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On the Dynamic Analysis of
Piecewise-Linear Networks

W. P. M. H. Heemels, M. Kanat Çamlıbel, and J. M. (Hans) Schumacher

Abstract—Piecewise-linear (PL) modeling is often used to ap-
proximate the behavior of nonlinear circuits. One of the possible
PL modeling methodologies is based on the linear complementarity
problem, and this approach has already been used extensively in
the circuits and systems community forstatic networks. In this
paper, the object of study will be dynamic electrical circuits that
can be recast as linear complementarity systems, i.e., as intercon-
nections of linear time-invariant differential equations and comple-
mentarity conditions (ideal diode characteristics). A mathemati-
cally precise framework is developed that formalizes the mixed dis-
crete and continuous behavior of these switched networks. Within
this framework, the fundamental question of well-posedness (exis-
tence and uniqueness of solution trajectories given an initial con-
dition) is studied and additional properties of the behavior are de-
rived. For instance, a full characterization is presented of the in-
consistent states.

Index Terms—Circuit analysis, linear complementarity
problem, passivity, piecewise-linear networks, switched circuits.

I. INTRODUCTION

M ANY electrical networks consist ofdynamiccompo-
nents like capacitors and inductors andstaticnonlinear

elements such as resistors and transistors. To analyze the
behavior of such networks, the nonlinear elements are often
approximated by piecewise-linear (PL) descriptions. In the
literature many explicit canonical representations of PL func-
tions can be found that store the parameters in a minimal way
[1]–[4]. Reference [5] developed an implicit model based on
the linear complementarity problem of mathematical program-
ming [6]. Basically, the complementarity relations correspond
to ideal diode characteristics. In [7], [8] it has been shown
that the complementarity framework includes the explicit
canonical representations given in [1]–[3]. Consequently, static
PL elements can be replaced by networks consisting of ideal
diodes and linear resistors (see Section III for an example).
For instance, in [5, Ch. 9] complementarity models have been
presented for voltage controlled switches, MOS transistors and
digital gates. Actually, [9] showed that any static (continuous)
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PL mapping can be rewritten in the complementarity format.
This explains the extensive use of thelinear complementarity
problem[6] (together with a number of variants) in the study of
PL electrical networks [5], [7], [8], [10]–[14].

In many electrical networks switching elements like thyris-
tors and diodes are already present for a great variety of ap-
plications in both power engineering and signal processing. To
reduce the simulation time of the transient behavior of such net-
works [15]–[19] and for analysis purposes (of e.g., stability or
chaos) [20], [21] these switches are often modeled ideally.

As a consequence, two different motivations can be given
for the use of ideal diode (or complementarity) models in
the study of nonlinear and switched electrical circuits: as
a modeling methodology for PL networks and as idealized
descriptions of physical devices. In this paper we will consider
PL networks that can be modeled (or realized) by using ideal
diode characteristics (complementarity conditions) and linear
resistors for thestatic (PL) part and inductors and capacitors
for capturing thedynamicpart of the network. This results
in models that are combinations of linear electrical networks
(described by linear time-invariant differential equations) and
ideal diodes (complementarity conditions). As such, the sys-
tems at hand form a subclass oflinear complementarity systems
[11], [22]–[25], which can be seen as dynamic extensions of
the linear complementarity problem.

It is well-known that ideal network models may well be of
a mixed, discrete, and continuous nature. In particular, the cir-
cuit evolves through multiple topologies (modes) depending on
the (discrete) states of the diodes characteristics (“on” or “off”)
or equivalently, the complementarity conditions. For each com-
bination of the discrete states of the diodes (blocking or con-
ducting) other equations govern the evolution of the system’s
variables. The mode transitions are triggered by inequalities
and may result in discontinuities and Dirac impulses in the net-
work’s variables, see e.g., [15], [16], [18], [19], [26]–[28].

In this paper we provide a mathematical framework that
allows the precise formulation of a solution concept for the
complementarity class of continuous/discrete networks. The
introduction of a solution concept is coupled to the question
of well-posedness, i.e., existence and uniqueness of solutions
of the network model for all initial conditions. Much effort
has been invested in considering existence and uniqueness of
solutions tostatic(dc) models of electrical networks [29]–[35].
For the dynamic equivalent, the classical theory of ordinary
differential equations guarantees existence and uniqueness of
solutions under a Lipschitz continuity condition (see e.g., [36]).
Here however we will be considering networks containing
ideal diodes, for which such conditions are not fulfilled. The

1057–7122/02$17.00 © 2002 IEEE
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only papers known to the authors dealing with well-posedness
for dynamic circuits containing non-Lipschitz elements are
[37], [38]. However, the obtained results in [37], [38] do not
cover the networks considered here, since an ideal diode cannot
be reformulated as a current or voltage-controlled resistor.
To show that the well-posedness issue is nontrivial, we will
present a network example containing a negative resistor that
has multiple solutions for certain initial conditions and no
solutions for others. Hence, not all PL circuits are well-posed
and additional assumptions are required to guarantee the
existence and uniqueness of trajectories.

The main purposes of the paper are the following.

1) Define a mathematically precise solution concept for dy-
namic PL circuits that can be modeled by linear comple-
mentarity systems.

2) Prove (global) existence and uniqueness of solutions
under a condition that all elements are passive (excluding
negative resistors as in the example mentioned above).

