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ABSTRACT

There is now a substantial body of evidence that suggests business cycles are asymmetric.
However, the evidence has been accumulated using a wide array of statistical techniques and,
consequently, is based on various definitions of asymmetry. This paper examines several parametric
models that have been used to study asymmetries in real GNP. Although these models capture

asymmetries in very different ways, their dynamic properties are remarkably similar.



On The Dynamic Propertics of Asymmetric Models of GNP
Allan D. Brunner!

I. Introduction

Linear time-series models have been used widely and quite successfully by economists for
several decades. These models are based on the classical framework set forth by Box and Jenkins
(1976), which assumed a linear model and a Gaussian, homogeneous error distribution. These
assumptions, however, place strong restrictions on the time-series behavior of economic variables.
Most impcrtantly, they imply several types of symmetric behavior. For example, positive and negative
shocks of equal magnitude have symmetric effects on the dependent variable using such a model.

Although there is now a substantial body of evidence that suggests that business cycles are not
symmetric, that evidence is based on a variety of statistical models and, implicitly, on a variety of
definitions for asymmetry. Initially, evidence of asymmetry was based on nonparametric tests. In a
seminal article, Neftci (1984) proposed a nonparametric test for "steepness" in economic time-series.
He concluded that contractions are steeper than expansions for postwar unemployment data, and
Rothman (1991) confirmed those results. DeLong and Summers (1986), using an alternative test for
steepness, found similar results. Sichel (1993) proposed a test for "deepness" and found evidence in
unemployment variables that contractions are deeper than expansions,

More recently, the evidence of asymmetries has been based on various parametric models.
While these models have properties that overlap somewhat, they can be categorized roughly by the

way they relax the classical assumptions. One category has focused on the nonlinear behavior of the
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conditional mean. For example, Terasvirta and Anderson (1991), Potter (1991b) and Beaudry and
Koop (1993) have used the threshold autoregressive model to study cyclical asymmetry. Their results
generally show that contractions are less persistent than expansions.

More recently, economists have turned their attention to the time-varying properties of higher
moments and, in particular, to conditional heteroskedasticity. Again, there are a number of such
models, including the autoregressive conditional heteroskedasticity (ARCH) model, the generalized
ARCH (GARCH) model, and the exponential GARCH (EGARCH) model. Conditional
heteroskedasticity has been found in many economic variables, including employment data, GNP,
consumption, investment, inventories, durable and nondurable goods, asset prices, and producer and
consumer prices. For examples, see Engle (1982), Bollerslev (1986), Nelson (1991), French and
Sichel (1993), and Brunner and Hess (1993).

A final category of models relaxes the Gaussian error distribution assumption. The most
general is Gallant and Tauchen’s (1990) seminonparametric (SNP) model, which accommoclates arbi-
trary departures from Gaussianity and conditional heterogeneity. Brunner (1992, 1994) and Hussey
(1992) have used SNP models to assess the properties of conditional distributions of several economic
variables. Each study found strong evidence that the shape and time-varying characteristics of
distributions during contractions are quite different from distributions during expansions.

This paper compares several asymmetric models of real GNP growth. Although these models
differ dramatically in the way they model asymmetries, the dynamic properties of the models are
remarkably similar. In particular, the most prominent feature of ‘each model is conditional hetero-
skedasticity: The conditional variance of output increases dramatically during contractionary episodes.
In addition, there is some evidence of nonlinear behavior in the conditional mean. Overall, this
behavior is analogous to the notions of steepness and deepness that is suggested by nonparametric

definitions of asymmetry.



1I. Modelling Conditional Asymmetries

This section briefly outlines a framework for modeling conditional asymmetries, allowing i
departures from linearity, Gaussianity, and homogeneity. This framework nests several models that
have been used to study asymmetries, including the SETAR model, the SNP model, the ARCH family
of models, and the EGARCH model. These models will be used to investigate conditional asymme-
tries in next section.

Let Ay, denote the growth rate of real GNP, and let X;.; denote a vector containing the history

of Ay,. Consider the following framework for modelling y,:

Ayr = f(xr—l) + 0,°%
o, = h(x,_) )

4

Z, ~8(x,_, )
In equation (1), the conditional mean, the conditional variance, and the error distribution are state-
dependent functions of Xi.;- In this framework, f(-) allows for possible nonlinearities in the condition-
al mean, h(-) permits conditional heteroskdasticity, and g(-) permits more general forms of non-
Gaussianity and conditional heterogeneity. By contrast, if f(-) is a linear function of X;.1» h(*) is time-
invariant, and g(-) is Gaussian and time-invariant, the model in equation (1) is a standard auto-
regressive time-series model.

