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ABSTRACT

A general hermitian scalar Wightmsn field 1s considered. On
the Hilbert space of physical states "natural" domains for certain
complex Lorentz transformations are constructed, and a theorem relating
Under
the additional assumption that the field is "locally" essentially

self-adjoint, duality is considered for the algebras generated by

spectral projections of smeared fields. For a class of unbounded

regions duality is proved, and for certain bounded regions "local"
extensions of the algebras are constructed which satisfy duality. The
relationship of the arguments presented to the Tomita-Takesaki theory

of modular Hilbert algebras is discussed. A separate amalysis for the

free field is also given.

*
This work was supported by ERDA.
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1. Introduction

In the theory of local observables and quantum
field theory the duality condition states that the
commutant of the von Neumann algebra A(R) locally
associated with a region R (in a suitably selected
family of regions of space-time) is precisely
equal to the von Neumann algebra A(R®) locally as-
sociated with the causally complementary region RC. 1
A system of local algebras satisfying this condition
is maximal in the sense that it has no proper local
extension. Further consequences of duality have been

discussed by Licht, 2)Doplicher, Haag and Roberts, 3)

4) 5) and others 6-9)

and Guenin and Misra. Araki
have proved duality for so-called diamond regions

for local algebras generated by a free hermitian scalar
field. In a recent paper Landaulo) has found counter-

examples to duality for diamonds in the case of certain

generalized free fields,_but.it has also been shown
that there exist extended algebras which do satisfy
the condition. In this dissertation we will investigate
duality for a general hermitian scalar field, not
necessarily free.

Our considerations will be within the frame-
work of guantum field theory as formulated by Wightman

11-13)

and others. In Section 2 we will discuss this

assumption and the notation we will follow.

In Section 3 we state a variation of the theorem
of Reeh and Schlieder. 14) The remainder of the section
will be devoted to certain ceomplex Lorentz transforma-
tions and a connection between these and the anti-
unitary inversion transformation TCP. In particular

we will be interested in the transformation

(l 0 0 0
0 1 0 0
Vie,, =
(e3,t) (1)
0 0 cosh(t) sinh(t)
L0 0 sinh(t) cosh(t)J

which maps the "wedge" W = {x| x> > (x4| } of
Minkowski space onto itself for real t. On the Hilbert
space X of physical states there is a corresponding
unitary operator U(V(g3,t), 0) , and a self-adjoint

operator K, such that

3



U(V(§3,t), 0) = exp(-itK3) : (2)

Let PO(WR) be the polynomial algebra generated by field
operators averaged with test functions with support

in Wor and let © be the unique Poincare invariant
vacuum. We shall show that as a consequence of the
"spectral condition" for the field every vector of

the form X2, X € PO(WRL is in the domain of the normal
operator exp(—izK3) for the complex variable z in the
closed strip 0 < Im(z2)< 7, and the vector-valued

function exp(—izK3)xg is strongly continuous in z

on the above closed strip,and an analytic function of
z on the interior of the strip. Furthermore, we will

show that for any such vector
exp(ﬂK3)xﬂ = JX*Q (3)
where J is the antiunitary involution defined by
J = U(R(§3,1r),0)6o

where R(§3,n) is the rotation by angle T about the

3-axis and eo is the TCP operator. Other questions

concerning the domain of exp(-izK3) will be discussed.
In Section 4, under the assumption that the field

is "locally" essentially self-adjoint, properties

of the von Neumann algebras generated by the spectral

projections of the self-adjoint extensions of the

field are considered. Particularly, the von Neumann
algebras A(WR) and A(WL) generated by field operators
averaged with test functions in WR and WL = —WR,
respectively, are analyzed and it is shown that

exp (TK;) XR = JX*Q (4)
and

exp(-ﬂK3)YQ = JY*Q (5)
for all X ¢ A(WL)' and Y ¢ A(WR)'. From (4) and (5)

the duality condition -

A(Wp)' = A(WL) (6)

féllows. The algebras generated by smeared fields
for certain bounded regions are discussed, and loca.
extensions are constructed which satisfy duality.
In Section 5 we consider the relation of our
analysis to the Tomita-Takesaki theory of modular

Hilbert algebras.ls)

The equivalence of exp(2ﬂK3) and
the Tomita modular operator A for A(WR) is demon-
strated.

In Section 6 we give a separate discussion of
duality for wedge algebras generated by a free scalar
field which is based on the well-known vacuum ex-

pectation values of the bounded operators

exp(i¢ [£f]).



2. Assumptions and Notation

Space-time will be parametrized by the Cartesian

1 2 3 4).

coordinates x = (x, x°, x”, x The Lorentz invar-

iant scalar product is defined as x*y = x4y4-xlyl—x2y2—x3y3
The elements A = A(M, y) of the proper Poincare group
ié are parametrized by the Lorentz matrix M and a real

four-vector y, such that AM,y)x = Mx + y.

We denote by D(Rn) the set of all complex-valued
infinitely differentiable functions of compact support

on n-dimentional Euclidean space Rn, and we denote by

S(R™) the space of test functions on R® on which tem~

- pered distributions are defined.

