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Abstract. First, various finite element models of the Timoshenko beam the- 

ory for static analysis are reviewed, and a novel derivation of the 4 x 4 stiff- 

ness matrix (for the pure bending case) of the superconvergent finite element 

model for static problems is presented using two alternative approaches: (1) 

assumed-strain finite element model of the conventional Timoshenko beam 

theory, and (2) assumed-displacement finite element model of a modified Tim- 

oshenko beam theory. Next, dynamic versions of various finite element models 

are discussed. Numerical results for natural frequencies of simply supported 

beams are presented to evaluate various Timoshenko beam finite elements. It 

is found that the reduced integration element predicts the natural frequencies 

accurately, provided a sufficient number of elements is used. 

Keywords. Timoshenko beam finite elements; superconvergent element; dy- 

namic behaviour; natural frequencies; assumed strain-displacement formula- 

tion; interdependent interpolation; reduced integration elements. 

1. Introduction 

The development of structural and finite element models of the Timoshenko beam theory 

(i.e., include transverse shear deformation in the stiffness matrix) has been the subject of 

numerous papers in the literature. The exact, 4 x 4 stiffness matrix of the Timoshenko 

beam is derived either using the methods of structural analysis (see Gere & Weaver 1965, 

Przemieniecki 1968, Reddy et al 1997) or finite element formulations (see Friedman and 

Kosmatka, 1993, Reddy 1997); Most papers dealing with finite element models of the 

Timoshenko beam theory focus on alleviating shear and membrane locking by select- 

ing proper interpolations of the deflections and shear strain and/or the displacement or 

assumed strain-displacement method. Most of these approaches did not result in the two- 

node superconvergent element (i.e. element that gives exact values of the generalized 
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displacements at the nodes) with four degrees of  freedom per element, as is the case with 

the Euler-Bernoulli beam element. 

The shear locking is due to the inconsistency of  the interpolation used for w and ~b, 

or equivalently, not satisfying the requirement that the shear strain Yxz = ( d w / d x )  + dp 

is element-wise constant for element-wise constant values of E l .  Often, the Timoshenko 

finite element models are based on equal interpolation of w and q~ and use recluced-order 

integration to evaluate the stiffness coefficients associated with the transverse shear strain 

and full integration for all other coefficients. Others have used so-called consistent inter- 

polation based on the the recovery of  correct constraints in the thick beam limit (Prathap 

& Bhashyam 1982; Babu & Prathap 1986; Prathap & Babu 1986; Shi & Voyiadjis 1991; 

Rakowski 1991; Reddy 1993). Although such elements do not experience locking, they 

do not lead to the two-node superconvergent element. Friedman & Kosmatka (1993) and 

Reddy (1997) and Reddy et al (1997) have independently developed the two-node super- 

convergent element using the exact solution of the homogeneous form of the Timoshenko 

beam equations. Hermite cubic interpolation of w and interdependent quadratic interpo- 

lation of 4, was used in developing the element that has the superconvergence character 

for static problems. The mass matrices for various elements are also presented. Friedman 

& Kosmatka (1993) discussed the dynamic version of the interdependent interpolation 

Timoshenko beam element but did not realize that it would not represent the pure shear 

frequencies accurately. 

The objective of the present paper is two-fold: (1) to present alternative derivations of 

the stiffness matrices associated with the reduced integration finite element and supercon- 

vergent finite element, and (2) to extend the elements to the dynamic case and evaluate 

their behaviour. Two separate approaches, not  using the exact solution, are presented for 

the development of the stiffness matrix of the superconvergent finite element. The first 

one is based on the assumed strain-displacement approach, and the second one on the 

two-component form of the Timoshenko beam theory. Modifications to the stiffness and 

mass matrices are also suggested that yield more accurate pure shear frequencies. 

2. Theoretical formulation 

The displacement field of the Timoshenko beam theory for the pure bending case is 

u l ( x , z )  = zOo(x), u2 = O, u 3 ( x , z )  = w ( x ) ,  (1) 

where w is the transverse deflection and q~x the rotation of a transverse normal line about 

the y axis. The strains and stresses of the Timoshenko beam theory are 

d~bx dw 
exx = z-d-X- x =-- ZKxx, Fxz = dpx + -~x ' Crxx = Eexx ,  Crxz = Gyxz .  (2) 

The equilibrium equations of the beam are 

d E1  + G A K s  ~bx + = 0 (3) 
dx dx ) 

d [ G a K s ( d p x + d - - - ~ ) ] = q ( x )  (4) 
dx 
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where q(x) is the distributed transverse load, E Young's modulus, G the shear modulus, 

A the area of cross section, I the moment of inertia, and Ks the shear correction factor. 

3. Displacement finite element models 

3.1 The general model 

The displacement finite element model of the Timoshenko beam theory is constructed 

using the principle of minimum total potential energy, or equivalently, using the weak 
form 

xb dw O=fo L[Eld~'~x~X+GAKs(a+x+d'~w'~(~x+~)] dx dx ~, 

- q (x )awdx  - Va•w(Xa) - Vbt~W(Xb) 
a 

--MaagPx (Xa) - Mbadpx (Xb) (5) 

and (see figure 1) 

Va =-- -Q(xa )  = - GAKs + (bx , 
X ~ X  a 

M a ~ - - M ( x a )  = _  

dx -Ix=x° ' 

[ Vb -~ Q(xb) = GAKs + (bx , 
X~-X b 

Mb=--M(xb)=[Eld{bx  1 . (6) 
dx dX=Xb 

Suppose that w and q~x are approximated as 
m n 

~(x) ~ E ,# l 'w: ,  ~x(x)~ E C'®J, (7) 
j = l  j = l  

where (Wj, ~ j )  are the nodal values of (w, 4}x) and ~ a ) ( x )  (c~ = 1, 2) are the associated 

interpolation functions. Substitution of (7) for w and 4}x, and/~w = ~/{1) and &bx = aP[ 2) 

into (5) yields the finite element model 

where 

I l K  1 [K 12] ] {F 1 } 
[K12]T [K22] J l {W} } = { {F2} , (8) 

a d x  dx, 

Ki~ = [XdKsGAdlp~I)o)2)  dx, 
Jxa  d x  
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Figure 1. Typical finite element with force 
degrees of freedom. 