This framework nests several models that permit departures from linearity, homogeneity, and

Gaussianity. The remainder of this section outlines a few of these models that will be used in the next
section to study the asymmetric properties of real GNP.

SETAR models. Although many nonlinear models have been developed, the threshold



autoregressive model has been used quite successfully to study bustness cycle asy mmetries.> Potter
(1991b), for example, has introduced the self-exciting threshold autoregressive (SETAR) model. The
SETAR model relaxes both the linearity and homoskedasticity assumptions by allowing the parameters
of the autoregressive model to switch between various states. The switches are driven by the value of
the current state vector (x, ;). The SETAR(k,d,p) model has the following general form:

P

Ay, = Y0, Ay, oz, ifAy €4 (=10
= ()
z, ~ N(@O,1)

where p denotes the number of autoregressive lags; o, is a constant; k denotes the number of possible
states; d denotes the specific lag, Ay, g4, that drives the regime shifts; and A; denotes the range of
values for Ay, 4 that are associated with regime i, i=1,. k.

ARCH-type Models. In a seminal article, Engle (1982) introduced the ARCH model, which

models the conditional variance as a function of lagged, squared forecast errors. Bolerslev (1986)
extended the ARCH model -- called the generalized ARCH (GARCH) model -- to permit the effects of
an increase in conditional variance to decay slowly over time. One drawback to the ARCH and
GARCH models is that both positive and negative forecast errors lead to an increase in conditional
variance. Brunner and Hess (1993), using state-dependent models of conditional variance (5DM-V),
relaxed this symmetry condition and allowed the conditional variance to be an asymmetric function of
either lagged levels of the dependent variable or lagged forecast errors.> The AR(p) model with

SDM-V(k,I,m) errors can be written as follows:

2 Fora complete treatment of nonlinear models, see Priestley (1988, 1989). Hamilton’s (1989)
switching regime model has also been used extensively to study business cycle asymmetries. That
model does not fit into the framework in this paper, however, since the model depends on &n
unobservable, exogenous variable, rather than the history of the dependent variable.

3 Nelson’s (1991) EGARCH model allows for asymmetric effects of forecast errors on the
conditional variance but does not nest ARCH and GARCH models.
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p
Ayt = Z ej.Ayt-j + ot.zt
j=1

S I . L, R )
0, = 0 * EBU'(A)’,_]‘—YU) + Zsz'(Z,.j_Ylj) + Eﬁy'or—j
j=1 Jj=1 j=1

z, ~ N(@O,1)

t

SNP Models. Gallant and Tauchen’s (1990) seminonparametric (SNP) models are able to
accommodate arbitrary departures from both Gaussianity and homogeneity. The SNPRX(p,K,.K,)

model can be written as follows:

p
Ayt = Z ej'Ayt—j + Ut'Zt
j=1

, , )
o, = [00 + Z B,-’A}’,_j]z
Jj=1

g, - 8(x.,)

Gallant and Tauchen model g(-) as a Hermite polynomial expansion of a Gaussian density, which can
approximate any general departures from normality. The degree of the polynomial is K,. In addition,

the parameters of the polynomial are allowed to be Ky-degree polynomials in x,_, in order to capture

more general forms of heterogeneity. See Gallant and Tauchen (1990) for more technical details.*

III. Asymmetric Models of Real GNP
Th's section of the paper describes the results of estimating three asymmetric models of real
GNP -- the SETAR model, the SNPRX model, the SDM-V model. The data are 175 quarterly

observatiors of U.S. real GNP growth in $1982 from 1947 to 1990. An "optimal" model in each

4 Gallant and Tauchen (1990) used the absolute value of Ay in their specification of h(-), which
imposes symmetry with respect to Ayy.;. Brunner (1992) found the asymmetric relationship in
equation (4) to be important in stabilizing the conditional heterogeneity found in real GNP.

5



category was chosen on the basis of several model selection criteria.’ The optimal specifications are
the SETAR(2,2,2) model, the SNPRX(2,2,2) model, and an AR(2) model with SDM-V(0,1,1) errors.
A simple AR(2) model will serve as the benchmark for the analysis.

