be noted 

that the conditions which we have stated are in fact not 

all logically independent of each other. It should also be 
noted that we do not assume anything beyond wha.t is im

plied by the usual minimal assumptions for quantum 

field theory. 

Since operators linear in ·the field will be of particu

lar interest, we employ a special notation for the case 

/E5(R4
), namely, 

cp(f]=cp{/}=f<;.> d4(x)f(x)cp(x). (17) 

For any open subset R of Minkowski space we denote 

by P0(R) the polynomial algebra generated by lhe identity 

J, and all operatortl (rp[f], D1) sueh Lhatsupp(f) c: R. 
With reference to the definition of the algebra p(R) in 
(e) above, we then have (J0 (R) c p(R) c p(JYJ ). We state 

some well-known properties of these algebras as 
follows. · 

Lemma 1: (a) (Theorem of Reeh at1d Schlieder12 ) Let 

R be any open, nonempty subset of Minkowski space fH. 
Then Po(R) n is dense in the Hilbert space/{. 

(b) Let (X, D1) E P(R). Then there exists a sequence 

of operators {(X"'' D1) I (X a, D1) E p0 (R), a= 1,.,., co} 
such that 

s-lim YX.,.l/1 = YX¢· (18) ....... 
for every Y E p(JYJ) and every 1/1 E D1• 

(c) The linear manifold D0 cD1 defined as D0 = P0 (/YJ) n 
is dense in the Hilbert space, and 

(X, D0 )* =(X, D1)*, (X, D0 )** =(X, D1)** . 

for every (X, D1) E P(!H). 

(19) 

The above is of interest with reference to other ap

proaches to field theory, in which the initial object of 

J.J. Bisognano and E. H. Wichmann 987 
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interest is If'[/], defined on D0 , and where the commu

tation relation (16) is at first assumed only for opera

tors X and Y of this special form. After the appropri

ate extensions and constructions one arrives at the 

equivalent of our formulation. We preferred to intro

duce the domain D1 immediately, and to regard all field 

operators as defined on precisely D 1• The symbols 

X*, X**, and X t, for (X, D 1) E. p(/)1 ), thus refer to the 

adjoint, closure and Hermitian conjugate defined rela

tive to this domain. 

Whereas the domains D0 and D1 are Poincar~ invari

ant, this is, of course, in general not the case for the 

domain D(X*) of (X, D 1)* and the doniain D(X**) of 

(X,D1)**. ·we have the relations 

(U(A)XU(At1
, D 1)* = (U(A)X*U(A)-1, U(A) D(X*)) 

(U(A)XU(A)-1
, D1)** = (U(A)X**U(At1, U(A)D(X**)). 

We finally note that it trivially follows from (13a) 
that 

(20a) 

(20b) 

(21) 

For a particular operator (X, D1) equality obtains in 

(21) above if and only if D1 is a core for (X, D1)*. [For 

a Hermitian operator this means that (X, D1) is essen

tially self-adjoint. ] In general discussions of field the

ory no assumption is made about the possible existence 

of a set of field operators for which (21) might hold as 

an equality. 

Ill. ABOUT SOME CONSEQUENCES OF THE 
SPECTRAL CONDITION 

It is well-known that the unitary representation x 

- T(x) of the translation group can be extended to a 

representation of the semigroup of all complex transla

tions z = x + iy, with x and y real, y E. v., by 

T(z) = J exp(iz • P)J.L(d4p) = exp(iz • P) (22) 

where the operator-valued function T(z) satisfies IIT(z)ll 

= 1 and is a strongly continuous function of z on the 

closed forward imaginary tube v.1 = {z I Im(z) E. v.}. 
Furthermore, the function T(z) is analytic in the sense 

of the uniform topology on the open forward imaginary 

tube V. 11 which implies in particular that the vector

valued function T(z)<Jl of z is strongly analytic on V+i 

for any 1/JE.H. . 

LetfE.5(R4
"). We define a Fourier transform] off 

by 

J<Pt, ••• ,Pn) 

= ]< ... > d
4
(x1) • • • d

4
(xn)f(xh ••• ,x8 ) exp~ ~ Xr • Pr)• (23) 

We consider the following: 

Lemma 2: Let z E. v • ., i.e., z is any complex 4-vec

tor in the closed forward imaginary tube. Then 

T(z)D1 cD1• 

Iff E. 5 (R4
") there exists an fz e: 5 (R4

") such that 

f.(Ph • • • , Pal= J (ph • • • , Pn) exp ~z •. ~ Pr) 

988 J. Math. Phys., Vol. 16, No.4, Apri11975 

(24) 

(25a) 

2 I 'J 
for (Pto .'7. ,Pn) E. V"' where Vn is the subset of R

4
" de

fined by 

Vn={(Pt,.··•Pn)J ~PrE.V., k=l, .•. ,n} (25b) 

and for every such fz we have 

(25c) 

The above facts are well known, and we refer to the 

monograph by Jost17 for a discussion of these and 

related issues. Here we only note the following. It is a 

consequence of the spectral condition that any vector 

rp{f}n only depends on the restriction of 1 to the set 

Vn defined in (25b), i.e., if 1 = 0 on V"' then the vector 

vanishes. It is of interest to exhibit a particular func

tion fz which satisfies (25a), and hence (25c). Let u 0(t) 

be an infinitely differentiable function of t on R1 such 

that u0 (t) = 1 fort?:- 0 and u0(t) =0 for t::s -1. We define 

a function E(p; z) of the real 4-vector p and the com

plex 4-vector z by 

E(p;z) =u0(p · p)u0(p4)exp(iz · p). (26) 

This function satisfies E(p;z) = exp(iz · p) for p E. v •. 
It is easily seen that for any z E. V.1 the function E(P;t), 

as a function of p, is included in S(R4
). Furthermore, 

if /E. 5(R4
"), then the function f .. with the Fourier 

transform 
n 

h(Ph ... ,Pn) =E(p;z)J(ph .•. ,Pn), P = ~ Pr, (27) 
r=1 

is, as aJunction of (xi> ••• ,xn), included in 5(R4
") for 

any z E. v.1• Now (25a) holds trivially, and it follows 

that (25c) holds. 

The next lemma can be regarded as a generalization 

of the preceding lemma .. 

Lemma 3; Let T .. be the open tube region in 4n
dimensional complex space C4

"' regarded as the eli rect 

sum of n replicas of complex Mlnkowski space, whieh 

is defined by 

Tn~{(zh••.,zn)Jz~EV.,, k=1, ... ,n}. (28) 

Let {!k Ilk E. 5(R4
), k = 1, ... , n} be any n-tuplet of test 

functions. Then we have the following: 

(a) The vector 

J3(zh • • • 'Zn) 

= T(zt)"lfl[fdT(z2)<p(f2] • • • T(zn)lf'(f .. ]n (29) 

is well defined (through successive left multiplications) 

for all (zt. ••• , z,) E. Tm and 

(30a) 

where f=f(xto ••• ,x,;;zt> ••• ,zn) is the function whose 
Fourier transform with rt>~;pect to the variables 

(xh ••• ,x .. ) is given by 

f(Pto •• ~ ,P .. ;zh ... , Zn) = ri l,.(p,.)E(t Pr; zk\ (30b) 
h1 r·~ •) 

and where E(p; z) is the function defined in (26). 

(b) The vector-valued function J3(zi> • •• , Zn) of 

(zt> ••• , Zn) is strongly continuous on the closed tube 

. T"' and analytic on the open tube Tn. 

J.J. Bisognano and E. H. Wichmann 988 
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Proof: (1) The assertions in part (a) follow trivially 

from Lemma ·2,, by induction on n. 

(2) The proof that {3 is strongly continuous on T, re

quires an examination of the .function 1 given by (30b). 

We regard this function as a vector-valued function on 

T,, i.e., as a function of (z 11 ••• , z,) with range in 

J(R4
"). In view of the simple nature of the function 

E(p; z), as given l;>y (26), it is now easily shown that 1 
is continuous on T, in the sense of the test function 

space topology; since this topology is invariant under 

the Fourier transform, the same holds for j, r~g;arded 

as an 5(R4")-valued function on T,. It follows, in view 
of the assumption expressed in (15), that {3 is strongly 

continuous as asserted. 

(3) Since {3 is strongly continuous on T, it follo~s that 
{3 is bounded on any closed polydisc contained in T,. To 
show that {3 is analytic on T, it therefore suffices to 

show that the function { 1) I {3(z 1, ••• , z ,) ) is analytic in 

each complex 4-vector z,. separately for each 1) in a 

dense set of vectors in the Hilbert space. We select D1 

as the dense set and we then have, for k = 1, ... , n, 
{1]1{3(z11 ••• ,z,))=(~ 11 1T(zk)t;,.), with [;11 , 1;11 independent of 

z,.. This scalar product is trivially analytic for z,. E v.i> 
which establishes the second assertion in part (b). 

We are specifically interested in vectors of the form 

shown in (29), but it is worth noting that the lemma has 

. an obvious generalization, in which the operators cp(f,.] 
in (29) are replaced by arbitrary operators x,. E P (/}] ). 

·we next consider an :Umost trivial extension of the 

theorem of Reeh and Schlieder, 12 which will be needed 

later. 

Lemma 4: Let {R,In =1,.,., oo} be any set of open, 
nonempty subsets of Minkowski space. For such a set, 

and for any n;. 1, let s, denote the linear span of all 

vectors of the form 

!/!= cp(ftJcp[f2] ..• cp[f,]Q (31) 

with/,. eS(R4
), supp(f,.) cRki fork= 1, ••. ,n. 

Then the linear span of the vacuum vector n and the 

union of all the linear manifolds S, is dense in the Hil

bert space 11. 

This version differs from the original fortnulatlon 

_only in the circumstance that the regions R 11 net1d not 

all be the same. We feel justifled in omitting the proof 

since it requires only a very minor modification of the 

.proof in the case of equal regions, as presented in the 

monograph of Streater and Wightman. 1·8 The lemma can 

also easily be proved on the basis of Lemma 3. 

We next consider an interesting family of vector

valued functions on T,; discussed by Jost. 19 

Lemma 5: (a) For each n;o1, let E, be the set of all 

:Unctionsj(x11 ••• ,x,;z11 ••• ,zJ defined for (x11 ••• ,x,) 

eR4
" and (zt> ... ,z,)E T,, and such thatje 5(R4

") and 
such that the Fourier transform j off relative to. th~ 

variables (xt> ... , x,) satisfies the condition 

_ ~ n n ) 
f(Pt, ••• ,p.,; Z11 ••• , z,) = exp i I; I; z,. • Pr 

.11•1 rail 
(32a) 

for all (Pt. ••• ,p,) E V,, with V, defined as in (25b). The 

set En is non empty, and it contains in particular tlie 
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function fo defined in terms of its Fourier transform by 

lo (Pt. ••• 'Pn; Zt. ••• 'Zn) = n rlt Pr; z,.\ (32b) 
k=i ..,,;..,,. '} 

where the function E(p;z) is defined as in (26). 

To the set E, corresponds a unique vector-valued 

function cp(zl> ... ,z,) on T,, defined by 

where f is any element of E,. 

(32c) 

(b) The vector-valued function cp(z1, ... , z,) is strong

ly continuous on T,. 

(c) Let {!,.If,. ED (R4
1
), k = 1, ... , n} be any n-tuplet of 

test functions of compact support. Then, for any 

(zt. ... , z,) E T,, 

f d4(x1) · · · d4(x,)ft (xt)f2 (x2) · · · /,(x") 
(oo) 

(33) 

where tlie integral at left exists as a vector-valued 
Riemann integral relative to the strong topology for fl. 

Proof: (1) The function/0 trivially satisfies (32a). 

That it is included in 5(R4
n), as a function of (xi> ... , Xn), 

for any (z 1, ••• , z") E T,, follows readily from the fact 

that E(p; z) E 5(R4
), for any z e V•!· That the vector at 

right in (32c) is the same for all /E En follows from the 

fact that this vector depends only on the restriction of 

l to v,; 

(2) That the function cp is strongly continuous on T, is 

easily established through an examination of the prop

erties of the function/~, as defined in (32b). The con

siderations are the same as in the proof of the strong 

continuity of the vector {3 in Lemma 3, and in fad some

what simpler since (zl> • •• , z,) is nqw restrieted to the 

open tube 7'". 

(3) The assertion about the integral in (33) is now 

trivial, and the identity follows from a well-known con

volution theorem for tempered distributions. 20 We note 
that the restriction that the functions/,. be of compact 

support is in fact unnecessary, but since we shall only 

require the lemma as st.at.ed, we selected this version 

in order to make the matter completely trivial. 

We conclude this section by a statement of some . 

well-known facts about the vector-valued functions cp, 
which will be of crucial importance in our subsequent 

discussion. 

Lemma 6: (a) The vector-valued function cp(zh: .• , z,), 

defined as in Lemma 5, is an analytic function of 

(zh ... , z,) on T". 

_ (b) For any element A =A(M,x) of the Poincare group 

Lo, 

U(A)¢(?11 ••• , z,) = cp(Mz1 +x, Mz2, Mz3, ••• , Mz,). (34) 

(c) For any (z11 ••• , z") E T, the vector cp(z1, ••• , z,) is 

an analytic vector for the Lie algebra of the group 

U(L0). 

About the proof: A detailed proof of the assertion (a) 

based on an examination of the properties of the func-
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tion fo defined in (32b) is straightforward but somewhat 
cumbersome. For this reason it might be worthwhile to 

note that there is a simple proof based on Lemmas 3 

and 5, as follows. Let g(x) ED (R4
) be such that g(O) = 1. 