zx ( ,,sOA  2' 2') 
= E1 dx dx + ~ dx, 

a 

f[ F/l= 0~l)q dx --I- Val/f~l)(xa).-1- Vbl/f~l)(xb), 
a 

F 2 = Ma !//} 2) (Xa) + Mb ~2) (X b). (9) 

3.2 Reduced integration element (RIE) 

For a linear interpolation of w and ¢x and exact evaluation of the integrals of (9), (8) takes 
the form 

where 

[63h6 l_3h 
( 2 E I ' ~  - 2h21 3h h2~ 

k, ~--o-~ ] - 3h 6 3h J 
L - 3 h  h2~ 3h 2h21 

Wl 

W2 
4% 

q~l) 

0 
q(1) 

+ Ma 
Vb 
Mb 

, ( l o )  

q~l)=fx x b ~ l ) q d x ,  ( i = 1 , 2 ) ,  
a 

( l la)  
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E1 
= G A K s h 2 ,  /x0=12~2,  ~ = 1 - 6 ~ 2 ,  L = 1 + 3 ~ 2 .  ( l l b )  

In the thin beam limit, i.e., g2 --+ O, the first and third equations of (10) imply the 

following relation among (W1, W2, ~1, ~2): 

+ ~2 -h Wlj = ) 0, (12) 

which is equivalent to the Kirchhoff constraint d~x + dw/dx = 0 (or shear strain/xz = 0). 
The second and fourth equations of (10), in view of (12), yield the constraint 

( ~ 1  - -  ~2)/h = 0 .  (13) 

This is equivalent to depx/dx = 0, which is an incorrect condition to satisfy as it forces 

the curvature and hence the bending energy to zero. Thus, (10), in an effort to satisfy the 

constraints (12) and (13), will yield the trivial solution WI = W2 = qbl = ~ 2  = 0 (i.e., 

the element locks). 

The Kirchhoff condition (12) suggests that w and ~bx be interpolated such that dw/dx 
is a polynomial of the same order as ~bx. If w is approximated using a linear polynomial 

(a minimum requirement), then ~bx should be a constant. Since the minimum continuity 

requirement on ~bx is also linear, it follows that w be approximated using a quadratic 

polynomial. This is a consistent interpolation. Unless the weak form of the Timoshenko 

beam theory is modified, we have no alternative but to use a quadratic approximation of 

w and linear for 4~x and use full integration to evaluate the coefficient matrices to obtain 

an element that does not experience locking. However, if one approximates both w and 

4~x with linear polynomials but treats q~x as a constant in the evaluation of the shear strain, 

it will also yield the stiffness matrix. This procedure is known in the literature as reduced 

integration of the shear stiffness. It amounts to evaluating the second term o f  Ki 22 in (9) 

using one-point integration as opposed to two-point integration required to exactly evaluate 

the integral. The element equations of the reduced integration element are 

6 h -3h  - 6  -3h  
( 2 E l  "~ - h2(1.5 + 6~)  3h h 2 ( 1 . 5 -  6f2) 

\ ~ - - ~ J  - 3h 6 3h 

b - 3 h  h2(1.5 - 6f2) 3h h2(1.5 + 6f2) 

/q /o0 / = q~) + Vb 

Mb 

WI 

qb t 

W2 
qb 2 

(14) 

This element is designated as the reduced integration element (RIE) by Reddy (1993). 

Alternate derivation of the element without using the reduced integration concepts will be 

presented in the sequel. In the thin beam limit, the element equations reduce to only one 

constraint, namely the Kirchhoff condition in (12). While the element does not lock, it does 

not yield exact displacements at the nodes for the static problems, and often a sufficient 

number of elements is needed to obtain accurate deflections. 
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3.3 Consistent interpolation element ( CIE) 

As suggested earlier, if we use a quadratic approximation of  w and linear approximation 

of ~ ,  (8) reduces to a 5 x 5 system of equations. By eliminating the mid-side degree of 

freedom associated with w, we can reduce the 5 x 5 system to the following 4 x 4 system 

of equations (Reddy 1993; Reddy 1999): 

6 - 3 h  
2El ~ -3h h2(1 .5+6f2)  

/z0 h3 ,] - 6  3h 

- 3 h  h2(1.5 - 6f2) 

+ ½qc 2) 
1 .~ ( 2 )  t. 

- g ~ c  ,, + 
- -  ( 2 )  1 _ ( 2 )  

q2 + ~qc 
1 ,~(2)  t, 
~ t / c  r~ 

where 

q~2)= fx]bTt.(t2)qdx, 

- 6  - 3 h  1 3h h 2 ( 1 . 5 - 6 [ 2 )  

6 3h 
3h h2(1.5 + 6f2) 

W1 

WE 
~2 

Va 
M. 
Vb 
Mb 

(15) 

(i = 1, 2, c), (16) 

and ~{2) are the quadratic interpolation functions. Here the subscript c is used for the 

centre node of the element. Note that the element has the same stiffness matrix as the 

reduced integration element but a different load vector. The load vector is equivalent to 

that of the Euler-Bernoulli beam element. In fact, for constant q, the load vector in (15) 

is identical to that of the Euler-Bernoulli beam element. The elimination of the mid-side 
deflection degree of freedom is not possible for the dynamic case, as will be apparent in 

the sequel. 

3.4 Interdependent interpolation element (liE) 

The next choice of consistent interpolation is to use cubic for w and quadratic for 4'x. This 

will lead to a 7 × 7 system of equations. The displacement degrees of freedom associated 

with the interior nodes (three in total) can again be condensed out, for the static case, 

to obtain a 4 × 4 system of equations. Here we will not consider it further. Instead, we 

consider the Hermite cubic interpolation of w and a related quadratic approximation of 

~bx. These sets of interpolation functions were derived by Reddy (1997) using the exact 

solution of (3) and (4) for q = 0. The resulting finite element is termed the interdependent 

interpolation element (IIE). 

To develop the interdependent interpolation element, we assume an approximation of  

the form 

m n 

j= l  j= l  

A1 = W1, A2 = ~1,  A3 -~- W2, A 4 = t~2, (18) 
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where ~0~ 1) and ~o~ 2) are the approximation functions. 