3) Establish regularity properties of the solutions. In partic-
ular, it will be proven that derivatives of Dirac impulses
do not occur (even for inconsistent initial states) and Dirac
impulses may occur only at the initial time. The consis-
tent states (also called “regular states”) will be character-
ized fully in terms of set inclusions and linear comple-
mentarity problems. Moreover, it will turn out that the set
of switching times is a right-isolated set, meaning that fol-
lowing all time instants there exists a positive length time
interval in which the diodes do not change their discrete
state.

These results will be used to provide a rigorous basis for
so-called “time-stepping” methods (see e.g., [5], [11], [39]) that
are used for simulation of dynamic PL circuits. Although sev-
eral numerical simulation methods have already been proposed
to deal with phenomena that arise in nonsmooth circuits [5], [8],
[11], [12], [16], [17], [39], little attention has been paid to the
question if and in what sense the computed time functions con-
verge to the true solution of the network model. On the basis
of the framework presented in the current paper, a companion
paper [40] gives a formal statement and proof of the consis-
tency—convergence of the approximated time functions to the
exact solution of the network model—of time-stepping routines
for the simulation of a class of internally switched electrical cir-
cuits. Another way of approximating dynamic circuits with ideal
diodes can be obtained by replacing the ideal characteristic by
smooth functions between diode current and voltage. The inter-
ested reader is referred to [41] for more details on the consis-
tency of such “regularization” or “smoothing” methods.

The outline of the paper is as follows. After the notational
conventions in the next section, complementarity modeling of
PL dynamic circuits is discussed in Section III. In Section IV,
we describe the evolution of the network model within a given
mode, i.e., with the diodes replaced by either an open (blocking)
or short (conducting) circuit. Next, an extension of the linear
complementarity problem will be introduced, which will play an
important role in the proof of well-posedness. In Section VI the
regular (or consistent) states are introduced and characterized
explicitly. In Section VII the solution concept is introduced and

the proof of global well-posedness is presented. Finally, we state
the conclusions.

II. NOTATION

The following notational conventions will be in force.de-
notes the set of natural numbers the real num-
bers, the nonnegative real numbers (including zero) and

the complex numbers. If is a (column) vector, we denote
its th component by . is the transpose of the matrix

and denotes the complex conjugate trans-
pose. A (not necessarily symmetric) matrix is
called nonnegative definite and we write if

for all . In case strict in-
equality holds for all nonzero vectors, we call the matrix pos-
itive definite and write . By we denote the identity ma-
trix of any dimension. Given and two subsets

and , the -submatrix of is
defined as . In case , we
also write . If , the notation is some-
times used.

A triple of matrices with
and is a called minimal, if the matrices

and
have full rank.

By we denote the field of real rational functions in one
variable. means that is a ma-
trix with entries in . A rational vector or matrix is called
(strictly) proper, if for all entries the degree of the numerator is
smaller than or equal to (strictly smaller than) the degree of the
denominator.

A vector is called nonnegative (positive), and we
write ( ), if ( ) for all .
If two vectors are orthogonal, i.e., , we write

. Similarly, we write for two rational vectors
, if for all .

The set of arbitrarily often differentiable functions fromto
is denoted by . denotes the set of

all measurable functions from to for which the
integral is finite.

III. COMPLEMENTARITY MODELING

As already mentioned in the introduction, many dynamic PL
electrical networks can be modeled (or realized) by using linear
resistors, capacitors, inductors, gyrators, transformers and ideal
diodes. Reference [7] (see also [8]) shows that all the explicit PL
representations proposed by [1]–[4] are all covered by oneim-
plicit model based on the linear complementarity problem (see
Definition V.10 below) of mathematical programming [6]. This
implicit model was developed by [5] and can represent all static
(continuous) PL functions as proven by [9]. Van Bokhoven’s
model is of the form

(1a)

(1b)

(1c)

which describes a PL mapping fromto . In (1)
are matrices and are vectors of appropriate dimensions.
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Fig. 1. An example of a piecewise-linear circuit.

Fig. 2. An equivalent “complementarity” circuit of the network in Fig. 1.

Given one has to solve the linear complementarity
problem (1b)–(1c) for the auxiliary variables and , after
which can be substituted in (1a) to obtain.

To illustrate this modeling methodology, we consider the ex-
ample of the nonlinear resistor in [11] given by the characteristic

.
(2)

The voltage over the resistor is given by, while denotes
the current through the resistor. This PL characteristic can be
rewritten as

(3a)

(3b)

(3c)

Indeed, and thus
, which is equal to the PL function (2).

The nonlinear resistor given by (2) is now embedded in the
dynamic network from [11], which is depicted in Fig. 1. Taking

and we obtain the system descrip-
tion

(4a)

(4b)

(4c)

where is the voltage over the capacitor, is the current
through the inductor and is eliminated by using (3). From
this reformulation we can now obtain the equivalent network
as depicted in Fig. 2 that consists of linear (positive) resistors,
capacitors, inductors and ideal diodes only. In other words, we
derived a “dynamic complementarity model” of the nonlinear
network depicted in Fig. 1.

In fact, [5, Sec. 2.3] presents a structured method that re-
places any static PL two-pole element by an equivalent circuit
consisting of ideal diodes, linear resistors and constant (current

Fig. 3. A circuit containing a negative resistor.