Any f in S(R4n) or D(R4n) will be considered as a

function of n four-vectors (xl,...,xn) and will

be denoted by £(xX;,...,x ). S(R") is endowed with

a topology defined by a countable set of noms

Let r and s stand for sets of integers (rl,...,rn)

and (Sl'°"'sn)’ respectively. Let x* stand for
S.t...+s

xil...xin and D° stand for 5°1

We define the nomms on S(F) by

.S s
n/axll...axnn.

r.s
||f(xl,...,xn)||r's=su§ |x D £ | (7)

Convergence in S(Rn) is defined by

§-lim £ =0 (8)

n-+w

if limllfnllr’s =0 , for all r and s

n>o
We denote by :(X,;P) -an unbounded eperator with domain of
definition D. The adjoint of (X,D) is denoted (X,D)*
If (X,D) is closable, we denote its closure by (X,D)**,
This notation is never employed for bounded operators

which are regarded as defined on the entire Hilbert

space.
For the sake of simplicity we limit the discussion

to a single hermitian scalar Wightman field. The
physical states are described by unit rays in a separable
Hilbert space R which carries a strongly continuous

unitary representation U(A) = U(M, y) of the Poincare

group fo. For any ¥,f ¢ M , the scalar product,
antilinear in ¢y and linear in £ , will be denoted by
W, €). The subgroup of translations U(I, y) has

a common spectral resolution
ur, y) = [el¥Pua’p (9)

and the support of the spectral measure M is contained
in the closed forward light-cone V, in momentum

space. This is the "spectral condition." There
exists a vacuum state Q uniquely characterized by its

invariance under all translations, and such that

U(A) 0 = @, for all A ¢ Eo.



The hermitian scalar field ¢ is defined by the
linear mapping of f ¢ S(R4n), n > 1, to an operator
‘ 1 con-
sists of the linear span of the vacuum £ and vectors

(¢{f},Dl) acting on ¥ . The common domain D

of the form ¢{glQ, for g ¢ S(R4m), m> 1.

For any £ € D., ¢{f}f is a vector-valued tempered

ll

distribution in £, and thus if §-lim fn = 0, then
n-+e

lim ||¢{f }E|| = 0. The field is hermitian in the
n

00

sense that for any £ ¢ Dl’
(64£},0)) %€ = o{£ )¢ (10)

where f+(x ..,xn) = f*(xn,...,xl). For £ ¢ S(R7)

ire
we employ the special notation ¢[f] = ¢{f} and note

that for £e D, and £ ¢ S(R4m) and g € S(R4n)

1

¢{£fr¢{glg = ¢{h}g (11)

where h(xl,...,x e X ) = £(x

X
m’ ¥m+1’ " l""’xm)

m+n

g(xm+1,...,xm+n). In the literature ¢{f} is usually

expressed as

ote} = fateep.aat ) £ e x )0 Mx)) b (x)

(=)
Under the representation U(A) of the Poincare

group, the field transforms by

U(A) (8{£} , Dl)U_l(A) = (¢{Af} , D (12)

1)

where Af = f(A-lxl,...,A-lxn). Locality is expressed
by the condition
¢{flo{gle = o{glo{flE (13)

for\E € Dl’ g € S(R4n), f e S(R4m), and the support
of g in any x; space-like separated from the support
of £ in any Xj'

Define the subset Vn of R4n as

n
v, = {(pl,...,pn)lrzkpr € V., k =1,...,n} (14)

For £, g ¢ S(R4n) we have as a consequence of the

spectral condition that

o{flg

¢{gle, £ e D, (15)

if f(pl,...,pn) = §(pl,...,pn) for (pl,...,pn) € Vn

where f is the Fourier transform defined by
f(Plr---rPn) =

n
i{xr-pr) (16)

4 4
i a’(x;)...d (xn)f(xl,--,xn)eXP(r=l



3. Complex Lorentz Transformations where n > 1 and supp fi CZRi. Similarly define Q. CpP (WL)
: : . o

except,th,at'Rk is replaced»byzﬁz = {(x1,x2,—x3,—x4) |

We define the "right wedge" WR and the "left 1
(x

2.3 4 .
X0, %7,%7) =x ¢ Rk} .. We ‘have the following

as the open subsets of Minkowski space M

wedge" W
g 14)

. L trivial variation of the theorem of Reeh and Schlieder.
WR - (x| <3 > |x4| } (17) Lemma 1l: Let Q% and Q;, ‘'be defined as above. Then
: the linear manifolds
W, = (x| x3 > |x% ) : (18)
D® =0  and D' = Q8

Associated with these wedge regions are the algebras
are each dense in the Hilbert space X .

L0 PO(WR) and PO(WL) generated by the identity and the set
EH {(o[£], Dl)}, where f is any function in S(R4) with Proof: {(El,..uin)l 51 = Xqi Ei = X Ty g i>1; xiSRi}
. . . . . 4
£y support in WR and WL’ respectively. Certain subsets is a real environment for analytic functions in c“®.
oy of these algebras will be of particular importance in With this fact a slight modification of the proof of
' ' o s _ . 11)
=y our discussion. Let R, be a bounded, open, nonempty Theorem 4-2 in the monograph of Streater and Wightman
] - ields the result.
3 subset of WR’ and let X, € WR be such that (x xo) € WL y
o for all x e §l' For any integer n > 1, define the set Next we consider the Lorentz velocity transformation
= Rn by ‘ along the 3-axis given by the matrix V(g3, t) in equation
- (1). The abelian subgroup {V(e3,t)| t real } of the
e R.={x +(n - 1)x_ | x e R} (19) ]
-~ n o 1 . Poincare group maps WR onto WR and WL onto WL' On the
' . Hilbert space H of physical states there is a strongly
) R, is a subset of We for all n, and if n > k, then
continuous unitary representation {U(V(e3,t), 0) | t real }

(x' - x") ¢ WR for all x' ¢ Rn and x" € Rk' In par-
of this subgroup. By Stone's theorem there exists

ticular Rn is space-like separated from Rk if n # k.
a self-adjoint operator (K3, DK) such that

Define the subset QR of PO(WR) as the linear span of

the identity and all operators (g, Dl) of the form
- U(V(g3,t),0) = exp(-itK3) (20)

a = ¢l£10[£,] . 00F ]
In the following we will study the normal operators
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o]

exp(-iTK,) = fexp (-its) My (ds) (21)

