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* ON THE DUALITY :EROPERTY FOR A HERMITIAN SCALAR FIELD 

Joseph John Bisognano 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

April 28, 1975 

ABSTRACT 

A general hermitian scalar Wightman field is considered. On 

the Hilbert sp3.ce of physical states "natural" domains for certain 

complex Lorentz transformations are constructed, and a theorem relating 

these transformations to the TCP symmetry is stated and proved. Under 

the additional assumption that the field is "locally" essentially 

self-adjoint, duality is considered for the algebras generated by 

spectral projections of smeared fields. For a class of unbounded 

regions duality is proved, and for certain bounded regions "local" 

extensions of the algebras are constructed which satisfy duality. The 

relationship of the arguments presented to the Tomita-Takesaki theory 

of modular Hilbert algebras is discussed. A sep3.rate analysis for the 

free field is also given. 

* This work was supported by ERDA. 
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1. Introduction 

In the theory of local observables and quantum 

field theory the duality condition states tha.t the 

commutant of the von Neumann algebra A(R) locally 

associated with a region R (in a suitably selected 

family of regions of space-time) is precisely 

:::) equal to the von Neumann algebra A(Rc) locally as

sociated with the causally complementary region Rc. l) 

C)· A system of local algebras satisfying this condition 

is maximal in the sense that it has no proper local 

extension. Further consequences of duality have been 

discussed by Licht, 2looplicher, Haag and Roberts, 3) 

and Guenin and Misra. 4 ) Araki S) and others 6- 9) 

have proved duality for so-called diamond regions 

for local algebras generated by a free hermitian scalar 

field. In a recent paper Landau10 l has found counter-

examples to duality for diamonds in the case of certain 

1 

generalized free fields, but it has als_o been shown 

that there. exist extended algebras which do satisfy 

the condition. In this dissertation we will inVestigate 

duality for a general hermitian scalar field, not 

necessarily free. 

Our considerations will be within the frame-

work of quantum field theory as formulated by Wightman 

and others. ll--I3:) In Section 2 we will discuss this 

assumption and the notation we will follow. 

In Section 3 we state a variation of the theorem 

of Reeh and Schlieder. 14 ) The remainder of the section 

will be devoted to certain complex Lorentz transforma

tions and a connection between these and the anti

unitary inversion transformation TCP. In particular 

we will be interested in the transformation 

1 

0 

V(~3 ,t) 

0 

0 

which maps the "wedge" W 
R 

0 

1 

0 

0 

0 0 

0 0 

(1) 
cosh (t) sinh (t) 

sinh (t) cosh (t) 

Minkowski space onto itself for real t. On the Hilbert 

space Jf. of physical states there is a corresponding 

unitary operator U(V(~ 3 ,t), 0), and a self-adjoint 

operator K3 such that 

2 



(2) 

Let P
0

(WR) be the polynomial algebra generated by field 

operators averaged with test functions with support 

in WR' and let Q be the unique Poincare invariant 

vacuum. We shall show that as a consequence of the 

"spectral condition" for the field every vector of 

the form xn, x £ p
0

(WR)' is in the domain of the normal 

operator exp(-izK
3

) for the complex variable z in the 

closed strip 0 ~ Im(z)~ 'If, and the vector-valued 

function exp(-izK3)XQ is strongly continuous in z 

on the above closed strip,and an analytic function of 

z on the interior of the strip. Furthermore, we will 

show that for any such vector 

JX*rl (3) 

where J is the antiunitary involution defined by 

J U(R(e3 ,'IT) ,0)6 
- 0 

where R(~3 ,'IT) is the rotation by angle 'If about the 

3-axis and e is the TCP operator. Other questions 
0 

concerning the domain of exp(-izK3) will be discussed. 

In Section 4, under the assumption that the field 

is ''locally" essentially self-adjoint, properties 

of the von Neumann algebras generated by the spectral 

projections of the self-adjoint extensions of the 

3 

field are considered. Particularly, the von Neumann 

algebras A(WR) and A(WL) generated by field operators 

averaged with test functions in WR and WL = -WR, 

respectively, are analyzed and it is shown that 

JX*rl (4) 

and 

JY*rl (5) 

for all X£ A(WL)' andY£ A(WR)'. 

the duality condition 

From (4) and (5) 

(6) 

follows. The algebras generated by smeared fields 

for certain bounded regions are discussed, and loca: 

extensions are constructed which satisfy duality. 

In Section 5 we consider the relation of our 

analysis to the Tomita-Takesaki theory of modular 

Hilbert algebras. 15 )The equivalence of exp(2'ITK3) and 

the Tomita modular operator 6 for A(WR) is demon

strated. 

In Section 6 we give a separate discussion of 

duality for wedge algebras generated by a free scalar 

field which is based on the well-known vacuum ex-

pe.ctation values of the bounded operators 

exp (icj> [f]). 

4 
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2. Assumptions and Notation 

Space-time will be parametrized by the Cartesian 
1 2 3 4 coordinates x = (x, x, x, x ). The Lorentz invar-

5 

4 4 1 1 2 2 3 3 iant scalar product is defined as x•y = x y -x y -x y -x y , 

The elements A = A(M, y) of the proper Poincare group 

L are parametrized by the Lorentz matrix M and a real 
0 

four-vector y, such that A(M,y)x = Mx + y. 

We denote by D(Rn) the set of all complex-valued 

infinitely differentiable functions of compact support 

on n-dimentional Euclidean space Rn, and we denote by 

S (Rn) the space of test functions on Rn on whi.ch tern-

pered distributions are defined. 