Fig. 4. A linear relation and complementarity conditions.

or voltage) sources. As we aim at providing sufficient condi-
tions for the existence and uniqueness of solutions (so-called
well-posedness) we will not consider networks includingnega-
tive resistors as are used in [5, Sec. 2.3]. Indeed, negative re-
sistors can result in ill-posed circuits as is illustrated by the
simple example given in Fig. 3. The circuit consists of a ca-
pacitor ( ), a negative resistor ( ) and an ideal
diode. The corresponding complementarity model is given by

(5a)

(5b)

(5c)

with the voltage across the capacitor, andand the cur-
rent through and (minus) the voltage across the diode, respec-
tively. In Fig. 4 the linear relation betweenand given by
(5b) and the complementarity conditions (5c) are drawn. It is
obvious that in case the initial state satisfies mul-
tiple solutions exist, while for no solution trajec-
tory can be found. Indeed, in case the diode can be
both blocking ( ) and conducting ( ), which results
in the solution trajectories and

, respectively. This simple example
shows that well-posedness does not hold for all PL systems and
additional assumptions (like allowing only positive resistors)
are required to guarantee the existence and uniqueness of tra-
jectories.

A second restriction that will be applied in this paper is that
we assume absence of current and voltage sources. Unlike the
positivity assumption on resistors, this restriction is imposed
just to keep the presentation as uncluttered as possible. In this
paper we therefore consider the basic case of networks realized
by linear electrical networks consisting of (linear) positive re-
sistors, inductors, capacitors, gyrators, transformers (RLCGT)
and ideal diodes (like the one in Fig. 1). An extension to the
case including sources that generate even piecewise Bohl sig-
nals [e.g., constants, exponentials and (co)sines and combina-
tions of these] can be given on the basis of the current paper as
is outlined in [42].
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Fig. 5. The ideal diode characteristic.

The networks considered here lead directly to a complemen-
tarity model as mentioned in e.g., [5], [8]. Indeed, the linear
(RLCGT)-part of the network can be described by the state
space model

(6a)

(6b)

under suitable conditions (the network does not contain all-ca-
pacitor loops or nodes with the only elements incident being
inductors, see [43, Chapter 4] for more details.) In (6)

and denote real ma-
trices of appropriate dimensions, anddenotes the state vari-
able of the network (typically consisting of linear combinations
of the currents through the inductors and voltages across the ca-
pacitors). Moreover, the pair denotes the voltage–cur-
rent variables at the connections to theth diode, i.e.,

where and are the voltage across and current through the
th diode, respectively, and denotes the Boolean (nonexclu-

sive) “or” and the Boolean “and”-operator. The ideal diode
characteristics are described by the relations

(7)

as shown in Fig. 5.
By suitable substitutions the following system description is

obtained:

(8a)

(8b)

(8c)

In this formulation, denotes the time variable, the
state, and and the complementarity variables at time
. The system (8) is called alinear complementarity system.

System descriptions of this form were introduced in [23] and
were further studied in [22]–[25], [41]. We use the notation
LCS to indicate the system given by (8). Note that
(8c) means that for all

. Rather than using this explicit
expression, we shall below usually employ the more compact
notation (8c). Observe that the description (4) for the nonlinear
circuit in Fig. 1 is exactly of the form (8).

Since (8a)–(8b) is a model for the RLCGT-multiport net-
work consisting of positive resistors, capacitors, inductors, gy-
rators and transformers, the matrix quadruple is
not arbitrary, but satisfies a passivity condition. To be precise,

is passive (or in the terms of [44],dissipativewith
respect to the supply rate ) in the following sense.

Definition III.1 [44]: A system given by (6)
is calledpassive, or dissipativewith respect to the supply rate

, if there exists a nonnegative function , (a

storagefunction), such that for all and all time func-
tions satisfying (6) the following
inequality holds:

The above inequality is called thedissipation inequality. The
storage function represents a notion of “stored energy” in the
network. The following proposition gives several equivalent
characterizations of passivity.

Proposition III.2 [44]: Consider a system ) in
which is a minimal1 representation. The following
statements are equivalent.

• is passive.
• The transfer matrix is

positive real, i.e., for all complex
vectors and all such that and is not
an eigenvalue of .

• The matrix inequalities

(9a)

and

(9b)

have a solution .
Moreover, in case is passive, all solutions to the
linear matrix inequalities (9) are positive definite [i.e., (9b) holds
with strict inequality] and a symmetric is a solution to (9) if
and only if defines a storage function of
the system .

This proposition enables us to verify that the network in Fig. 1
yields an LCS -model with passive
for which sometimes the nomenclaturelinear passive comple-
mentarity systemsis used. Indeed, it is easily verified that the
matrix inequalities (9) are satisfied for (4) with .
Moreover, is a storage function,
which is physically clear as it represents the total electrical en-
ergy in the capacitor and the inductor in both Figs. 1 and 2.

A technical assumption that we will often use is the following.
Assumption III.3: has full column rank and is

a minimal representation.
These assumptions imply that (specific kinds of) relsdun-

dancy have been removed from the circuit. The minimality re-
quirement of indicates the fact that the number of
states (i.e., the total number of capacitors and inductors) is the
minimal number needed to realize the transfer function

from to (see also [43, Ch. 8]). Minimality is a
standard assumption in the literature on dissipative dynamic sys-
tems [44]. The full column rank condition is included to prevent
redundancy in the collection of diodes. See [45] for two simple
network examples that illustrate the implications and relevance
of Assumption III.3.