-0

where Uy is the spectral measure in the spectral de-
composition of (K3, DK) and T € Cl. For convenience
we denote exp(-iTK3) by V(t). The domain of the closed
operator V(1) depends only on Im{(t) and will be denoted
by DV(Im(fr)). If ¢ € DV\A), A real, then the vector~valued

function V(t)y of 1 is well-defined, strongly con-

tinuous and bounded on the closed strip 0 < Im(t) <1,
A

and is an analytic function of 1 on the interior of this

strip.
Common cores exist for V(t) and for later reference
we state as a lemma some well-known facts abéut a
particular family of cores.
Lemma 2: a)Let c(s) € D(Rl) and let the bounded op-
erator c(K3) be defined by
o

c(Ky) = [ c(s) ug(ds) (22)

-0

Then c(K3)q) € Dv()\) for all X real and for all y ¢ ¥
b) Let D be any dense linear manifold in Y

and let Dc be defined by .
_ 1
D, = span {c(k;)D |e(s) € D(RT)} (23)

Then Dc is dense in X , and a core for every operator

(v(t), DV(Im(T)).

c) If c(s) € D(Rl), then c(K3) is also given
by

L]

c(Ky) = [ dt 2(t)V(t) (24)

where ¢(t) is the Fourier transform of c(s) defined by

e(t) = o= [ as c(s) e'*® (25)

We furthermore note that ¢(t) is an entire analytic
function of t and ¢(t+iy), t and p real, is in s (rl)
as a function of t.

d) For all y ¢ ¥
V(T)c(Kjy)Y = fdat c(e-T)V(t) ¥ (26)

Next we consider the transformation j on Minkow-

ski space defined by
. ool 2 4 12
jx = J(x7,x ,x3,x ) = (x7,x ,-x3,—x4) (27)

and note that j = V(g3, ir). Heuristically, this

suggests a relation of the form

V(in)¢(xl)...¢(xn)9 = ¢(jxl)...¢(jxn)ﬂ (28)

and the remainder of this section will be devoted to
giving (28) rigorous meaning.

Let z be a four-vector and consider the function

z(t) = V(g3,1)z, TeC
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i.e., for Re(t) = t and Im(t) =6, o < Im(t) < 7,
21 (t) = zl b) E(p,2,7) is analytic in T in the sense of the
.s-tOpOlOgy of test functions for z € WR and
ZZ(T) = z2 0 < Im(t) < 7.
23(1) = (z3cosh t + z4sinh t)cose + c) Define a function of n four-vectors P; and

-

n four-vectors z, b
i(z3sinh t + zlcosh t)sing i

24(1:). = (z4corsh t + z3sinh t)cosé + E (PyreeerPyi Z300e0s2,57 )

5 i(z%sinh t + 2°cosh t)sind n n
-~ . ' = NI E() Py s 2, T) (30)
1 ' : : k=1 i=k
By inspection we see that . .
fe ) ThenE_ e S(R n) in PpseessPy and analytic in t in
ey In(z(t)) € V, the §-topology for 2z, € Wy and 0 < Im(1) < .
- " Proof: supp E(p,z,T) C {p |p4 > -1} N {p] p2 > =1}.
. for z € Wp and 0 < Im(t) < w. Thus the functiog The set {p| p4 < 1} N supp E is bounded as li;] < V2.
exp(ip-z(t1)) will be of rapid decrease for p ¢ \A and For p4 > 1 and any integer s > 0,
'%',é‘ . . -
by the spectral condition we might expect vectors A N
v S 'IE ]-]p_] 4, 3
of the form XQ , X e P_(Wp), to be in Dy(}) for IDPE(p'ZrT)Ii exp ( 3 Im(z" (1) ~27 (7)))x
= 0 <A <7 . In the following lemmas we confirm this 4 3 .
- . exp ( Im(z (1)+z” (1) ) x|r(z(t),p)| (31)
k suspicion. 2
S Lemma 3: Let u(s) be an infinitely differentiable ) ) .
B _— i where r(z(r), p) is some polynomial in the components
£ ti h that = 1 for >0 d s) =0
- unction suc at u(s) sz and u(s) of z(1) and p of degree s. Part a) follows immediately
“ £ < =1, Defi _ £ ti f the four-vector b . . .
or s = etine .a unction o e *ou ¢ p by from this estimate and Im(z(T1)) € V+ for T in strip

0 < Im(t) < m. PFor §-analyticity we must show that

E(p,z,7) = u(p-p)ulphexplip-z(1)) (29)
for any integers r,s > 0 and complex h,

Then:

4. .
a) E(p,z,1) € S(R”) in p for z ¢ WR and I dE(p,z,t) _ E(P'z’1+h)—E(p'z,'[)|l
h

lim
dr r,

|h|>0

n i



15

We first note that E(p,z,T) and D;E(p,z,r) are analytic
in T in the open strip 0 < Im(t) < 1, and D:(dE/dT) =
d/dT(D:E). Let T be in the open strip, and let p > 0
be such that T _+h is in the open strip if |h| < 2p.

We then have the estimate for integers r, s > 0

h
l(PrD:)[ QE(PIZITO) - E(PIZLTO+§) E(P,Z,To) ]I <

drt h/2
2(/pl®) B, mp,zit ), Inl <o (32)
P :
where M(p,z,7 ) = max |D;E(p,z,To+s)|, sl = o.

. s 3
' r .
From the estimate (31) we see that M(p,z,To)Ipl is

bounded in the variable p by some M(z,ro). Thus for

any € > 0, there exists a § > 0 such that

II%% (p,2z, To)-E(p,z,ro+h)~E(p,z,To)|| < €
h r,s

for all h such that |h| < §, and b) is proved. c)

is a trivial corollary of a) and b).