Any fin S(R4n) or D(R4n) will be considered as a 

function o;f; n four-vectors (x
1

, •.. ,xn) and will 

be denoted by f (x1 , ••• ,xn). S(tt) is endowed with 

a topology defined by a countable set of nonns 

Let rands stand for sets of integers (r
1

, ... ,rn) 

and (s1 , ••. ,sn), respectively. Let xr stand for 

r r S dsl+ ••. +s ;a·Sl d S x11 ••• xnn and D stand for n x1 .•• xnn. 

We define the no.n.ns an s.<If> by 

(7) 

Convergence in S(Rn) is defined by 

3-lim fn = 0 
n+co 

(8) 

if lim 
n+co r,s = 0 , for all r and s 

We denote by (X;D) an 'llil):xrundaj 0peratm: with dan1tim. of 

definition D. The adjoint of (X,D) is denoted (X,D)* 

If (X,D) is closable, we denote its closure by (X,D)**· 

This notation is never employed for bounded operators 

which are regarded as defined on the entire Hilbert 

space. 
For the sake of simplicity we limit the discussion 

to a single hermitian scalar Wightman field. The 

physical states are described by unit rays in a separable 

Hilbert space X which carries a strongly continuous 

unitary representation U(A) = U(M, y) of the Poincare 

For any 1/J, 1; E J( , the scalar product, 

antilinear in 1/J and linear in 1; , will be denoted by 

(1/J, 1;). The subgroup of translations U(I, y) has 

a common spectral resolution 

U(I, y) (9) 

and the support of the spectral measure ~ is contained 

in the closed forward light-cone v+ in momentum 

space. This is the "spectral condition." There 

exists a vacuum state n uniquely characterized by its 

invari~nce under all translations, and such that 

U(A)n = n, for all A E Lo. 

6 



The hermitian scalar field $ is defined by the 

linear mapping of f £ S(R4n), n > 1, to an operator 

( $ { f}, o
1

) acting on if . The common domain o1 con

sists of the linear span of the vacuum n and vectors 

of the form ${g}n, for g e: s (R4m), m ~ l. 

For any ~ £ o
1

, ${f}~ is a vector-valued te~pered 

distribution in f, and thus if S-lim f = 0, then 
n+oo n 

lim I l${fn}~l I = 0. The field is hermitian in the 
n+oo 

sense that for any ~ £ o1 , 

(10) 

where ft(x1 , ... ,xn) = f*(xn, ••. ,x1 ). For f e: S(R4) 

we employ the special notation $[f] ${f} and note 

that for ~£ o
1 

arrd f £ S(R4m) and g £ S(R4n) 

${f}${g}~ (11) 

where h(x1 , ... ,xm,xm+l'"""'xm+n) = f(x1 , ... ,xm)x 

g(xm+l'"""'xm+n). In the literature ${f} is usually 

expressed as 

${f} 

Under the representation U(A) of the Poincare 

group, the field transforms by 

7 

-1 -1 
where Af = f(A x 1 , •.. ,A xn). Locality is expressed 

by the condition 

${g}${f}~ (13) 

for~ £ o1 , g E S(R4n), f £ S(R4m), and the support 

of g in any x. space-like separated from the support 
~ 

of f in any x .• 
J 

Define the subset V of R4n as 
n 

1, ••• ,n} (14) 

For f, g e S(R4
n) we have as a consequence of the 

spectral condition that 

-
where f is the Fourier transform defined by 

(15) 

4 4 n J d (x1 ) ••• d (x )f(x
1

, •• ,x )exp(i}:x •p) (16) 
oo n n r=lr r 

8 
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3. Complex Lorentz Transformations 

We define the "right wedge" WR and the "left 

wedge" WL as the open subsets of Minkowski space JA 

(17) 

(18) 

Associated with these wedge regions are the algebras 

P
0

(WR) and P
0

(WL) generated by the identity and the set 

{(~[f], o
1

)}, where f is any function in S(R4) with 

support in WR and WL' respectively. Certain subsets 

of these algebras will be of particular importance in 

our discussion. Let R
1 

be a bounded, open, nonempty 

subset of WR, and let x
0 

£ WR be such that (x - x
0

) £ WL 

for all x £ R1 . For any integer n > 1, define the set 

Rn by 

(19) 

Rn is a subset of WR for all n, and if n > k, then 

(x' - x") £ W for all x' £ R and x" £ 
R n ~- In par-

ticular Rn is space-like separated from ~ if n ~ k. 

Define the subset QR of P
0

(WR) as the linear span of 

the identity and all operators (q, o1 ) of the form 

9 10 

where n _:: 1 and supp f. C R.. Similarly define Q CP (W ) 
3.- ~ .L o L 

except that·~ is replaced by·~= {(xl,x2,-x3,-x4) 
1 2 3 4 

(x ,x ,x ,x } = x £ ~} . We have the following 

trivial variation of the theorem of Reeh and Schlieder.14 ) 

Lemma 1: Let QR and QL be defined as above. Then 

the linear manifolds 

are each dense in the Hilbert space X . 
Proof: { (~ 1 , ... ,~ 11 ) I ~l = x1 : ~i = xi-xi-l' i>l; xi£Ri} 

is a real environment for analytic functions in c4n. 

With th1."s f · act a sl1.ght modification of the proof of 

Theorem 4-2 in the monograph of Streater and Wightman11 l 

yields the result. 