We note the following consequence of passivity, which will
be used frequently in the sequel.

Lemma III.4: Consider a system ) in which
is a minimal representation and is

1See Section II for a definition of “minimality.”
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Fig. 6. RLC circuit with ideal diodes.

passive. If satisfies (or equivalently,
), then for any satisfying (9).

Proof: According to Proposition III.2, passivity of the
system implies that is symmetric, and satisfies

(10)

Premultiplication of (10) by and postmultiplication by
for arbitrary and yields

due to .
Considering this expression as an inequality for a quadratic form
in , we find that . Since is arbitrary, we
obtain .

IV. DYNAMICS IN A GIVEN MODE

Equation (8c) implies that, for all , and for every
or must be satisfied

(the diode is conducting or blocking and can be replaced by a
short or an open circuit, respectively). This results in a multi-
modal system with modes, where each mode is characterized
by a subset of , indicating that if
and if with .
For each such mode (also called “topology,” “configuration,”
or “discrete state”) the laws of motion are given by differential
and algebraic equations (DAE’s). Specifically, in modethey
are given by (we omit the time arguments for brevity)

(11a)

(11b)

(11c)

(11d)

Example IV.1: For an illustration of the ideas of this paper
in the simplest possible context, consider the linear RLC circuit
(with and ) coupled to two ideal
diodes as shown in Fig. 6. The network is described by

(12a)

(12b)

(12c)

(12d)

(12e)

where is the voltage across the capacitor is the current
through the inductor and are the current through and
and are (minus) the voltage across diode 1 and 2, respectively.

Depending on whether the diodes are blocking or conducting,
the system has modes or circuit topologies.

• Mode : Both diodes are blocking in this mode, i.e.,
.

• Mode : The first diode is blocking while the
second one is conducting, i.e., in this mode.

• Mode : The first diode is conducting and the
second one is blocking, i.e., in this mode.

• Mode : In this mode both diodes are con-
ducting, i.e., .

The mode will vary during the time evolution of the system
(diodes go from conducting to blocking or vice versa). The
system evolves in a certain mode as long as the inequality con-
ditions in (8c) are satisfied. At the event of a mode transition,
the system may in principle display jumps of the state variable

. Jumping phenomena are well-known in the theory of unilat-
erally constrained mechanical systems [46], where at impacts
the change of velocity of the colliding bodies is often modeled
as being instantaneous. These discontinuous and impulsive mo-
tions are also observed in electrical networks (see e.g., [15],
[16], [18], [19], [26]–[28]) and consequently, a distributional
framework will be needed to obtain a mathematically precise
solution concept. We restrict ourselves to the Dirac distribution
(supported at ) denoted by and its derivatives, where
denotes theth (distributional) derivative of .

Definition IV.2 [47]: An impulsive-smooth distributionis a
distribution of the form , where

• is a linear combination of and its derivatives, i.e.,

for vectors ;
• is an arbitrarily often differentiable func-

tion from to such that
exists and is finite for all

.
The class of impulsive-smooth distributions is denoted by .
For a distribution is called the impulsive part
and is called the smooth part. In case we call

a regular or smoothdistribution. If the Laplace transform of
an impulsive-smooth distribution is rational, we call the distri-
bution of Bohl typeor a Bohl distribution. For a smooth Bohl
distribution, we will use the termBohl function.

We also would like to introduce the notion of the derivative
of an impulsive-smooth distribution.

Definition IV.3: Let be an impulsive-smooth distribution
that can be written as , where

for vectors and is the smooth part.
The derivative of is denoted by and defined by

(13)

where denotes the usual derivative of a function on .
Lemma IV.4: Consider the matrices

and such that Assumption III.3 is
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satisfied and represents a passive system. Then
the following holds.

1) For all and for all initial states , there
exists a unique solution satisfying
the dynamics for mode given by

(14a)

(14b)

(14c)

(14d)

as equalities of distributions. We denote this solution by
.

2) For all modes there exist matrices and such
that for all initial states the smooth parts

of are Bohl
functions and satisfy

(15)

(16)

(17)

The matrices and only depend on the modeand
not on the particular at hand.

Proof:

1) The existence and uniqueness of a solution for (14) for
all initial states is equivalent to the transfer matrix

being invertible as
a rational matrix [47, Prop. 3.23, Thm. 3.24, Thm. 3.26].
This can also be seen from (22)–(23) below. Suppose on
the contrary that . Then there exists a ra-
tional vector such that . Take

such that and is invertible. De-
fine as

if
if .

The triple

(18)

(19)

(20)

satisfies the system equations (6), where
. Since is passive, there exists

a such that the dissipation inequality

(21)

holds for all and with . It can
be verified that

for all . By letting
tend to , (21) results in

for all . Because , this implies that
for all . From (19) it follows that . Since is
of full column rank, and hence also . We
reached a contradiction and consequently proved the first
statement.

2) This statement follows from [47, Theorem 3.10].
Remark IV.5: In terms of [24, Definition 3.2] the first prop-

erty of Theorem IV.4 states that all modes areautonomous. To
be specific, mode is called autonomous (see also [24, Lemma
3.3]) if for all initial states there exists a unique impulsive-
smooth solution to (14).

