On the Dynamical Theory of Gratings. By Lord Rayleigh, O.M., Pres. R.S.

(Received June 11,-Read June 27, 1907.)
In the usual theory of gratings, upon the lines laid down by Fresnel, the various parts of the primary wave-front after undergoing influences, whether
fecting the phase or the amplitude, are conceived to pursue their course as
they still formed the fronts of waves of large area. This supposition, sstifiable as an approximation when the grating interval is large, tends to Gail altogether when the interval is reduced so as to be comparable with the grave-length. A simple example will best explain the nature of the failure. Eonsider a grating of perfectly reflecting material whose alternate parts are bint and parallel and equally wide, but so disposed as to form a groove of Qepth equal to a quarter wave-length, and upon this let light be incident .Perpendicularly. Upon Fresnel's principles the central regularly reflected
mage must vanish, being constituted by the combination of equal and Qpposite vibrations. If the grating interval be large enough, this conclusion approximately correct and could be verified by experiment. But now uppose that the grating interval is reduced until it is less than the waveongth of the light. The conclusion is now entirely wide of the mark. Snder the circumstances supposed there are no lateral spectra and the whole f the incident energy is necessarily thrown into the regular reflection, hich is accordingly total instead of evanescent. A closer consideration hows that the recesses in this case act as resonators in a manner not covered名y Fresnel's investigations, and illustrates the need of a theory more strictly aynamical.

The present investigation, of which the interest is mainly optical, may be regarded as an extension of that given in 'Theory of Sound,'* where plane waves were supposed to be incident perpendicularly upon a regularly corrugated surface, whose form was limited by a certain condition of symmetry. Moreover, attention was there principally fixed upon the case where the wave-length of the corrugations was long in comparison with that

[^0]VOL. LXXIX.-A.
of the waves themselves, so that in the optical application there would be a large number of spectra. It is proposed now to dispense with these restrictions. On the other hand, it will be supposed that the depth of the corrugations is small in comparison with the length (λ) of the waves.

The equation of the reflecting surface may be taken to be $z=\zeta$, where ζ is a periodic function of x, whose mean value is zero, and which is independent of y. By Fourier's theorem we may write

$$
\begin{align*}
\zeta & =c_{1} \cos p x+c_{2} \cos 2 p x+s_{2} \sin 2 p x+\ldots+c_{n} \cos n p x+s_{n} \sin n p x+\ldots \\
& =\frac{1}{2} c_{1}\left(e^{i p x}+e^{-i p x}\right)+\frac{1}{2}\left(c_{n}-i s_{n}\right) e^{i n p x}+\frac{1}{2}\left(c_{n}+i s_{n}\right) e^{-i n p x}+\ldots, \tag{1}
\end{align*}
$$

the wave-length (ϵ) of the corrugation being $2 \pi / p$. Formerly the s terms were omitted and attention was concentrated upon the case where c_{1} was alone sensible. The omission of the s terms makes the grating symmetrical, so that at perpendicular incidence the spectra on the two sides are similar. It is known that this condition is often, and indeed advantageously, departed from in practice.

Fig. 2.
The vibrations incident at obliquity θ, POZ, fig. 2 , are represented by

$$
\begin{equation*}
\psi=e^{i(\mathbb{V} t+z \cos \theta+x \sin \theta)}, \tag{2}
\end{equation*}
$$

where $k=2 \pi / \lambda$, and V is the velocity of propagation in the upper medium. Here ψ satisfies in all cases the same general differential equation, but its significance must depend upon the character of the waves. In the acoustical application, to which for the present we may confine our attention, ψ is the
velocity-potential. In opties it is convemient to change the precise interpretation according to circumstances, as we shall see later.
The waves regularly reflected along $O Q$ are represented by

$$
\begin{equation*}
\psi=A_{0} e^{i k(V)-z \cos \theta+x \sin \theta)}, \tag{3}
\end{equation*}
$$

in which A_{0} is a (possibly complex) coefficient to be determined. In all the expressions with which we have to deal the time occurs only in the factor $e^{i k \mathrm{v} t}$, running through. For brevity this factor may be omitted.