Let A> 1. We construct the vector {3(z1> ... , z.; A) as in 

(29), withfk(x) = A4g(:\.x), fork= 1, ~ •. , n. This vector

valued function of (z 1> ... , z.) is an .ana.lytic function of 

these variables on T., by Lemma 3. It is easily seen, 

in view of (33), and in view of the strong continuity of 

cp on T., that f3(zt> ••• ,z.; A) tends to ¢(zt> ... ,z.) as A 

tends to infinity, uniformly on any closed polydisc con

tained in T., and hence ¢ is analytic on T •. 

The assertion (b) of the lemma is trivial, and the 

assertion (c) follows trivially from (a) and (b). 

We finally note that the vector ¢·might be written as 

tj>(z 11 ••• , Zn)= qJ(z 1)qJ(z1 +z2) • • • qJ(z 1 tz2 +; · · + z.)n. (35) 

This formula has a proper interpretation within dis

tribution theory, but it is here offered for heuristic 

purposes only .. 

IV. COMPLEX LORE~TZ TRANSFORMATIONS AND 
THE INVERSION TRANSFORMATION 

We define a "right wedge" WR, an.d a "left wedge" 

WL, as the following open subsets of Minkowski space: 

(36) 

These two regions are bounded by two characteristic 

.planes whose intersection is the 2-plane {xlx3 =x4 =0}. 

For any subset R of Minkowski space /11 we define the 
causal complement Rc of R by 

R0 ={xj(x-y)•(x-y)<O, allyER}. (37) 

We note that with this definition WR0 = WL and wLc 
= W R• where the bar denotes the closure. We shall say 

that W R and WL form a complementary pair of wedges, 
despite tho fact that W R is not precisely the causal 

complement of WL within our definition of this notion. 21 

To the pair of wedges W Rand W t corresponds a 

four-dimensional subgroup L0(WR) =L0 (Wt) of the group 

L0 , namely, the group of all Poincare transformations 

which map Wn onto WR, and WL onto WL. It is easily 
seen that this subgroup contains, and is generated by, 

all translations in the 1- and 2-direetions, all rotations 

about the 3-axis, and all velocity transformations 
V(e3, t) in the 3-direction. We consider· the one-param-

. eter Abelian subgroup { V(e3, f) It E R 1} of these velocity 

transformations, where V(e3, t) is.the four-by-four 

Lorentz matrix given in (1) in Sec. I. To V(e3, t) cor

responds the unitary operator U(V(e3, t), 0), which we 

shall also denote by the shorter symbol V(t), since it 

will play an important role in our discussion. By 

Stone's theorem there exists a unique self-adjoint opera

tor (K3, DK) such that 

V(t) = U(V(e3, t), O)=exp(- itK3), all real t. (38) 

We shall consider the analytic continuation of the 

function V(t) to the complex plane. It is well known that 

to any self-adjoint operator (K3, DK) corresponds a 

representation r- exp(- irK3) = V(r) of the additive 

group of all complex numbers T by (in general unbound-
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ed) operators. These operators have the common spec

tral resolution 

V(T) = exp(- i7K3) = J exp(- irs)JJ.K(ds) (39) 

where J.l.K is the spectral measure in the spectral 

resolution of the operator (K3, DK). The domain of the 

closed operators V(r) depends only on Im(r). Hence, 

for any T = p + iA, with p, A real, let Dv(A) be the linear 
manifold such that the operator (V( r), Dv(A)) is closed 

and normal. The domain Dv(A) is given by 

(40) 

for any real A. 

Let A* 0 be real. Then Dv(A) is a core for all opera
tors (V(r),Dv(Im(r))) such that 0.,; Im(r)/A_,; 1. If 

ljJE Dv(A), then the vector-valued function V(r)lji of Tis 

well defined, strongly continuous and bounded on the . 

closed strip 0.,; Im(r)/A.,; 1, and an analytic function of 

Ton the interior of this strip. 

Common cores exist for the operators V(r). For 
later reference we state as a lemma some well-known 
facts about a particular family of such cores. 

Lemma 7: (a) Let c(s) E.D(R1
), and let the bounded 

operator c(K3) be defined by 

(41) 

Then c(K3)HcDv(A) for all real A. The function 

exp(- irs)c(s) is also in D (R1
) for any complex r, and 

V(r)c(K3) = J exp(- irs)c(S)J.l.K(ds). (42) 

The operator-valued function V(r)c(K3) is a bounded 

operator for every complex r, and it is an entire analy

tic.function of r in the sense of the uniform topology. 

(b) Let D be aily dense linear manifold, and let the 

linear manifold DC be defined by 

.D, =· span[c(K3)D Jc (s) eD (R1 
)}. (43a) 

Then.Dc Is dense, and a core for every operator 

(V(r),Dv(Im(T))), i.e., DccDy(l:m(T)) and 

(V(r), D
0
)** = (V(r),Dv(lm(T)}). 

(c) lf c(s) ED(R1), Uum c(K3) is also given by 

c(K3) = J~:dtc(t)V(t) 

(43b) 

(44a) 

where c(t) is the Fourier transform of c(s) defined by 

c(t) = irr.l .... ds exp(its)c(s). (44b) 

We shall next consider the action of the complex vel

ocity transformation V(r) on the vectors ¢(zt> ••. , z.) 

introduced in Lemma 5. We first note that the matrix

valued function V(e3; t), defined in (1) in Sec .. I, is an 

entire analytic function oft. Let z =x+iy, x andy real, 
be any complex 4-vector, and let r be any complex 

number. We shall write 

z(r) = V(e3, r)z (45a) 

and we then have, for -r=iA, 

z 1(iA) =x1 +iy1, z2(iA) =x2 +iy2
, 
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z 3(iX) = (x3 cos(.\)..,. y4 sin(X)) + i(y 3 cos(.\)+ x4 sin(X)), 

(45b) 

z4(iX) = (x4 cos(.\)- y 3 sin(X)) +i(y4 cos(.\) u·3 sin(-':)). 

We have written the explicit transformation formula.s 

in the above form because we are particularly interest

ed in the case of a real X, i: e. , the case of a pure 

imaginary velocity transformation. We can now state 

the following: 

Lemma 8: Let (zh .•• ,z") be an n-tuplet of complex 

4-vectors i" =x" +iy", Where x1., Y~t• real, Y~t 1 =y"2 
= 0, 

y 11
4 > ly 11

3 1, for k=1, ... ,n. 

(a) If x" E W R (i. e. , x" 3 > I x" 41 ), for k = 1, ... , n, then 

(z1(iX), ... , z"(iX)) E T" for all XE [0, rr/2]. The vector 

¢(z11 ••• , z") is in the domain D~(1T/2), ·and 

V(iX)¢(z11 •• ~, Zn) = tf>(Zt (iX), ... , Zn(iX)) (46) 

for all XE [0, 7T/2]. 

(b)Ifx"EWL(i.e., x" 3 <-lx~o 4 1), fork=1, •.. ,n, 
then (z1(iX), •.. , Zn(iX)) E T" for all ,\E (-7T/2, 0]. The 

vector q>(z 11 ••• , z") is in the domain Dv(- 1T/2), and the 

relation (46) holds for all XE [- rr/2, 0]. 

Proof: (1) We consider the assertions in part (a). By 

inspection of the explicit formulas (45b), it is easily 

seen that if z = x + iy is a complex four-vector such that 

y 1 =y2 =0, y4 > ly3 1, and x3 > lx4 1, then Im(z(iX))E v. for 

an XE [0, rr/2]. Hence; in view of the stated conditions 

.on (Zt. ... , z")' we have (z 1 (iX), •.. , Zn(iX)) E Tn for all· 

A on the closed interval, with T,. defined as in Lemma 3. 

Since T" is open there exists a connected open neighbor

hood N (in the complex -':-plane) of the closed segment 

{0, 7T/2] such that (z1 (iX), ... , zn(iX)) E T" for ,\EN, and 

hence the vector cp(z1(iX), •..• ,z"(iX)) is well defined for 

AEN. By Lemma 6 this vector, regarded as a function 

of A, is an analytic function on N. · 

(2) Let De be defined as in (43a), wtth iJ =fl. For any 

qED, the function / 1 (X)=( V(i~}'~'7JI <p(zh, •• , Z 11 )) Is an 
entire analytic function of X, by Lemma 7. We defllie 

the function f 2 (A) on N by / 2 (-':) =(1] I <{J(z1 (iA), ... , Zn(iA))). 

By Lemma 6 we have ! 1 (A)= / 2(-':) for iX in some real 

neighborhood of A= O, and it followR that ft (-':) =.f2(X) on 

N. Since this holds for any 7JE D0 , imd since D 0 is a 
core for every (V(T),Dy(lm(T))), it follows that 

-4l(z h ... , Zn) E Dv(l.m(i-':)) for ,\EN, and l.hat (46) holds 

for all A EN. This proves the assertions in part (a). 

_ (3) The assertions in part (b) are proved in an entire

ly analogous fashion. 

. We next consider an involutory mapping x- f}x of 

Minkowski space onto itself, defined by 

f)x=- R(P.3, 1T)x or f) (x1,.x\x3.,x4
) = (xi,.x2, -xa, -.x4

) 

(47) 

where R(e3, IT) denotes the rotation by angle 1T about the 

3-axis. We see that 9 maps WR onto WL, and the map

ping can be described as a reflection in the common 
44

edge" {xlx3 =x4 =0} of the pair of wedges WR and WL. 

By inspection of (45b) we see that 

!) = V(e3, i7T) (48) 
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j anfthisjcir§mstance suggests the heuristic idea that 

something akin to V(i1T)!{J(x) V(i7T)"1 = <P(9 x) might hold. 

This formula is, of course, pure nonsense as it stands, 

but in the following we shall establish some facts which. 

in a sense reflect the above heuristic idea. 

Lemma 9: Let (x 1> ••• , x") be such that xk E W R for 
k = 1, ... , n. Let v be the real forward timelike 4-vector 

with components v = (0, 0, o, 1), and let t be a real 

variable. Then 

s-lim V(i11'/2lcf>(x1 +itv,x2 +itv, ..• ,Xn+itv) 
t ~o. 

Proof: By Lemma 8, part (a), we have, for t> 0, 

V(i7T/2)cf>(x1 +itv, . .• , Xn+ itv) = tf>(zf, ••• , z~) (50a) 

where 

z~ =z~(t) =zk- (0, 0, t, 0), fork= 1, ... , n. (50 b) 

Since f)x11 E WL if xkE WR, we similarly have, by part 

{b) of Lemma 8, for an.y t > 0, 

V(- i71'/2)¢(fjx1 +itv, •.• , f}xn +itv) = cf>(z'{, •• . , z;) 

(50c) 

with 

z; =z;(t) ;,z"+ (0, 0, t, 0), fork =1, ... ,n. (50d) 

We note that (zf, ... , z~) E T"' and (zt', ... , z::> E T"' 

for ·an real t, and it follows from Lemma 5 thai the vec

tors at right in (50a) and (50c) have well-defined strong 

limits as t tends to zero. The equalities in (49) then 

follow frotn (50b) and· (50d). 

Lemma 10: Let R1 be a bounded, open, nonempty sub

. set of WR, and let x0 E W11 he such that (~-x 0 )E WL for 

ail x ~ fi1• Fo.r any integer n > 1 we define the set Rn by 

Rn={'\"+(n-1)x0 jxeR1}. (51) 

(a) 'l'hen Rnc WR for all tt, and if n>k, then (x'-x") 

E W R for all x' ERn, x" E ll11 • In particular, Rn is space

like separated from Rk (1. e. , Rn c R11°) H n * k. 

(b) Let {f11 1 k = 1, ••• , n} be an n-tuplet of test functions 

such that fk E S (R4) and supp{f11 ) c R 11 , for k = 1, •.• , n. 

Letf,/ denote the test function defined by f/(x) =J11 (fjx). 

Let c(s) ED(R1). Then . 

V(i7T)c(K3)<P[/1]<P[h] · · · <P[fn]n 

=c(K3)rp[fti]<PUll · · · <P[//]n. (52) 

Proof: (1) The assertions in part (a) are trivial, and 

need not be proved here. 

(2) Let 11 = (0, 0, 0, 1). We consider the string of 

equalities: 

V(i71'/2)c(K3)rp(/tJrp(f2] · · · rp(fn]n 

=s-lim V(i7T/2)c(K3)T(itv)rp[ftJT(itv)rp[f2] • • • T(itv) 
'..0+ 
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X rp(itv +Xt. itV +Xi- Xt. ilV +X a- x2, ••• , itV+Xn- Xn-1) 

= j 1,.1 d
4
(x1) • • • d4(xn)ft (xt)f2(x2); • • fn(Xn) 

.Xs-lim V(in/2)c(K3 ) 
t -0+ 

X rp(itv +X11 itv +x2 - Xt. it~ +x3 - x2, ••• , itv +x~- Xn_1) 

= fc .. > d
4
(x1) • • • d

4
(xn)f/(xt)f2

1
(x2)· • ·J/(xn) 

X s-lim V(- irr/2)c(K3) 
t -0+ 

X rp(itv +x11 itv +X2- x 11 itv +x3 - x2, ••• , itv +..-t"n- Xn-1) 

= s-limV(- i1T/2)c(K3)T(itv) 
t-0+ 

X (/1(!/]T(itv)(/1(!/] · • • T(itv)(/1(!/]0 

= V(- i1T/2)c(K3)(/1(!/](/1(!l] • · • (/1(!/]n. (53) ·. 