Next we consider the Lorentz velocity transformation 

along the 3-axis ~iven by the matrix V(=3 , t) in equation 

(1). The abelian subgroup {V(= 3 ,t) I t real } of the 

Poincare group maps WR onto WR and WL onto WL. On the 

Hilbert space X of physical states there is a strongly 

continuous unitary representation {U(V(e 3,t), 0) 

of this subgroup. By Stone's theorem there exists 

a self-adjoint operator (K3 , DK) such that 

(20) 

In the following we will study the normal operators 

t real } 



00 

exp (-i TK
3

) f exp (-iTs) J.!K (ds) 
-QO 

(21) 

where J.!K is the spectral measure in the spectral de

composition of (K3 , DK) and T E: c1 . For convenience 

we denote exp(-iTK
3

) by V(T). The domain of the closed 

operator V(T) depends only on Im(T) and will be denoted 

by ~(Im('r)) • If 1/J E: ov,A.), >. real, then the vector-valued 

function V(T)ljJ of 1 is well-defined, strongly con-

tinuous and bounded on the closed strip 0 < Im(T) < 1 , --,.--
and is an analytic function of T on the interior of this 

strip. 

11 

Common cores exist for V(T) and for later reference 

we state as a lemma some well-known facts about a 

particular family of cores. 

Lemma 2: a)Let c(s) E: D(R1 ) and let the bounded op

erator c(K3) be defined by 

00 

c(K3) = f c(s) J.!K(ds) 
-oo 

(22) 

Then c(K3)1/I £ OV<>-> for all >. real and for all 1/J s K 
b) Let D be any dense linear manifold in K 

and let D be defined by c 

Dc = span {c(K3)o jc(s) E: D(R1 )} (23) 

Then D is dense in J:l. , and a core for every opera tor c 

(V(T), DV(Im(T)). 

c) If c(s) s D(R1 ), then c(K3) is also given 

by 
00 

c(K3 ) = f dt e(t)V(t) (24) 
-oo 

where e(t) is the Fourier transform of c(s) defined by 

e <t> 
00 

f ds c(s) eits (25) 1 
21T -oo 

We furthermore note that e(t) is an entire analytic 

function oft and e(t+iJ.!), t and J.l real, is in S(Rl) 

as a function of t. 

d) For all 1/J s J:l. 

00 

V(T)c(K3)1/J = fdt c(t-T)V(t)l/1 (26) 
-oo 

Next we consider the transformation j on Minkow-

ski space defined by 

. . ( 1 2 3 4) ]X = J X ,X ,X ,X 
1 2 3 4 (x ,x ,-x ,-x ) 

and note that j = V(~ 3 , i1r). Heuristically, this 

suggests a relation of the form 

(27) 

V(i1T) <P (x1 ) •• • cp (xn) Q = <I> (jx1) •• • cp (jxn) i1 (28) 

and the remainder of this section will be devoted to 

giving (28) rigorous meaning. 

Let z be a four-vector and consider the function 

Z (T) = V(~3 ,T) Z, ' s c
1 

12 
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i.e., for Re (T) ;:: t and Im(T) = e I 

z1 (T) 1 = z 

z 2 (T) 2 = z 

z 3 (T) = (z 3cosh t + z4sinh t)cose + 

i(z3sinh t + z4cosh t)sine 

z 4 (T) = (z4cosh t + z 3sinh t)cose + 

. ( 4 • h 3 t)sine 1 z s1n t + z cosh 

By inspection we see that 

Im(z(T)) e: v+ 

for z e: WR and 0 < Im(T) < 1T. Thus the function 

exp(ip•z(T)) will be of rapid decrease for p e: V+ 1 and 

by the spectral condition we might expect vectors 

of the form xn I X e: Po(WR)I to be in Dv(A) for 

0 < A < 1T • In the following lemmas we confirm this 

suspicion. 

Lemma 3: Let u(s) be an infinitely differentiable 

function such that u(s) = 1 for s > 0 and u(s) = 0 

for s < -1. Define a function of the four-vector p by 

E(p,z,T) = u(p·p)u(p4 )exp(ip·z(T)) (29) 

Then: 

4 a) E(p,z,T) e: S(R) in p for z e: WR and 

13 

0 < Im(T) < 1T. 

b) E(p,z,T) is analytic in T in the sense of the 

S-topology of test functions for z e: WR and 

0 < Im (T) < 1T. 

c) Define a function of n four-vectors pi and 

n four-vectors zi by 

= 
n n 
II E(}: p.1zk,-r) 

k=l i=k 1 

Then E" e: S (R4n) in p
1

, ••• 1pn and analytic in T 

the S-topology for zk e: WR and 0 __,< Im(T) < 1T. 

{30) 

in 

Proof: supp E(p,z,T) c {p IP4 > -1} n {pi p 2 > -1}. 

The set {pi p 4 ~ 1} n supp E is bounded as IPI ~ 12. 

For p 4 
> 1 and any integer s ~ O, 

4 +I 
losE(p,z,T)I < exp( -lp l-Ip Im(z4 (T)-z3 (T)))x 

p - 2 

exp( Im(z4(~)+z3 (T))) x lr(z(T) ,p)l (31) 

where r(z~), p) is some polynomial in the components 

of z(T) and p of degree s. Part a) follows immediately 

from this estimate and Im(z(T)) e: V+ forT in strip 

0 < Im(T) < 1T. For S-analyticity we must show that 

for any integers r, s > 0 and complex h, 

14 

E(p,z,-r+~)-E(p,z,T) II = 0 
r,s 



Wefirst note that E(p,z,T) and DsE(p,z,T} are analytic 
p 

in T in the open strip 0 < Im (T} < l, and Ds(dE/dT) = p 
s Let -r

0 
be in the open strip, and let p > d/dT (D E). p 

be such that T +h is in the open strip 
0 

if I hi < 2p. 