Table 1 presents the results of several diagnostic tests that were performed on the residuals
from each selected model. These tests are designed to detect model misspecification related to
linearity, Gaussianity, and homogeneity. The first two tests are standard tests for detecting zvidence of
non-Gaussianity -- see Greene (1990). The remaining tests are Lagrange multiplier (LM) tests of the
type suggested by Engle (1982), Breusch and Pagan (1978), White (1982), Newey (1985) and Tauchen
(1985). The LM tests can be divided into misspecification tests for the conditional mean and the
conditional variance. For mean tests, the residuals from each model were regressed on lagged values
of the residuals (serial correlation), and on lagged values and lagged squared-values of real GNP
growth rates (level effects). Likewise, for variance tests, squared residuals were regressed on lagged
values of squared residuals (ARCH effects), and on lagged values and lagged squared-values of real
GNP growth rates (level effects).

The results of the diagnostic tests for the simple AR(2) model suggest that real GNP growth is
not well captured by a linear model with Gaussian, homogeneous errors. There is statistically
significant evidence of kurtosis, as well as marginally-significant evidence of nonlinearities in the
conditional mean and of time-varying conditional variance. The SETAR model, which modlels
heteroskedasticity and nonlinearities in the conditional mean, provides somewhat mixed results.
Although the model removes any evidence of nonlinearity in the conditional mean, there is still
significant evidence of non-Gaussianity and marginal evidence of heterogeneity.

The SNPRX model, which models both non-Gaussianity and heterogeneity, appears to pass all

> The model selection process is described in a supplemental appendix available from the author
upon request. An EGARCH model was also estimated and provided nearly identical to those for the
SDM-V model.



of the diagnostic tests. There is a very marginal amount of ARCH left in the residuals, however, as
evidenced by the p-value at the fourth lag. That could be the result of the way the SNP framework
models the rime-varying conditional heteroskedasticity, as a function of lagged output rather than
lagged forecast errors. The AR(2) model with SDM-V errors also appears to perform well, even
though it relaxes only the heteroskedasticity assumption.

Table 2 presents other criteria for evaluating the asymmetric models of real GNP growth. The
number of estimated parameters and the value of the negative log-likelihood function are listed in the
first and second rows of the table, respectively. Since each model nests the AR(2) model, likelihood
ratio tests for this restriction are reported in the third row of the table. Conditional symmetry can be
rejected at tie 1% significance level in all cases. The final rows of the table present two standard
criteria for comparing non-nested models. Minimizing the Akaike information criteria (AIC) results in
selecting the SNPRX model. The Schwarz criterion, which is known to be more conservative than the
AIC in small samples, selects the SETAR model (the smallest of the asymmetric models).

The results presented so far are somewhat inconclusive. While there is no doubt that real
GNP has asymmetric properties, it is unclear what the optimal specification for asymmetry should be.
The SNPRX model is the only model that is both suggested by a model selectionvcriterion (the AIC)
and passes tae battery of diagnostic tests. The SDM-V model passes the diagnostic tests, but finishes
second-to-last using either model selection criteria. Although the SETAR model is chosen by the
Schwarz criteria, it does not pass all of the diagnostic tests. Rather than choose an optimal model at
this stage, the next section takes a closer look at the asymmetric properties of these models using

analytical tools discussed in Potter (1991a), Brunner (1992), and Gallant, Rossi, and Tauchen (1993).

IV. Asymmetric Properties of Real GNP
Nonlinearities. The SETAR(2,2,2) specification entails an AR(2) model, with the parameters

of the mode! switching between two sets of values based on whether output growth two periods in the

7



past was negative or positive. The parametér estimates (and their standard errors) are:

A)” = 1.57 + .31 Ayt_l + .20 Ayt_z + 3.50 Z, ifAyt_Z >0
28 (39 (1.6) (19.7)
%)
Ay, = -161 + 44 Ay - 79 Ay, + 482z ifAy, <0
(-13) (2.0 (-19) - (10.8)

and indicate both a nonlinear conditional mean and conditional heteroskedasticity.