Lemma 4: IetRi be as in Lemma 1, and let fie D(R4) and

supp £, CR,. Define a function of n four-vectors

(B, ..-1py) by
E(Plr---rpn; fll---rfniT) =

f d4x

4
) ..ed X fl(xl)"'fn(xn) X

1

En(pl,...,pn; Xl’xz_xr""xn_xn-l;T ) (33)

16

Then a) E(pl,...,pn; fl,...,fn;r ) € S(R4n) in
Pyres-rPy in the closed strip 0<Im(t)<m and is an
analytic function of 1 in the 8-topology on the
interior of the strip.

b) For Re(t) = t and Im{(t) = 0

é§-éim E(pl,...,pn; fl,...,fn;T )y =

% (vl S e !
U@ ,..ep)E (V 7 (83,8)P) ) oo £ (V T (g5, 8)p)) (34)

n
where U(pl,...,pn) = 1 [u(p£+...+pﬁ)u(hﬁ{+-.-+pn)2)]
k=1
¢) For Re(t) = t and Im(t) = 6

é%:iim E(pl,...,pn; fl,...,fn;r )y .=

3 -l pa P | |
Upyseensp) £ (V (e3,8)Rp) -0 Fy (V7 (e t0py)  (35)

3 o
where fk (p) fk(Jp)
We remark for the Fourier transform of ﬁ,

E(yl,...,yn; fl,...,f

4n, .
n’ e S(R7) in Yyreees¥y

and thus may be used to smear the field operators.

Proof: From the support of the fi’ the variables
X, Xy=Xqreee X "X . are each in WR throughout the
range of integration. As each fie D(R4), the inte-
gration is over a compact set, and the analytic

properties of En established in Lemma 3 carry over

to the integral. The rest of the lemma is trivial.
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Lemma 5:. a) The vector-valued function N . . .
= E(V (§3lt)pllo.opv (§3't)pn;fl,.'..,fn;ie )

o{E(E,,...£51 )18 is a strongly continuous
1 n
onvVv_ .,
function of T in the closed strip 0<Im(t) <y and
is a strongly analytic function of t on the Let y ¢ ¥ and c(s) e D(Rl)
interior of the strip. The function (¢,¢{E(f1,...,fn;tﬂﬂ) is a bounded

function of T on the strip Qﬁ'Im(f)_i 7 and analytic-

Let Re(1) = t and Im(1) = 6 .
. op_the ipterior‘of the strip by the results of Lemma 5.

Consider the contour integral in

~ b)  s-lim ¢{E(f;,...,£ ;71 )}Q
A 8-+0+ ‘ n
10 . ' '
: _ . . dart &(t-im) (w,¢{_E(f1,...fn;T)}Q) =0
® = V(£)O[£)}.. .0 (€10 (36) c1*eareyre,
ey | o _ - _ - where the contours are indicated on figure 1.
™% c) s-lim ¢{E(f,,...,f ;1 ) 1Q The contributions from the ' centours ¢, and ¢
clim SREREEE N 7 _ _ ° 1 2
o vanish in the limit !Re(t) | - ® as &(t) is in
- - V(t)¢[f:1’ ].”.Mfi 19 (37 s(Rl) in the variable Re(T1). A
- . Thus. we have for 0 < € < /2 ?
- a) ,¢{E(fl,...,fn; 1) 10 : : . ' -
- ' N A,, ildt e(t-i(n-¢)) (v, ${E(E), ..., £ ;tric) }a) =
) = V(R ME(E), ... £ i0))}0 _ (38) o
m n : . . :
< : o : J at e(erie) (b, $LE(£, ..., £ ; t+i(n-c))}a)

i Proof: a)-c) follow immediately from the results of ] ) L. ' ,
. Taklng the limit ¢ + 0, and recalling Lemma 2 d) and

Lemma 4 and the fact that ¢{f}Q is a vector-valued
Lemma 5 ¢) and d) we have

tempered distribution in f satisfying the spectral -
,' ( V(im)c(K £.1... =
condition. d) follows from the fact that v, viamel 3)¢[ 1] ¢[fn]m

3 j
(v, C(K3)¢[fl]---¢[fn]9) (39)

ﬁ(pl,...,pn; SN 1)
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Lemma 6: Let¢[f1]...¢[fn] € QR and c(s) ¢ D(Rl).
Then

V(in)c(K3)¢[fl]...¢[fn]9 =

2RI ] (40)
c(K3)¢[fl ]...¢[fn 1Q

3 _ .
where £ (x) = fn(Jx).

Proof: In {(39) ¢ is an arbitrary vector in the

Hilbert space. The result immediately follows.

Associated with the j operator is an antiunitary
operator J = U(R(§3,ﬂ),0)eo where R(§3,ﬂ) is the ro-
tation of = aboqt the 3-axis and Oois the antiunitary
TCP operator whose existence under our assumptions
J has the

is guaranteed by the theorem of Jost.

following properties which will be of importance:

32 =1, 30 =9 JUM,x)J = U(3M5,jx) (41)

Furthermore, JDl = Dl and

JOLE1TY = ($[£91,0)% = ¢1E3%]y, y e D) (42)

For the velocity transformations V(t), in particular,

JV(t)J = Vv(t) for all t real (43)

20

From this relation it follows that
JDK = PKr J(K3,DK)J = -(K3,DK) (44)
JDV(A) = DV(-A) , . A real N (45)

I V(1) /Dy (Im(1))JT = (V(r*), DV(-Im(T)))(46)

We are now prepared for the main theorem of this
section.