0911) = (1//z)[/z - 12f27 - (3 - 27)72], 

04 I) = - (h / / z ) [ (1  - 7) 2 7 + 6~2 (1 - 7) 7], 

~p~l) = (1/ / , ) [(3 - 27)72 + 12f27], 

~p4 (1) = (h//z)[(1 - 7)72 + 6[2 (1 - 7) 7], (19) 

~o~ 2) = (6/h/x)(1 - 7)7, 

q~(2) = (1//z)(/z - 47 + 372 - 12f27), 

~0~ 2) = - ( 6 / h # ) ( 1  - 7)7, 

~04 (2) = (1/#)(372 - 27 + 12f27). (20) 

Here 7 is the nondimensional local coordinate 

7 = (x -X a ) / h ,  # = 1 + 1212. (21) 

When f2 = 0, ~o~ 1) reduces to the usual Hermite interpolation functions ~o i and 09~ 2~ to 

-d~o i/dx. Substitution of (17) into (5) yields the finite element model, 

[KI{A} = {q} + {Q}, (22) 

where 

Kij = E1 dx dx 
a 

qi = qo}l) q(x) dx, 
a 

( -dT-  ] } dx, 

(23) 

(24) 

and Q1 = Va, Q2 = Ma, Q3 : Vb, and Q4 : Mb. Equation (22) has the explicit form, 

I ~  h - 3 h  - 6  - 3 h i  W1 q1 Va 
(2EI '~  2h2)~ 3h h2~ qbl = q2 + Ma (25) 

\ - - ~  ] 3h 6 3h | W2 q3 Vb 
L - 3 h  h2~ 3h 2h2)~/ qb2 q4 Mb 

This element leads to the exact nodal deflections in static analyses for any distribution 

of  the transverse load q(x) and element-wise constant bending stiffness E1 and shear 

stiffness GAKs. Therefore, the element is said to be superconvergent. In the thin beam 

limit, (25) reduces to the Euler-Bemoull i  beam equations, and no additional constraints 

are implied by the system. 

4. The assumed strain-displacement (ASD) models 

4.1 General finite element model 

Here we develop the finite element model based on a variational form in which the dis- 

placements (w, ~bx) and strains (Kxx, Yxz) are treated as independent field variables. The 
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variational statement associated with this mixed formulation is given by the stationarity of 
the following functional (see Oden & Reddy 1982, p. 116, equation (4.115)): 

  xO xx] 
_ 1  

+ [ G a K s ( ~ x  +dPx ~Vxz) Yxz]--qw} dx 

-Vato(Xa) - VbW(Xb) -- MadPx(Xa) -- Moq~x(Xb), (26) 

where 

Va = [-GAKsYxz]xa, Vb = [GAKsYxz]xb, 

Ma = [-Elxxx]x,,  Mb = [Elxxx]xb. (27) 

The first variation of Re yields the weak forms 

fxX ( ) GAKs--~x YX z - ~w q dx - VaSw(Xa) - Vb6W(Xb) = 0, (28) 
a 

fx?b(EId3~bxtcxx+GaKs'dPxYx~) dx ~ (29) 

Cd x ) 
EI3xxx \ dx Xxx dx = 0, (30) 

(6 2 ) GAKs6E~z + Ox - Vxz dx = 0. (31) 
a 

Let the variables (w, Ox, Kxx, Yxz) be approximated as 

m n 

j=l  j=l  
P q 

Kxx "~ ~ "~(3)/C ~J4)Fj, vj  t~j, gxz. ~ ~ (32) 
j=l  j=l 

where (Wj, Oj, Ej, Fj) are the nodal values of (W, Ox, Xxx, Yxz) and ~Ja)(x) (c~ = 
1, 2, 3, 4) are the associated interpolation functions whose choice is yet to be made. Sub- 
stituting (32) into (28)-(31), we obtain the following finite element model: 

~ [0 ]  [0] [0] [A] 1 {W} {F} {V} 
[ [0] [0] [B] ~C~ / {*} {0} {M} 
[ [0] [B] r - [ D ]  t,-J / {E} = {0} + {0} ' (33) 

L[A] r [c] r [01 -[GIA {F} {0} {0} 

where 

A i j = f x S b G A K s d ~ } l ) ~  (4, dx, = [Xb E1 d~}2' # 3, dx, 
J Bij JXa dx 

Cij= fxSbGAKsaP(i2)~(4)dx, Di j=  fxSbEI~P(i3)~(3)dx, 



Dynamic behaviour of the Timoshenko beam finite elements 183 

ix xb ix xb Gij= GAKs~.4) to! dx, Fi = q_l)to( dx, 
a a 

V1 = Va, Vm = Vb, M l  = Ma ,  Mn ~- Mb.  (34) 

Couple of observations are in order concerning the finite element model in (33). We 

note that [A] is a vector {A} when gxz is approximated as a constant, F0. In addition, the 
first equation of (33) has the form 

o' 
GAKs ; Fo = 

1 

F1 

F2 
F3 

;m 

Vl 
0 

+ o 
Vm 

(35) 

when w is interpolated using quadratic or higher-order polynomials. The nonzero entries 
correspond to the deflection degrees of freedom at node 1 and node m. For linear interpo- 

lation of w, we have m = 2 and (35) is alright. However, when m > 2, (35) implies that 

Fi = 0 for i = 2, --- ,  m - 1, which, in general, is not true. Thus, either the distributed 

load is zero or it is converted to generalized point forces at the end nodes through Hermite 

cubic polynomials. In the latter case, the force components can be added to Va and Vb and 

the moment components to Ma and Mb at nodes 1 and m respectively. 

4.2 ASD-LLCC element 

For linear (L) interpolation of (w, ~bx) and constant (C) representation of (Xxx, Yxz), and 

for constant values of E1 and GAKs, the element equations become (m = n = 2 and 

p = q = l )  

[ q~l) ] (36) 
Vb ' 

h 
+ GAKs-~ { 1 l l F 0 = I M a l M b  ' (37) 

Z h {qbl} - h F O  = O' q~2 (38) + ~-{1 1} { 
{-1 1} { (D 1 

.2}  
Solving (38) and (39) for 

out 32o and go), we arrive 

4 
GAKs 

4h 

- h320 = 0. (39) 

- 2 h  
- 2 h  h2(1 +4f2)  

- 4  2h 
- 2 h  h2(t - 4 f 2 )  

E0 and F0 and substituting into (36) and (37) (i.e., condensing 

at the following 4 x 4 system of equations, 

- 4  - 2 h  ] { W1 
2h h2(1 492) qb 1 

4 2h W2 
2h h2(1 + 4~)  _] qb2 

/ / ----- q(1) + , 

0 Mb 

(40) 
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where f2 = EI/GAKsh 2. These are exactly the same equations obtained in the displace- 

ment formulation with the linear interpolation of w and ~bx and using one-point Gauss 

quadrature to evaluate the shear stiffnesses, i.e., the reduced integration element (RIE). 