We then have the estimate for integers r, s > 0 

(32) 

where M(p,z,-r
0

) = max 
s 

I DsE (p, z, T +s) I , I s I = P • 
p 0 

From the estimate (31) we see that M(p,z,-r
0

) IPir is 

bounded in the variable p by some M(z,-r
0
). Thus for 

any E > 0, there exists a o > 0 such that 

I IdE (p,z, -r
0

)-E(p,z,-r0 +h)-E(p,z,T0 ) 1 I 
dT h r,s 

for all h such that lhl < o, and b) is proved. c) 

is a trivial corollary of a) and b). 

< E 

0 

Lemma 4 : let R. be as in 
l. 

Lemma l, and let f.s D(R
4

) and 
l. 

supp f. C R .• 
l. l. 

(pl, ••• ,pn) by 

Define a function of n four-vectors 

15 

Then a) ~(p1 , .•• ,pn; f 1 , ... ,fn;T) E S(R4n) in 

p
1

, ..• ,pn in the closed strip O~Im(T)~n and is an 

analytic function of T in the S-topology on the 

interior of the strip. 

b) For Re (T) = t and Im(T) 8 

= 

n 4 4 2 = II [u(o. + ••• +p )u( (o. + ••• -+p ) ) ] K=l ~~K n ~K n 

c) For Re(-r) = t and Im(-r) = e 

S-lim 
S+'JT-

-We remark for the Fourier transform of E, 

E(yl, .•• ,yn; fl, •.. ,fn; ),E S(R4n) in yl, ••• ,yn 

and thus may be used to smear the field operators. 

Proof: From the support of the f., the variables 
l. 

(34) 

(35) 

x1 , x 2-x1 , ... ,xn-xn-l are each in WR throughout the 

range of integration. As each fiE D(R4), the inte

gration is over a compact set, and the analytic 

properties of E established in Lemma 3 carry over 
n 

to the integral. The rest of the lemma is trivial. 

16 
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i:') 

6 

Lenuna 5: a) The vector-valued function 

is a strongly continuous 

function of T in the closed strip 0 <Im ( ,) <n and 

is a stronc;rly analytic function of .T on the 

interior of the strip. 

Let Re(T) = t and Im(T) = 6 • 

b) 

c) 

d) 

s-lim t{E(f1 1•••1fn;~) }Q 
6+n-

(36) 

(37) 

(38) 

Proof: a)-c) follow inunediately from the results of 

Lenuna 4 and the fact that <P{f}Q is a vector-valued 

tempered distribution in f satisfying the spectral 

condition. d) follows from the fact that 

17 

on v 
n 

Let 1jl E J( and c(s) e D(R1). 

The function (ljl 1 t {E Cf1 1 ••• 1 fn; T)}Q) is a bounded 

function of T on the strip 0~ Im(T) ~ n and analytic 

on the interior of the strip by the results of Lemma 5. 

Consider the contour integral in 

where the contours are indicated on figure 1. 

The contributions from the contours c
1 

and c
2 

vanish in the limit !Re(T) + co as c(T) is in 

S(R1
) in the variable Re(T). 

Thus we have for 0 < E < n/2 

Q) 

L dt c(t-i(1T-E)) (1/11 t{E(fll"""lfn;t+iE)}Q) ::== 

co 

L dt c(t+iE) (ljll t{E(fll•••lfn; t+i(1T-E))}Q) 

Taking the limit E + 0 1 and recalling L~mma 2 d) and 

Lenuna 5 c) and d) we have 

(39) 

18 



Lemma 6: Let <j>[f1 ] ••• <j>[fn] E QR and c (s) E D (R1) • 

Then 

where f~ (x) = fn (jx) • 

Proof: In (39) $ is an arbitrary vector in the 

Hilbert space. The result immediately follows. 

( 40) 

Associated with the j operator is an antiunitary 

operator J = U(R(~3 ,n),0)80 where R(~ 3 ,n) is the ro

tation of n about the 3-axis and e is the antiunitary 
0 

TCP operator whose existence under our assumptions 
. 17) 

is guaranteed by the theorem of Jost. J has the 

following properties which will be of importance: 

2 J = 1, JIG =~ JU(M,x)J = U(jMj,jx) (41) 

Furthermore, JD1 = o1 and 

For the velocity transformations V(t), in particular, 

JV(t)J V(t) for all t real (43) 

19 20 

From this relation it follows that 

( 44) 

(45) 

J(V(-r) ,DV(Im(-r) )J ( V ( T *) , DV (-Im ( T) ) ) ( 4 6) 

We are now prepar.ed for the main theorem of this 

section. 

Theoren 1: a) Let X E QR and c(s) E D(R1 ). Then 

( 4 7) 

b) Let Y E QL and let c(s) E D(R1). Then 

( 48) 

c) Let A be any operator with IG in _the domains of A.and A* and 

such that (AIG, YIG) = (Y*IG, A*IG) for allY E P
0

(WL) Then 

AIG is in Dv(n) and 

V(in)A IG JA*IG (49) 

d) Let B be any operator with IG in the domains of B and B* and 

and such that (B~l, XIG) = (X*IG, B*IG) for all X ~ P
0

(WR) 

Then BIG is in DV(-n) and 

V(-in)BIG (50) 

~. 



e) In particular result c) holds for A e P0 (WR), and 

result d) holds forB E P
0

(WL). 