That the first member in (53) is equal to the second 

member, and that the last member is equal to the next 

to the last member, follows from Lemma 3 (i.e., from 

the strong continuity of the function there denoted {3), 

and from the fact that the operators V(i1T/2)c(K3 ) and 

V(- i7T/2)c(K3) are bounded. That the second member is 

equal to the third member follows from the formula 
(33) in Lemma 5. In view of the properties of the inte
grand in the third member which follow from the facts 

stated in Lemma 9, and from the nature of the functions 

/ 11 , it is permissible to let the bounded operator 

V(i1T/2)c(K3) act on the integrand, and to take the strong 

limit before integra~ion. We note that the relationships 

between the supports of the function / 1., as expressed in 
the assertions (a) of the present lemma, are essential 

at this step. Because of these relationships the argu

ments of the function ¢ appearing in the integrand 

satisfy the premises of Lemma 9, which is thus applica

ble. The third and the fourth members are thus equal. 

In a similar fashion we conclude that the fifth and the 
sixth members are equal. The equalUy of the fourth 

and the fifth members follows Iroi11 Lemtna 0. (Note the 
trivial change in integration variables). 

(3) We finally note that the vector in (53) is in the do

main of (V(i7T/2),Dy(1T/2)), and if we mult.iply the first 

and the last members in the string by this operator we 
obtain (52). 

It should be noted that the condition that the field be 

local has played no role in our discussion so far, and in 

particular the formula (52) does not depend on the as-

- sumption of locality. We shall now consider some addi
. tional conclusions which can be drawn if we take into 

account the locality condition (16). 

From the work of Jost22 it is well known that in a 
local field theory based on our general assumptions 
there exists an antiunitary involution 0 0 , which ~an be 

interpreted physically as an inversion transformation, 

or TCP-transformation (with respect to the origin in 

Minkowski space). This operator satisfies the conditions 

(54 a) 

and 

.~.::. ·,~: 
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(54 b) 

where the last relation refers specifically to the case of 
a Hermitian scalar field. 

We shall introduce another antiunitary involution J, 

defined by 

J= U(R(e3, 1r), 0)00 =00 U(R(e3, 1r), 0) (55) 

where, as before, R(e3, 7T) denotes the rotation by angle 
7T about the 3-axis. It is easily seen that 

.fl=I, JO=O, JU(M,x)J=U(f)Mf),f)x) (56a) 

where f) is defined in (47). Furthermore, JD1 =1?1> and 

J(/l[f]J= (/1(!1]* on D 1 (56b) 

for anyfES(R4
), and wherej 1(x)=f(fjx). 

We consider the third relation in (56a) for the case of 
a (real) velocity transformation in the 3-direction. We 

have 

JV(t)J = V(t), all real t. 

From this relation, and from the fact that J is an 

antiunitary involution, we readily .conclude that 

(57 a) 

(57b) 

JDy(X) =Dy(- X), J(V(r),Dv(X))J= (V(T*),Dv(- X)) 

(57 c) 

for any complex r=p +iX, p and X real. 

As the formula (52) suggests, the complex velocity 

transformations V(i7T) and V(- i7T) will be of particular 

interest. We shall employ the special notation 

D. =Dv(1T), D_ =Dv(- 1r) (58)· 

for the domains of these ope,rators, and (V(i1T), D.) and 
(V(- i1T), D_) are thus self-adjoint. We then have 

and 

D. =JD_ = V(- i1r)D_, D_ =JD+ = V(i1T)D., (59a) 

J(V(itr), D.).J = (V(- i1r), D_}, 

J(V(- i1T),D_}j = (V(i1T),D.). (59b) 

The antiunitary involution J can be regarded as asso- · 

elated with the pair of wedges WR and WL, or, ii we 
like, with their common "edge," whereas the involution 

6 0 is associated with a point, the origin of Minkowski 

space. J is the Hilbert space object corresponding to 

the involution f) on Minkowski space, as revealed by 

(56b). We note that if supp(/) c W R• then supp(/1
) c WL, 

and vice versa. Conjugation with J thus maps operators 
locally associated with the right wedge WR into _opera

tors locally associated with the left wedge WL. We also 

note that 

JU(A)J = U(A), all A E L0 (W IJ, (60) 

where L0(W R) is the group of all Poincare transforma;, 

tions whic·h map W R onto W R• 

We shall next consider an extension of Lemma 10 

which incorporates the condition that the field be local. 

Lemma 11: Let {Rnln=l, ... , oo} be a fixed set of 

bounded, open, nonempty subsets of W R• constructed as. 

'~J' 
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in Lemma 10. Let (2 be the linear span of the identity 

operator I and all operators (Q, D1) of the form 

Q = cp(ft]cp(f2] · · • cp(fn] (61) 

where {!~I k = 1, ... , n} is any n- tuplet of test functions 

such that f~ E S (R4
) and supp(f~) c R,., for k = 1, ... , n. 

Then: 

(a) The linear manifold Dq = qn is dense in the Hilbert 

spaceH, and Dqc=span{c(K3)Dqlc(s)EL)(R1
)} is a core 

fox: every operator (V(r), Dv(Im( r})). 

(b) (Q*,Dt)E(} if (Q,Dt)E(}. 

(c) If (Q,D1)E(2 and c(s)ED(R1
), then 

V(i1T)c(K3)Qn =c(K3)JQ*n. 

Proof: (1) The assertions (a) follow directly from 

Lemmas 4 and 7. 

(62} 

(2) The assertion (b) is trivial if Q is a multiple of L 

If Q is of the special form (61) we have 

Qt = cp(f,,t] •. ~ cp[f2t]cp(fttl 

(63) 

where the second member is equal to the third in view of 

the locality condition (16}, and in view of the relation

ships between the supports of the functions f,., as stated 

in part (a) of Lemma 10. Since (Q*,D1) = (Qt,D1), we see 

that (Q*, D1) E(}. . 

(3) The relation (62) is trivial if Q is a multiple of I. 

For Q of the special fo~m (61) we have, in view of (63), 

JQtJ= cp(f/]cp(!/] .•. cp(f/]. (64) 

Since Q*n = flr?. the relation (62) then follows from 

(64) and from (52) in Lemma 10. This, in effect, proves 

the assertion (c). 

To an tl-tuplet (xh ••• ,x,.) such that x,. En. fork 

= 1, ... , n 1 corresponds the r1-tuplet (x1,x2 - x17 

x3-x21 ••• ,x,.-x •• 1), whichis a so-called Josl point. 23 

We note here that there ls a very close connecUon be

tween our considerations and Jost's beautiful proof of 

the TCP-theorem. 22 In a sense the key point is the fact 

that the complex Lorentz transformations V(e 3, i..\), for 

~ E (0, 1r), map the wedge region WR into the forward 

imaginary tube v .. 1; This faet, and the assoeiated con-

. nection between complex Lorentz transformations and 

the inversion transformation, were discovered by .lost, 

and form the basis of his proof. 

· We are now in a position to state and prove the key 

theorem. For the definition of the algebras p(WR) and 

P(WL) we refer to our general definition (in Sec. IT, 

immediately following Eq. (15}] of the algebra p(R), for 

any open R c/)1. The algebra p(w R), respectively the 

algebra p(WL), can be regarded as consisting of field 

operators locally associated with the wedge region W R• 

respectively the region WL. 

Theorem 1: (a) The algebras p(WR) andP(WL) are •

algebras with the anti~inear involution (X,D1) - (X*, D1). 

They commute on D 17 i. e. , 

{X, Y]!Ji=O (65) 

for all1/IE.D1 and for allXEP(lVR), YEP(WL). 
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(b) The vacuum vector n is cyclic and separating for 

both P(W R) and P(WL). 

(c) With V(t) = U(V(e3, t), 0) (a velocity transformation 

in the 3-direction), 

V(t)p(WR)V(t)-1 = P<WR), V(t)p(WL)V(t)"1 = p(WL) (66) 

for all real t, and with J defined by (55), 

(d) With D+ and D_ defined as in (58), 

p(WR)fl.cD .. , p(WL}fl.cD_. 

For any X E p(W .Rl 

V(i1r)XP. =JX*P. 

and for any Y E P(W L) 

V(- i11')Yfl. =JY*R 

(e) The condition 

C~P.=X*P., allXEP(WR), 

(67) 

(68a) 

(68b) 

(68c) 

(69a) 

defines an antilinear operator (C R• p(W R)n), and the 
condition 

CLYP.=Y*n, all YEP(WL), (69b) 

defines an antilinear operator (C L• p(W L)n). 

These two operators satisfy the relations 

(C R,p(w R)n)** = (CL, p(WL)n)* = (JV(i;r) 7 D+), (69c) 

(C L• p(W L)n}** = (C R• p(W R)fl.)* = (JV(- i1r), D.). (69d) 

Proof: (1) The assertions (a) and (c) are trivial. That 

n is a cyclic vector for the algebras follows from the 
Reeh-Schlieder theorem. That n is separating for 

p(W R) follows readily from the commutation relation 

(65), and from the fact that n is cyclic for p(Jt'IJ. In a 
similar manner we eonchtde that n is separating for 

P<WL). 24 

(2) We now consider the assertions (d) and (e). We 

note that our formulation is tautological in the sense 

that the assertions (d) are trivially implied by the as

sertions (e). We presented the matter in this manner . 

because we wanted the relations (68b) and (68c) to stand 

out as clearly as possible. 

For didactic reasons we shall first prove the asser

tions (d), independently of the considerations in (e). Let 

a set{} of operators, and a domain Dqc• be constructed 

exactly as in Lemma 11. We note that (2 c p(W .Rl. 

Let QEQ, XEP(WR), and c(s)ED(R1
). We intr~uce 

the integral representation (44) of the operator c(K3), 

and we note that 

c*(- K3) = L: dtc*(t) V(t) 

where c(t) is given by (44b). 

We consider the following string of equalities: 

(xn I V(i 1r )c (K 3)Q n) 

=(Xnjc(K3)JQ*r?.) =(XnjJc*(~k 3 )Q*r?.) 
' 

=(c*(- K3)Q*n I JXn) 

J.J. Bisognano and E.H. Wichmann 
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= r: dtc (t)( V(t)Q* V(t);:1n I (JXJ)n) 

'= f_:dtc(tX(JXJ)*nl V(t)QV(tt1n) 

=(JX*nlc(K3)Qn}. 

0 

(70b) 

The first two members are equal in view of (62} in 

Lemma 11. The equality of the second and the third 

members follows from (57b), and since J is an anti

unitary involution these expressions are equal to the 

fourth member. The equality of the fourth and fifth 

members follows from (70a). The integrands in the · 

fifth and sixth members are equal because the opera

tor V(t)QtV(t)-1 E p(WR) commutes with the operator 

JXJE P(WL) on D1• The equality of the last two members 

follows from (44a). 

In view of the construction of the domain D
00 

we con

clude from (70b) that if 11 is any vector in D
00

, then 

(70c) 

Since D
00 

is a core for (V(i1T),D.) (by Lemma 11), it 

follows from (70c) thatXnED., and that (68b} holds. 

The relation (68c) and the second relation in (68a) 

then follows trivially from (67) and (59b). 

(3) The assertions (e) involve antilinear operators, . 

and since the theory of such operators might appear 

less familiar than the theory of linear operators we · 

shall make a few remarks about the subject. Let (A, D.) 

be an antilinear operator, defined on a dense domain 

Da. The adjoint (A,D.)*=:=(A*,D.*) of (A,Da) is defined as 

follows. A vector 17 is in the domain D.* of the adjoint 

if and only if there exists a vector ?;(TJ) such that (TJIA~ 

=(~I ?;(17)) for every ~ED •. The operator A* on D
0 
* is 

then defined by A*TJ= !:(TJ), and it is also antilinear. The 

operator (A, D.) is closable if and only if its adjoint is 

densely defined, and if it is closable its closure 

(A,Da)** is the adjoint of theadjoint (A*,D.*). The 

propertil~s of an antilinear operator (A,D
0

) can be con

veniently studied in terms of the.lineay opet·ator 

(L, D
0

) = (JoA, D
0

) =,J0 (A, D.), where J 0 is an arbitrary 

antiunitary operator. We then have (A,D0)* = (L*J0 , 

J01D(L*)). The operator (A, D.) is closable Hand only 

if (L,Da) is closable, and if it is closable, then (A,Dal** 

=J01
(L,D.)**. The well-known polar decomposition 

theorem for linear operators has a counterpal't for anti

linear operators, as we easily see in view of the above. 

We note that the formulas (69c) and (69d) explicitly de-

. scribe the polar decompositions of the adjoints and 

closures of the "adjointing operators" C R and C L de-
fined by (69a) and {69b). · 

(4) After this digression we consider the assertions 
(e). It follows at once from the definition (69a), and 

from {68b) that 

(JV(i1T), D.) ::;l (C R• p(WR)n), (71a) 

and if we take the closures of both members in (7la) we 

obtain 

(JV(i1T), D.) ::;1 (c R• p(w R)n)** (7lb) 

since (V(i1T), D.) is .self-adjoint and (JV(i1T), D.) therefore 

is closed . 
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(7lc) il 

Let 17 be any vector in the domain of (C R• P< W R) n)*. 

Let QE.Q, and c(s)ED(R1
). We again introduce the in- \ 

tegral representation (44) for the operator c(K3), and l 
we consider the string of equalities: 

(C R*TJ I c(K3) Qn) 

= j_: dtc(t)(CR*TJI V(t) Q V(tt1n) 

~ f_: dt c (t) < V(t) Q* V(f>-1 n 1 17> 

=(c*(- K 3) Q*n I 17) =(JV(irr) c(K3 ) Qn I TJ). (71d) 

The equality of the second and third members follows 

from the fact that V(t) QV(tt1n is in the domain of the 

antilinear operator (C R• P(W R)n). The reasoning behind 

the other steps is similar to the reasoning in (2) above. 

In view of the construction of the domain Dqc the equali

ties (7ld) imply (7lc). 