In order to examine the nonlinear properties that ar?: implied by the SETAR model, Figures 1a
through ]é plot responses of both y,,; and o,,; to impulses of various magnitudes -- z, = +2. +1, -1,
and -2.° The impulse response functions in Figure 1a ha\/é been conditioned on output growth
having been at its unconditional mean for the two preceding quarters (Ay, | = Ay, = 3.2 percent).
Although the responses of the level of GNP to each shock are fairly similar, there is some evidence cf
nonlinearities: Note that the responses to positive shocks are fairly gradual, while the effects of a
negative shock accumulate somewhat more quickly. By contrast, the responses of the conditional
standard deviation are radically different. Negative shocks lead to strong increases in uncer:ainty
about future values of output, since these shocAks put GNP growth near zero. Positive shocks have
little impact on the conditional variance, howeVer, because the model has been conditioned on output
growth being greater than zero.

Figure 1b shows the responses when output growth has been about 1 standard deviation below
its unconditional mean (-1.1 percent) in two preceding periods. In this case, there appears to be more
evidence of nonlinearities. With respect to the level of GNP, even bad news leads quickly o
expansionary growth after a couple of quarters, as a result of the negative second autoregressive

coefficient in equation (5). In addition, similar to the results by Beaudry and Koop (1993), positive

® The impulse response functions were simulated in RATS 4.0, using 10,000 replications. The
simulations are based only on estimated model parameters and ignore any additional structure implied
by the diagnostic tests presented in Table 1.



shocks arz much more persistent than negative shocks. Indeed, the cumulative effect of a negative
shock is not much greater than the initial impulse.

Figure 1c shows the responses when the SETAR model has been conditioned on a very good
state-of-the-world -- GNP growth has been one standard deviation above its unconditional mean (about
7.4 percent growth). The responses of GNP are nearly identical to those shown in Figure la. In
addition, since output growth is almost always positive after any shock in this state, uncertainty about
future valies of output growth is not affected by new information.

Non-Gaussianity. The SNPRX(2,2,2) model was chosen as the optimal SNP specification,

which indicates statistically significant departures from both Gaussianity and heterogeneity. Figure 2
shows twc possible densities from the SNPRX model. The density to the right is conditioned on 7.4
percent growth in two previous quarters, the density to the left is conditioned on minus 1.1 percent in
the two previous quarters. While the density on the right -- corresponding to a contraction in GNP --
has a larger conditional variance, both densities appear to be fairly Gaussian. Table 3 presents a more
comprehensive analysis of possible departures from Gaussianity. Each row corresponds to a different
set of conditioning information (previous values), ranging from 13.9 percent growth to minus 7.5
percent in two previous quarters. The values in columns 2 through 9 are cumulative probabilities
found in tte tails of the densities relative to various critical values. For reference, the last number in
each columrn (at the bottom of the table) corresponds to the probability value associated with a
standardized Gaussian distribution.” These results are consistent with the features of the SNPRX
model discussed earlier (Figure 2): After correcting for heteroskedasticity, the SNPRX model is fairly
Gaussian when growth has been close to its unconditional mean. Departures from Gaussianity appear

only when growth has been very strong or very weak.

7 The numbers in the table are analogous to the cumulative values used in Kolmogrov-Smirnov
tests; see Bradley (1968, pg. 296).



Heterogeneity. The SNPRX(2,2,2) specification also indicate a departure from homogeneity.
The results presented in Table 3, however, suggest that the model is primarily capturing conditional
heteroskedasticity and not higher-order forms of heterogeneity. Further evidence is presented in
Figure 3, which plots the model’s impulse response functions using the same conditions as in Figure 1.
As with the SETAR model, there is some evidence of nonlinearity in the conditional mean and a sharp
increase in the conditional standard deviation during contractionary episodes.

Since heteroskedasticity appears to be the most important feature of the SETAR and SNPRX

models, it could be more efficient to use a model with this distinct feature. Recall that an AR(2)
model with SDM-V(0,1,1) errors was chosen as the optimal specification within the SDM-V class of

models. The parameter estimates for this model are:

Ay = 158 + .28 Ay + 17 Ayt_z + O

t t-1

3.5 GO0 1.9)

%

(6)

2 - 1232+ 312(z, - 95 )2+ .83 o,
14) (4 (-17)°  (10.8)

-.Q
|

Note that with this specification of the conditional variance, uncertainty decreases for some positive
shocks and increases sharply for all negative shocks. As before, uncertainty is fairly autocorrelated,
and the effects of "news" take several periods to die out.