Proof: We first recall that by definition X E Q 
R 

00 as supp f. is space-like separated from supp f., i ~ j. 
~ J 

>""> Thus 

= 

lj> [ f ~ ] ••• lj>[ f~ ] 1j! 

and a) then follows fran Lemma 6. As Y e QL is equal to 

O JXJ for some X e QR, (48 ) is a consequence of a) 

6 and relation (46). To prove c) we first note 

that 

~sa core for V(in) by Lemma 2 b). The following 

21 

string of equalities yields the desired result. Let XeQR. 

00 

f dt c(t) (AQ, JV(t)X*V-l(t)JQ) = 
-co 

co 

f dt c(t) (JV(t)XV-l(t)JQ, A*Q) = 
- 00 

(since JV(t)X*V-l(t)J E P (W )) 
o L 

00 

f dt e <t> (JV(t)xQ, A*Q) 
-oo 

00 

f dt e <t> (JA*n, V(tl xn) 
-oo 

(JA*Q, c(K3)XQ) 

= 

d) is similarly proved and e) is trivial. 

22 



4. Local von Neumann Algebras and Duality 

In the theory of local observables there is a 

correspondence between certain regions R of space-

time and von Neumann algebras A(R). R is selected 

from a collection l< of regions of Minkowski space 

which is invariant under Poincare transformations. 

Let A(R)' denote the commutant of A(R) and let Rc 

denote the causal complement of R, i.e., 

{xi 
2 (x-y) < 0 for all y e: R } 

A physically reasonable system of local algebras 

should minimally satisfy the conditions: 

i) locality, i.e., 

A(Rc) C A(R)' , R e: J<. 

ii) covariance, i.e., 

U(A)A(R)U-l(A) A{AR) , R E)(, 

where U(A) is the unitary operator associated with 

the .Poincare transformation A and 

AR {Axl xe:R } 

(51) 

(52) 

(53) 

Ii!i this dissertalti.an we wish to discuss the duality 

condition 
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(54) 

for systems of local algebras associated with a 

hermitian scalar field. In view of sone results of ArakilS) 

duality is usually conjectured only for regions R 

such that Rcc R. We also note that the causal 

complement of R is often defined in the literature 

as the interior of the set Rc. This issue will be 

clarified in the course of the discussion. 

Unfortunately, it is not known in general whether 

a nontrivial system of local algebras exists which is 

relatively local to a hermitian scalar field ~ in 

the sense that 

(Xf;, Hfl I;) = (Hf*] f;, X*z;), f;, z; £ Dl 

for R any open subset of Minkowski space, X e: A(R), 

f e: S{R4) and supp f C ~- One condition which 

guarantees the existence of such systems is as follows: 

Special Condition: For every real f e: S{R4) the 

operator {~[f], o
1

) is essentially self-adjoint. 

4 Furthermore, if r £ S{R) and real, and supp r C 

{supp f)c, then 

EF FE 

for any spectral projection E associated with 

{55) 

{~[r], o
1

)** and any spectral projection F associated 

with (~[f], o1 )**· 
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In the remainder of this section we shall discuss 

duality under the assumption of the Special Condition 

using the results of Section 3. In the following 

lemma we establish that for any nonempty open subset R 

of Minkowski space the von Neumann algebras A(R) 

generated by the spectral projection of {(~[f],D1 )**1 
f e; s (R4 ) and real, and supp f C R} are local algebras. 

Lemma 8: Let ~ be a hermitian scalar field satisfying 

the Special Condition. For any nonempty open subset 

R of Minkowski space the von Neumann algebras A(R) 

generated by the spectral projections of {(~[fl, D
1

)**1 

f e; S (R4 ) and real, and supp f C R} fonn a local 

system of algebras in the sense that: 

a) For any two nonempty open subsets R
1 

and R2 of 

Minkowski space 

(56) 

b) For any nonempty open subset R of Minkowski space 

U(A)A(R)U-l(A) A(AR), for all A e; L
0 

(57) 

Furthermore, 

c) JA(R)J = A(jR) (58) 

where jR = {jxl x e; R} 

d) {xn I X e; A(R)} is dense in Ji 
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Proof: Under the Special Condition o
1 

is a core for 

(<l>[f], o1)**, f e: S(R
4

} and real. By the maximality 

of self-adjoint operators, we have 

and 

J(~[f],D1 )**J 
for any real f e S(R4). 

Let llf' llAf' and ll:e'jlbe the associated spectral measures. 

By the uniqueness of the spectral resolution we have 

llAf (59) 

and 

(60) 

b) and c) immediately follow from (59) and (60), and 

a) is trivial. 

Let gk be an arbitrary real element of S(R4) 

with support in R. Among the operators in A(R) are 

those of the form (exp(itk~[gk]) - 1), tk real. Since 

vectors of the form 

may be approximated arbitralily closely by vectors of 

the form 



it n 

and since the linear manifold generated by Q and the 

vectors of {61) aie dense in K , d) holds. 

We are now in a position to extend the results 

of Section 3 for P
0

{WR) and P
0

{WL) to the associated 

local von Neumann algebras A{WR) and A{WL). 