Since D
00 

i.s a core for (V(i1T), D.), we have 

(JV(i1T), D.)= (JV(i1T), Dq
0
)** 

and it follows from (7lb) and (7le) that 

(CRt p(WR)n}** = (JV(i1T), D.). 

The analogous relation 

(CL, p(WL)n}** = (JV(- i1T),D_) 

(7le) 

(7lf) 

(71g) 

is most easily proved by considering the conjugation of 

both members in (7lf) by J. The remaining relations in . 

(69c) and (69d) follow trivially from (7lf) and (71g), and 

from the relation 

(JV{i7T), D.)*= (JV(- i1T), D.), (71h) 

This completes the proof of the theorem. We eonclude 

this section with some remarl<s which we hope will 

.fu rtlwr clarify I: he situation, 

Concerning the relations (69c) and (69d) we note the 
following, If we are given tWo algebras, denoted P(WR) 

and P(W~,), which satisfy the eonditi.ons (a) and (b), and 

the relation (67), of Theorem 1 (for some antinnHary 

i.!,lVOliltlon J), and if we define the "adjointing operators" 

C Rand C L by (69a) and (69b), then it can be shown that 

these antllinear operators are closable, and that 

(72) 

However, it cannot be concluded that the inclusion in 

.. (72) can be replaced by equality. We can see this as 

follows (within the framework of quantum field theory). 

Suppose that the two algebras had been defined 

"wrongly" in such a way ~hat they were actually equal to 

two algebras which in our notation are written as P(W_R), 

respectively P(Wf.), where W[. = 9 Wif, and where Wk is 

a wedge properly included in WR, and obtained from 

WR through a translation. The conditions (a) and (b), 

and the relation (67), of Theorem 1 would then be 

satisfied, and the relation (72) would hold. The two 

members in (72) are, however, not equal, because the 

·"wrong" algebras are "too small." It is significant. that 

the "wrong" algebras, constructed as above, also do not 
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satisfy the relations (66), which say that the algebras 

are invariant under all velocity transformations V(t). 

·, As the above considerations indicate, it is easy to 
construct a large set of distinct closed extensions of 

(CR,P(WR)n), Let W~ be any wedge obtained by a trans

lation of W R• and such that W~ :J W R· We define the 
operator (CR, P(WR)n) in analogy with (69a), and we then 

have (CR, P(W~)n) :J (C R• P(W R)n), with a corresponding 
inclusion relation for the closures. It is easily seen that 

the closures are distinct if WR'* WR. 

Lemma 11 states facts about the field operators which 
are of crucial importance in the proof of Theorem 1. 

However, if we consider the role played by this lemma 

in the proof, it might seem miraculous that one can 
draw general conclusions about all the operators in 

p(WR) from the properties of operators in a particular 

set e which are locally associated with a family of 
regions {RAin= 1, ... , oo} which does not cover WR, Now 

itshould be noted that the construction of the domain 

Dqc involves operators in V(t)(} V(tt1
, for any real t, but 

it is still the case that the set of regions { V(e3, t)Rn I 
n = 1, •.• , oo, t E R1

} does not cover WR either. A closer 

examination of this issue reveals that the "potency" of 

the set e ultimately depends on the geometrical fact 
that if x is any point of WR, then {V(e3, t)x It E R1Yc = WR, 

where the superscript cc denotes the causal complement 

of the causal complement. 

Finally, we note that since ocp(WR) it follows, in 
view of (68b) i.n Theorem 1, that the factor c(K3) in both 

members of (62) in Lemma 11 is in fact "unnecessary": 

The relation also makes sense if c(K3) is replaced by 1. 

We introduced this factor in order to have simple proofs 

of Lemmas 10 and 11. 

V. ON SOME ALGEBRAIC QUESTIONS CONNECTED 
WITH THEOR!=M 1. 

This section is a mathematical preliminary to our 
discussion of physical duality cond.itions in tho next sm:

tion. The questions which we shall discuss are related 

to the issues of Theorem 1, although one might say that 

we are here more concerned with the properlles of the 

triplet (fl, J, K 3) than w~th the qwmtum fields. 

We shall first be concerned with the characterJzation 

· -of operators in general {bounded or unbounded) whkh 

sat~sfy relations such as (68b) and (68c) in Theorem 1. 

_ Lemma 12: Let lj(W R) be the set of all closable opera

tors (X, D(X)) such that n E D(X) n D(X*), and such that 

XUED. and 

V(i1r)XO =JX*il. 

Let lj(WL) be the set of all closable operators 

(Y, D(Y)), such that n <=: D(Y) n D(Y*), and such that 

YilED. and 

V(- i1T)Yfl =JY*fl. · 

Then: 

(73a) 

(73b) 

(a) (X,D(X)}*=(X*,D(X*))e:lj(WR) if (X,D(X})Elj(WR) 

and (Y,D(Y))* = (Y*,D(Y*)) Elj(WL) if (Y,D(Y)) Elj(WL). 
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(b) 

Jlj(WR)J=lj(WL), Jlj(WL)J=lj(WR), 

i.e., (X, D(X)) E lj(WR) if and only if (JXJ, JD(X)) 

Elj(WL). 

(c) 

V(t)lj(WR)V(tr1 =lj(WR), V(t}lj(WL)V(t)"1 =lj(WL) 

for all real t. 

(74) 

{75) 

(d) Let lj6(WR) denote the set of all bounded operators 

in lj(WR), and let lj6(WL) denote the set of all bou1Uled 

operators in lj(WL). Then 

Ub(WR)n =U(WR)n =D., Ub(WL)n =U(WL)n =D.. (76) 

(e) The relation 

{X*nl Yn) =(Y*njxn) (77) 

holds for all operators (X, D(X)) E lj(WR), (Y, D(Y)) 

Elj(WL).· 

If a closable operator (X, D(X)) is such that n E D(X) 

n D(X*), then (X, D(X)) E lj(WR) if and only if (77) holds 

for all (Y, D(Y)} E lj(W L)• 

If a closable operator (Y, D(Y)) is such that n E D(Y) 

n D(Y*), then (Y, D(Y)) E lj(WL) if and only if (77) holds 

for all (X, D(X)) E lj(WR), 

(f) 

(78) 

Proof: (1) The assertions (a) and (b) are trivial if we 

take into account the relations (59a) and (59b). The as

sertion (c) is completely trivial. 

(2) We prove the assertions (d) by exhibiting explicit 

mappings of D. into i./6(WR) and of D. into 1/b(Wc). For 
any ~ED., .let the bounded operator z.(~) be defined by 

z.m = I o<n I + I U)(JV(irr)~ 1- (n I 0 I n)(n j. (79a) 

If we note that (!21 0 =(JV(i1TH 10), we easily see that 

the mapping ~- z.W is a linear mapping of D. into 
l/6(WR) such that 

z.(~)n = ~. z.(~)*n =JV(i1TH. (79b) 

This proves the equalities at left in (76), The equali
ties at right in (76} are proved in a similar manner, 

through a consideration of the mapping TJ- Z.(1]), ·where 

1JED_ and 

(3) We next consider the assertions (e) in the lemma. 

Let .(X, D(X)) E: lj(W R) and (Y, D(Y)) E {/(WL). It follows 

from the relations (73) that 

(X*nj YO) =(JV(i7r)Xflj Yfl) =(V(- i1r)JXflj YQ) 

=(Jxnj V(-i7T)Yn) =(JxnjJY*n) 

=(Y*njxn) (SO) 

which proves the formula (77). 

(4).~_ow let (X,D(X)) be a closable operator such that 

n E ii(~ n D(X*). The condition that (77) hold for all 
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(Y,D(Y))Elj(WL) is, in view of part (d) of the leinma, 

equivalent to the condition that 

{X*n !11> = (JV(- i7T)TJ Jxn) 

for every 17 ED_. It is easily seen that Eq. (81) is 

equivalent to the equation 

(J17 jJX*Sl) =(V(i7T)J17 jxn). 

Since JD_=D., and since (V(i7T),D.) is self-adjoint, 

(81) 

(82) 

we conclude that if (81), and hence (82), holds for every 

1J ED_, then XSl ED., and (73a) holds, i.e., (X, D(X)) is 

in the set lj(WR). ' 

In the same manner we prove the last assertion in 

part (e). 

(5) The assertion (f) in the lemma is a paraphrase of 

the assertions (d) in Theorem 1. This' completes the 

proof. 

It should be noted that the sets lj(WR) and lj(WL) are 
not algebras, and in fact not ev.en linear manifolds. The 

sets Ub(WR) and lj6(WL) of bounded operators are not 
algebras either, but linear manifolds which are easily 
seen to be weakly closed. That an operator X is in

cluded in one of the sets lj(WR) or lj(WL) is, in a sense, 

not a very restrictive condition: It is only a condition on 

the vectors xn and X*Sl. We found it convenient to in

troduce these sets since we will be dealing with opera
tors which have properties such as those considered in 

the lemma. 

We next consider some criteria for operators to be in 
these sets. · 

Lemma 13: (a) Let {X,D(X)) be closable, and such 
that SlED(X)nD(X*). Then (X,D(X))Elj(WR) if and only 

if there exists a set C L c lj(WL) such that span{C Ln} is 
a core for (V(- i1r), D_}, and such that the relation 

(X*nl Yn) =(Y*njxn) 

holds for all (Y, D(Y)) EC L• 

(83) 

(b) l.et (Y, D(Y)) be closable, and such that 0 E D(Y) 

n D(Y*). Then (l', D(l')) E lj(WL) if and only if there 

exists a set C Rclj(WR) such that span {C Rn} is a core 

for. (V(i7T), D.), and such that the relation (83) holds for 

all (X, D(X)) ECR· 

(c) Let (X, D(X)) be closable, and such that n E D(X) 

n D(X*), Then (X, D(X)) E lj(IVR) if and only if there 

exists a set QL Clj(WL) SUCh that Span {QLSl} iS dense 
in the Hilbert space H, and 

and such that the relation (83) holds for all (Y; D(Y)) 

EQL• ·;: 

Inparticular, {X,D(X)}elj(WR) if and only if (83) 

holds for every (Y, D1) E P0(WL). 

(84a) 

(d) Let (Y, D(Y)) be closable, and such that n E D(Y) 

n D(Y*). Then (Y, D(Y)) E lj(WL) if and only if there 

exists a setQRclj(WR; such that span{QRn} is dense in 
the Hilbert space H, and 

(84b) 
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and such that the relation (83) holds for all {X, D{X)) 

EQR• 

In particular, (Y,D(Y)) Elj(WL) if and only if (83) 

holds for every (X, D1) E P0(WR). 
I' 

Proof; (1) We consider the assertion (a). In view of 

the discussion in step (4) of the proof of the preceding 

lemma, we can restate the condition on X as follows: 

The relation (82) holds for aliT} in a core of (V(- i7T), D_). 

Now, if D' is a core for (V(- i7T), D_), then JD' is a core 

for (V(i7T), D.), and we thus conclude, with reference to 

(82), that xn ED., and ti1at (73a) holds. In an analogous 

manner we prove the assertion (b) in the lemma. 

(2) The premises in part (c) of the lemma can be 

restated as follows: The relation 

(JV(t) 17 I JX*n) = (V(i7T)JV(t)17 jxn) (85a) 

holds for all real t, and all 17 in the dense set D" 

=span{QLn}. Let c(s)eD(R1
). In view of (85a) and the 

relations (44a) and (44b) wethen have 

(Jc(K3)1}jJX*Sl) 

= f_:dtc(t)(JV(t)TJjJx*n) . 

= 1_: dtc(tX v·(i7T)JV(t)TJ Jxn) =< V(i~)Jc(K 3 ) 17 Jxn) (85b) 

for all 17 ED". In view of Lemma 7 the set D; 
= span{c(K3h7lc(s) ED (R1), 71 ED"} is a core for (V(- irr), 

D_), and the equality of the first and fourth members 
in (85b) then implies, and in step (1) above, that 

(X, D(X)) E lj(WR). 

In particular, these considerations hold for the case 

whenQL=Po(WL). 

The assertions (d) are proved in an analogous nianner. 

We shall next consider the situation which arises 

when a subset of one of the sets /J(WR) or lj(WL) is an 
algebra, The following lemma is a preliminary fo1· this 

study, 

Le·mmn 14: Let X11 X2 E {/(WR) be two fl(nmdcd opera

tors with the property thnt 

X1 V(t)X2*V(tt1 Elj(WR), au. real t. (86) 

Then 

(87) 

Proof: (1) Let YE/J6(WL), The condition (86) then im

plies that 

(Ynjx1 V(t)X2*Sl) =(V(t)X2 v(t)-1X1*n I Y*n) (88a) 

for all real t. After a simple transformation of the right 
member, on the basis of the relations (73a) and {73Q), 
we obtain from (88a) the relation 

(Yn jX1 V(t)X2*Sl) =(V(- t- i_1T)YSljJX2JV(i1T- t)X1Sl). 

(88b) 

(2) In view of the properties of the exponential func

tion V(T) = exp(- iTKa) discussed in Sec. m (immediately 

preceding Lemma 7), we note that the three vector

valued functions of T given by 

(89a) 
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V(- T*- i1r)YO (89b) 

are all well defined and strongly continuous on the 
closed strip 0 ~ Im(r) ~ 1T in the complex T-plane. The 

functions in (89a) are strongly analytic functions of T on 

the corresponding open strip, and the function in (89b) 

is a strongly analytic function of T* on the open strip 

O>Im(T*)>-1T. It follows that the functionj(r) defined 
by . . 

f(r) =(YOjX1 V(r)X2*Sl) 

(89c) 

is continuous on the closed st:dp 0 ~ Im(r) ~ 1T and an 
analytic function of T on the open strip 0 < Im ( r) < 1T. By 
(88b) we have f(t) = 0 for all real t, and it follows that 
f( T) = 0 throughout the closed strip. In particular, we 

have j(i1r) = 0, which, in view of (89c) and the relation 
(73a), implies that 

(YSl jX1JX20) =(YO jJX2JX1Sl) (89d) 

for all YEljb(WL). Since lj6(WL)Sl is dense in the Hilbert 

space H by Lemma 12 the relation (87) follows. 

