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On the Dynamic Response of a Beam
to a Randomly Moving Load

The problem considered is that of an infinitely long elastic beam subject to a moving

concentrated force whose position is a stochastic function of time, X ().

The expected

deflection and expected bending moment are analysed, with special altention being given
fo the case of a stationary process X (£) and to the case in which X (f) is a Wiener process.

1 Introduction '

Tlm pYNAMIC behavior of structures under the in-
fluence of moving loads is a subject of considerable engineering
importance, and much attention has been given to the correspond-
ing mathematical problems. This is especially true for the
simpler struetures, such as strings and beams, for which analytical
complications are at & minimum.

Previously, work! on these problems has been largely limited to
loads moving with constant velocity. A modest inerease in the
complexity of the motion of the load leads to a considerable in-
crease in the complexity of the details of the analysis. Our pur-
pose in this paper is to point out that for highly complicated
motions of the load—those which can be regarded as realizations
of random processes—it is possible to obtain information con-
cerning the simplest statistical properties of the transient dy-
namie response.

More specifically, we shall consider an elastic beam initially at
rest and occupying the entire z-axis in its undeflected state. At
time ¢ = 0, a concentrated transverse force is applied to the beam
and, for ¢ > 0, the force moves along the beam so that its position
at time ¢ is z = X(t). While our interest is in the case of a
random process X (t), we begin in the next section with an analysis
of the resulting deflection when X (¢) is a deterministie, but arbi-
trary, function. We then consider the case of a random process
X (f) in Section 3 and, in Section 4, we obtain some general results
for processes X (f) which are stationary. In Section 5, we examine
the response of the beam when X (¢) is normal as well as stationary.
Finally, we treat in Section 6 the case in which X (¢) is a Wiener
process, corresponding to a moving load whose position at time ¢
is that deseribed by the simplest model of a particle in Brownian
motion on the z-axis.

The present analysis, based as it is on the simplest theory of the
vibrations of a beam, will presumably reflect the known weak-
nesses of this theory. Thus, while we might reasonably expect
to have confidence in the long-time asymptotic eéstimates ob-
tained in what follows, the short-time information which com-
prises part of the results discussed in Section 5 might be altered
if the problem were treated on the basis of a more refined theory
of beam motion such as that of Timoshenko. An analysis parallel
to the present one but using the more accurate theory would be an
interesting but involved undertaking.

! For relatively recent work, see [1-5],? where references to earlier
papers will be found.
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Fig. 1 Comparison of bending moment under the load in the deter-
ministic case with the expected bending moments ot the mean position
and at the instantaneous position of a load moving according to a
stationary normal process

2 Deterministic Problem
According to the simplest theory, the deflection u(z, t) of an
elastic beam subject to a concentrated force P located at position
z = X(t) at time { satisfies the differential equation
1
Upses T+ ;, Uy = K&[z = X(t)] (l)'
Here § is the Dirac delta function, and the constants K and a?
are given by
P EI
st b
Kim Gz, ottty (@)
E is Young’s modulus, I is the moment of inertia of the cross sec-
tion of the beam, and p is the mass per unit length of the beam
material. The initial conditions accompanying (1) are

u(z,0) = u/z,0) = 0 (3)
‘We consider the differential equation for — » <z < = and{> 0,

subject to the restriction that u(z, ) and its = and {-derivatives
tend to zero asz — = =,

3 Throughout our discussion, subscripts z and ¢ represent partial
derivatives.
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For any X (i), a formal solution to the foregoing initial value
problem can be construeted with the aid of the Fourier transform.
Itis given by

«© 1 3 R! ‘_
u(z, t) = % f d\ f dre X (n—z1 32 t;(, 7) @
25 o

The bending moment m(z, ) at position z at time ¢ is given by

m(z) ‘) e EI!J,,(I, ‘)

@ ¢
.. :_f f A J' dre™M X == gin Nsau(t — 7),  (5)
— 0

where we have differentiated (4) twice under the integral signs.*

For purposes of subsequent reference and comparison, we
record here some results for the special deterministic problem in
which X(t) = 0. This corresponds to a concentrated force P
suddenly striking the beam at time ¢ = 0, at position z = 0, and
remaining at that position for all later time. The integrals in (4)
and (5) can be routinely calculated in this case, and they yield the
following formulas for the deflection wug(z, {) and me(z, £) corre-
sponding to this specia.l loading:

U(z, t) = 3 \/— (at)'/ {(1 + £2) sin £2 4 (1 — £2) cos £°

+(kel'—%lsl) f: 3=+ sin ads
+(ls!=+§|sl) fs s-‘f=cossaa}, (6

mo(e, 1) = — _\/— (at)'/® [006 £ —sin £

- |4 fm s~'/* (sins + eoss)da:l, (7¥
&

where the “similarity” variable £ is given by

1 \
§ =5 z(at) /s 8

Immediately under the fixed load, the deflection and moment
predicted by (6) and (7) are

uo(0, 1) = — \/—— (at)™y, (9)

and

(at)'/s (10)

P
me(0, 1) = — 72—
=

It may also be determined that, for any fixed z, the long-time
behavior implied by (6) and (7) is

u(z, ) = '(at)‘h - %z*(ad)'f' - 0(1)}, (11)

3\/—

mo(z, 1) = — \/2; ()2 4 g— lz] 4+ o(1) (12)

asi— o,

4 Under suitable assumptions concerning X (t), it is possible to
prove that (4) represents an actual solution of the initial value prob-
lem, and to justify the operations leading to (5), as well as similar
ones occurring later.

% The results represented by (6) and (7) may be found in essence in
the work of Jones [6], who has also considered the same problem on
the basis of Timoshenko's more refined theory of beam motion [7].
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3 Stochastic Problem

We now regard the position X (¢) of the load as a sample fune-
tion of a stochastic process whose statistical properties are
known, and we view (4) and (5) as sample functions of the de-
flection and bending moment processes produced by the ran-
domly moving load. OQur concern will be with the ealeulation of
the mean values, or expectations, of u(z, t) and m(z, i), by way of
(4) and (5), from the assumed statistical properties of X(t).

Taking the expectation® of (4) yields

Blulz, t)] = — f dA f dr®Px(\)e

__msm)\a(t—'r)

(13)

where
Dxn(\) = Elexp iAX ()] (14)
is the characteristic function of the given process X (¢). Since any

characteristic function ®x(,(\) satisfies the inequality |Pxn(\)]
< 1f{or all real A, the A-integral in (13) is absolutely convergent.

The expected value of the bending moment m(z, t) is similarly
determined from (5) as

= t
Eimz,0] = — o f d\ f i ey
—® 0

X e~ gin Na(t — 1) (15)

Equations (13) and (14) provide the expected deflection and ex-
pected moment, respectively, at a fixed station z. It is clear
from these results that such expectations depend on a full
knowledge of the distribution of X(¢) at each instant , but they
do not require for their determination any information concerning
the way the values of X (¢) are correlated at different instants of
time.

It is also of interest to examine the expected values of the de-
flection and moment under the load. For this purpose, we set
z = X(t) in (4), (5) prior to taking expectations, obtaining

@ t
Efu(X(t), )] = % f d\ f dr®Pxm.xm A, =)
- 0

sin Nait — 1)
g )

—aP = t
En(X(0,0] = o f a\ f 75 ekl gl
—_— 0

X sin Na(t — 1), (17)

where ®x(r), xo(\, p) is the joint characteristic function of the
process X (-) at the two instants t and 7. It is defined by

Bxin.xm(h, 1) = Elexp [IAX(r) + inX ()]} (18)
for all real A and u.
The variance of u(z, {) is given by
var u(z, t) = E{[u(z, )]*} — [Elu(z, 1]}, (19)

where the second term on the right would be obtained from (13),
but the first would have to be calculated by squaring u in (4) and
then taking the expectation. Thus

E{lu(z, )% = (%E)’ fm d)\fm d,u.ft drft dp
™ —_ - 0 /]

X e 0T By xin (A, 1)

sin Al — 1) sin plalt — p)
A2 . pt

(20)

¢ For the definitions and an elementary discussion of the various
probabilistic terms employed here, the reader is referred to the text-
book [8] of Parzen.

Transactions of the ASME



Although it is possible in prineiple to obtain the variance from
these formulas, the complexity of (20) seems to be prohibitive.
Our efforts in what follows will be confined to a study of the first
moments (13), (15), (16), and (17) for particular classes of
processes X,

4 Stationary Processes X(t)

In this section, we assume that the random function X () is
sirictly stationary of first order; see [8, p. 70]. We also assume
that the mean value E[X (t)] of the position of the moving load P
is zero. These assumptions deseribe a situation in which P
fluetuates about the origin, and the random mechanism responsi-
ble for this fluetuation does not change in time. The probability
distribution of X (i) itself is thus independent of ¢, as is its charac-
teristic function. We indicate this by writing