Theorem 2: a) Let X£ A{WR). Then the vector XQ 

is in and 

V{ilT) XQ = JX*Q (62) 

b) Let Y £ A {WL): Then the vector YQ is in ~(-')T) and 

V{-ilT) YQ JY*Q {63) 

c) Thesets of vectors A{WR)Q and A{WL)Q are 

cores for the operators V(ilT) and V(-ilT), respectively. 

d) Let Z £ A(WL) 1
• Then the vector ZQ is in DV(lT)and 

V(ilT)ZQ JZ*Q ( 64) 

e) Let w £ A(WR) 1
• Then the vector wn is in Dv(-1T) 

and 

V(-ilT)WQ JW*Q ( 65) 
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Proof: a) and b) are a consequence of the Special 

Condition and Theorem 1 c) and d). Since 

V(~3 ,t)WR = WR and V(~3 ,t)WL = WL, Lemma 8 b implies 

that V{t)A(WR)V-l(t) = A(WR) and V(t)A{WL)V-l(t) 

A(WL). Thus, operators of the form 

00 

f dtc(t) V(t)XV-l(t) 
-oo 

are in A{WR) for X £ A(WR) and c(s) £ D(R). Since 

XcQ c(K3)XQ Lemmas 8 e) and 2 b) imply c). 

Let Z e: A(WL) 1 and X e: A(WR). Then 

(ZQ, V(ilT)X Q) = 
c 

(ZQ, JX *JQ) 
c 

(JZ*Q, X Q) 
c 

which foll:x\IS from JXcJ £ A(WL), to.gether with c) 

implies d). A similar argument yields e). 

From Theorem 2 the duality condition for 

wedge regions, in particular 

will now fellow. 

Theorem 3: a) Let Y £ A(WR) 1 and x £ A(W ) 1 Then 
L • 

XY YX (66) 

b) 
(67) 

28 



Proof: Since Xrl e: 0v(7T,) and YO e: rv<-n) , we have 

(JY*s&, JX*O) 

(Mn, YXNO) 

(N*X*Ms&, YO) (Mn, XYNO) 

as M*XN e: A(WL)'. Since {MO IM e: A(WR)} is dense in X 

XY = YX 

and a) is proved. Reexpressing this result as 

·.::) 

we also have part b). 

0 We define the set 'W' of "wedge regions" as 

W' L } 
0 ( 68) 

and the associated local von Neumann algebras 
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As a corollary to Theorem 3 we have 

A(W)' A(WC) ' we: 1f (69) 

Next we wish to consider the duality condition 

for bounded regions of space-time, and in particular, 

for so-called double-cones. For any two points x1 and 

x2 of space-time such that x 2 e: V+(x
1
), (where V+(x1 ) 

is the forward light cone with x1 as apex), we define 

the double-cone C = C(x1 ,x2J by 

where V_(x 2) is the backward light cone with x 2 as 

apex. The double-cones so defined are thus open and 

non-empty. We denote by C the set of ;oll double-cones. 

Again under the assmrption of the SpeciaL Qmdi tion., there exists 

for each c e C the locally associated algebra 

A(C). In his discussion of generalized free fields, 

Landau lO)constructs counter-examples to the duality 

condition for double-cones. However, he also 

exhibits local extensions of these algebras which 

do satisfy duality. It is in this spirit that we 

30 



proceed in the more general case. 

For any double-cone C we define the von Neumann 

algebra B (C), which we regard as associated with the 

closed, convex set C, by 

() { A (W) I w E W' ' w ~ C} 

B(C) is an extension of the algebra A(C), and in 

the following theorem we demonstrate that the set 

U C{ B(C), A(<f)} fonn a local system of algebras which 
C E 

satisfy the duality condition. 

Theorem 4: Let B(C) be defined as above. Then: 

a) The algebras B(C) are local in the sense that 

-=C 
such that cl c c2' 

b) For any C E C and A E L
0 

U (AlB (C) U -l ( Al B(AC) 

c) For any C E C , 

B (C) I 

i.e., the duality condition is satisfied. 

(70) 

( 71) 

(72) 

( 7 3) 

Proof: a) follows from the fact that for any two dis-

joint, space-like separated double-cones cl and c2 
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there exists a w.edge w' such that cl c w and c2 c we. 
By definition B(C1) C ACW) and B(C2l C A(WC), and 

A(W) 1 ~ A(Wc) by (69). Thus B(C1 ) 1 ~ B(C2). b) is 

a trivial consequence of the definitions. To prove c) 

we first note that 

B(C) I {A (W) I I w E W' ' w ~ C} II 

By duality for wedges, we have 

B (C) I {A(w> 1 w E w , we :::>c}ll 

Since W :> C inplies W C <f, we have 

B(C) I {A (W) I w E W' ' w c cc } II 

and 

B cc> I c A cCC > 
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To prove the reverse inclusion, we turn to the definition 

of A(Cc). A(Cc) is generated by the spectral pro

jections of (~ [f], o1)**, where f E S(R
4
), f real, 

and supp f c cc. Let X E B (C) II ~ B (C). Let y E cc. 
Then there exists a wedge W and an open neighborhood 

N of y such that we cc and NY c w. Under the 
y 

assumption of the Special Condition we have 

: 



(<f>[gll/i ' x;) ( X*l/i, <f>[g*];), 

for all g £ SCR4) and supp gC NY. It immediately 

follows that (74) holds for all g £ S (R4) and supp g 

c cc. As we have assumed that o1 is a domain of 

essential self-adjointness for 4> smeared with real test 

ftm.ctions 

for all X£ B(C), and g £ S(R4), g real, and 

supp 9 cCC. This relation implies that for any 

spectral projection E associated with (<f>[g], o
1

)**, 

XE =EX 

and similarly for all elements of A(CC), which is 

generated by such spectral projections. Thus, we have 

B (C) c A <CC) ' 
and 

B (C) ' ::> A <CC> 

which completes the proof. 
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5. Relation to Tomita-Tak.esaki Theory 

The analysis of sections 3 and 4 is closely re

lated to the Tomita-Takesaki theory of modu1ar Hilbert 

algebras. 15 •19) As the extensive results of this 

approach yields information concerning factors, types, 

and symmetries of von Neumann algebras, we wish to 

establish the precise nature of this relationship. 