We shall now consider von Neumann algebras of 

bounded operators. If B is any set of bounded operators 

we denote the commutant of B by B', and we write B" 
for (8')'. 

Theorem 2: LetA Rclj(WR) be a von Neumann algebra 
such that A Rn is dense in the Hilbert space H, and such 
that 

V(t)A R V(l>-1 =A R• all real t. 

Let the von Neumann algebra A L be defined by A L 

=JA gl. Then: 

(a) 

A~=JA gl=A Lclj(WL), 

At =JALJ=ARclj(WR). 

(90) 

(01) 

(b) The vector 0 is cyclic and separating foi' A 8 nud 

AL· 

(c) For any real t, 

. V(t)A L V(ft1 =A L• . (92) 

(d) The linear manifold A RO is ~core for (V(i1T), D.), 
- and hence also for the antilinear operatot• (JV(i7T), D.). · 

'The linear maniloldALO is a core for (V(-i1T),D.), 

- and hence also for the antilinear operator (JV(- i1T),D.). 

The linear manifold {A ~}n {A Ln} is dense in the 
Hilbert spaceH, and a core for the operators (V(i1T),D.) 

and (V(- i1r), D.). 

(e) The von Neumann algebra A R is "maxima!.'' in the 

sense that if A is any von Neumann algebra with 0 as a 

separating vector, and such that A 8 cA, and such that 

V(t}AV(t>-1 =A for all real t, then A =A R• The algebra 
A 8 is "minimal" in the sense that if A is a von Neumann 

algebra with 0 as a cyclic vector, and such that A CA R• 

and such that V(t)AV{W1 =A for all real t, then A =A R• 

The algebra A L is "maximal" and "minimal" in the 
same sense. 

997 .J. Math. Phys., Vol. 16, No.4, April 1975. 

• ; u; I 
""' ({)'"The von Neumann algebra A R is also "maximal 

within lj(W8 )" in the sense that if A is any. von Neumann . 

algebra such that A RcA clj(W8 ), thenA =A R· 

The algebraAL is "maximal within lj(WL)" in the 
analogous sense. 

Proof: (1) We note that the premises of Lemma 14 are 

satisfied by any two operators in A R• Let xb x2, X a EA R• 

In view of the lemma we have the .following string of 
equalities: 

JX2JX1X3Sl =X1XaJX20 

(93a) 

Since, by the premises of the theorem, the set 

{X30 IX3 EA 8 } is dense in H, we conclude that [ (JX2J), 

Xtl = o, for arty two Xt. x2 EA Ro and hence we have 

JAefcAR.. 

(2) The premises of part (d) of Lemma 13 are satis

fied for any y E. A R. with e R =A R• and it follows that A R 
clj(WL). In view of the conclusion in step (1) above we 

thus have 

(93b) 

(3) Since A Rn is dense, the set JA'g!Sl is also dense, 
in view of (93b). The condition (90) implies that 

. V(t)A R. V(tt1 =A~.· and hence that V(t)(JA 'gl) v(t)-1 

=JA'gl, for all real t. Since it follows from (93b) that 

JA 'glc lj(WR), we conclude, by the same reasoning as 
in step (1) above, that 

(93c) 

The relations (91) "then follow trivially from (93b) and 

(93c). From what has been said we also conclude that 
(92) holds. 

(4) We prove the assertions (d) on the basis of (92) 

and (90). Let c(s) ED(R1), and let XEA R• We define the 
operator Xc by 

X 0 = J.: dtc(t) V(t)Xl'(ft1 (94a) 

where c(t) is given in (44b). We obviously have XC EA Rt 

. and furthermore 

X.,Cl = c(K3)XO. (94b) 

We then conclude, In view of Lemma 7, that the 

linear manifold DA ={X.,OIXEA R• c(s) ED(ll1
)} is a core 

for every operator (V(z), Dv(Im(z))). 

For every YEA L• and any c(s) ED (R1
), we define Y., 

by the integral at right in (94a), with X replaced by Y. 

We then have Y., EA L• and 

Y.,Sl = c(K3)YO = (V(i1T)c{K3))(JY*J)O (94c) 

where the second member is equal to the third in view 

of (73b). Since JY*JEA R• and since exp(s1T)c(s) tC.0(R1
), 

we conclude that DA={Y.,OI YEA L,c(s) E0(R1
)}. Since 

A Rn cD. and A Ln cD_, the assertions (d) now follow 

trivially from the properties of the manifold D A• 

(5) The vector 0 is a cyclic vector .for A R by the 

premises, and also, trivially, a cyclic vector for A L• 

In view of (91) it follows that n is a separating vector 

for both ARandA L• 
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(6) We next consider the assertion in part (e) of the 

theorem. If A is any von Neumann algebra with 0 as a 

separating vector, and such that A RcA, and such that 

V(t)A V(t)"1 =Afor all real t, then A' cA~clj(WL), and 

0 is a cyclic vector for A', and hence for JA'Jclj(WR). 

Furthermore, V(t)(JA'J)V(W1 =JA'J. The von Neumann 

algebra JA'J thus satisfies the premises of the present 

theorem, and it follows from the already estabiished 

relations (91) that JAJ=A', and from this relation it 

readily follows that A =A R• as asserted. · 

Suppose now that A is a von Neumann algebra with 0 

as a cyclic vector, and such that A cA R• and such that 

V(t)AV(t)"1 =A ·for all real t. Then A satisfies the 

premises of the present theorem. In particular, A is 

"maximal," which implies that A =A R· 

In a similar fashion we show that A L is "maximal" . 

and "minimal. " 

(7) To prove the assertion (f) we consider the string 

of equalities (93a). Suppose that Xt. X 3 EA R• and suppose 

that X2 is an element of a von Neumann algebraA such 

thatARcA clj(WR). It is easily seen that the premises 

of Lemma 14 are satisfied by the pair of operators 

(X1X3) and X2, and also by the pair of operators X3 and 

· X2• It follows that the equalities in (93a) also hold in the 

present case, and we conclude, as in step (1) of the 

proof, that JX 2 JEA~, i.e., JAJcA~. It follows that 

AcJA;.J=AR, and hence we haveA =AR, as asserted. 
This completes the proof of the theorem. 

n should be noted that this theorem as such has little 

to do with the quantum field. It is of physical interest 

only if the algebra A R is in some sense "generated" by 

field operators in p(WR). We are not here asserting 

that such an algebra A R actually exists. This issue will 

be discussed in the next section. 

At this point we wish to discuss the relationship be

tween our considerations and the Tomita-Takesakl 

theory of modular Hilbert algebras. 13t 25 Within the 

fra1uework of this theory one is able to draw some 

highly interesting conclusions about the structure of 

von Neumann algebras. The main theorem (from our 

point of view) is due to Tomita, and we shall state the 

facts in the following for1i1. 

LetA be a von Neumann algebra (of opet·ators on a 
· separable Hilbert space) which has a cyclic and separa.t·· 

ing vector n, and let A' denote its cominutant. Then 

there exists a unique antiunitary involution J, and a 

unique self-adjoint operator (K,DK), which satisfy the 

following conditions: 

(a) JSl=Sl, OE.DK, KO=O; 

(b) JAJ=A'; 

(c) JD~r=D~r, J(K,DK)J= (-K,DK); 

(d) exp(- itK)A exp(itK) =A, 

exp(- itK)A' exp(itK) =A', 

(95a) 

(95b) 

(95c) 

(95d) 

for all real t, and the one-parameter group of unitary 

operators exp(- itK) is thus, acting by conjugation, a 

group of automorphisms of A and of A'. 

(e) If (C,AO) is the antiline~r operator defined by 
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(95e) 

then 

(J exp(1rK), D.)= (C,AO)** (95f) 

where D. is the linear manifold such that (exp(7TK),D.} 
·is self-adjoint. 

We note here that the operator exp(27TK) is traditional

ly denoted by Ll. in papers on the subject: Our notation in 

terms of the operator K is specific for this paper, and 

motivated by our physical considerations. 

The existing proofs of Tomita's theorem can hardly 

be regarded as trivial. Given the von Neumann algebra 

A and the cyclic and separating vector n, the operators 

J and Ll. [and also the operator K by 27TK = ln(Ll.)] are in 

faCt determined through (95f), which describes the polar 

decomposition of the closure of the antilinear operator 

(C,An). With this construction it is easily shown that 

the relations (95a) and (95c) hold, but the relations 

. (95b) and (95d) are entirely nontrivial. In this paper we 

do not depend on Tomita's theorem, but we wanted to 

point out its relevance to our discussion. In particular 

our Theorem 2 is within the purview of the Tomita

Takesaki theory. In a sense this theorem contains 

nothing new, but we wanted to state the facts in this 

form for.later reference, and also to prove these facts 

in anoelementary way directly from the particular set of 

premises which arises naturally from our physical con

siderations. In our case the existence of J and K is not 

the issue since we are given the triplet (0, J, K 3) to 

start with. If we now compare the situation described in 

Theorem 2 with the situation described in Tomita's 

theorem we see that our operators J and K =K3 are 

precisely the operators which in Tomita's theorem are 

determined by the algebra A =A R· 

Let us also note here that there are similarities be

tween our discussion or Lemma 14 and Theorem 2, and 

the work of Hang, Hugenholtz, and Winnink, 28 and the 

work of Kastler, Pool, and Thue Poulsen. 27 

If we consider Theorem 1 we note some further 

analogies with the Tomita-TaJ<esaki theory, although it 

should be noted that Theorem i concerns unbounded 

opet·ators, rather than bound.ed opernto1·s as in Tomita's 

theot·em. The deflnillon (69a) is thus a.nalogous lo the 

definition (95e) above, and the relation (69c) is analo

gous to (05f). The relation (67) has a tenuous connection 
with (95b), but it should be noted that it is not proper 

to regard the algebra fJ(Wc,) as the "commutant" of 

· p(w R): These algebras are rather analogous to some 

pair of algebras which generate the algebras A andA'. 

The connection between the duality condition in 

quantum field theory and Tomita's theorem has been 

discussed previously by E..;kmann and Osterwalder, in 

their discussion of the duality condition for a free 
field. 1 We shall comment further on this in Sec. VII. 

We conclude this section with an addendum to The

orem 2. 

Lemma 15: LetA R be a von Neumann algebra which 

satisfies the premises of Theorem 2. Then A 8 and A L 

=JA ~=A .R a;re factors. 
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Proof: That the algebras An and A L are factors· means 

that their centers are equal to the set {cl} of all com
plex multiples of the identity. In the case at hand this 

condition is equivalent to the statement A R n7h = {cl}. 

Let Z EA 11 nA L· Since Z is then an element of the set 

lj(WR) n lj(W;J, it follows from (73a) and (73b) that 

V(i1r)Z!l =JZ*!l = V(- i1r)Z!l. (96a) 

This implies that V(i1T)Z!l ED+, and that 

V(21Ti)ZQ = exp(27TK3)ZO = Z!l, (96b) 

which implies that ZO is an eigenveCtor of Ks, with 

eigenvalue 0. It is easily seen (and well known) that 

under our general assumptions about the nature of the 
representation of L0 carried by the Hilbert space H, .. 
the only eigenvector of K 3 is the vacuum vector n. It 

follows from the above that ZO =cO,· for some complex 

. number c, and hence that Z = ci. This proves the lemma. 

. VI. THE DUALITY CONDITION FOR THE WEDGE 

REGIONS WR AND WL 

In this section we shall consider conditions under 
which the operators in p(W 11) "generate" a von Neumann 

algebra A F. which satisfies the premises of Theorem 2. 

The basic idea is very simple. We try to construct A 11 

as the "commutant" of a suitable subset of operators in 

P(WL). The execution of this idea is, however, beset 

with "technical" difficulties which derive from the fact 

that the operator in P(WL) are in general unbounded. 
Furthermore; we·are faced with the unfortunate situa

tion that practically nothing is known about the nature 

of these operators as mathematical objects. It is, for 

instance, not known at present whether the field opera

tors cp(f), with/ real, have any local self-adjoint ex

tensions in a sense which will be discussed later. In 

our discussion we wish to avoid making assumptions 
which might later turn mtt to be too restrictive. For 
this reason we do not try to define the alg·ebraA R in 

terms of the commutaut of all the operators in the set 

p(w L), but instead in terms of the conunutant of the 

field operators cp(f), with supp(f) c WL. 

We begin with some general considerations about the 

commutant of a subset of P<ftl). 

Lemma 16: Let] be a subset of P<ftl), such th:it 

(X*,D1)E] for all (X,D1) EJ. LetK1 be the set of all 
bounded operators Q such that 

QD1 cD(X**), (Q,X**)l/'=0 (97a) 

for alli/IEDto and all (X,D1)EJ. Then: 

(a) 

QD(X**)cD(X**), · [Q,X**]l{l=O for alll{lED(X**), 

(97b) 

Q*D(X*)cD(X*), (Q*,X*]tfl=O for all tflED(X*), 

(97c) 

for all (X, D1) E). 