Theoren l: a) Let X € QRvénd c(s) € D(R'). Then
V(T c(Ky)X @ = Q(K3)JX*9 (47)

b) Let Y e QL and let c(s) € D(Rl). Then
V(-ime(R)¥0 = c(K,) Y - (48)

c) Let A be any operator with @ in the domains of A and A* and
such that (AR, ¥YQ) = (Y*Q, A*Q) for all¥ €I%(WL) Then

AQ is in Dv(n) and
V(iT)A Q@ = JA*Q (49)

d) Let B be any operator with £ in the domains of B and B* and
and such that (BS, XQ) = (X*Q, B*Q) for all X e.po@%g'

Then BQ is in DV(—ﬂ) and

V(=im)BR = JB*Q ‘ (50)
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e) 1In particular result c) holds for A e PO(WR)' and

result 4) holds for B ¢ PO(WL).

Proof: We first recall that by definition X € QR

has domain D,. For any(¢[fl]...¢[fn], Dl) € QR
(¢[fl]...¢[fn],Dl)*w =
* *
¢[fn]...¢Ifl]¢ =
¢[fi]...¢Ef;lw v ¥ e Dy

as supp fi is space-like separated from supp fj' i#j.

Thus
J(OI£)1...01£ 1,D)*3p =
J J
o1£d 1,016 1w, v e

and a) then follows from Lemma 6. As Y ¢ QL is equal to
JXJ for some X € QR’ (48) is a consequence of a)

and relation ( 46). To prove c) we first note

that

bR = span {c(X;)0.8| c(s) e D(RD))

1s a core for V(im) by Lemma 2 b). The following

string of equalities yields the desired result. Let XeQp.

(AR, V(im)c(K,y)xQ) =

(aQ, C(K3)JX*JQ) =

o«

[ at &e) (a2, vt x*v L (r)an)

- 0

[~}

[ at &(t) (IV(t)xv L(£)an, a*Q)

- o

(since JV(£)x*v 1(t)J ¢ P (W)

L]

[ at e(t) (IV()XQ, A*Q)

- 00

il

<

[ dt e(t) (JA*Q, V(t)XQ)

- 00

(JA*Q, c(K3)XQ)

d) is similarly proved and e) is trivial.

22
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4. Local von Neumann Algebras and Duality

In the theory of local observables there is a
correspondence between certain regions R of space-
time and von Neumann algebras A(R). R is selected
from a collection X of regions of Minkowski space
which is invariant under Poincare transformations.
Let A(R)' denote the commutant of A(R) and let R°

denote the causal complement of R, i.e.,

R® = {x| (x—y)2 < 0 for all y eR } (51)
A physically reasonable system of local algebras
should minimally satisfy the conditions:
i) locality, i.e.,
A(R°) C A(R)' ,ReX (52)
ii) covariance, i.e.,

UMARU T(A) = A(AR) , Re ) (53)

where U(A) is the unitary operator associated with

the Poincare transformation A and
AR = {Ax]| xeR }

If this dissertetion we wish to discuss the duality

condition
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A(R®) = A(R)" (54)

for systems of local algebras associated with a
hermitian scalar field. In view.-of same results of Araldl8)
duality is usually conjectured only for regions R
such that R°® = R. We also note that the causal
complement of R is often defined in the literature
as the interior of the set R®. This issue will be
clarified in the course of the discussion.
Unfortunately, it is not known in general whether
a nontrivial system of local algebras exists which is

relatively local to a hermitian scalar field ¢ in

the sense that

(Xg, o[flz) = (¢[£*1E, X*z), ¢&,L € Dy

for R any open subset of Minkowski space, X € A(R),
f e S(R4) and supp f C:§c. One condition which
guarantees the existence of such systems is as follows:

Special Condition: For every real f € S(R4) the

operator (¢[£f], Dl) is essentially self-adjoint.
Furthermore, if r ¢ S(R4) and real, and supp r C

(supp f)c, then

N~

EF = FE (55)

for any spectral projection E associated with
(¢ [x], Dl)** and any spectral projection F associated

with (¢[£f], Dl)**.



In the remainder of this section we shall discuss
duality under the assumption of the Special Condition
using the results of Section 3. In the following
lemma we establish that for any nonempty open subset R
of Minkowski space the von Neumann algebréé A(R)
generated by the spectral projection of {(¢[f],D1)**|
f e S(R4) and real, and supp £ C R} are local algebras.
Lemma 8: Let ¢ be a hermitian scalar field satisfying
the Special Condition. For any nonempty open subset
R of Minkowski space the von Neumann algebras A(R)
generated by the spectral projections of {(¢[f], Dl)**l
fe S(R4) and real, and supp £ C R} form a local
system of algebras in the sense that:

a) For any two nonempty open subsets Rl and R2 of

Minkowski space
A(R;) C A(R,))' if R} C K (56)
b) For any nonempty open subset R of Minkowski space
UMMARUTI(A) = A(AR), for all A e T (57)
Furthermore,
c) JA(R)J = A(JjR) (58)

where jR = {jx| x ¢ R}

d) {x0 | X ¢ A(R)} is dense in X

25
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Proof: Under the Special Condition Dl is a core for
(¢[£], Dy)**, f ¢ S(R4) and real. By the maximality

of self-adjoint operators, we have
U @IE, D s () = L

(6 [A£],D)) **
and
T(O[£1,D)) %53 = (1677, ) **

for any real f ¢ S(R4).
Let Ues Hpgr and uéj)be the associated spectral measures.

By the uniqueness of the spectral resolution we have

1

U(A)ufu‘ (A (59)

= Mg
and

Tugd = g (3 (60)

b) and c) immediately follow from (59) and (60), and
a) is trivial.