Pxn(A) = Bx(A) (21)

Under these conditions, the r-integrations involved in (13) and
(15) ean be earried out explieitly, yielding

Elu(z, t)] = 2’1; f_: @:(A)e-‘z*l—#‘;{'ﬂ—"'-‘d). @2)
i ;
Elm(z,0)] = — >~ f B (\)e— i )\L“tdh (23)

It is possible to obtain asymptotic information for large time
from (22) and (23) without specializing the characteristic funec-
tion @x(A). Weillustrate by deriving the asymptotic expansion,
as t - =, of the expected bending moment (23). For this pur-
pose, we shall assume that, for each ¢, the random wvariable X (t)
has a finite variance. It follows from this assumption that
P4 (\) is twice continuously differentiable’ for all A.

A simple transformation allows us to write (23) in the form

Elm(z, 0] = f Tvan =S a, ey
0
where
P . d
YO = = o (B + BN (25)

From (24), it follows that
Elm(z, t)] = Y(0, z)fm ﬂ:ﬁ
= Y\ z) — ¥(0,z)
Al 3K

T YD) —VO,2) o saan (26)

Al
Since the characteristic function ®x(\) has the properties
0 =1 [z <1, @7)
we know from (25) that
¥(0,2) = — 52' v\, 2)| < 2, all\,z (28)
We also infer from (25) that
;Lf (0,z) =0 all z, (29)
so that, for fixed z,
Y\, z) = ¢0,2) + OA\?) asA—0 (30)
78ee [9, p. 89].
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We are, therefore, assured that the integrals in (26) are finite.
The first of them, in fact, can be evaluated explicitly. In the
third integral, the change of variables A\ = z'/% followed by an
application of the Riemann-Lebesgue lemma, shows that

f = Y\ z) — ¥\, 0)
e

cos AMatd\ = o(l) ast— @ (31)

for fixed z. Consequently, (26), (25), and (31) furnish

Kl 3} =~ \/_ (@~ 3 f e
0

X [Px(\)e™™F + $r(—N)e™* — 2]d\ + o(1)
z fixed. (32)

To put this in a more appealing form, we utilize the definition
(14) of the characteristie function ® as follows:

ast — @,

Pz (\) = E[¢?] = f eNdF (2), (33)
where F is the distribution function® associated with X'(¢). After
substitution of (33) into (32), an easily justified reversal of the
order of integration leads to

Elm(z, )] = — 71;= (at)'/ + -121 f .
¥4 —a

X |z — 2|dF(z) + o(1), (34)

The final form of the asymptotic expansion is obtained by not-
ing that the integral in (34) is precisely the expected value of
|z — X @)

t— o,

Bl 1)) =

Vor

X E(lz — X)) + o(1),

P
1/2 B
(at)* + 5

t— o, zfixed (35)

Equation (35) represents the generalization of the large-time
formula (12) to the case of a load moving according to a stationary
random process. Indeed, if X () =0, (35) reduces to (12).

The first term in the expansion (35) is precisely the large-time
asymptotie value of the bending moment of the deterministic
problem in which the force P is suddenly applied and maintained
at z = 0. We conclude that the mean bending moment gen-
erated by a moving load whose position is a stationary random
function of the time is, in first approximation, asymptotically
equal for large time to the bending moment produced by the fore-
going deterministic loading.®

The correction to the first approximation provided by the
second term in (35) is independent of time because of the station-
arity of X(t). This correction is proportional to the expected
distance from the station z under consideration to the randomly
moving load, and its contribution to the total mean bending
moment is of opposite sign to that of the first term. The magni-

1
tude of the second term on the right in (35) never exceeds EIP |(z2

+ o?)'/%, where o is the standard deviation of X (¢).
If X(f) is a stationary mormal process, computation of
E(lz — X)) shows.that (35) assumes the special form

AR g
- \2/2—,; “"’2"} rho0Mi byt Binedy  36)

where ¢? is the variance of X (f).