Thus, the assumed strain-displacement formulation eliminates the need for reduced inte- 

gration concepts. 

4.3 ASD-HQLC element 

Suppose that the distributed load is represented using 

q~h) fx xb = q(x)~oi (x) dx. (41) 
a 

A Lagrange or Hermite cubic interpolation of w, quadratic interpolation of ~bx, linear 
interpolation of tCxx, and constant representation of Yxz yields the equations 

lT, b }, (42) 

Y 1 K~ 2 +-- - - -~- -  4 F 0 =  0 , (43) 
1 

E1 - 5  4 (Pc = (44) 
6 -1  - 4  ~2 6 K2 0 ' 

W2 + ~ { 1 4 1 }  *c - h F 0 = 0 ,  (45) 
q~2 

where the end nodes of the element are designated as '1' and '2', and the middle node as 
'c', and the interior nodal degrees of freedom associated with w are omitted as they do not 
contribute to the equations. Solving (44) for {K2} and (45) for F0, substituting the result 
into (42) and (43), and eliminating ~c, we obtain 

2 E I [ 6  6 6 ]  { W1 } 2 E I [ - 3 h - 3 h ]  {qbl } {Va/ (46) 
/zh 3 - 6  W2 + ~  3h 3h qb2 ----- P'b ' 

I~h 3 -3h 3h W2 + - - ~  [. h2~ 2h2L *2 = !VIb " 

Adding (46) and (47), we obtain [6 
(2EI'~ -3h 2h2L 3h h2~ *1 "Pla (48) 

k. lzh 3] _36h 3h 3h J W2 = Vb 
h2~ ~n 2h2~. ~2 Mb 

The stiffness matrix is the same as that of the superconvergent element derived by Reddy 
(1997); however, the load vector is different. It is the same when either the applied load q 
is element-wise uniform or the load vector is computed using (24) with ~0 i given by (19). 

It should be noted that the degree of the polynomial interpolation used for w does not 
enter the equations presented in all the models discussed in this section. However, the load 
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representation implies that w be interpolated with Hermite cubic polynomials or ¢p~1) of  

(19). It can be shown that the use of the interdependent interpolations of (19) and (20) for 

w and ~bx also results in (48). 

5. Two-component form of the Timoshenko beam theory 

5.1 Theoretical formulation 

The displacement and mixed formulations of the conventional Timoshenko beam theory 

yield the superconvergent stiffness matrix only when higher-order interpolations of w and 

~x are used. In contrast, the Euler-Bernoulli beam element is superconvergent for the 

lowest admissible interpolation, namely, the Hermite cubic interpolation. In this section, 

it is shown that the superconvergent element can be developed with the lowest admis- 

sible interpolation of various displacement components. This requires a reformulation 

of the Timoshenko beam theory in terms of the bending and shear components of the 

transverse deflection. The two-component form of the transverse deflection was discussed 

by Anderson (1953), Miklowitz (1953), Huffington (1963), and Krishna Murty (1970) 

for beams, and Miklowitz (1960), Chow (1971), Bhashyam & Gallagher (1984), Reddy 

(1987), Lim et al (1988), and Senthilnathan et al (1988) for plates. 

Assume displacement field of the form 

Ul(X, z) = z - - d - Z  + fix , u2 = 0, u3(x, z) = wb(x) + wS(x), (49) 

where w ° and w s denote the bending and shear components, respectively, of the total 

transverse deflection w (see Reddy 1999), and ~x denotes the shear rotation, in addition 

to the bending rotation, of a transverse normal about the y axis. The strains and the stress- 

strain relations are given by 

( d~x d2wb ~ 

exx = Z \ d x -d~x 2 ] '  

Crxx = Eexx, Crxz = Gyxz. 

( Vxz = f ix+ dx J' (50) 

(51) 

The principle of virtual displacements yields the following Euler-Lagrange equations: 

dM 
8/~x : - - -  + O = 0, (52) 

dx 

d2M 
8w b : dx 2 - q, (53) 

6w s dQ 
• - q ,  ( 5 4 )  

dx 

where M(x)  and Q(x) are bending and shear force resultants, 

( dflx d2tob ~ f 
M = Ja CrxxZ da  = E1 \ dx - -d--Z] '  (55) 

/ 

fA ( dwS~ (56) Q = K s  ~rxzdA = KsGA f i x+ dx J" 
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5.2 Finite element model 

The finite element model of the modified Timoshenko beam theory can be developed using 
the standard steps. The first step is to write the weak forms of the three equations over a 
typical element. We have 

( d•l/Js/ ( ,  x "t- --fx a q ( S w b + S w S ) d x  + Ks G A 
\Sflx -F dx .] dx .] J 

-MaS#x (Xa)  - MbS~x(Xb) -- VaSwS(xa) -- Vb~ws(xb) -- Q1 8tob(xa) 

- Q 2 ( d S w b ) - Q 3 8 w b ( x b ) - Q 4 (  " dSwb)--~ (57) 
dx "Xa "g0' 

where 

Ma-------M(xa) = E I  \ dx 

[ Mb =--M(xb)= - E I  \ dx 

d2wb ~ l 

dx2 J Jxb '  

V a ~ - - Q ( x a ) =  K s G A  3 x +  dx JJx~ '  

d slq 
V b = = - Q ( x b ) = [ - - K s G A (  ~x-t- dx /Jxb ~ 

Q1 ~ - = - Q ( x a )  -=- Va, 
Xa 

(62) Q3-~ = Q(xb) -= Vb, 
Xb 

Q2 -= - M ( x a )  = Ma, Q4 =- M(xb) = Mb. (58) 

From the weak form (57), it is clear that fix and w s can be interpolated using the Lagrange 
interpolation and w b using Hermite interpolation. The lowest admissible functions are 
linear for fix and w s and cubic for w b. However, the condition that the shear force be 
element-wise constant for element-wise constant values of E1 in turn requires that w s be 

quadratic. 
Let (fix, w b, w s) be interpolated as 

m 
~x (x) ~ ~ t3i g,[1)(x), 

i=l 
P 

wb (x) "~ Z w b  ~°i(x)" 

f=l 

n 
wS(x)  2wIo}2)(x), 

i=1 

(59) 
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where 13i, W s and W~ denote the nodal values of fx,  w s and w b, respectively, ~p~l) and 