In like manner the waves regularly refracted along OR into the lower medium have the expression

$$
\begin{equation*}
\psi_{1}=\mathrm{B}_{0} e^{i_{1}(2 \cos \phi+x \sin \phi)}, \tag{4}
\end{equation*}
$$

ϕ being the angle of refraction; and, by the law of refraction,

$$
\begin{equation*}
k_{1}: k=\mathrm{V}: \mathrm{V}_{1}=\sin \theta: \sin \phi . \tag{5}
\end{equation*}
$$

In addition to the incident and regularly reflected and refracted waves, we have to consider those corresponding to the various spectra. For the reflected spectra of the nth order we have

$$
\psi=\mathrm{A}_{n} e^{i k\left(-2 \cos \theta_{n}+x \sin \theta_{n}\right)}+\mathrm{A}_{n}^{\prime} e^{i k\left(-z \cos \theta_{n}+x \sin \theta^{\prime}\right)},
$$

where, by the elementary theory of these spectra,

$$
\begin{equation*}
\epsilon \sin \theta_{n}-\epsilon \sin \theta= \pm n \lambda, \text { or } \sin \theta_{n}-\sin \theta= \pm n \lambda / \epsilon= \pm n p / k \text {. } \tag{6}
\end{equation*}
$$

We shall choose the upper sign for θ_{n} and the lower for θ_{n}^{\prime}. In virtue of (6) the complete expression for ψ in the upper medium takes the form

$$
\begin{align*}
\psi \cdot e^{-i k x \sin \theta} & =e^{i k z \cos \theta}+\mathrm{A}_{0} e^{-i k_{z} \cos \theta}+\ldots \\
& +\mathrm{A}_{n} e^{i n p x} e^{-i k z \cos \theta_{n}}+\mathrm{A}_{n}^{\prime} e^{-i n p x} e^{-i k z \cos \theta_{n}^{\prime}}+\ldots, \tag{7}
\end{align*}
$$

where n has in succession the values $1,2,3$, etc.
Similarly, in the lower medium the spectra of the nth order are represented by

$$
\begin{gather*}
\psi_{1}=\mathrm{B}_{n} e^{i j_{1}\left(z \cos \phi_{n}+x \sin \phi_{n}\right)}+\mathrm{B}_{n}^{\prime} e^{i k_{1}\left(z \cos \phi_{n}^{\prime}+x \sin \phi \phi_{2}\right)}, \tag{8}\\
\sin \phi_{n}-\sin \phi= \pm n p / k_{1} . \tag{9}
\end{gather*}
$$

Accordingly, for the complete expression of ψ_{1}, we have with use of (5),

$$
\begin{equation*}
\psi_{1} \cdot e^{-i k_{x} \sin \theta}=\mathrm{B}_{0} e^{i k_{1} z \cos \phi}+\ldots+\mathrm{B}_{n} e^{i n p x} e^{i_{1} k_{1} z \cos \phi_{n}}+\mathrm{B}_{n}^{\prime} e^{-i n p x x} e^{i_{1} x_{1} \cos \phi_{n}^{\prime} .} \tag{10}
\end{equation*}
$$

, We must now introduce boundary conditions to be satisfied at the transition between the two media when $z=\zeta$. It may be convenient to commence with a very simple case determined by the condition that $\psi=0$. The whole of the incident energy is then thrown back, and is distributed between the regularly reflected waves and the various reflected spectra.

We proceed by approximation depending on the smallness of ζ. Expanding the exponentials on the right side of (7), we get

$$
\begin{align*}
& \left(1+A_{0}\right)\left(1-\frac{1}{2} k^{2} \zeta^{2} \cos ^{2} \theta+\ldots\right)+\left(1-A_{0}\right)(i k \zeta \cos \theta+\ldots) \\
& +\mathrm{A}_{n} e^{i n p x}\left(1-i k \zeta \cos \theta_{n}+\ldots\right)+\mathrm{A}_{n}^{\prime} e^{-i n p x x}\left(1-i k \zeta \cos \theta_{n}^{\prime}+\ldots\right)=0 . \tag{11}
\end{align*}
$$

In this equation the value of ζ is to be substituted from (1), and then in accordance with Fourier's theorem the coefficients of the various exponential terms, such as $c^{\text {inpx }}, e^{-i n p x}$, are to be separately equated to zero. As the first approximation, we get from the constant term (independent of x)

$$
\begin{equation*}
1+\mathrm{A}_{0}=0 \tag{12}
\end{equation*}
$$

and from the terms in $e^{\text {inpr }}, e^{-i n p x}$,

$$
\begin{equation*}
\mathrm{A}_{n}=-i k \cos \theta\left(c_{n}-i s_{n}\right), \quad \mathrm{A}_{n}^{\prime}=-i k_{i} \cos \theta\left(c_{n}+i s_{n}\right) . \tag{13}
\end{equation*}
$$

Thus, as was to be expected, $\mathrm{A}_{n}, \mathrm{~A}_{n}^{\prime}$ are of the first order in ζ, and if we stop at the second order inclusive, (11) may be written

$$
\begin{equation*}
1+\mathrm{A}_{0}+2 i k \zeta \cos \theta+\mathrm{A}_{n} e^{i n p x}\left(1-i k \zeta \cos \theta_{n}\right)+\mathrm{A}_{n}^{\prime} e^{-i n p x}\left(1-i k \zeta \cos \theta_{n}^{\prime}\right)=0 . \tag{14}
\end{equation*}
$$