The main theorem (from our point of view) is due to 

Tomita, and we will state the facts in the following 

form: 

Let A be a von Neumann algebra on a separable 

Hilbert space with a cyclic and separating vector Q, 

and let A' denote its commutant. Then there exists 

a unique antiunitary involution JT, and a unique 

self-adjoint operator (t., D.(t.) ), which satisfy the 

conditions: 

a) JTQ = Q , Q £ D(A) I t.O = Q 

b) J~T = A' 

(75) 

(76) 

c) JTD (t.) = D(t.-1), JT (t.,D(t.)) JT = (t.-1, D(t.-1)) 

(77) 

d) t.itAt.-it = A ( 78) 

A' (79) 

for all real t. 
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e) If (S, AQ) is the antilinear operator defined by 

sxn , for all X e: A 

then 

(S, All)** 

In the literature on the subject, ~ is called 

the modular operator, and the automorphism in d) 

is the modular automorphism. The relationship of 

(80) 

(81) 

the analysis of Section 4 and Tomita-Takesaki theory 

for wedge algebra 

following theorem: 

A(W ) is established in the 
R 

Theorem 5 Let <P be a hermitian scalar field satisfYing 

the Special eondiuon and let A(WR) be the associated von 

Neumann algebra of the "right wedge" WR. Let JT' S, 

and ~, D (~))be the Tomita operators associated 

with A(WR). Then 

J ( 82) 

(A ' D (l'.)) ( 83) 

Proof: By Theorem 2 we have that A(WR)n is a core for 

the operator (V(in) ,DV(n)). As J is an antiunitary 

involution, A(WR)Q is also a core for J(V(in),Dv(n)), 
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and by definition is a core for the operator (S, A(WR)Q)** 

From the relation 

sxn 

and the uniqueness of the polar decomposition we have 

JT = J and {£1:
112 , D(~112 ) = (V(in), DV(n))and the 

theorem follows. 

We remark that for WA = AWR' A e: L
0

, 

the Tomita JT and (~, D(~)) for A(WA) = U(A)A(WR)U-l(A) 

36 

are respectively U(A}JU-1 (A) and U(A} (V(2in), DV(2n))u-1 (A). 

Also, we note the similarity of our discussion in 

Section 4 to that of Haag, Hugenholtz and Winnink 20 ) 

and Kastler, Pool, and Thue Poulsen 21 >. 

Finally, we state as a lemma a paraphrase of 

. 22 ) h' h . th Theorem 13.2 of Takesak1 w 1c g1ves ana er 

set of conditions which characterizes the modular 

operator t.. This lemma will be used in the next 

section for a separate discussion of the free hermitian 

scalar field. 

; 
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Lemma 9 Let A be a von Neumann algebra with 

a cyclic and separating vector n. Let U(t), t real, 

be a one-parameter group of unitary operators such 

that U(t)O = 0, and such that 

U(t)AU-1 (c) = A, for all real t (84) 

Furthermore, for all a, b e: A let there exist a functioo 

F(z) continuous in the closed strip 0 ~ Im(z) ~ 1 

and analytic in the corresponding open strip with 

boundary values 

F(t) = (0, au-1 (t)bO) ( 85) 

F(t+i) = (0, bU(t)aO) (86) 

for t real. Then U(t) = ~it, where~ is the self-

adjoint modular operator for the von Neumann algebra A. 
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6. Duality for Free Field 

For a free hermitian scalar field we consider 

the von Neumann algebra A
0

(WR) generated by the 

unitary operators exp(i<P [f]), where f e:S(R4 ), f real, 

and supp f CWR. Since the vacuum expectation values 

of these operators are now explicitly available, 

we present a separate proof of duality for "wedge" 

algebras by direct computation. 

For any fr g e: S(R4) and real 

(0, exp(i<P[f])exp(i<P[g])O) 

exp( 4[f,f] -[f,g] -J5[g,g]) (87} 

where, for example, 

[f,g 1 1 f 
d3p 

f(-p,-wp)g(p,wp) = 
2(21r)3 ( 88) 

(co) wp 

/2 2 w = lp + m p 

Let supp f C WR and supp g C WR. Consider the function 

F ( t) (0, exp ( i<P [f]) V(+ 21rt) exp ( i<P [g]) 0) 

(0, V(-nt) exp (i<P [f]) V ( -t'rrt) V ( +nt) exp (i<P [g] )V(..:.nt) 0) 



W, exp (icp [V (~ 3 ,-'ITt)f]) exp (icf>.[V <!:3 , +rrt) g]) n) 

(89) 

From equation (g7) we have 

F(t) = 

- [V(~ 3 ,-'ITt)f,V(~ 3 ;+'ITt) g] 

1 -2 [V(~3 ,+nt)g,V(~ 3 ,+'ITt)g]) (90) 

By Lorentz invariance the first and third terms in the 

exponential are actually constant functions of t and 

the second term is explicitly 

+ -
f(V(e 3,+'ITt)(-p,-wp))g(V(e3 ,-'ITt)(p,w.)) 