Figure 4 shows the impulse response functions based on an AR(2) model with SDM-V((,1,1)
errors. Since Ay, is a linear function of x,_; and o, is not a function of x, ; in this model, the impulse
response functions are impervious to all sets of conditioning information. Moreover, responses to the
level are symmetric with respect to the magnitude of the impulse; that is, a +2 shock has the exact
opposite response as a -2 shock. Finally, as suggested by the previous results, the impulse response
functions for the conditional variance are remarkably similar to impulse responses using the SETAR

and the SNPRX models. Still, although negative shocks increase uncertainty about future values of

10



output growth, positive shocks have little impact on the conditional variance. The small impact of
positive "news" is similar to the behavior in Figures 1a and 3a, however, and presumably reflects the

fact that the SDM-V model averages across all values of X;.1-

V. Conclusion

This paper compares several asymmetric models of real GNP growth. While it is not clear
which model is best for capturing asymmetries in real GNP, each asymmetric model studied in this
paper exhibits the same dominant feature: During contractionary phases of the business cycle, the
conditional variance of forecasts increases dramatically. In addition, there is some evidence of

nonlinearities in the conditional mean, as evidenced by the SETAR model.

11
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Table 1. Diagnostic Tests on Standardized Residuals
From Various Models of Real GNP Growth
(all values are significance levels)

Model Specification

Diagnostic Lag Length AR(Q2) SETAR(2,2,2) SNPRX(2,2,2) SDM-V(0,1,1)
Skewness - .78 .07 30 33
Kurtosis - .02 <01 .52 47
Serial Corr. 1 .78 .84 .61 .70
in Mean 2 .68 .88 .87 .83
3 40 .65 .63 .63
4 71 .97 .81 .90
Level Effects 1 42 .81 49 .54
in Mean 2 .18 .94 .61 41
3 11 35 .40 28
4 33 .59 .74 .64
ARCH Errors 1 30 .63 21 A48
2 25 .89 45 .78
3 31 45 .14 .50
4 .63 .95 .70 .92
Level Effects 1 .16 12 .83 .96
in Variance 2 .09 .26 .83 .67
3 .16 .18 .88 .90
4 11 85 71 .49
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Table 2. Summary Information for Various Models

of Real GNP Growth

Mode! Specification

AR(Q2) SETAR(2,2,2) SNPRX(2,2,2) SDM-V(0,1,1)
Number of 4 6 23 7
Parameters
-L.L.F. Value 478.2 469.3 446.1 472.2
Symmetry Test - <.001 <.001 .01
AlIC 482.2 475.3 469.1 479.2
Schwarz 488.5 484.7 505.2 490.2

Note: The test for symmetry is a likelihood ratio test, comparing each asymmetric model to the

simple AR(2) model.
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Table 3. Cumulative Probability Under
Standardized SNPRX(2,2,2) Densities

Area Relative to Various Critical Values

Previous
Values
<-233 <-1.65 <-1.28 <-0.84 > 0.84 >1.28 > 1.65 > 2.33

13.9 .00 .00 .02 11 15 11 .09 .07
11.8 .00 .02 .06 15 10 .04 .03 .03
9.6 .01 .04 .09 .18 17 .07 .03 .01
7.4 .01 .05 .10 .20 .20 .09 .04 .01
53 .01 .06 .10 20 21 .10 .04 .00
3.2 .01 .05 .10 .20 .20 .10 .04 .01
o ol 05 10 20 20 09 04 0l
-1.1 ..o - 05 - .10 .19 .19 .09 .04 .01
3.2 .01 .05 .10 .19 .19 .08 .03 .01
54 .01 .05 .09 .19 .18 .08 .03 .01
-7.5 .01 .04 .09 .19 17 .07 .03 .01

Gaussian

Density .01 .05 .10 .20 .20 .10 .05 .01

Note: Each row denotes a density that is conditioned on two lags of GNP growth with values shown
in column one. Critical values are standard deviations relative to the conditional mean, based on the
conditional mean and variance of the corresponding density.
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Figure 1. Impulse Response Functions Using the SETAR Model
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Figure 2. Conditional Densities Using the SNPRX Model
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Figure 3. Impulse Response Functions Using the SNPRX Model

(a) y(t-1) = y(t-2) = 3.2 percent
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Figure 4. Impulse Response Functions Using the SDM-V Model
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Supplemental Appendix

This appendix describes how specifications of the SNPRX, the SDM, and the EGARCH
models were obtained for real GNP growth rates. The SETAR specification used in the paper is
nearly identical to the specification discussed in Potter (1991b). Tables A1-A3 present detailed
exploraticns of the likelihood surface for each of the models. To illustrate the selection process,
consider the results shown in Figure A1. Each row of the table corresponds to a different
SNPRX(r,K,,K,) model. The first three columns of the table describe characteristics of the model.
The total number of estimated parameters for the model is listed in column four. The fifth column
contains tae value of the average objective function, evaluated at the optimum.