(b) The set K1 is a weakly closed algebra. The set 

A1 =K1 nK,*={QIQ,Q*EK1} is a von Neumann algebra. 
This algebra is precisely equal to the set of all bounded 

999 .J. Math. Phys •• Vol. 16, No.4, April1975 

operators Q such that 

(X, Dt)**Q :::> Q(X, Dt)**, (X, Dt)*Q :::> Q(X, D1)* 

for all (X,D1) E]. 

(98) 

(c) If G is any unitary operator such that GD1 =D1 and 

G) c-1 c), then c-~ 1G cA 1• . 

(d) Let p1 be the polynomial algebra (on D1) gen

erated by J. Then 

(X*¢ IQI/I) =(Q*¢IXI/I) (99) 

for any X.EP~o any QEA1, and any¢, !/JED1• 

We omit the proofs since the above lemma is merely 
a summary of trivial and well-known facts. ThatA1 is 

a von Neumann algebra if all operators Q in this set 
satisfies (98) was shown by von Neumann, ·28 and the 

conditions (98) correspond to his conditions that the 

bounded operators Q and Q* commute with the closable 

operator (X, D1). We note here that K1 need not be a 
von Neumann algebra, i. e. , Q* is not necessarily in-· 

eluded in K1 for every Q EK1• This circumstance 

derives from the fact that the adjoints of the operators 

in] are not necessarily included in the set of all clo

sures of the operators in]. If it happens to be the case 

that (X",D1)*=(X,D1)** for all (X,D1)EJ, thenK1 =K/ 

=A,. 

We shall define the commutants of sets of field opera

tors in terms of the conditions (98), and we are now 

prepared to state a somewhat lengthy theorem concern

ing the commutants of field operators associated with 

either one of the wedge regions WR and WL. 

Theorem 3: Let/t.,(W11) be the von Neumann algebra 

of all bounded operators Q such that 

Q(cp(J], D1)** c ((p(f], D1)**Q, 

C~(cp[f], D1)+ c (cp(f), JJ1)*Q 

for all/E J(ll4
) such lhat supp(f) c W1,. 

(100) 

Similarly, letAc(WL) be the von Neumann algebra of 
all bonnded operators Q such that (100) holds for all 

jEJ(H4
) sueh that supp{f) c Wn. 

Then: 

(a) 

Ac<WR)cA.,(WL)', A.,(WL)cA.,(WR)'. 

(b) 

A c(WR) = U(R(ei> 1T), O)A .,(WL)U(R(eto 1T), o)-1 

(101) 

(102a) 

where R(e11 1r) denotes the rotation by angle 1T about the 
1-axis. · 

Let a(W Rl be the semigroup of all elements in the 
·Poincare group L0 which map W 11 into W 11• Similarly, 

·let u(WL) ={A-11A E u(W11)} be the semigroup of all ele

ments in the group L0 which map WL into WL. Then 

U(A)Ac(W11)U(At1 cA.,(WRl, all A Eu(W11), (102b) 

.and 

U(A)A c(WL)U(At1 cA .,(WL), all A E O'(W L). (102c)_ 
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ments of L0 which map WR onto WR and WL onto WL, 

and we have 

U(A)A c<W R)U(At1 =A c<W R), U(A)A c(WL)U(At1 
=A c(WL) 

(102d) 

for all A E L0 (W R), In particular, 

V(t)Ac(WR)V(ft1 =Ac(WR), V(t)Ac(WL)V(t>-1 =Ac(WL) 

(102e) 

for all real t. 

(c) 

A c(WR) =JA c(WL)J• 

(d) The relations 

(X*cf> I Ylf!) = (Y*cf> lXI/!), all cf>, lf! E D11 

hold for all X.EAc(WR) and all YE p(WL)• 

(102f) 

(103) 

The relations (103) also hold for all XE P(WR) and all 

YEAc(WL).· 

(e) With the notation in Lemma 12 we haveAc(WR) 

cljb(WR) andAc(WL)Clj6(WL), and henceAc(WR)OcD., 

Ac(WL)OcD_, and 

V(irr)XO=JX*O, all XEAc(W~, 

V(-irr)YO=JY*O, all YEAc(WL). 

(104a) 

(104b) 

(f) If it is the case, in addition, thatAc(WR)O is dense 

in the Hilbert space H' then the algebra A R =A c<WR) 

satisfies all the premises of Theorem 2 and Lemma 15, 

and, with reference to the notation in Theorem ,2, A L 

=Ac(WL). In particular, the algebrasAc(WR) andAc(WL) 
are factors, and they satisfy the duality condition 

(105) 

Proof: (1) ThatAcCWR) andAc(WL) are indeed von 
Neumann algebras follows from Lommn 16. We tom~ 

,porarily postpone the proof of the relations (I Ol) (of 

which either one implies the ol:her). '!'he uas1nUona (b) 

and (c) of the theorem are all trivial. We consider the 
assertions in part (d). From Lemma 16 it follows that 

(103) holds for ail XEAc(W.~~) and all YE P0 (WL). In view 
of Lemma 1 these relations also hold for nl.l YE jJ(WL) 

and all X EA c(W R), as assertC!d. Annlogoua considera.
tions apply to the second assertion {d). 

(2) The assertions (e) now follow trivl.-i.lly 'fronl Lem

ma 13 and part (d) of the theor~m [setting cf> = !/!= 0 in 
- (103}]. 

(3) Having established part (e) we conclude from 

(102e),and (102f), on the basis of Lemma 14, that 

[X, Y]O = 0 (106a) 

for all XEAc(WR) and al.l YEAc(WL). 

Let :x E WR, and let X(:x) = T(:x)XT(:xt1• We then have 

A(I,:x) EU(WR), i.e., A(I,:x)W:Rc WR, and hence X(:x) 

EAc(WR) whenever X EA c(W ~- For any such X(:x) the 
relation (106a) thus holds for any YEAc(WL), withX(:x) 

substituted for X. 

Let R = W RnA (I, :x) WL. This r~gion is open and non

empty for any x E WR. n is easily seen that if Q = [X(:x), 

Y], with X(x) and Y as above, then the conditions (100) 
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hold for any f E 5 (R4
) such that supp(f) cR. By Lemma 

16 we then conclude that 

(106b) 

for any Ztt z2 E Po(R). Since Po(R)P. is dense it follows 
that [X(x), Y] = 0, for all x E WR. Since the point x = 0 is 
on the boundary of W R• and since X(:x) is a strongly con

tinuous function of :x [in view of the strong continuity of 
the function T(:x)] w·e conclude that [X, Y] = 0. This 

proves the assertions (a) of the Theorem. 

(4) The assertions (f) follow trivially from Theorem 

2 and Lemma 15. This completes the proof of the 

theorem. 

We note that the assertions (b) in the theorem cor
respond to geometrical conditions which obviously have 

to be satisfied if we wish to regard A c(W R) as locally as

sociated with WR andAc(WL) as locally associated with 

WL. In a theory in which a physical TCP-operator 

exists, as is the case here, the condition (102f) must 
also hold. The commutation relations implied by (101) · 

correspond to a minimal co~dition of "physical inde

pendence" of the operators inAc(WR) from the opera
tors inAc(WL). We note that the result (101) is analo

gous to a well-known theorem of Borchers concerning 

the local nature of a field which is local relative to a 

local irreducible field. 14 The relations (103) in part (d) 

are "commutation relations" between the bounded opera

tors in the von Neumann algebras and the unbounded 

operators in p(ft)) in a sense which is weaker than the 

sense in which Q commutes with rp[f] in (100). The 

assertions (d) can be restated as follows29
: 

X(Y*, D1) c (Y, D1)* X (107a) 

for all XEA 
0
(W R) and all Y E P(WL), and 

Y(X*, Dt) c (X, D1)* Y (107b) 

for all YEA 0 (WL) and all XE P(Wn). 

Jn the followittg we flhall !!all a pair of von Neumann 

algebrasA(WR) andA(Wd a pair of local wedge-algebras 
if and only if they satisfy all the relations (101)-(103) 

which the algebrasAc(WR) andAc(WL) satisfy. It follows 

Ulat a pair of local wedge-algebras also satisHes the 

relatlonf'l (104), by the same reasoning as in the proof 

of Theol'em 3. Note that nelther the duality condition 
(105), nor the commutation relations (100), are implied 

in the notion of a pail' of local wedge-algebras. 

With respect to the duality condition (105) the situation 

is as follows. The algebrasAc(WR) andAc(WL) are uni
quely determined by the field rp(:x), and it is then a 

matter of "checking" whether these algebras are suffi

ciently large in the sense that.Ac(WR)O is dense in the 

Hilbert space H. We do not know at this time whether 

.A c(W R)O is dense in general, i. e. , with no additional 
assumptions about the field. It seems to us that in a 

physical theory described in terms of local observables 

and a local quantum field rp(:x) it must be the case that 
there exists a von Neumann algebra A ( W R), generated 

by the observables associated with the region WR, and 

similarly an algebra A (WL), and such that these alge

bras satisfy the conditions (a)- (d) in Theorem 3. In 

· addition, we might require that the family of observables 
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· associated with W R is sufficiently large so that A ( W R)n 

is dense in H. As an example of the kind of considera

tions which are relevant here we refer to the work of 

· Licht on "strict localization. 30
'; H the algebraA(WR) 

satisfies the above conditions, then A (W R) <:: U ( W R) and 

the relation (104a) holds becauseA(WR) is a local wedge

algebra, and since A (W R)n is dense, it follows that the 

duality conditionA(WR)' =A (Wd holds. 

Hit is the case thatAc(WR)n is dense we would define 

the "algebra of observables" A (WR) by A (W R) =A c(W R), 
. with reference to the construction in Theorem 3. If 

A c(W JJSl is not dense, the algebra A (W R), if it exists, 

would have to be defined differently. One possibility is 

the following. It might be the case thatA(WR) could be 

defined in a satisfactory manner as the commutant of 

some other subset of P(WL) which is "better behaved" ·' 

than the set of operators cp[f] in P(WL). Since we feel 

that we have no basis for ~ rational choice we shall not 

discuss this possibility. Another possibility is that 

there might exist, within the framework of the particu

lar theory, natural extensions of the field operators 

cp[f]. We could then try to defineA(WR) as the com

mutant of the extensions of the operators cp[f] in p(WL), 

if it so happens that A (W JJSl is dense for this choice. 

We shall consider a particular case of this situation 

below. 'i'he general problem of how to define algebras 

of bounded operators in terms of the unbounded field 

operators has been discussed by many authors, and 

wh~t we say below is not particularly novel. 1•
16

• 
29

-
3

1 

We shall now consider four particular conditions on 

the quantum field which seem to us to be interesting tq 

contemplate. Each one of these conditions guarantees 

the existence of local von Neumann algebras which 

satisfy the duality condition (105) (for the wedge re

gions W R and W L). 

Condition I: The linear manifoldAcOVR)n is dense in 

the Hilbert space H, where A c< W R) is the von Neumann 

algebra constructed from the field as in Theorem 3. 

Condition II: For any open nonempty subset R of 

Minkowski spacethe linear manifold C(R)Slis dense in 

the Hilbert space II, where C(R) is the von Neumann 

algebra of all bounded operators Q !3Uch that . 

Q(cp[f], D1)** c (cp(f], D1)**Q, 

Q(cp[f], D1)* c (cp[f], D 1)*Q 
(108) 

-for all/E S(R4) such that supp(f) c (R)c, where (R)c de

notes the causal complement of the closure of R. 

· Condition III: The quantum field cp(x) has a local self

adjoint extention in the following sense. To eachf 

E S(R4
) corresponds a closed operator ((,O[f], D( f)) 

such that: 

(a) 

{i',1J(J], D(f))* = {(,O(j*], D(f*)), 

(;p(f], D(f)) => (cp(f], Dt) 

· (109a) 

(109b) 

. for allje: S(R4
). The operator {(,ii[f], D(f)) is thus self

. adjoint iff is real. 

· (b) H r(x) E S(R4) is real, and if f(x) E S(R4) such that 
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suppfr)c {supp(f)}C, then 

F((,O[f], D(f)) c (qi(f], D(f)}F (110) 

for any spectral projection F of the self-adjoint opera

tor ((,O[r], D(r)). 

(c) For any /E S(R4
), A E L0 , 

U(A)((,O(f], D(f))U(At1 = ((ji(A/], D(Af)). (111) 

Condition IV: Condition ill holds, with 

((,O[J], D(f)) = (cp[f], Dt)** 

for allfe:S(R4
). 

(112) 

The Condition IT trivially implies the Condition I, 

and we have C(WR) =Ac(WR), C(WL) =Ac(WL). Both con
. ditions thus imply the duality condition (105) for the 

wedge regions. We shall consider further implications 

of Condition IT in the next section. 

Condition ID is (as far as we know) much stronger 

than the condition that every operator (cp[f], D1), with 

fE S(R4) and f real, has a self-adjoint extension. The 

conditions (110) and (111) can be interpreted as the con

ditions that the extension of the field is also a local . 

scalar field. Condition IV is the most restrictive of the 

conditions. It, in effect, states that the quantum field 

cp(x) has a unique locai, covariant, self-adjoint exten

sion, given by (112). 

Theorem 4: Condition ITI is assumed. LetA(WR) be 

the set of all bounded operators Q such that 

Q{(,O(J], D(f)) c ((pfj], D(f))Q (113) 

forallfe:S(R4
) such that supp(j)c WL. LetA(WL) be the 

set of all bounded operators Q such that (113) holds for 

all/E S{R4
) such that supp(f)c WR. Then: 

(a)A{Wn)andA(WL) are von Neumann algebras with 

the vacuum vector n as a cyclic and separating vector .. 