~p{2) are linear and quadratic interpolation functions, respectively, and ¢Pi are the Hermite 
cubic interpolation functions (m = 2, n = 3, p = 4). Substituting the interpolations (59) 
into the weak form (57), we obtain the following finite element model: 

} [B] T [D] [0] / { w b }  = {Fb} q" {Q} ' 

[C] T [0] [G] 3 {W s } {F s} {V} 

or simply 

[KR]{A} = {FS},  

where the stiffness matrix [K s ] is of the order 9 × 9. 
The coefficients of various matrices and vectors in (60) are defined by 

Aij = E1 + K s G A  1J}l)~) 1) dx, 
a 

~ * X b  d~f~ 1) d2~j  

Bij = - Jxa E l  dx  ~x  2 dx, 

doe 2) 
C~j= f~bK,,GATz}l) ~x dx, 

(60) 

(61) 

fx xb d2goi d2goj 
Dij  = E1 dx ~ dx ~ dx, 

a 

dr')2' dx, fr x6 Gij = K s G  A dx dx 
a 

q~Pi dx, F s = qO (2) dx. (62) 
a a 

The element equations (60) are not suitable for practical use. The reason is that we only 
know the total displacement w = w b + w s and not its bending and shear parts separately. 

This is also true about the total rotation (4~x = -Wbx + fix). Hence, it is necessary to recast 
the element equations (60) in terms of the physical nodal variables. 

5.3 Reduction o f  equations 

Here we select specific interpolation functions and evaluate the element matrices. For the 

choice of linear interpolation functions for Vz{ l), quadratic interpolation functions for ~z! 2), 
and Hermite cubic interpolations functions for ~i (the minimum polynomials required by 
the weak form), we obtain (see figure 2) 

\ n t.-- (E~f-/[)1 - 1  __KsGAh E1 1 - 1  1 ]+ 6 [2 12]){B1] + [-1 ]1 wb / 
1 B2 1 

+---~KsGA[-1-5 4 1 ] { W ~ ] { / M a  
--4 5 W~" = Mb ' 

(63) 
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/12 /is Q2, q~ Q4, q4 

. } h. 
Ztl~- o-e -~A 4 Q1, q l l -  ~ Q3, qa 

Primary deg. of freedom Secondary deg. of freedom 

(a) 

Wzb W~ B1 B2 

Primary variables Primary variables 
associated with w b associated with w* 

and [3 

(b) 

Figure 2. Force and displacement degrees of freedom. (a) Total degrees of freedom. (b) 
Displacement degrees of freedom associated with w b, w s, and ft. 

where 

12EI 1 - 1  W b 
h 3 ( - 1 1  ] { w b } + - - ~ - I  - 1 1 1 1 ] {  WbW b} 

6EI 

={01 Qg } q- { q~h) 
q~h) }, (64) 

6EI 2EI 

El_h [_11 l l ] { /3 ' }={Q2}+lq !  h , } 1 3 2  Q4 q(h) , (65, 

KsGA I -  4 -511 {/3l} __KsGA I~8 -816-811 {W{ }Wc s 
6 /32 + 3h -8 7 W~ 

(2) } { V a } q l  
O.c + = q(2) 
Vb q2 (2) 

(66) 

F b = q~h) (i = 1, 2, 3, 4), F s = q~2) (i = 1, 2, c). (67) 
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Wc s denotes the value of w s and O.c is the specified transverse load at the centre node of 
the element. Note that the finite element equations associated with the second equation in 
(60) is split into a pair of equations for convenience. 

As noted earlier, it is necessary to combine the two components of the transverse de- 
flection as well as the rotation into total deflection and rotation. This amounts to rewrit- 
ing the algebraic equations (60) to obtain a model solely in terms of the total deflection 
w = w b + w s and rotation 4~x = --wb, x + fix at the element nodes. First we condense out 
Wc s using the second equation of (66). We have 

( W I + W 2  ) ( CI)2 - (I) 1 ) 6h /5c + + h (68) 
Wc = 3 2 G A K s  2 -8 ' 

where F_c = @2) + Qc- Substituting (68) into (63) and (66), we obtain 

1]{ 21 I, 12f2 h -1  1 A 4 + - ~  1 1 /3 2 

}) +>_[_1 1 Ma { ~ (69, 
W~ Mb 8 -- ' 

6 E I  - 1  - 1  1 2 E I  [:l -1 ]/ / 
w~ 

= 1292 ({ Va } { q~2) + lqc(2) }) 
Vb -}- q~2) + 1@2) ' 

where A i denote the total generalized displacements, 

(70) 

a~ =_ w(x.) = w~ + w~. 

A 3 =- II)(Xb) = W b -}- W~, 

dw b ) 
A2---- - - - -  + ]~ = w2b + B1, 

dx 
Xa 

A4 ~ ----~x -+-/~x = W2 +- B2. 
Xb 

(71) 

Adding (64) to (70) and (65) to (69), we find 

( 2 E I ~  2 E I  
h 3 ] [ - 6  6 6 ] { A  1 

6 } +  [ 3 ?  A3 - - ~  

Q3 q3 

2 E I  

h 3 

-3h  
~4} 

ql 2) + 21-@ 2) ] 

q~2) + 1@2) ' 

_ _  [ 3h 3h 2 E I  h2~ 
_3h 3 h ] l A l } +  [ 2h2)~ 

A4} 

= ( l + 1 2 f a ) { Q 2  } { q2(h) } { h_(2) } _ g q c  
Q4 + q(4 h) + 12f2 h,,(21 " 

guc 

(72) 

(73) 
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Now combining (72) and (73), we arrive at 

6 - 3 h  
2 E I  - 3 h  2h2)~ 

/xh 3 - 6  3h 
- 3 h  h2~ 

where 

- 6  - 3 h  A1 

6 A3 
3h 2h2~..] A4 

I 1 q(h) 
+ - -  

tx q~h) 

q (4 h) 

a l  
= Q2 

Q3 
Q4 

+ 12 f2 
/z 

q~2) + lqc(2) 

h _(2) 
-- gt/c 

q2 (2) + ½qc (2) 

h ~(2) 
g,/c 

, (74) 

E1 
~ . = 1 + 3 7 2 ,  ~ = 1 - 6 9 2 ,  / ~ = 1 + 1 2 ~ 2 ,  ~2= K s G A h 2 .  (75) 

Equation (74) is the same as (25) (see Reddy 1999). 