Let Iy be an arbitrary real element of S(R4)
with support in R. Among the operators in A(R) are
those of the form (exp(itk¢[gk]) - 1), tk real. Since

vectors of the form

¢[gl]¢[92]...¢[gn] , n > 0, supp g; C R (61)

- may be approximated arbitralily closely by vectors of

the form
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(exp (it;¢1g;1)-1) . . fexp (it ¢ [g 1)

it it

1 n

and since the linear manifold generated by @ and the
vectors of (1) afe dense in ;9 , 4) holds.

We are now in a position to extend the results
of Section 3 for PO(WR) and PO(WL) to the associated
local von Neumann algebras A(WR) and A(WL).

Theorem 2: a) Let X ¢ A(WR). Then the vector XQ

is in Dy (™) and
V({iT) XQ = JIX*Q (62)
b) Let Y ¢ A(WL)f Then the vector Y@ is in Dvbmﬁ and
V(-im)¥Q = JY*Q (63)

c) Thesets of vectors A(WR)Q and A(WL)Q are
cores for the operators V(iwm) and V(-im), respectively.

d) Let 2 ¢ A(WL)'. Then the vector 2R is in DV(ﬂ)and

V(im)z2Q = Jz*Q (64)

e) Let W e A(WR)'. Then the vector WQ is in DV(—n)

and

V(-im)WQ = JwW*Q (65)

28

Proof: a) and b) are a consequence of the Special

Condition and Theorem 1 c) and d). Since

= = b s .
V(g3,t)WR W_ and V(§3,t)wL WL’ Lemma 8 implies

R
that V(t)A(WR)V_l(t) = A(Wy) and V(t)A(WL)V—l(t) =

A(WL). Thus, operators of the form

[e]

X, = f de&(r) V(£)xv~

1
- (

t)

are in A(WR) for X ¢ A(WR) and c(s) € D(R). Since
X2 = c(K3)XQ remmas 8 e) and 2 b) imply c).
Let 2 ¢ A(WL)' and X € A(WR). Then
(29, V(in)xcn) = (29, JX_*JQ) =
(JXCJQ, 2*Q) = (Jz*Q, XCQ)
which follows from chJ € A(WL), together with c)

implies d). A similar argument yields e).

From Theorem 2 the duality condition for

wedge regions, in particular
| -
A(WR) = A(WL)

will now follow.

Theorem 3: a) Let Y ¢ A(WR)' and X € A(WL)' Then

XY = YX (66)

b) A(WR)' = A(WL) (67)
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Proof: Since X € D,(m and Y@ eD,(-m) , we have
(YQ, XQ) = (V(-im)YQ, v(im)xQ) =
(JY*Q, JIX*Q) = (X*Q, ¥Y*Q)

Let M, N ¢ A(WR) C A(WL) '. Then

(MQ, YXNQ) = (Y*Q, M*XNQ) =

(N*X*MQ, YR) = (MR, XYNQ)

29

as M*XN € A(W;)'. Since {Mo |M € A(Wp)} is dense in H

XY = ¥X
and a) is proved. Reexpressing this result as

A(W.) CA(WR)' CAM@W)'"" = A(W)

we also have part b).
We define the set W' of "wedge regions" as
W= {mw | re T} (68)

[o]

and the associated local von Neumann algebras

v _ -1
AGNHL) = UMAW) U™ (A)
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As a corollary to Theorem 3 we have

AW)' =A@ ®) ,weW (69)

Next we wish to consider the duality condition
for bounded regions of space-time, and in particular,
for so-called double-cones. For any two points X, and
X,y of space-time such that X, € V+(xl), (where V+(xl)
is the forward light cone with x; as apex), we define

the double-cone C = C(xl,xz) by
Clxy,x,) = Vo (x;) N V_(x,)

where V_(xz) is the backward light cone with x, as
apex. The double-cones so defined are thus open and
non-empty. We denote by C the set of all double-cones..
Again undex the assurption of the Special Gondition, there exists
for each ¢ € (¢ the locally associated algebra

A(C). 1In his discussion of generalized free fields,
Landau 10)constructs counter-examples to the duality

condition for double-cones. However, he also
exhibits local extensions of these algebras which

do satisfy duality. It is in this spirit that we
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proceed in the more general case.
For any double-cone C we define the von Neumann
algebra B(C), which we regard as associated with the

closed, convex set C, by
B(C) = N{am|we W ,w DT} (70)

ﬁ(E) is an extension of the algebra A(C), and in
the following theorem we demonstrate that the set
CUEC{ B(C), A(C®)} form a local system of algebras which
satisfy the duality condition.

Theorem 4: Let B(C) be defined as above. Then:

a) The algebras B(C) are local in the sense that

for any Cl’ C2 € ¢ , such that Cl C Eg,

B(C;) C B(C,' (71)
b) For any C € Cand A efo ,

U(NBE@U () = BUD (72)
c) For any C ¢ C,

B(C)' = A(C®) (73)

i,e., the duality condition is satisfied.

Proof: a) follows from the fact that for any two dis-

joint, space-like separated double-cones Cl and C2
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= —= —c
there exists a wedge W, such that C; C W and c, cC w.