Both algebras al·e factors, and they satisfy the duality 

condition 

(114) 

(b) HA
0
(WR) a.ndAc(WL) are defined as in Theorem 3, 

then 

(115) 

and equality obtains if and only ifA
0
(WR)O is dense inH • 

(c) The algebrasA(WR) andA(WL) form a pair of local 

wedge-algebras, i.e., they satisfy all the conditions 

(a)- (e) in Theorem 3 which the algebras A c(W R) and 

Ac(WL) satisfy. · 

(d) Let qcwR) be the set of all spectral projections 

of all operators {(,O[f],D(f)), with/real, /ES(R4
), and 

supp(f) c W R· Similarly, let q (WL) be the set of all 

spectral projections of. all operators ((,O(f], D(f)), with 

f real, /E S(R4
), and supp(f) cwL. Then 

(116) 

Proof: (1) We first note that in view of (109a) the set 

A (W JJ, as defined in terms of (113)., is the commutant 

of a set of operators which is closed under the forma

tion of the adjoint. HenceJl(W,R), and similarlyA(WL), 

· are von Neumann algebras. 

' 
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From the relation (191), ~hi~~ de~ri~s tifi acWon 
of the Poincare group (by conjugation) on the extended 

field, it trivially follows that the algebras A (W R) and 

A(WL) satisfy all the relations (102a)-(102e) in The

orem 3, and, in particular, 

V(t)A (W RlV(t>-1 =A (W R), V(t)A (WL)V(t)-1 =A (WL) (117) 

for all real t. Note, however, that the relation (102f) in 

part (c) of Theorem 3 does not follow trivially from 

(111). 

(2) Let 1/J, cp E D1, and let/E S(R4), supp(f) c WL. For 

any XEA(WRl we have 

<lfiiXq~[/]cp) =(1/J I cp(f] Xcp) =(1/J I (p[f*]*Xcp) 

=((,0[/*]1/JiXcf>) =(q~[f*]lf!iXcf>). (118a) 

From the equality of the first and last members of 

(118a) it readily follows that the relations 

(118b) 

hold for all XEA(WR) and all YE p(WL). In a similar 
manner, we conclude that (118b) also hold for all 

X E P(W R) and all YEA (WL). As in the proof of Theorem 

3 we conclude that 

(118c) 

(3) Trivially we have q<wR)" cA(WR) and q<wL)" 

cA(WL). We shall show that n is a cyclic vector of the 

von Neumann algebraq(WRl". 

Let {Rnln = 1, •.• 'oo}.be a set of subsets of WR, con~ 
. structed as in Lemma 10. Let {t,. I k = 1, ••. , n} be an n

tuplet of real test functions such that/,. E S (R4
) and 

supp(f,.) c R,., for k = 1, •. , , n. In view of the nature of 
the regions R,. it follows that the self-adjoint operators 

(cp(f,.], D(f,)), k = 1, .•. , n, all commute with each other, 

in the sense that their spectra~ projections commute. 

Let F,.(:~.) be the spectral projection of ((,0[/,.], D(f,)) cor .. 
responding to the interval (- >.,A), where .\ > o, and let 

the bounded operator Q,.(A) be given by Q,.(A) = cp[f11 ]F11 (.\) 1 

for each k = 1, .•• 1 n. We then have 

F 1 (.\)F2(.\) • • • F"(.\)q~[f 1 ]q~[f 2 ] • • • q~[fn]O 

= QI(.\)Q2(.\) • • • Qn(A)O 

and hence 

(119a) 

s-lim Qt(.\)Q2(.\) • ~ • Qn(A)O = q~[f 1 ]q~[.f2] • • • q~[fn]n. (119b) 
1•-+..0 ,,,,_y .•. 

The operators Q,.(A) are all included in govR)/1. and 

since (ll9b) holds for any n > 0, and any choice of real 

test funCtions, we conclude that 9'(WR)"O =flO, where Q 
is defined as in Lemma 11. By Lemma 11 it then fol

lows thaty(WR)"O is dense inH, and henceA(WRlO is 

also dense. 

(4). It is trivially the case that V(t)q(wR)"V(tt1 

""y(WR)" for all real t. We now note that bothA(WR). 

and y(WR)" satisfy the premises of Theorem 2, with 

AR=A(WRJ, or withAR=y(WR)". It follows from this 
theorem, in view ofq(WR)"cA(WRl, that 

q(WR)» =A(WR) =JA (WR)'J=Jq(WR)'J. (120a) 

Similar considerations apply toA(WL) andq(WL), and 

we thus establish the relations (116). . .. , 

1002 J. Math. Phys., Vol, 16, No.4, April1975 

2 w~tri~allyhave q<wR>cq(wLv, and hence q<wR)" 

cq(wL)'. Similarly, q<wd' cq(WR)', and it follows, 

in view of (120a), that q<wR)" =Jq(wR)'J=q(wL)', i.e., 

A(WR)=JA(WL)J, (120b) 

which shows that J acts as asserted (and as expected) on 

the algebrasA(WR) andA(Wd, which have now been 
shown to form a pair of local wedge-algebras. The 

duality condition (114) follows trivially from (120a) and 

(120b). 

(5) It remains to prove the relations (115). Let X 

EA(WR), X.,EA.,(WR), and l€:t/ES(R4
), supp{f)c WL. 

For any vectors cp, 1/JED1 we have 

(1/JIXXcq~[f]cp) =(1/JjXq~(f]**X.,cp) =(1/!jX(,O[f]X.,cp). 

=<1/! I (p[/}XX.,cp) =(1/>l cp[f*]* XX.,cp) 

=(cp[f*]I/JIXXA) =(q~[f*]I/JIXX.,cp). (121a) 

From the equality of the first and the last members 
of (121a) it readily follows that 

(121b) 

for any YEP0 (WL). By Lemma 13 we conclude that 

XX.,Elj(WR)• . 

Since X and X., are arbitrary elements ofA(WR) and 

A .,(W R), and since V(t)A .,(WR)V(t>-1 =A .,(W R), we conclude 
that XV(t)X.,*V(tr1 E lj(WR). The operators X and X., then 

satisfy the premises of Lemma 14, and it follows that 

X(JX.,J)O = (JXcJ)XO. (121c) 

for any XEA(WR) and any X.,EA.,(WR). SinceA(WR)n 
is dense in the Hilbert space it follows, by the same 

kind of reasoning as in step (1) of the proof of Theorem 

2, that [(JX.,J),X] =0, which means that JA.,(WR)J 

cA (WR)'. In view of (120a) this implies the first rela
tion (115). The second relation is obtained by conjugat

ing the first by J. 

This completes the pi·oof of the theorem. We add a 

corolhn-y whlch deserihHa the altuatlon muier Condll.ion 
IV. It is almost completely trivial in content. 

Corollary to Theorem 4: Condition IV is assumed, 

and hence Condition III obtains~ The quantum field has 

one and only one local self-adjoint extension (,O(x), 

namely, (ip[f], IJ{f)) '= (rp[.f],.D1)** for all f E S(R4
). The 

domains IJ0 and D1 are cores for all operators . 

(q~(f], Dt)*, and 

(q~[f], Dt)* = (q~(f*], D1)** = ((,0[/*), D{f*)). (122) 

With the notation in Theorems 3 and 4, 

(123) 

and all the conclusions in these theorems.hold for the 

above algebras. 

If we are allowed to specurate about the results in this 

section, we wish to say that we are inclined to believe 

that in a satisfactory local theory there ought to exist at 

least one field which satisfies Condition ill, although 

this does not seem to be necessary for the duality con

dition to hold. It is well known that the general condi

tions on the field which we stated in Sec. TI have to be 

· amended with some conditions which guarantee that the 
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theory really describes physical particles. In particular, 

some kind of "d~amical principle" is sorely needed. 

It might, of course, be the case that Condition Ill is 

already implied by the minimal assumptions in Sec. II, 

but if this is not so we would like to believe that the 

condition at least holds in a properly amended theory. 

We can imagine a situation in which the local self-ad

joint extension of the field is unique, without D1 being 

a core for the extensions of the individual field opera

tors rp(J). Condition IV might thus be unduly restrictive. 

An even more restrictive condition, according to which 

U is an analytic vector for all Hermitian field operators 

rp[/], has been discussed by Borchers and Zimmer

mann. 31 Such a condition cannot hold generally since it 

is violated by Wick polynomials of free fields, but it is 

conceivable that it could hold for one particular field in 

a particular theory. (It is well known that it doeshold 

for a free field. ) 

Let us finally remark that most of our considerations 

up to this point also apply to a field theory in two

dimensional spacetime, in view of the special geometric 

properties of the wedge regions WR and WL. 

VII. THE DUALITY CONDITION FOR A FAMILY OF 
BOUNDED REGIONS; LOCAL INTERNAL SYMMETRIES 

The discussion in this section will be based on the 

assumption that there exists a pair of local wedge

algebras.I/(WR) and.I/(WL), which satisfy the duality 

condition .A (WR)' =.1/(WL). 

These algebras· thus in particular satisfy all the 

conditions (a)-(e) in Theorem 3, which the algebras 

A.,(WR) and.l/c(WL) satisfy. 

The operators in the von Neumann algebra.I/(W~ can 

be regarded as "locally associated" with the region W R• 

The existence of the wedge-algebras does not, however, 

guarantee_ (as far as we can see) that there exist non

trivial von Neumann algebras which can reasonably be 

regarded as associated with lwwuled re~lons in spacf~

time. In a satisfactory theory of local observables we 

would certainly require that there exists a sufficiently 

large set of bounded (self-adjoint) operators which cor

respond to measurements within some bounded regious 

in spacetime. Condition I on the field, discussed in the 

preceding section, would thus by itself appear too weak 

for a satisfactory. theory, although it does guarantee the 

existence of the local wedge-algebras. As we shall 

see, either one of our Conditions II-IV does imply the 

existence of a set of truly "locar· operators with rea

sonable properties. We note here that our particular 

conditions, although not physically unreasonable, are 

nevertheless quite arbitrary. We are not here asserting 

that anyone of these conditions has to hold, nor are we 

asserting that they guarantee that the theory has a physi

cal interpretation which is satisfactory in every 
respect. 

Let us now consider the definition of von Neumann 

algebras for other regions than the wedges WR and WL. 

For any subset R of Minkowski space t11 we denote by 

AR the image of R under any element A of the Poincar~ 

group L0• We define W as the set of all (open) wedge 

regions bounded by two irt ersecting characteristic 
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planes, i. e. , 

W={AWRjAEL0}. (124a) 

For every WE W we define the von Neumann algebra 

.1/(W) by 

(124b) 

.We note that this definition is consistent since we 

assumed that.I/(WR) andA(WL) satisfy the relations 
(102a)-(102e) in Theorem 3. 

It is natural to define von Neumann algebras for a 

suitable family of bounded regions in terms of intersec-· 
tions of the von Neumann algebras A (U~. Since we hope 

to discuss these issues elsewhere in greater detail, 

and within a more general framework, we shall here 

restrict our considerations to a set of particularly sim

ple bounded regions, namely, the so-called double 

cones. For any two points x1 and x 2 in Minkowski space 

such that X2 E V.(x1) (where V.(x1) is the forward light 

cone with x1 as apex}, we define the double cone C 

= C(xt. x 2) by 

(125a) 

where V_(.x2) is the backward light cone with x 2 as apex. 

The double cones so defined are thus open and non

empty. We denote by De the set of all double cones. 

For any double cone C we define. a von Neumann alge-
bra B(C) by . 

B(C)=n{A(W)j WEW, W::JC}. (125b) 

!_!ere C denotes the closure of C. We_prefer to regard 

B(C) as associated with the closed set C, and hence the 
· above notation. · 

We shall next extend the domain of the mapping W 

-A (JV) to include all oj,cn regions (5c which are the 

causal cotpplements of closed double cones C" For any 

C c.Dc we define tho von Neumann algebra A (Cc) by 

(126) 

We shall now state two theorems about the properties 

of the algebt·<·ls which we have. iul:roduced above. The 

conclusions In the flrst of these do not: depend on the 

duality condltion, huf: follow fairly trivially from the 

relative locality of the wedge-algebras, and from the 

"geometrical" conditions in parts (b) and (c) of 

Theorem 3. 

Theorem 5: Let.I/(WR) and.I/(WL) be a pair of von 
Neumann algebras such that 

and 

.1/(WR) =J.I/(WL)J, 

A (WR) = U{R(eil1T), 0).1/ (WL)U(R(eh 11"), ott, 

U(A)A (W~)U(At 1 C:.I/(WR), all A E a(WR), 

(127) 

(128a) 

(128b) 

(128c) 

where a(WR) is the semigroup of all Poincare trans

formations which map W8 into WR. 

LetA(W) be defined by (124b), for any WEU/. Let 

.B(C) be defined by (125b), and let.I/(C") be defined by 

J.J. Bisognano and E. H. Wichmann 1003 



· (126), for any double cone, C. Then: 

(a) 

0 2 a 
The relation (133b) follows readily from (133a). The 

relation (133c) follows from the definition (125b), and 

the relation (133d) follows from (133b) and the defini-
A(A W) =U(A)A(W)U(At1 

for all WEU/, all A EL0 ; 

(129a) tion (126). 

B(AC) = U(A)B(C)U(At1' 

A(ACC) = U(A)A(CC)U(Att, 

for all C E/Jc, all A E L0• 

(b) 

, A<9 W) =JA(W)J, 

8(9C)=JB(C)J, A<9cc)=JA(cc)J 

(129b) 

(129c) 

(130a) 

(130b) 

for all W~W, C E/Jc, and where 9 is given by (47). 

(c) 

A(W) =>A(W,), if w, w, EU/, W::> w, 

. B(C)::>B(C,), A(Cc)cA(Cf> 

(131a) 

(131b) 

for all C, c, E/Jc such that C ::> c, (and hence cc c C~), 
and 

(131c) 

for all WEU/, Cto C2 E/Jc, such that Ct C WC q. 