6. Fini te  e l e m e n t  m o d e l s  for  d y n a m i c  ana lys i s  

6.1 Weak forms  and finite element models 

For the dynamic case, the weak forms in (5), (28) and (29), and (57) (which correspond to 
the displacement and mixed finite element models of the conventional Timoshenko beam 
theory and the displacement model of the modified Timoshenko beam theory) must be 
modified to read 

0211) 02(9x 1 
-- qaw + loaw--~-~- + Iza4~x--07- j dx - Va aW(Xa, t) 

- Vb 8W(Xb, t) -- Ma aCPx(Xa, t) -- Mb 3cPx(Xb, t), (76) 

0 = GAKs-zZ- -yx  z + IoSw--~-2 - 8w q dx  
a 

- VaSw(Xa, t) - VbSW(Xb, t), (77) 

0 =  ~xo[Xb ( e i O~x Ox °2 ~x . ~ Kxx + GaKs~Oxyxz + 128Ox-swidx 

--Ma 8dpx(Xa, t) - Mb 8dpx(Xb, t), (78) 

0=dX of E I \ a x ~x 2 ] O x ff-~x 2 ] 

( 0ws)_ °sw~] (~x + q(Sw ~ + 8w'). + K s G A  \8~x + Ox ] Ox ] 
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+12 - - g ;  + ~x 

-Ma,S~x(Xa, t) - Mb,5 

--Q18wb(xa, t) -- Q2 

--Q38wb(xb, t) -- Q4 

191 

O~w b 
Ox 

~x(Xb, t) -- Vat~wS (xa, t) - VbawS (xo, t) 

08wb ~ 

7Xlx a 

OX ]Xb ' 

----"[-8flx)q-Io((i3b-l-ws)(~wb-~ t- all)S)] dx 

(79) 

respectively, where 

fA fA pAh2 I o =  p d a  = pa ,  12= pz 2 d A -  ~ , (80) 

p being the mass density of the material. 
For the dynamic case, the finite element models in (8), (33), and (60) take the following 

forms. 

Reduced integration element (RIE): 

[M 1] [0] ] {ff'] [ [Kll]_ 

[o] [MZZ]J { {/~)} + L[K'2] ' 

Interdependent interpolation element (liE): 

[M]{A] + [K]{A] = {q} + {Q}. 

[KI2] ] {F 1 } 
[ K 2 2 ] j { { W } ] = l l { F  2} {a'] (81) 

(82) 

Assumed strain-displacement model (ASD): 

[M 11 ] [0] 
[0] [M 22 ] 

[o] [o] 
[o] [o] 

{w] 
{a,] 

× {lc} = 

{r} 

[o] [o]7 (~1 
[ol [o]/ { ~'1 
[o] [o]1 ~) 
[o] [o]A {r} 

{M} 
{o1 + {o1 
{o1 {o1 

[o1 
[o] + 
[o] 

[A] T 

[01 [01 [A] 
[0] [B] [C] 

[B] T - [D]  [01 
[C] T [0] - [G] 

Two-component theory displacement finite element model: 

_[MZ]T [M 3] [M 4] {wb} + / [ B ] r  [D] [0] 
[0] [M4]T [MS] {WS} [_[Cl r [ol [a!  {,o,] 

= {F b} + {Q} , 
{F s } {V} 

(83) 

{B} } 
{ w  b } 
{ w  s} 

(84) 
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where 

Mij-Jx~- [Xb  t~O~Oi(1) ~0j(1) + i2~o~2)~0)2))dx, (85) 

= i 0 ~ ( 1 ) 1 ) d x  ' Mi22 = 12gli(2)-'-(2)lffj dx, 
a 

= 12~r i --~-dx, 

I? 
M4=fx2blo~oiq/(Z) dx, M5 = fx2b I0~p{2)#2) dx. (86) 

See the previous sections for the definition of the stiffness coefficients and displace- 

ment and load vectors. The specific forms of the mass matrices are given in the next 

section. 

6.2 Mass matrices 

Because of the presence of the second time-derivative terms W and ~ ,  it is not possible 

to algebraically manipulate the equations, as was done in the static case for CIE, ASD- 

HQLC, and finite element model based on the two-component form of the Timoshenko 

beam theory. Recall that for RIE (linear or quadratic), IIE, and ASD-LLCC, no algebraic 

manipulations were necessary. Therefore, these elements are directly applicable to the 

dynamic analysis. For the finite element model based on the two-component form of the 

Timoshenko beam theory, one may select a mass matrix to go with the superconvergent 

(SCE) stiffness matrix for the dynamic analysis. Additional discussion of this point will 

follow. The explicit forms of the finite element equations for the three models, RIE, IIE, 

and SCE are summarized below. 

Reduced integration element (RIE): 
ment equations are given by 

i 
210 0 

h 0 212 

g I0 0 

0 12 

6 
- 3 h  

x 
- 6  

- 3 h  

For linear interpolation of w and qSx, the finite ele- 

0 

0 212 _J 
- 3 h  

h2(1.5 + 6fl) 

3h 
h2(1.5 - 6f2) 

~Pl 2EI  

W2 -[- I,~O h---~ 
~b2 
-6 -3h ] 
3h h 2 ( 1 . 5 -  6f2) 

6 3h 
3h h2(1.5 + 6 f l ) . J  

WI 

W2 
~2 //Va/ 
0 Ma (87) 

q(1) + Vb 

0 Mb 
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For quadratic interpolation of both w and q~x, the element matrices are of the order 6 x 6 
for pure bending case. 

Interdependent interpolation element (liE): For this case, the stiffness matrix and load 
vector are given in (25) [and the same as in (74)]. The mass matrix [M] of (85) consists 
of several parts, as given below. 