- - p 
(91) 

Consider the equation 

f. d 4x ( · ( ) exp -~p·V ~ 3 ,-'ITt x)f(x) 
( 00) 

(92) 

+ 
where p = (p,wp). For X£ WR, -Im(V(~3 ,-'ITt)x) £ V+ 

for 0 < Im(t) < 1. Thus for f £ S(R4) and Stipp f CWR' 
- + 3 + 
f{V(~3 ,nt) (-p,-wp))E S(R) in p for 0 ~ Im(t) ~ 1, and 

is analytic in t in the corresponding ~ strip. 
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By a similar argmrent for 

have that (91) is well-defined for t in the closed 

strip 0 < Im(t) ~ 1, and is continuous in t in the closed 

strip and analytic in t in the open strip. For Im(t) = 1 

it has the boundary value 

f d'3p 
() f(V(e 3,+ns) (p,wp))g(V(~3 ,-ns) (-p,-wp)) (93) 

oo wp 

where s = Re(t). But since (93) is just the expression 

for [V(~ 3 ,+'ITs)g, V(~ 3 ,-ns)f], we have 

Lemma 10: Let f, g £ S(R4), real, and supp f C WR 

and supp g C WR. Then there exists a function F (z) 

continuous in the closed strip 0 ~ Im(z) ~ 1, and 

analytic in the interior of the strip with boundary 

values 

F(t) = (Q, exp(icp[f])V(2'ITt)exp(icp[g])Q) (94) 

F(t+i) (n, exp(icj>[g])V(-2nt)exp(icj>[f])Q)(95) 

for all real t. 

Thus, for operators of the form exp (icj> [f]) £ A0 (WR) 

we have the conditions of Lemma 9 satisfied with U(t) = 
V(-2nt), since V(-2nt)A

0
(WR)V(2nt) = A

0
(WR) for all 

real t. We will now extend this result to all operators 

in A
0

(WR). 

First consider operators of the form 



0 

6 

m 
X L 

n=l 
a exp(i<j>[f ]) n n ( 96) 

with an CXI!plex, and real fn e: S (R
4

) and supp f C wR. 

This set of operators is in fact a polynomial algebra 

since 

exp(i<j>[f])exp(i<j>[g]) (constant)exp(i<j>[f+g]) 

and we denote this set by G
0 

(WR) • 

Lemma 11: Let X, Y E G
0

(WR). Then there exists a 

function F(z) continuous in the closed strip 

0 ~ Im(z)~ 1 and analytic in the interior of the strip 

with boundary values 

F(t) = (Q, XV(2nt)Y0) (97) 

F(t+i) (Q, YV(-2nt) xn) (98) 

for all real t. 

Proof: Since X andY are of the form (96), this lemma 

is a trivial consequence of Lemma 10. 

Theorem 6: Let X, Y E: A
0 

(WR) • Then: 

a) There exists a function F(z) continuous in the 

closed strip 0 < Im(z) ~ 1 and analytic in the interior 

of the strip with boundary values 

F (t) (Q, XV(2nt)YQ) {99) 
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F (t+i) = 
for all real t. 

<n, YV(-2nt) xn) (100) 

b) V(-2nt) = ~it, where ~ is the modular operator 

for the algebra A (W ). 
o R 

c) 

Proof: 

(101) 
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there exist bounded sequences of operators Xn' YnE: G
0

(WR) 

such that 23> 

s-lim x n xn S-lim X*Q X*Q n n n-.oo n-.oo 

s-lim y n yQ s-lim Y*O Y*Q 
n-.oo n n n-.oo 

T.l)us we have 

(Q, XV(+2nt)YQ) = lim (X*O, V(+2nt)Y Q) 
n-.co n . n 

(Q, YV(-2nt)XQ) =lim (Y*Q, V(-2nt)X Q) 
n-.co n n 

By Iernna 11 there exists a function F (z) continuous in the 
n 

closed strip 0 .::_ Im(z) .::_ 1, and analytic in the interior of 

the strip, with boundaJ:y values (t real) 

F (t) 
n 

F (t+i) = (Y*O, V (-2nt)X 0) 
n n n 

Fn(t) and Fn(t+i) are uniformly bounded with respect 

to t , and converge uniformly. Therefore 



F n (z) cxm.verges to a function F (z) which is cxm.tinuous in 

closed strip, and analytic in the interior of the strip 

with bomldaey values (t real) 

F(t) w I XV( +21Tt) YQ) 

F (t+i) = (Q, YV (-21Tt)XQ) 

Finally noting that V(t)A
0

(WR)V-1 (t) = A
0

(WR), for 

all real t, the conditions of Lemma9 are satisfied 
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and V(-21Tt) = A it, and a) and b) are p:roved. M:>reover, A= 'IT(21Ti). 

By direct CXlllPUtation it is seen that V(i'lf) el!{)(icp [f)) n = 

exp ( icp [ f j ]) Q , for exp (icp [fl) E A
0 

(WR) • From the defining relation 

JT(exp(icp[f]))Q = A112 (exp(i$[f]))*Q 

for the Tomita JT associated with the algebra A
0

(WR), 

we have 

JT(exp(icp[f]))Q = V(i7r) (exp(-icp[f]))Q 

= J(exp(icp[f]))Q 

Therefore, JT = J, and c) follows immediately from 

( 76) • 
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