Remark IV.6: The positive realness of implies that
is nonnegative definite for all . Since a nonneg-

ative definite matrix has only nonnegative principal minors
[6, p. 153] and (as shown in the proof of
Lemma IV.4), it follows that there exists a such that
for all the principal minors of are positive, i.e.,

for all . In terms of [6, Def.
3.3.1] this means that is a P-matrix for all sufficiently
large .

Example IV.7: To demonstrate Lemma IV.4 we continue the
running example IV.1. In particular, we will consider mode

in which . Using (12d) and yields that
. Since , it holds that with
. Substituting and in

(12a)–(12b) leads to and . Hence,
.

The solutions have rational Laplace
transforms , which satisfy

(22a)

(22b)

(22c)

(22d)

We introduce and
. Since is invertible as a

rational matrix (see the proof of Lemma IV.4), the equations
(22) can be solved explicitly. This yields that the Laplace
transforms are given by

(23a)

(23b)

(23c)

(23d)

(23e)

Hence, the solutions of the mode dynamics (14) are one-to-one
related (by the Laplace transform and its inverse) to solutions
satisfying (22). On the basis of this relation, we can prove
that only Dirac impulses (and not its derivatives) show up
in passive electrical networks with diodes. Note that this
statement is implied by the fact that the Laplace transforms

are proper for any
and .

Theorem IV.8:Consider matrices
and such that Assumption III.3 is

satisfied and represents a passive system. Then
for each and the Laplace transform

is proper.
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Proof: Denote by for brevity. The triple

(24)

(25)

(26)

satisfies (6) for all such that is nonsingular. It
follows from passivity that there exists a such that for
all and with

(27)

By substituting (24)–(26) into the dissipation inequality (27),
one obtains

(28)

Since has full column rank, and
is strictly proper, there

exists an such that

(29)

for all sufficiently large . We know from (22) that
, where . Hence,

the right-hand side of (28) satisfies

(30)

The last inequality follows from the existence of a such
that for all sufficiently large . Thus,
(28)–(30) yield for all sufficiently large

. Hence, must be proper.
The fact that solutions of linear passive networks with ideal

diodes do not contain derivatives of Dirac impulses is widely be-
lieved true on “intuitive” grounds, but the authors are not aware
of any previous rigorous proof. The framework proposed here
makes it possible to prove the intuition.

To summarize the discussion so far, it has been shown that in-
stead of considering impulsive-smooth distributions as the solu-
tion space within a mode, we can restrict ourselves to Bohl dis-
tributions with impulsive part containing only Dirac impulses
and not its derivatives (i.e., Bohl distributions withproper ra-
tional Laplace transforms).

Consider a solution to (14) for modeand initial state . An
important observation is that a nontrivial impulsive part of
will result in a re-initialization (jump) of the state. If

[i.e., ], then a jump will take place
according to

(31)

The proof can be found in [47].

The following properties can be proven for the impulsive part
of an impulsive-smooth distribution satisfying the mode dy-
namics.

Lemma IV.9: Consider matrices
and such that Assumption III.3

is satisfied and represents a passive system.
Consider the impulsive-smooth solution
to (14) for mode and initial state . The impulsive part

is given by for some vector that satisfies
and .

Proof: As stated before, the properness of im-
plies that with . For brevity
we will denote by and by in this
proof. Take the power series expansion of around infinity
as

(32)

Because for all either or , we have that

(33)
Substituting (32) into this equality and considering the coeffi-
cients corresponding to and yield

(34)

(35)

The relation (34) implies that

(36)

Now, (35) and (36) give

(37)

which establishes together with (34) the desired identities.

V. THE RATIONAL COMPLEMENTARITY PROBLEM

In the previous section, the dynamics within a mode (i.e.,
with a fixed state of the diodes) has been considered, while the
inequality conditions have been ignored. However, a solution

within a mode (14) will in general only
be valid for a limited amount of time, since a change of mode
(diode going from conducting to blocking or vice versa) may
be triggered by the inequality constraints. Therefore, we would
like to express some kind of “local nonnegativity.” We call a
(smooth) Bohl function initially nonnegativeif there exists an

such that for all . Note that a Bohl
function is initially nonnegative if and only if there exists a

such that its Laplace transform for all .
Hence, there is a connection between small time values for time
functions and large values for the indeterminatein the Laplace
transform. This fact is closely related to the well-known initial
value theorem (see e.g., [48]). The definition of initial nonneg-
ativity for Bohl distributions will be based on this observation
(see also [24], [25]).

Definition V.1: We call a Bohl distribution initially non-
negative, if its Laplace transform satisfies for all
sufficiently large real .
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Remark V.2:To relate the definition to the time domain, note
that a scalar-valued Bohl distributionwithout derivatives of
the Dirac impulse (i.e., for some ) is initially
nonnegative if and only if

1) , or
2) and there exists an such that

for all .
Definition V.3: We call a Bohl distribution

an initial solution to (8) with initial state , if there
exists an such that

1) satisfies (14) for mode and initial state in
the distributional sense and

2) are initially nonnegative.
According to Lemma IV.4 condition 1 means that

for an LCS with passive
and satisfying Assumption III.3.