F 156 -22h 54 
Ioh ]-22h 4h 2 -13h 

[ M ] = ~ [ ? 3  ~ -13h 156 
-3h  2 22h 

[ 84 - l l h  
Ioh - l l h  2h 2 

+g2/10/z2 l 36 -9h  
9h - 2h  2 

f F 
! Ioh |-30h 6h 2 

+f22 ~5/x2 | 120 -30h 

L 30h -6h  2 

13h I 36 -3h  - 3 6 - 3 h l  
- 3h  2 12 -3h  4h 2 3h - h  2 
22h +30--d-~ 2 - 3 6 - 3 h  36 3h 
4h 2 - 3 h - h  2 3h 4h 2 

[i6 0 61 -9h  -2h  2 I2 2h - 6  - 

84 l l h  + ~-g - 6  0 - 

l l h  2h 2 - 2 h  - 6  2h J 

_ _  Eiooilt -30h -6h21 2412h 2 0 

240 30h l + - - ~  O0 
(88) o 

30h 6h 2 J 1 0 

Finite element model with superconvergent stiffness matrix (SCE): Although the super- 
convergent form of the stiffness matrix can be derived using various approaches, only the 
interdependent interpolation element formulation is readily extendable to the dynamic case 
(see (82) and (88)). The other formulations do not permit the algebraic manipulations with 
the mass terms in place. Hence, one may choose a mass matrix to go with (48) and (74). 
There are several choices: (i) use the same mass matrix as in (88), (ii) use the mass matrix 
of the Euler-Bernoulli beam element, or (iii) use the mass matrix of the IIE element with 
f2 = 0 (hence,/z = 1). The first choice reduces the formulation to IIE. The second and 

third choices are the same because of the relationship between q)}ll, ~0~2), and q)i [see the 
comment after (21)]. Thus, for the dynamic case, the finite element model in (74) takes 
the form 

156 
-22h 

54 
13h 

I 
I2 -3h  

+3--~ -36  
-3h  

[ 6  
2EI - 

+;; ?6 
[_ -3h 

-22h 54 13h 
4h 2 -13h -3h2 / 

-13h 156 22h | 
-3h  2 22h 4h 2 J 

-3h  -36  - 3 h l )  
4h 2 3h - h  2 

-3h  36 3h 
- h  2 3h 4h 2 

-3h  - 6  -3h  

2h2L 3 h 3 h  6 ~2~ ] 

h2~ 3h 2hZ~J 

}~2 
A3 
2i4 

A 1 

A2 
A3 
A 4 

Q1 

= Q2 
Q3 

Q4 

+ 

ql 

q2 

q3 

q4 

(89) 
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where q, ([ q h, 
q2 1 q (2 h) 

q3 = -g  

q4 q (4 h) 

+ 12~2 
+ • 

h ~(2) 
g'-/c 

(90) 

Note that when f2 is set to zero in mass as well as stiffness matrices, the equations of liE 

and SCE are reduced to those of the Euler-Bernoulli beam element. 

6.3 Evaluation of the elements for dynamic behaviour 

To evaluate how various elements predict the natural frequencies, the free vibration of 

a simply supported beam is studied. As per the Timoshenko beam theory, the natural 

frequencies of the simply supported beam can be calculated from the equations 

O E1 + GAKs dpx + -~x + 12 - ~  -- O, (91a) 
ax 

Ow 02w 
0 [ G A K s ( q ~ X + ~ x ) ] +  = 0 .  (91b) 0x I0--~- 

For periodic motion, we assume that 

w(x, t) = Wo(x) exp(-icot), ~bx (x, t) = qb0(x) exp(--icot), (92) 

where co denotes the frequency of natural vibration and W0 and qb 0 denote the deflection 

and rotation mode shapes. Substitution of (93) into (92a,b) yields the equations 

( ~ x  0 ) ( dW°t  -/xcoeqb0 = 0, (93a) d E1 + G A K s  Ckx+ dx / 
dx 

d GAKs ~o + - Ioco2W0 = 0. (93b) 
dx dx / 3  

For a simply supported beam, we assume solution of the form, 

Wo(x) = W sin (mrcx/L), *0(x) = qb cos (mzrx/L), (94) 

which satisfy the boundary conditions Wo(0) = 0, Wo(L) = 0, where L is the length of 

the beam. Substituting (94) into (93a,b), we obtain the eigenvalue problem 

L-Z-y-E1 + KsGA -/2o22 ~ - K s G A  • 0 
-~-KsGA mZTr 2 . . . . .  2 W = 0 " (95) 

L---L-Z- As t ~  -- tOW 

Setting the determinant of the coefficient matrix in (95) to zero, we obtain the frequency 

equation 

2 __ KsGA = 0, 4 12 + m27~2~ L + 1 tom+ L 4 I0 12corn-- KsGA L 2 I0 

(96) 
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Table 1. Comparison of the pure flexural natural frequencies (x 102) obtained by the RIE elements with 
the exact frequencies of a simply supported beam. 

Linear elements Quadratic elements 

m N =  10 t N = 2 0  N = 4 0  N = 5  N = 1 0  N = 2 0  Eq.(96) 

1 0.28378 0.28121 0.28058 0.28045 0.28037 0.28036 0.28036 
2 1.1234 1.0850 1.0758 1.0775 1.0730 1.0727 1.07270 
3 2.4944 2.3184 2.2771 2.3078 2.2666 2.2638 2.26356 
4 4.3792 3.8821 3.7693 3.9282 3.7469 3.7335 3.73259 
5 6.7721 5.6986 5.4608 5.7735 5.4291 5.3874 5.38433 
6 - 7.7157 7.2887 - 7.2625 7.1600 7.15239 
7 - 9.9018 9.2119 - 9.2226 9.0096 8.99313 
8 - 12.238 11.205 - 11.303 10.910 10.8783 

t N denotes the number of elements used in the total span of the beam. 

where g2 I~ = E I / (G A Ks L 2 ). Equation (96) can be used to determine the natural frequency 

corn for various values of m. 

For pure shear mode, set W to zero in (95) [or I0 ~ e~z in (96)] and obtain 

o9 s = [(KsGa/I2)(m27r2~2 + 1)] 1/2, o~) = ( K s G A / I o )  1/2. (97) 

It is clear from (96) that both shear deformation and rotatory inertia have the effect of 

reducing the frequency of natural vibration. 
The first eight natural frequencies of pure flexural frequencies obtained using the reduced 

integration elements (RIE), interdependent interpolation element (IIE), and superconver- 

gent element (SCE) of (89) are compared with the analytical results in tables 1, 2, and 3, 

respectively. The following values of the parameters were used. 