By definition B(C;) C A(W) and B(C,) C A(WS), and
A(W)' = A(W) by (69). Thus B(C))' DB(C,). b) is
a trivial consequence of the definitions. To prove c)

we first note that
B(C)' = (A(W)' | Wwe W, wDC"
By duality for wedges, we have

B(C)' = (amW) | weW , ®@oCi"

Since W° D T inplies W C C°, we have

B(C)' = {(a(W) | weW ,WCT® )"
and

B(C)' C a(@)

To prove the reverse inclusion, we turn to the definition
of A(C®). A(C®) is generated by the spectral pro-
jections of (¢ [f], Dl)**, where f ¢ S(R4), f real,
and supp £f C C°. Let Xe B(@)" =B(C). Letye c°.
Then there exists a wedge W and an open neighborhood

=C

NY of y such that W C C~ and NY C W. Under the

assumption of the Special Condition we have
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(¢lglv , XE) = ( X*y, ¢[g*1E), V,E ¢ D, (74)

for all g ¢ S(R4) and supp g C Ny' It immediately
follows that (74) holds for all g€ S(R4) and supp g
C CT° Aas we have assumed that D, is a domain of
essential self-adjointness for ¢ smeared with real test
functions

X(¢ [g], D )** C(olgl, D, ) **X

for all X ¢ B(C), and g ¢ S(R4), g real, and
supp g CEC. This relation implies that for any

spectral projection E associated with (¢ lg], Dl)**,
XE = EX

and similarly for all elements of A(Ec), which is

generated by such spectral projections. Thus, we have

B(C) C a(c5)

and
B(C)' D a(C°)

which completes the proof.

5. Relation to Tomita-Takesakl Theory

A

The analysis of sections 3 and 4 is closely re-
lated to the Tomita-Takesaki theory of modular Hilbert
algebras. 15,19) As the extensive results of this |
Approach yields information concerning factors, types,
and symmetries of von Neumann algebras, we wi;h to
establish the precise nature of this relationship.

The main theorem (from our point of view) is due to
Tomita, and we will state the facts in the following
form:

Let A be a von Neumann algebra on a separable
Hilbert space with a éyclic and separating vector Q,
and let A' denote its commutant. Then there exists
a unique antiunitary involution JT' and a unique

self-adjoint operator (A, D{A)), whiéh satisfy the

conditions:

a) I =9, QeD®, 42=21 (75)

b) T ATy, = Al (76)
c) JpD (8) = D(A’l), Jp(8,D(AN I = (A—l, D(‘A'l))

L (77)

a) AttaaTit _ a (78)

altaa=it o g (79)

for all real t.

34
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e) If (S, AQR) is the antilinear operator defined by
SX0 = X*Q , for all X € A (80)

then

@gat2, pa'2)) = (s, an) (81)
In the literature on the subject, A is called

the modular operator, and the aﬁtomorphism in d)

is the modular automorphism. The relationship of

the analysis of Section 4 and Tomita-Takesaki theory

for wedge algebra A(WR) is established in the

following theorém:

Theorem 5 : Let ¢ be a hermitian scalar field satisfying

the Special Condition and let A(Wp) be the associated von
Neumann algebra of the "right wedge" WR‘ Let JT, S,

and (A, D (A)) be the Tomita operators associated

with A(WR). Then
JT =J (82)
a, D)) = (V(2irm), Dv(2n)) (83)

Proof: By Theorem 2 we have that A(WR)Q is a core for

the operator (V(iﬂ),DV(n)). As J is an antiunitary
involution, A(WR)Q is also a core for J(V(in),DV(ﬂ)),

and by definition is a core for the operator (S, A(WR)Q)**
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From the relation

SXQ = X*Q = Jv(im)xQ , for all X € A(WR)

and the uniqueness of the polar decomposition we have

J, =3 and w2, palt’?) = (wim, D,())and the

theorem follows.

We remark t =
hat for WA AWR, A e Lo,

the Tomita J, and (4, D(A)) for A(Wy) = U(A)A(WR)U—I(A)

are respectively U(A)Ju™t(A) and U(A) (V(2im), Dv(zn))u'l(A) 

Also, we note the similarity of our discussion in

Section 4 to that of Haag, Hugenholtz and Winnink 20)

and Kastler, Pool, and Thue Poulsenzl)

Finally, we state as a lemma a paraphraée of
Theorem 13.2 of Takesaki 22) which gives another
set of conditions which characterizes the modular
operator A. This lemma will be used in the next
section for a separate discussion of the free hermitian

.

scalar field.
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Lemma 9 : Let A be a von Neumann algebra with

a cyclic and separating vectoxr Q. Let U(t), t real,

be a one-parameter group of unitary'operators‘such

that U(t)Q = 9, and such that

u(t)au~Y(c) = A, for all real t (84)

Furthermore, for all a; b € A let there exist a function

F(z) continuous in the closed strip 0 < Im(z):_ 1

and analytic in the corresponding open strip with

boundary values

F(t)

(2, au™t(t)ba) - - (85)

F(t+i)

(2, bu(t)af) o (86)

for t real. Then U(t) = A%, where 4 is the self-

adjoint modular operator for the von Neumann algebra A.
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6. Duality for Free Field

, For a free hermitian scalar field we consider
the von Neumann algebra AO(WR) generated by the
unitary operators exp(i¢[f]), where £ &S(R4), f real,
and supp f C:WR. Since'the vacuum expectation values
of these operators are now explicitly available,

we present a separate proof of duality for "wedge"
algebras by direct computation.

For any £, g € S(R4)-andrreal

(R, exp(it¢ [£))exp(i¢pg])Q) =

exp( %[£,£] ~1£f,9] -%lg,9]) (87)

where, for ekample,

) 3 . .

if,g1 = 1 f %‘B f(-ﬁr-wp)é(s.wp) (88)
b ) !

w_ = /pz +m

P

Let supp £ CWR and supp g CWR. Consider the function

F(t) (€, exp(i¢ [EDVE2nt)exp(idp[g])R)

(2,v(-mt) exp (i¢ [£]) V(+mt) V(+mt)exp(i¢ [g] N(-Tt) Q)
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= (Q, exp(i¢[V(e,,~mt)f])exp(id[V(e,, +rt)gl)R)
(89)