Example V.4:Consider the system
together with (8c). This represents a system consisting of a ca-
pacitor connected to a diode. The current in the network is equal
to and the voltage across the capacitor is equal to . For
initial state with (no cur-
rent) and for all is an initial solution.
This corresponds to the case that the diode is always blocking
and there is no (nonzero) current in the network. To demonstrate
that the distributional framework is needed, consider the initial
state , for which with

is the unique initial solution. This corresponds to an
instantaneous discharge of the capacitor at time instant 0. Note
that a state jump occurs at time 0 from1 to 0.

We emphasize that an initial solution only satisfies the equa-
tions (8) in the following local sense. In case an initial solution
has a nontrivial impulsive part, only the re-initialization as given
in (31) forms a piece of the global solution. If the initial solu-
tion is smooth, the largest interval on which
satisfies the equations (8) is equal to , where is equal to

or for some (38)

Example V.5:Consider again the network in Example IV.1.
We will compute the initial solutions for two initial states, to wit

and .
If the response of mode is computed for initial state

(see also Example IV.7), it can be
seen that

. Hence, this is indeed an initial solu-
tion for initial state as and are initially nonneg-
ative. Note that the initial solution is smooth and satisfies the
equations (8) on the interval [i.e., in (38)].

For initial state it can easily be
verified that

, which complies with mode . As
and are initially nonnegative, we have indeed derived an

initial solution starting in . Note that there is a jump in
the state component from 1 to zero caused by the presence of
the . The physical interpretation is that there is an instantaneous
discharge of the capacitor.

In this manner, the complete behavior of the network can be
derived, which results in the phase diagram as given in Fig. 7.

Fig. 7. Phase diagram of the circuit given in Example IV.1.

Even when a solution within some mode exists and is unique
given an initial state, it still might be possible that different
modes give rise to different initial solutions (see for instance,
the example of the circuit in Fig. 3 containing a negative re-
sistor). It is also possible that there are no initial solutions at all,
i.e., no solution within a mode satisfies the initial nonnegativity
conditions. We will start our investigation of well-posedness for
linear passive complementarity systems by studying existence
and uniqueness of initial solutions. An important tool in exis-
tence and uniqueness of initial solutions is therational comple-
mentarity problem(RCP) [22], [25].

Definition V.6 (The Rational Complementarity
Problem): Let the vector and matrices

and be given.
The rational complementarity problemRCP( )
is the problem of finding rational -vectors
and such that

1) for all

(39a)

(39b)

and
2) there exists a satisfying for all

and (40)

Any pair of rational vectors satisfying the above
conditions is said to be asolution to RCP( ).
If and are clear from the context, we also write
RCP for brevity.

From the definition of initial nonnegativity and (22), the fol-
lowing important relation is clear from [24].

Theorem V.7:Consider the matrices
and and assume that all modes of

LCS are autonomous (see Remark IV.5). Then
the following statements hold.

• All initial solutions are of Bohl type.
• There is a one-to-one correspondence between initial so-

lutions to (8) and solutions to RCP(). More specifi-
cally, is an initial solution to (8) if and only
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if its Laplace transform is such that
is a solution to RCP and

(41)

• The following statements are equivalent.

1) There exists a unique initial solution for initial state
to LCS .

2) RCP has a unique solution.
• The initial solution is smooth if and only if the corre-

sponding solution to RCP( ) is strictly proper. Similarly,
the initial solution has an impulsive part containing only
Dirac distributions (and not its derivatives) if and only if
the corresponding solution to RCP() is proper.

As a consequence, studying existence and uniqueness of ini-
tial solutions is equivalent to studying existence and uniqueness
of solutions to RCP’s. In [25] necessary and sufficient condi-
tions for existence and uniqueness of solutions to RCP’s have
been presented in terms of families oflinear complementarity
problems(cf. Definition V.10 below). Based on this relation and
the literature on linear complementarity problems the following
result has been proven in [25].

Theorem V.8:Consider matrices
and such that Assumption III.3 is

satisfied and represents a passive system. Then
RCP has a unique solution for all .

Theorem V.7 now yields the following.
Theorem V.9:Consider matrices

and such that Assumption III.3 is
satisfied and represents a passive system. From
each initial state there exists exactly one initial solution to
LCS .

According to Theorem V.7 there exists a one-to-one relation
between initial solutions and solutions to RCP. Since strictly
proper Laplace transforms correspond to smooth Bohl distribu-
tions (without Dirac impulses and jumps of the state variable), it
is interesting to characterize the set of initial states for which the
corresponding solution to the RCP is strictly proper. In the fol-
lowing theorem such an explicit characterization will be given.
To formulate the theorem, we need the following concepts.

Definition V.10: Let a real vector and a real matrix
be given. The linear complementarity problem with

data and (LCP ) is the problem of finding a real
vector such that . Any such
vector is called a solution to LCP .

For an extensive survey on LCP’s, we refer to [6]. The set of
all solutions to LCP will be denoted by SOL .

Remark V.11:If is a solution to the problem
RCP , then is a solution to LCP

for all sufficiently large (real) , where
.

Remark V.12:Several times we shall employ the following
standard observation on solutions of LCP. If SOL
with then

Finally, adual coneis defined as follows [6].