The p-values contained in columns 6 through 8 correspond to the p-values of a chi-square
statistic for a test that compares the model in that row to its SNP successor for that column. For
example, the p successor of an SNPRX(1,2,1) model is an SNPRX(2,2,1) model. The chi-square
statistic for comparing the two specifications is (2)(171):(1.29797 - 1.22769) = 24.04 with (14 - 9) =
5 degrees of freedom. Since the corresponding p-value is less than 0.01, the SNPRX(1,2,1) model is
easily rejected in favor of the SNPRX(2,2,1) model. Likewise, the p-value for comparing an
SNPRX(2,2,1) to an SNPRX(2,2,2) model -- the Ky successor -- is 0.01, which provides considerable
evidence towards rejecting the SNPRX(2,2,1) in favor of an SNP(2,2,2).

Based on p-values, the results in Table Al can be summarized as follows. First, the
appropriate lag length is 2. Second, there is some evidence of departures from Gaussianity (K,>0).
When p=Z, a quadratic polynomial is preferred to no polynomial at the 1% level, but cannot be
rejected ir favor of a cubic polynomial. Third, there is also strong evidence of conditional heteroge-
neity (Ky>0) -- at the 1% level, the SNPRX(2,2,0) model is easily rejected in favor of an

SNPRX(2 2,1) model, and an SNPRX(2,2,1) models is rejected in favor of an SNPRX(2,2,2) model.
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Based on p-values, the optimal model is an SNPRX(2,2,2) model ®

The final two columns of Table Al present two alternative mcthods of model seleciion which
place more weight on selecting a parsimonious model than does selecting according to p-values. The
first criterion is the Akaike information criterion (AIC). The AIC adds a "penalty” of py/N to the
objective function. Minimizing the AIC also results in selecting the SNPRX(2,2,2) specification. The
second criterion is the Schwarz criterion which adds a penalty of py-log(N)/2N to the objectiv:
function. The Schwarz criterion, which is known to be more conservative than the AIC in small
samples, selects the SNPRX(2,2,0) model. Since the SNPRX(2,2,0) and SNPRX(2,2,1) models did
not pass the diagnostic tests described in the text and the SNPRX(2,2,2) did, the optimal specification
for real GNP appears to be the SNPRX(2,2,2) model.

The SDM-V and the EGARCH models, shown in Tables A2 and A3, were chosen in a similar
fashion. As before, the general rule was to select the most parsimonious model that was suggested by

a model selection criterion and that passed the diagnostic tests.

8 Although larger models could have been fit, it did not seem prudent to do so as the
SNPRX(2,2,2) model already involves a saturation ratio of about 7 observations per parameter
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Table Al. SNPRX Models of Real GNP, 1947:II - 1990:1V
(171 effective observations)

p-values | Model Selection
P K, Ky Po sn(©) P K, Ky AlC Schwarz
1 0 0 4 1.34634 .02 11 1.36973 1.40648
1 2 0 6 1.33353 <.01 .01 .01 1.36862 1.42374
1 2 1 9 1.29797 <.01 .03 1.35060 1.43328
1 2 2 12 1.27122 <.01 1.34140 1.45163
1 3 0 7 1.31556 <.01 1.35650 1.42080
2 0 0 6 1.32105 11 <.01 1.35614 1.41126
2 2 0 8 1.27891 67 .85 .01 1.32569 1.39918
2 2 1 14 1.22769 .10 .01 1.30956 1.43817
2 2 2 23 1.15670 .05 1.29120 1.50248
2 3 0 9 1.27881 .67 1.33144 1.41412
3 0 0 8 1.30818 .01 1.35496 1.42845
3 2 0 10 1.27657 .85 .01 1.33505 1.42691
3 2 1 19 1.20089 01 1.31200 1.48654
3 2 2 37 1.09593 1.31230 1.65219
3 3 0 11 1.27647 1.34080 1.44185