From equation (g7) we have

\

F(t) = exp( —%—v Vigz,-mt)f,V(e;,-nt)f]
- [V(ez,-mt)f,Vig, 4mt) gl
-3 Vlegsrtlg,Viggamtlgl)  (90)
Ey Lorentz invariance the first and third terms in the

exponential are actually constant functions of t and

the second term is explicitly

3 ~
1 I d’p ¢

(V(e ,+1Tt)('.!;r.'wr));(v(e \,—ﬂt)(p,u),.)) (91)
16m3(=) “p ~3 P ~3 P

Consider the equation

E(V(ey, m) (-Bymu)) =

[ a%x exp(-ip-V(ey,~Tt)x) £ (x) J (92)
() b

>
where p = (p,mp). For x € WR, —Im(V(§3,-ﬁt)x) € V+
for 0 < Im(t) < 1. Thus for f ¢ S(R4) and supp £ C:WR,
E(V(§3,ﬂt)(-§,—wp))e S(R?) in E for 0 < Im(t) < 1, and

is analytic in t in the corresponding open strip.
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By a similar argument for §(V(q3,'"t) (E,wp) ), we
have that (91) is well-defined for t in the closed
strip 0 < Im(t) < 1, and is continuousin t in the closed
strip and analytic in t in the open strip. For Im(t) =1

it has the boundary value

. 3 | |
J' ‘_i_B 0 : > ~ _ >
() y f(,v(.e,3,+1rs) (p,wp))g(v(g3, rs) (-p, “’p)) {93)

where s =.Re(£).' But since (93) is just the expression
for [V(§3,+ns)g, V(§3,—ws)f], we have

Lemma .10: Let £, g € S(R4), real, and supp £ C: WR

and supp g (:_WR.  Then -thére exists a function F(z)
continuous in the closed strip 0 < Im(z) <1, and

analytic in the interior of the strip with boundary

values

F(t) (2, exp(i¢ [£))V(2mt)exp(i¢[g]l)R) (94)

F(t+i)

(@, exp(i¢plgl)V(-27t)exp(i¢ [£])Q)(95)

for all real t.

Thus, for operators of the form exp(i¢ [£]) € AO(WR)
we have the conditions of Lemma 9 satisfied with U(t) =
V(-2mt), since V(—2nt)Ao(WR)V(2ﬂt) = AO(WR) for all
real t. We will now extend this result to all operators
in AO(WR).

First consider operators of the form
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m
X = nzl a exp(i¢[£ ]) (96)

with a camplex, and real fn € S(R4) and supp £ C WR.
This set of operators is in fact a pelynomial algebra
since

exp(i¢[fl)exp(id[g]) = (constant)exp(i¢ [£+g])

and we denote this set by GO(WR).

Lemma 11l: Let X, Y ¢ GO(WR). Then there exists a

function F(z) continuous in the closed strip

0 < Im(z)< 1 and analytic in the interior of the strip

with boundary values

(R, XV(27t)¥Q) | (97)

F(t)

(R, YV(-27Tt)XQ) (98)

F(t+i)

for all real t.

Proof: Since X and Y are of the form (96), this lemma
is a trivial consequence of Lemma 10.

Theorem 6: Let X, Y ¢ AO(WR). Then:

a) There exists a function F(z) continuous in the
closed strip 0 < Im(z) < 1 and analytic in the interior

of the strip with boundary values

F(t) = (Q, Xv(2mt)¥YQ) (99)

F(t+i) = (Q, yYv(-27t) XQ)

for all real t.

b) v{(-27t) = Alt, where A is the modular operator

for the algebra AO(WR).

c) AO(WR)' = JAO(WR)J =

Proof: Since AO(WR) = GO(WR) , for any X, Y ¢ Ao(WR)

AO(WL) (101)

(100)

42

there exist bounded sequences of operators Xn’ Yne GO(WR)

such that 23)
s-1lim X _ Q = X s-
nre 1 : :
s-lim Y_Q = ¥Q s-
n->o n

Thus we have

lim X*Q = X*Q
n-+w n
lim Y*Q = yY*Q
n+o 1

(2, XV(H+2wt)¥Q) = lim (X;Q, VC+2ﬂt)YnQ)

n-+o

(R, YV (-2mt)X0Q) = lim (Y*Q, V(-2mt)X Q)
N+ n n

By Iemma 11 there exists a function Fn(z) continuous in the

closed strip 0 < Im(z)< 1, and analytic in the interior of

the strip, with boundary values (t real)

F ()

i * -
Fn(t+1) (YnQ, V (=21t

Fn(t) and Fn(t+i) are uniformly bounded with respect

to t , and converge uniformly.

*
(XnQ, V(+2ﬁt)YnQ)

X Q)

Therefore
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Fn(z) converges to a function F(z) which is continuous in

closed strip, and analytic in the interior of the strip Acknowledgments
with boundary values (t real) I wish to thank Professor Eyvind H. Wichmenn for numerous

discussions. I also wish to thank Professor Oscar Lanford for his

F(t) (R,XV{+27t) ¥Q)

comments on this work.

F(t+i) (R, YV(-27t)XR)

s . -1 _

Finally noting that V(t)AO(WR)V {(t) = AO(WR), for

all real t, the conditions of Lemma 9 are satisfied

and V(-2mt) = Ait , and a) and b) are proved. Moreover, A = ¥(2wi).
‘By direct computation it is seen that V(i) exp(i¢ [£]1)Q =

exp(i¢ [fj])ﬂ , for exp(i¢p[£fl)e Ao(WR) . From the defining relation

Iplexp(i0[£1))0 = a1/2 (exp (i 1£1)) *0

~

for the Tomita Jo associated with the algebra A, (WR) '

we have

Jplexp(i¢[£]))Q = V(im) (exp(-1¢[£]))Q

exp(-i¢ (£ 3 b ]

J(exp(io (£1))Q 2

Therefore, J

(76).

r = J, and c) follows immediately from

1
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