8 F is independent of ¢, since X () is stationary.
% A corresponding statement may be made for the mean deflection.
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Another example of a stationary process is provided by the sine
wave with random phase:

X(t) = asin (wt + 8), (37)

where a and w are given constants, and 4 is a random variable with
the uniform distribution on [0, 27]. When E(jz — X(1)|) is
evaluated in this case, (35) becomes

Elm(z(,t)] = — Mk

= (od
‘\/()

- [(a’ — 29" + |z] sin—? M], lz| < a
s a

i Ty
—2- [::] [z| >a

+o(l)asi— =, z fixed (38)
As a final illustration of the large-time formula (35), we consider
a load-motion X () which is a discrete random process. Let

X(0) = X©O)(—1)¥®,

where N (1) is a Poisson process, and X (0) takes the value a or —a
with equal probability; X (0) and N(t) are independent. This
process is referred to as a “random telegraph signal”” [8]. The
load strikes the beam at either z = a or z = —a, and then as time
progresses, it jumps between these two positions according to the
Poisson process N(¢). For this example,

(39)

Ele - XOD = 5 (z—al + o +a), @0
so that (35) becomes
P
Elm(z, 1)) = — —= (at)'/
[m(z, £)] i (at)
+ % (jz+a|l + |z —a]) +o(1), t— =. (41)

In each of the previous examples, the large-time behavior of
E[m(z, 1)) differs from the deterministic result for small ]a:l and
becomes closer to (12) as |z] increases.

5 Stationary Normal Processes X(t)

To examine the case of stationary processes X(¢) in more de-
tail, we now assume that X (¢) is a stationary normal (or Gaussian)
process with zero mean; see [8]. The characteristic function is
then given by

Dxin(\) = Px(\) =

where ¢? is the (constant) variance of X (). The joint charac-
teristic function defined by (18) is of the special form

exp (—'/20"\?), (42)

: ]
Dxinxm(d, #) = exp l— % (A + p?) + AuR(ft — TI)].
(43)
where R is the associated covariance kernel:

R(lt - 7)) = E(X@®), X(r)] (44)

We note in passing that R(0) = ¢%, and |R(t)| < o

‘When the characteristic function (42) is substituted into the
general formulas (22) and (23), the resulting integrals can be put
in various forms, but they are not, expressible in closed form for
general z. Atz = 0 (the mean position of the moving load), how-
ever, they can be explicitly evaluated. Carrying out such an
evaluation at z = 0 for (22) and (23) leads to
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E[u®,0)] = ——= 1 [(1 + 63)'/* — 1]'/
[u(0, )] S\/-l [(1 + &%) ]

2 . 4 5
Syl R R D 1 s \/EI 5)
Em(0, )] = [+ + 11— V2], @e)
-\/
respectively, where we have introdueced a dimensionless time
2ai
by = g (47)

The results represented by (45) and (46) provide the exact
values of the mean deflection and mean bending moment at the
mean position of the moving load. We may eompute the mean
deflection and mean bending moment at the instanianeous position
of the moving load by specializing (16) and (17) to the present
case with the aid of (43). For the bending moment, for example,
(17) and (43) furnish

Eim(X®,0] = - f g f -
X exp [—)’cr’ (1 R(Itq TI))] sin Ma(t — 7)

After a reversal of the order of integration and an elementary
change of variables, the resulting Fourier transform can be evalu-
ated;see [10). We find

EmX@),0] = — —

\/"Hr

t I:{ (1 — r(0)]2 + ar/at}'r — 1 + r(r) ]2
S f L — 7] + ar/o®

dr, (48)

where
rir) = R(7)/a%, (49)

The expected bending moment under the load thus depends on the
covariance kernel of the process X (1).

The expectations (45), (46), and (48) may be compared with
the results given in (9) and (10) for the deterministie problem of
the load P suddenly applied and maintained at z = 0. In the
limit as ¢ — 0, (45) reduces to (9), while (46) and (48) reduce to
(10), as is to be expected. Asit — o, the expectations (45) and
(46) are asymptotically equal to the corresponding results for the
deterministic problem, aceording to the general discussion of the
proceeding section. A direct analysis of (48) also shows that

>0

P
E[m(X(t), t)] = — \/_2:_ (at)'/* + O(1), asf{— o (50)
For small times, we find from (45) and (46) that
Efu(0,t)] = T S + o), t—+0, (51)
Bm©,0l = — —5= 2T 0w, 1=0, (2
2V 2x

in contrast to the deterministic i-dependence of (9) and (10). If
the covariance kernel R is continuously differentiable, an analysis
of the integral (48) shows that

[(a)'/s + 0@,  t—=0,

Elm(X(@),0)] = — 7——— (53)

where the constant C' depends on the derivative R’(0) of the co-
variance kernel according to the formula

Transactions of the ASME



4 ’ 17|/1) /2
R'(0) [ g (R (0)) ]
a
1 (R'(O))
[+ 4

Except for the multiplicative constant C, the small-time be-
havior (53) is the same as that exhibited by the deterministic
bending moment mg(0, ) in (10). Since R’(0) is negative, C de-
creases monotonically from unity to zero as [R’(O)/al increases
from zero to infinity. The effect of randomness on the bending
moment under the moving load is therefore to diminish its ex-
pected value, at least for small times, in ecomparison with the de-
terministic result (10).