Ncte: P indicates number of autoregressive lags in the conditional mean and the conditional
variance. K,>0 indicates departure from Gaussianity and Kx>0 indicates departure from homogeneity.
py indicates the number of estimated parameters. The log-likelihood function values -- s\(0) -- are
not directly comparable to the values for the SDM or EGARCH models, since the objective functions
are slightly different.
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Table A2. SDM-V Models of Real GNP, 1947:1I - 1990:1V
(171 effective observations)

p-values Model Selection
P K L M Po sn(©) P K L M AIC Schwarz
1 0 0 0 3 2.80571 .08 1.00 40 2.82325  2.85081
1 0 ] 0 5 2.80042 .07 1.00 <01 <01 2.82966 2.87559
1 0 2 0 7 2.76349 .08 .20 .23 2.80443  2.86873
1 1 0 0 5 2.80571 .08 .40 2.83495  2.88088
1 1 1 0 7 2.80042 .08 <.01 281136  2.90566
1 1 2 0 9 2.75395 .10 2.80658  2.88926
1 0 1 1 6 2.77189 .05 12 2.80698  2.86210
1 0 1 1 8 2.75933 .10 2.80611 2.87960
2 0 0 0 4 2.79671 .05 1.00 .39 2.82010  2.85685
2 0 1 0 6 2.79114 .03 1.000 <01 <01 2.82623 2.88134
2 0 2 0 8 2.75434 .02 94 31 2.80112  2.87461
2 1 0 0 6 2.79671 .01 .39 2.83180  2.88692
2 1 1 0 8 2.79114 .03 <.01 2.83792 291141
2 1 2 0 10 2.75395 .02 2.81282  2.90468
2 0 ] 1 7 2.76112 .07 12 2.80206  2.86636
2 0 2 1 9 2.75137 .03 2.80400  2.88668
3 0 0 0 5 2.78588 28 25 2.81512 2.86105
3 0 1 0 7 2.77787 1.00 <01 <01 2.8188] 2.88311
3 0 2 0 9 2.73744 1.00 1.00  2.79007 2.87275
3 1 0 0 7 2.77835 .92 2.81929  2.88359
3 1 1 0 9 2.77787 <.01 2.83050 291318
3 1 2 0 11 2.73744 2.80177  2.90282
3 0 1 1 8 2.75175 .09 2.79853  2.87203
3 0 2 1 10 2.73744 2.79592  2.88778

Note: P indicates the number of autoregressive parameters in the conditional mean. K and L
denote the number of lags of output growth and residuals, respectively, in the conditional variance. M
indicates whether the conditional variance was allowed to be autoregressive. py indicates the number
of estimated parameters. The log-likelihood function values -- sN(0) -- are not directly comparable to
the values for the SNPRX model, since the objective functions are slightly different.
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Table A3. EGARCH Models of Real GNP, 1947:11 - 1990:1V
(171 effective observations)

p-values Model Selection
P L M Po sn(©) | P L M AIC Schwarz
1 0 0 3 2.80571 .08 35 2.82325 2.85081
1 1 0 5 2.79964 .09 .03 <0l  2.82888 2.87481
1 2 0 7 2.77818 .04 .01 2.81912 2.88342
1 1 1 6 2.77125 .07 12 2.80634 2.86146
1 2 1 8 2.75861 .05 2.80539 2.87888
2 0 0 4 2.79671 .05 39 2.82010 2.85685
2 1 0 6 2.79120 .03 .01 <.01 2.82629 2.88141
2 2 0 8 2.76563 .02 .03 2.81241 2.88590
2 1 1 7 2.76164 .08 .09 2.80258 2.86688
2 2 1 9 2.74778 .09 2.80041 2.88309
3 0 0 5 2.78588 34 2.82146 2.86739
3 1 0 7 2.78586 .01 <.01 2.82680 2.89110
3 2 0 9 2.75577 .03 2.80840 2.89108
3 1 1 8 2.74988 25 2.79666 2.87015
3 2 1 10 2.74187 2.80035 2.89221

Note: P indicates the number of autoregressive parameters in the conditional mean. L denotes
the number of lags of residuals in the conditional variance. M indicates whether the conditional
variance was allowed to be autoregressive. pg indicates the number of estimated parameters. The log-
likelihood function values -- s\(0) -- are not directly comparable to the values for the SNPRX model,
since the objective functions are slightly different.
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