(d) The algebras B(C) are local, in the sense that 

(132a) 

for any Cto C2 E/Jc, such that C1 CC~. Furthermore, 

(132b) 

for any C E/Jc· 

·(e) The mapping W-A (W) is continuous from the 

outside in the sense that 

(133a) 

and it is continuous from the insid~? in the sense that 

A<W) ={A(Wj) I w, EU/, w, c W}". (133b) 

The mapping C-B(C) is continuous fz:om the outside 
in the sense that 

(i33c) 

• The mapping cc-A(Cc) is continuous front tha 1t1slde 

in the sense that 

(133d) 

Proof: (1) The assertions (a) and (b) are trivial. The 

relation (131a) follows trivially from (128c) and the def
inition (124b). The relations (131b) follow directly from · 
the definitions (125b) and (126). ·· 

{2) We next consider the assertions in part (e) of the 

theorem. To prove (133a) it clearly suffices to prove 

this relation for the special case of W= WR. For this 

case, letA denote the von Neumann algebra defined by 

the right member in (133a). We obviously haveA(WR) 

cA. Let.xE WR. We then have T(x)AT(x)-1cA(WR). 

Since the function T(x) is strongly continuous, and since 

the point x = 0 is included in W R• we conclude that A 
. =A(WR). Hence (133a) holds. 
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(3) The relation (131c) in part (b) of the theorem now 
follows trivially, in view of (133a). 

(4)It remains to prove the assertions (d). Let C be a 

doub!_e cone, and let W=AWR be any wedge such that 
wccc. Then CcAWL, and it follows from (127) and 

(131c) that 8(C)' =>A (AWL)' =>A (W). In view of the 

definition (126) this implies the relation (132b). The 

relation(132a) then follows trivially from (132b) and 

(131c). This completes the proof of the theorem. 

We note that the relations (131a) and (13lb) are in 

fact implied by the relations (133b)-(133d), and our 

presentation is thus somewhat tautological. In view of 
the relation (133a), which says that the wedge-algebras 
are "continuous from the outside," we might well write 

B(W) =A(W) for any wedge W, corresponding to the 

idea that a wedge W is a limiting case of a double cone. 
We note here that the algebraA(Cc) need not be continu

ous from the outside, and that the algebra jJ(C) need 
not be continuous from the inside, for any double cone 

c. 

Theorem 6: LetA(WR) andA(WL) be a pair of von 
Neumann algebras which satisfy aU the premises of 

Theorem 5. It is assumed that these algebras satisfy 
the duality condition 

(134) 

Furthermore, it is assumed that n is a cyclic and 

separating vector forA(WR), and thatA(WR)cL/(WR), 

where l/(WR) is defined as in Lemma 12, and hence 

V(i7T)XO=JX*O, all XEA(W~. (135) 

Letthe von Neumann algobrasA(W), A(C"), and 8(C) 

be cohstl'ucted as in Theorem 5. Then: 

(al The algebras B (C) and A (cc) satisfy the duality 

condition 

(136) 

(b)~~ there exists n double cone C0 such that 8(C0)Sl is 

dense in the Hilbert space /1, then 

A(Cf)={B(c)ICE/).,,cccy}" (137a) 

for every C1 E/Jc, and 

A(W) ={B(AC0) lA E L0,AC0 c W}", 

A <en ={B (AC0) I A E E0, Ac0 c cj}" 
(137b) 

(137c) 

·for every C1 E/Jc, WEW. If, furthermore, C0 c Ws, 
then 

(137d) 

(c) If the quantum field satisfies Condition II, and if 

A(WR) =Ac(WR), withAc(W~ defined as in Theorem 3, 
then the pair of von Neumann algebrasA(WR) andA(WL) 

=A(WR)' satisfies the premises of the present theorem; 

The vector n is a cyclic and separating vector for 

every algebra B (C), and for every algebra A (Cc). The 
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·relation (137a) holds, and the relations (137b) and . 

(137c) hold for every C0 ED
0

• 

If C (R) is defined as in the statement of Condition II, 

then 

B(C)::>C(C) {138) 

.for all C E De· 

(d) If the qudntum field satisfies Condition III, or 

Condition IV, then the pair of algebrasA(WR) andA(WL), 

defined as in Theorem 4, satisfies the premi.Res of the 

present theorem, and n is a cyclic and separating 

vectors for every algebra 8(C), and for every algebra 
A (Ce). The relations (137a)~ (137d) hoid as in (b) above, 

for any C0 EDe· 

Furthermore, if q(c) is_ the set of all spectral pro-

. jections of all operators (cp(f], D(f)), with f real, . 

/E 5(R4
), and supp(f) c C, then, 

q(C)" C8(C) (139) 

and, for any c1 EDe, 

A(Cf) ={q(c) I CEDe, C c CI}''. (140) 

Proof: (1) All the conclusions of Theorem 5 hold. The 

duality condition (136) follows easily from the duality 

conditionA(WL) =A(WR)' for the wedge-algebras, if we 
note that 

A(Ce) ={A(AWL)jA E L0,AWR::>C}" 

= (n {A (A WL)'jA E L0 , A WR :::> C})' = 8 (C)', (141) 

where the equality of the first and the second members 
follows from (133d) in Theorem 5. 

(2) We next consider the assertions (b), assuming 

now that a C0 in Do exists, such that B(C0)Q is dense. 

Without loss of generality we can assume that C11 cWR• 

LetA R be equal to the 1-ight member in (137d). 'l'hen 0 

is a cyclic vector for the von Neumann algebra A R• and 
U follows from the definition of this algebra that 

V(t)A R V(W1 =A R for all t'eal t. Since, obviously, A.R 
cA(WR)clj(WR), we conclude thatAR satisfies the 
premises of Theorem 2, and it follows from that theo

rem that A R =A (W R), This proves the relal:ion (137<1). 

The relations (137a)-(137c) then follow trivially from 

(137d). 

(3) The assertions (c) are completely trivial. We now 

consider the assertions (d). The crux of the matter is 

that q(c)"Q is dense for any double cone C. That this is · 

so is established by the same kind of reasoning as in 

step (3) in the proof of Theorem 4, but with the modifi

cation that for any integer n > 0 the regions Rh, k 

= 1,. · .• , n, are selected as any set of n nonempty open 

sets in C such that the closures of any two of these re
gions are spacelike separated. Having thus shown that 

q(C)"O is dense,_we consider the case when the double 

cone C satisfies C c W R• and we define a von Neumann 
algebra A R by 

A R={V(tlq(C)V(tt1 1 t ER1
}". (142) 

The relation (139) is trivial, and we can. now apply the 

reasoning in step (2) above toAR· We conclude thatAR 

:=A<WR), and from this the relation (140) follows readily. 
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This completes the proof of the theorem. 

We feel that it is entirely proper to call the condition 

{136) a "duality condition," at least in the case when 

·there exists a double cone C0 such that 8 (C0)Q is dense 

in the Hilbert space H. In this case we have the follow- · 
ing situation. There exists a family oftruly local opera

tors, namely, the set of all the operators in all the 

algebras 8(C), which is sufficiently large such that the 

local operators generate the algebras A (W) and A (Ce) in 
the sense of (137a) and (137b). The algebra A (Ca) in 

(136), which is associated with the unbounded region 

ce, is thus itself generated by "local observable~," and 

this circumstance, in our opinion, adds luster to the 

duality ~ondition •. As we have seen this situation ob

tains .if the field satisfies either one of Conditions II, III, 
'or IV. 

It should be noted, however, that even if the field 
satisfies Condition IV it is in general not the case that 

B(C)=q(C)", i.e., thelocalalgebraB(C)neednotbe 
generated by the spectral projections of the self-adjoint 

operators {7ji(f],D(f)), withfreal, /E5(R4
), and 

supp(f} c C. The duality condition in the case of a gen

eralized free field has been studied by Landau, s, 32 and 

with reference to our discussion we can express the re

sults as follows: For certain kinds of generalized free 

fields we have 8(C)*q(C)". For a detailed discussion of 

this circumstance we refer to the work of Landau. The 

algebra~(C)" generated by the generalized field alone 

is thus 'too small" to satisfy the duality condition. The 
situation is; however, entirely different if instead we 

cons~der the algebra generated (locally) by all the local 

generalized free fields which are local relative to the 
original field. 

The duality condition for a free Hermitian scalar field 

was first proved by Araki, 2 by an entirely different 

method, The von Neumann algebras generated by a free 

field have been sl:tidied extensively. 6•
7
•

2
9.

33
•

34 It is well 
known that in thi.s case the field operators· (<p(!.l, JJ1 ), 

withjreal, /EJ(R4
), at'eall essentially self-adjoint, 

and our Condition IV obtains. Furthermore, it is the 

case that 8(C) =q(C)", for all double cones C. It should 
here be noted that Araki's proof of the duality condition, 
as well as the subsequent modifier:! proofs hy Oster

walder, 6 Eckmann and Usterwalder, 1 and by .Landau, 8 

hold for more general regions than double cones and 

wedges. The discussion in the work of Eckmann and 

Osterwalder is based on Tomita's theorem, but also on 

the very special properties of a free field, and it is not 

clear to us how the discussion could be generalized to 

the case of an arbitrary field. We also do not know at 
this time whether there is any simple "physical

geometrical" interpretation of the Tomita operators J 

and V(i1r) for a double cone, or for a more general re

gion. The remarkably simple interpretation of these 

operators for the case of the wedge regions probably re
flects the very special geometric properties of the pair 

WRand WL. 

We shall conclude the present study with a discussion 
by local internal symmetries. Such symmetries were 

discussed by Landau and Wichmann, 35 within the frame
work of quantum field theory, and within' the framework 

of the theory of local systems of algebras, and it was 
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"' . l v . shown that a local internal symmetry, as defined in 

that paper, commutes with an· translations in the 

Poincare group. It was shown by Landau, 38 and by 

Herbst, 37 that such symmetries also commute with the 

homogeneous Lorentz transformations under the addi

tional assumption that asymptotic Fock spaces exist, 

i.e. , that the theory has a sensible physical interpreta

·tion in terms of particle states. 

The definition of a local intern.'ll symmetry G in the 

paper of Landau and Wichmann can be stated as follows, 
for the case of wedge regions: G is· a unitary operator 

such that 

en= n, GA ("W)c-t cA (we)' (143) 

forall WEW. It should be noted that no duality condi
tion was assumed in the quoted work, and it seems to 
us that the above definition can then be criticized:· In 

particular, it could happen that the set of all sym

metries so defined does not form a group. However, 

the above definition is satisfactory if the duality condi
tionA (we)' =A (W) holds, because it is then easy to show 

that GA(W)G-1 =A(W) for all WEW. In particular, it 

follows that the set of all local internal symmetries 

forms a group. 

In view of the above we shall here define a local 

internal symmetry by replacing .the second condition in 

(143) by the condition that GA (W)c-t =A ( W), for all W 

EW. 

Theorem 7: LetA(WR) andA(WL) be a pair of local 
wedge algebras, which satisfy the general premises of 

Theorem 6, and letA(W), B(C), andA(Cc) be defined as 

in Theorems 5 and 6. 

Let G be a unitary operator such that 

GO=O, GA(W)G-1 =A(W), all we:w. (144) 

Then: 

(a) The operator G commutes with the TCP-trnns

formation, and with all Poincar6 transformations, i, e. 1 

e0G60 = G, U(A)Gtl(A)"1 = G1 all A e L0• (.145) 

(b) For all double cones C, 

Gf3(C)c-t =B(C), GA(Cc)c-t =A(cc). (146) 

(c) The set of all unitary operators G which satisfy 

the conditions (144) forms a group; the group of all 
local internal symmetries. 

Proof: (1) The second condition (144) holds in particu

lar for W=WR. The algebraAR=A(WR) satisfies the 

premises of Theorem 2, and in particular A (WR)O is a 
core for the self-adjoint operator (V(irr), D.). The con

ditions (144) trivially imply that c·1A(WR)O=A(WR)O, 

and it follows thatA(WR)!l is also a core for the self

adjoint operator cc-t V(irr)G, c-tn+). Let X EA (WR). We 
then have · 

.V(irr)GXO=JGX*O = (JGJ) V(irr)XO (147a) 

where the first two members are equal because cxc-t 

EA(WRl. We thus have 

(G-1V(irr)G,A(WR)n) = (G-1JGJ)(V(irr),A(WR)O). (147b) 

Since (G-1V(irr)G,A(WR)!l) and (V(i7T),A(W;R)n) are 

essentially self-adjoint, and since c-1JGJ is unitary, it 
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follows, by the polar decomposition theorem, that 

c-1D. =D., (V(irr), D.)= (c-1 V(irr)G, D.), and~ 8 

JG = GJ. (148a) 

(2) The same considerations apply to the algebra A (W) 

associated with any other wedge W=AWR. The Tomita . 

operator "J'' for the algebraA(AWR) is U(A)JU(At1
, and 

thus we have 

U(A)JU(At1G = GU(A)JU(At1 (148b) 

for all A E L0• In view of the third relation (56a) we 

then have, after multiplication of both members in 
(148b) by J from the left, · 

U(JAJA -t)G = GU(jAJ A -1
) (148c) 

for all A E L0• It is easily seen that this implies that G 

commutes with all U(A), and it then follows from (148a) 

that G also commutes with E>0• · 

(3) The remaining statements in the theorem are com

pletely trivial. 

In conclusion let us state that the considerations in 

this section can be generalized to other families of 

bounded regions, We chose to discuss these issues for 

double cones only, in order to avoid geometrical com

plications which might obscure the basically very sim
ple mainline of argument. 
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