Fig. 1 provides a comparison of the bending moment under the
load in the deterministic problem of the suddenly applied fixed
foree, equation (10), with the expected bending moment at z = 0,
equation (46), and at x = X (), equation (48), for the case of the
randomly moving load. The secalings on the axes in Fig. 1 are
chosen to capitalize on the fact that —2\/7 me(0,t)/oP and
—2‘\/; E[m(0, t)] /oP are functions of 2at/c? only, as (40) and
(46) show. In the underlying calculations based on (48), an
exponential covariance kernel

R(t) = o™

C= (54)

(55)
has been used.®

6 Case of a Wiener Process X(t)

An example in which the motion X (¢) is a nonstationary random
process is obtained by considering the case in which the load
moves as if it were a particle in one-dimensional Brownian
motion. The simplest model of this situation is that in which X ()
is a Wiener process [8]. The mean position of the moving load is
z = 0, but the root-mean-square distance from z = 0 to the load

increases like V2. The appropriate characteristic function is

Brw\) = exp ( -5 —mu), (56)

corresponding to a normal process with mean zero and variance
*. The joint characteristic function required in the general
formulas (16) and (17) for E[u(X (¢), £)], E[m(X () t)] is given by

1
Pxn.xen (N, p) = exp { - 12 [A% 4+ ur + 2Apg min (I, r)]]
(57)
From (15) and (42), we find that

© ¢
E[m(z, )] = — g f dke"""f
— 0

X dre= /"7 gin Na(t — 1)  (58)

The 7-integration in (58) ean be carried out immediately; after
several subsequent transformations, the result can be put in the
form

Eim(s, 0] = ~ —— @ |G s~ [ g sn
1 — 8
Iflf (:ig‘ ms+l+§'oosa)da
V2 s’e"”da], (59)
I+ 5‘ 181/8

where
B = v(2a)~'/2 (60)

1 The author is indebted to J. C. McWilliams for the numerical
computations leading to Fig. 1.
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and, as in (8),

£= 4 slay ®1)

The expected bending moment thus possesses the same simi-
larity structure as does the actual bending moment in the deter-
ministic problem described in Section 2.

Although the calculation is tedious, it is possible to obtain the
expected deflection from (59) by using the relationship

() = f I { f T r)da'} ds

which leads to

Elu(z, t)] = p%’ fw {fm E[m(z', t)]dz’}dz (62)

Equations (62) and (59) provide

2 K (a) :
3 A Ik B,I[(l+B’)+(l—ﬂ’)E’]mf

Elu(z, t)] =
+ (1 = 8 = (1.4 BDEY cos £
e [(1 + BElr — % 1- B:)]gl] fa 8~'/1 5in sds
2 8

&=/ cos sds

+ [(1 — Bylge oL 5 L+ E|]f

- Do (Bl + S k) [T e

l&l/8

+3V/2 s f (s + gs') e-"ds’ (63)
1£1/8
When 8 — 0, (59) and (63) reduce, respectively, to (7) and (6), as
is to be expected.
At the mean position z = 0 of the moving load, (59) and (63),
respectively, reduce to
P - V284 6’)
Em(0,8) = — —— (a2t (==Y 2 E TP} (pa
[m(0, )] = (at) ( T (64)
2
B, 0] =2 X (i 1—‘3’4“/25') 65

The functions of 8 appearing in (64) and (65) represent the modi-
fications of the deterministic results (10) and (9), respectively,
arising from the Brownian motion of the load. These functions
decrease from unity to zero as 3 increases from zero to infinity.
Thus the random motion of the load decreases the deflection and
bending moment, at the mean position of the load, from their
values in the deterministie case.

The expected values of the deflection and bending moment
under the moving load can be obtained by using the joint charac-
teristic funetion (57) in the general expressions (16) and (17).
After evaluating the Fourier integrals involved, we find that for
allt >0

E[u(X@®), 1] = % ;/% (at)s [(1 + B4/ — BUYs, (66)
while
P /e t/a
Bm@0,01 = = —= ([ SEEE= T oy

The remarks in the preceding paragraph concerning the effect
of § on the values of E[u] and E[m] also apply to (66) and (67).
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