E =  1.0, v-----0.25, Ks = 5, h =  10.0, A =  10.0, L =  100.0. (98) 

F o r  the  s ame  n u m b e r  o f  degrees  o f  f r e e d o m ,  I IE  p red ic t s  m o r e  accura te  resul t s  than  R I E  

( c o m p a r e  c o l u m n s  2,3, and  4 o f  t ab le  1 wi th  c o l u m n s  3,4, and  5 o f  t ab le  2). Surpr i s ing ly ,  

the  quadra t i c  R I E  (wi th  a lmos t  d o u b l e  the  deg rees  o f  f r eedom) ,  y i e l d s  very  accura te  resul t s  

in c o m p a r i s o n  wi th  IIE.  T h e  supe rconve rgen t  e l e m e n t  (SCE)  s e e m s  to u n d e r p r e d i c t  the  

f r equenc ies  (i.e.,  f r equenc ies  conve rge  to l ower  va lues  than  the exact) .  Th is  migh t  be  due  

to the  i ncons i s t ency  o f  the mass  mat r ix .  I t  shou ld  be  no ted  that  a ce r ta in  m i n i m u m  n u m b e r  

o f  e l e m e n t s  are  n e e d e d  to p red ic t  a de s i r ed  n u m b e r  o f  lowes t  f r equenc ies .  In  genera l ,  the  

Table 2. Comparison of the pure flexural natural frequencies (x 10 2) obtained by the IIE elements with 
the exact frequencies of a simply supported beam. 

m N = 5 N = 10 N = 20 N = 40 Eq.(96) 

1 0.28050 0.28039 0.28037 0.28037 0.28036 
2 1.0801 1.0743 1.0731 1.0728 1.07270 
3 2.3303 2.2783 2.2671 2.2644 2.26356 
4 4.0087 3.7975 3.7483 3.7365 3.73259 
5 - 5.5756 5.4310 5.3959 5.38433 
6 - 7.5920 7.2610 7.1794 7.15239 
7 - 9.8401 9.2082 9.0466 8.99313 
8 - 12.280 11.258 10.973 10.8783 
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Table 3. Comparison of the pure flexural natural frequencies (x 10 2) obtained by the SCE elements with 
the exact frequencies of a simply supported beam. 

m N = 5 N = 10 N = 20 N = 40 Eq. (97) 

1 0.28040 0.28033 0.28031 0.28031 0.28036 
2 1.0750 1,0708 1,0700 1.0698 1.07270 
3 2.2834 2.2472 2.2399 2.2382 2.26356 
4 3.7869 3.6657 3.6349 3.6275 3.73259 
5 - 5.5756 5.1163 5.0957 5.38433 
6 - 8.1943 6.5812 6.5377 7.15239 
7 - 9.4363 7.9633 7.8876 8.99313 
8 - 10.306 9.2257 9.1117 10.8783 

frequencies predicted with a fixed number  of  elements will not always be  pure bending 

frequencies; the set may  also contain pure shear frequencies (as is the case here when 10 

linear RIE elements or  5 I IE  elements  are used). 

Table 4conta ins  the first ten pure shear frequencies obtained using RIE (linear elements)  

and IIE. The performance  o f  RIE is superior to I IE in predicting the pure shear frequencies. 

l iE yields frequencies which converge slowly as the mesh  is refined. The convergences o f  

both RIE and IIE are not monotonic,  especially for higher frequencies. Table 5 contains 

results obtained using RIE with quadratic elements. The convergence is very good. The 

superior performance of  RIE over  l iE is due to the fact that the stiffness matrix of  l iE is 

based on constant shear strain representation. 

7. Summary 

A complete  set of  finite element models  of  the Timoshenko beam theory is presented using 

displacement and assumed strain-displacement approaches.  Alternative finite e lement  for- 

mulations of  the Timoshenko beam theory which give the 4 x 4 superconvergent  stiffness 

matrix are presented using assumed strain-displacement formulat ion of  the conventional 

Timoshenko beam theory and the displacement  formulation of  a modified fo rm of  the Tim- 

oshenko beam theory in which the total transverse deflection is decomposed  into bending 

and shear deflections. In the latter case, the final equations were recast  only in terms of the 

Table 4. Comparison of the pure shear natural frequencies obtained by various elements with the exact 
frequencies of a simply supported beam. 

m Eq. (97) RIE(10) RIE(20) RIE(40) IIE(10) IIE(20) IIE(40) 

0 0.20000 0.20000 0.20000 0.20000 0.22771 0.20801 0.20206 
1 0.20245 0.20165 0.20225 0.20240 0.22789 0.21045 0.20454 
2 0.20964 0.20669 0.20892 0.20946 0.22841 0.21764 0.21179 
3 0.22109 0.21534 0.21976 0.22077 0.22917 0.22921 0.22341 
4 0.23620 0.22797 0.23443 0.23578 0.23007 0.24465 0.23880 
5 0.25431 0.24495 0.25259 0.25391 0.23099 0.26342 0.25737 
6 0.27483 0.26639 0.27394 ~27466 0.23185 0.28502 0.27856 
7 0.29726 0.29150 0.29824 0.29759 0.23257 0.30899 0.30194 
8 0.32119 0.31742 0.32532 0.32235 0.23311 0.33492 0.32713 
9 0.34633 0.33823 0.35505 0.34870 0.23344 0.36246 0.35388 
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Table 5. Comparison of the pure shear natural frequencies obtained by various elements with the exact 
frequencies of a simply supported beam. 

Mesh m - - 0  m = l  m = 2  m = 3  m = 4  m = 5  m = 6  m = 7  

Exact 0.20000 0.20245 0.20964 0.22109 0.23620 0.25431 0.27483 0.29726 

Q(5) # 0.20000 0.20242 0.20926 0.21957 0.23224 0.26458 0.27837 0.30496 
Q(10) 0.20000 0.20245 0.20962 0.22101 0.23602 0.25403 0.27459 0.29735 
Q(20) 0.20000 0.20245 0.20964 0.22109 0.23619 0.25429 0.27482 0.29728 

total deflection and rotation at the nodes, and the resulting finite element stiffness matrix 

is 4 × 4 for (bending only). The developments are then extended to the dynamic case. 

Numerical results of  natural frequencies indicate that the reduced integration model  (RIE) 

or its equivalent predict both flexural and pure shear frequencies accurately, provided a 

sufficient number of  elements are used. The interdependent interpolation element (liE) 

predicts flexural frequencies accurately but exhibits slow convergence, and it is poor in 

predicting pure shear frequencies. This is possibly due to the fact that l iE is based on 

approximation functions derived from a constant state of  shear strain. The constant state 

of  shear strain is statically correct but it is incorrect for dynamic problems, as can be seen 

from (91a,b) or (93a,b). 
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