Definition V.13: Let be a nonempty set in . Thedual
coneof , denoted by , is defined as the set

for all

Theorem V.14:Consider matrices
and such that Assumption III.3

is satisfied and represents a passive system.
Denote the solution set of LCP by SOL .
Furthermore, let be the (unique) solution to
RCP . The following assertions hold.

1) For all where
.

2) is strictly proper if and only if .
3) .

Proof:

1) In view of Remark V.11 and Remark V.12, we have for
each SOL that

for all sufficiently large . Since [(9a) yields
] and , we

obtain

(42)

for all sufficiently large . Multiplying this relation by
and letting tend to infinity yields, since is proper

It follows from Lemma IV.9 that
for all and thus .

2) “Only if”: Suppose is strictly proper. Statement 1)
and yield .

“if”: Suppose that . From Lemma III.4 and
Lemma IV.9 we obtain that

(43)

(44)

(45)

Since is the solution to RCP
and . Together with (43), this gives

[this proves statement 3)].
From (45), we obtain .

Since and , (44) gives

Finally, positive definiteness of and the full column
rank of imply , i.e., is strictly proper.

3) This has already been shown in the proof of statement
2).

A direct implication of the statements 1) and 2) in Theorem
V.14 is that, if smooth continuation is not possible for, it is
possible after one re-initialization. Indeed, by (31) the state after
the re-initialization is equal to , if the impulsive part
of the (unique) initial solution is equal to . According to the
fact that the Laplace transform of an initial solution is a solu-
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tion to the corresponding RCP (which is automatically proper),
it follows that is indeed the coefficient
determining the impulsive part. Since , it
follows from statement 2) that from there exists a
smooth initial solution. To summarize this discussion, we for-
mulate a local existence result.

Theorem V.15:Consider matrices
and such that Assumption III.3 is

satisfied and represents a passive system. For all
initial states , there exists a unique Bohl distribution
defined on for some satisfying the following.

1) there exists an initial solution such that

with for some .
2) .
3) For all

VI. REGULAR STATES

Another consequence of Theorem V.14 is the characteriza-
tion of so-calledregular states(sometimes also called consis-
tent states) as introduced in the following definition.

Definition VI.1: A state is called regular for
LCS , if the corresponding initial solution is
smooth. The collection of regular states for a given quadruple

is denoted by .
We have the following equivalent characterizations of regular

states.
Theorem VI.2:Consider LCS given by (8)

such that is passive and Assumption III.3 is
satisfied. Define SOL and let be the dual cone
of . The following statements are equivalent.

1) is a regular state for (8).
2) .
3) LCP has a solution.
4) , which means that can be

written as a positive combination of the columns of the
identity matrix and the matrix . In other words,

for two nonnegative vectors
and .

Proof: Since strictly proper Laplace transforms corre-
spond to smooth Bohl distributions, statement 2) in Theorem
V.14 gives a characterization of the regular states: if and
only if with SOL . Hence, statement 1)
and 2) are equivalent. Since , [6, Cor. 3.8.10] completes
the proof.

Hence, several tests are available for deciding the regularity
of an initial state . In [17] it is stated that a well-designed
circuit does not contain Dirac impulses. As a consequence, the
characterization of forms a verification of the synthesis of the
network.

Example VI.3: The circuit in Example IV.1 is of the form (8)
with

The cone SOL is given by

and

and thus

As a consequence of Theorem VI.2, the set of regular states is
given by

Note that this is in agreement with the phase diagram in
Fig. 7. Moreover, in Example V.5 the initial solution for the
state turned out to contain a nontrivial impulsive part
and hence, is not regular. This is in accordance with

. Similar statements hold for the initial state
.

For further illustration of the structure of the cones and
, some additional examples are in order.
Example VI.4: Consider the following situations. In each

case we assume that the quadruple is passive
and satisfies Assumption III.3.

a) If , then and . Hence,
.

b) If , then

and

Consequently,

and thus .
c) If is positive definite, it follows that , which

implies that and thus .
In the next section, it will be shown that the characterization

of the regular states plays a key role in the proof of global exis-
tence of solutions as the set of such initial states will be proven
to be invariant under the dynamics.

VII. SOLUTION CONCEPT ANDGLOBAL WELL-POSEDNESS

In [24], [25] a (global) solution concept has been introduced
that is based on concatenation of initial solutions. In principle,
this allows impulses at any mode transition time (necessary for
e.g., unilaterally constrained mechanical systems). In the con-
text of linear passive electrical networks with diodes, such a gen-
eral notion of solution will not be needed. In fact, the solution
concept as formulated in Theorem V.15 will be extended such
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that mode changes are possible. This will be achieved by drop-
ping the Bohl requirement and allowing functions as regular
parts. The function space consists of the distributions
of the form , where with
and .

Definition VII.1: Consider matrices
and such that Assumption

III.3 is satisfied and represents a passive
system. Let a time horizon and initial state be
given. is called a solution to
LCS on , if

1) there exists an initial solution such that

2) with given by
.

3) for almost all

We have already proven local well-posedness (Theorem
V.15). The question arises whether global well-posedness is
also guaranteed.

A. Global Existence

We now come to the main existence result of this paper.
Theorem VII.2: Consider matrices

and such that Assumption III.3
is satisfied and represents a passive system.
Then, for all initial states and all the system
LCS has a solution on in the sense of
Definition VII.1.

Proof: The construction of a solution will be based on
concatenation of initial solutions. Theorem V.15 implies that a
solution exists on [take as large as possible,
i.e., equal to as in (38)] from initial state . Note that

and that is part of a smooth initial solution
with initial state . Since
forms a smooth initial solution for any , we have
that for all . Since is
a Bohl function, the limit exists. The
closedness of [follows from statement 2) in Theorem V.14]
implies that . Due to local existence of solutions and

, there exists a smooth continuation (a smooth ini-
tial solution) from that defines a solution on with

. This construction can be repeated as long as the limit
exists, where is the time-interval on which a

solution has been generated so far. An obstruction to the exis-
tence of a global solution (on ) might be that the intervals
of continuation are getting smaller and smaller such
that and does not exist. To
complete the proof we will show the existence of the latter limit
under any circumstances.

Suppose the maximal interval on which a solution
can be defined is . According to Lemma
IV.4 there is at most exponential growth ( ) between
mode changes. For shortness we drop the subscriptin
the remainder of the proof. Sinceis continuous on
and governed by at most a finite number of linear dynamics
( ), is bounded [say for all ].
On an interval where is governed by
the dynamics of mode , the following estimate holds

(46)

Indeed, note that the matrix function is
bounded (by ) on . Hence, for with
possibly evolving through several modes we get from (46) that

This implies that is Lipschitz continuous on and thus
also uniformly continuous. It follows from a standard result in
mathematical analysis [49, ex. 4.13] that ex-
ists. From the construction above it can be derived that
for all and hence, , which implies that
smooth continuation is possible (local existence) frombe-
yond . This contradicts the definition of . Hence, existence
of a solution on is guaranteed.

B. Uniqueness

It can easily be seen that the solutions obtained by the con-
struction in Theorem VII.2 must be unique, because the initial
solutions are unique (see e.g., [25]). However, it might be pos-
sible that a different construction yields other solutions. The fol-
lowing theorem states that this is not the case.

Theorem VII.3: Consider matrices
and such that Assumption III.3

is satisfied and represents a passive system.
Then for all initial states and all final times there
exists at most one solution to
LCS in the sense of Definition VII.1.

Proof: Suppose that two solutions and
exist in the sense of Definition VII.1. According to

Corollary V.9 there exists exactly one initial solution from the
initial state . This implies that the impulsive parts of
and must be the same and moreover, that the re-ini-
tialization from must be unique so that .
Clearly, satisfies (6) from initial state 0
and is smooth. The dissipation inequality yields

for all . From the fact that and are non-
negative almost everywhere and the complementarity of
and , we obtain
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Hence,

for all . Since , we obtain for
all . Since is of full column rank, it follows that and

almost everywhere.
Since the global solution is unique, the solution must be equal

to the one constructed in the proof of Theorem VII.2. This char-
acterizes the nature of solutions to linear passive complemen-
tarity systems. Between mode changes the trajectories are of
Bohl type and thus real-analytic. Moreover, the setof mode
transition times is right-isolated, i.e., for all there exists
an such that is empty.

Remark VII.4: The fact that the set of mode transition times
is right-isolated can also be formulated as follows: there do

no exist left-accumulation points2 of mode transition times in
the solutions defined by Definition VII.1. However, we cannot
exclude the existence of right-accumulation points in general on
the basis of this paper. Using a result in [50] it can be proven that
for a linear passive network with one diode satisfying Assump-
tion III.3 and also right-accumulations do not occur.

VIII. C ONCLUSIONS

In this paper we studied all dynamic piecewise-linear (PL)
networks that can be realized by linear passive electrical cir-
cuits with ideal diodes. As a result, the systems under study fall
within the realm of linear complementarity systems for which a
mathematical framework has been established in this paper. This
framework has led to a precise definition of a transient true solu-
tion and formal proofs were given for the existence and unique-
ness of solutions (well-posedness). Moreover, several regularity
properties of the solutions have been proven. In particular, it has
been shown that derivatives of Dirac impulses do not occur and
that Dirac impulses happen only at the initial time instant; also
the set of regular states has been exactly characterized.

Such a rigorous basis is needed for many analysis issues of
switched electrical circuits. For instance, the paper [40] deals
with the question whether the approximated time functions ob-
tained by a time-stepping method [5], [11], [39], converge to the
true transient solution of the network model. The theory devel-
oped in this paper is indispensable for answering the consistency
question for this numerical simulation technique.

Networks with internally triggered switches have discrete as
well as continuous characteristics. From this point of view, the
paper proposes a systematic modeling framework and a pre-
cise notion of solutions for a class of networks of such a mixed
nature. Systems consisting of continuous dynamics (differen-
tial equations) and switching logic are sometimes called “hy-
brid systems” and receive currently much attention from both
control theorists [51], [52] and computer scientists [53]. Hybrid
systems are encountered in various research programs ranging
from switching controllers, unilaterally constrained mechanical
systems, piecewise-linear systems, and switched electrical net-
works to hydraulic systems with valves. Since the underlying

2A point � is called a left-accumulation point ofE � , if there exists a
sequencef� g with � 2 E such that� > � and lim � = � . A
right-accumulation point is defined by changing “>” into “<.”

problems for these systems are essentially the same, all these
research programs may benefit from a general theory as is cur-
rently being developed for complementarity systems.
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