For the second approximation to A_{0} we get

$$
\begin{equation*}
1+\mathrm{A}_{0}-\frac{1}{2} k^{2} \cos \theta \Sigma\left(c_{n}^{2}+s_{n}^{2}\right)\left(\cos \theta_{n}+\cos \theta_{n}^{\prime}\right)=0 \tag{15}
\end{equation*}
$$

By means of (13) and (15) we may verify the principle that the energies of the incident, and of all the reflected vibrations taken together, are equal. The energy corresponding to unit of wave-front of the incident waves may be supposed to be unity, and for the other waves $\bmod ^{2} A_{0}, \bmod ^{2} A_{1}, \bmod ^{2} \mathrm{~A}^{\prime}{ }_{1}$, etc. But what we have to consider are not equal areas of wave-front, but areas corresponding to the same extent of reflecting surface, i.e., areas of wave-front proportional to $\cos \theta, \cos \theta_{1}, \cos \theta_{1}^{\prime}$, etc. Hence,

$$
\begin{equation*}
\cos \theta \cdot \bmod ^{2} A_{0}+\Sigma \cos \theta_{n} \cdot \bmod ^{2} A_{n}+\Sigma \cos \theta_{n}^{\prime} \cdot \bmod ^{2} A^{\prime}{ }_{n}=\cos \theta, \tag{16}
\end{equation*}
$$

with which the special approximate values already given are in harmony. In the formation of (16) only real values of $\cos \theta_{n}, \cos \theta_{n}^{\prime}$ are to be included. If $p>k$, no real values exist, i.e., there are no lateral spectra. The regular reflection is then total, and this without limitation upon the magnitude of the c 's. The question is further considered in 'Theory of Sound,' § $272 a$.

In pursuing a second approximation for the coefficients of the lateral spectra, we will suppose for the sake of brevity that the s terms in (1) are omitted. From the term involving $e^{i n p x}$ in (14), we get with use of (13),

$$
\begin{align*}
A_{n}= & -i k \cos \theta c_{n}+\frac{1}{2} k^{2} \cos \theta \cos \theta_{n}^{\prime} c_{n} c_{2 n} \\
& +\frac{1}{2} k^{2} \cos \theta\left\{\left(c_{1} \cos \theta_{n-1}+c_{2 n-1} \cos \theta_{n-1}^{\prime}\right) c_{n-1}\right. \\
& +\left(c_{2} \cos \theta_{n-2}+c_{2 n-2} \cos \theta_{n-2}^{\prime}\right) c_{n-2}+\ldots \\
& +\left(c_{1} \cos \theta_{n+1}+c_{2 n+1} \cos \theta_{n+1}^{\prime}\right) c_{n+1} \\
& \left.+\left(c_{2} \cos \theta_{n+2}+c_{2 n+2} \cos \theta_{n+2}^{\prime}\right) c_{n+2}+\ldots\right\} \tag{17}
\end{align*}
$$

in which the first (descending) series is to terminate when the suffix in $\cos \theta_{n_{-r}}$ is equal to unity.

The value of A_{n}^{\prime} may be derived from (17) by interchange of θ^{\prime} and θ in $\cos \theta_{n-r}, \cos \theta_{n-r}^{\prime}, \cos \theta_{n+r}, \cos \theta_{n_{+r}}^{\prime}, \cos \theta$ remaining unchanged. As a particular case of (17), we have, for the spectra of the first order,

$$
\begin{align*}
\mathrm{A}_{1}= & -i k c_{1} \cos \theta+\frac{1}{2} 2^{2} c_{1} c_{2} \cos \theta \cos \theta_{1}^{\prime} \\
& +\frac{1}{2} 2^{2} \cos \theta\left\{c_{2}\left(c_{1} \cos \theta_{2}+c_{3} \cos \theta^{\prime}\right)\right. \\
& \left.+c_{3}\left(c_{2} \cos \theta_{3}+c_{4} \cos \theta_{3}^{\prime}\right)+\ldots\right\} . \tag{18}\\
\mathrm{A}_{1}^{\prime}== & -i k c_{1} \cos \theta+\frac{1}{2} 2^{2} c_{1} c_{2} \cos \theta \cos \theta_{1} \\
& +\frac{1}{2} k^{2} \cos \theta\left\{c_{2}\left(c_{1} \cos \theta_{2}^{\prime}+c_{3} \cos \theta_{2}\right)\right. \\
& \left.+c_{3}\left(c_{2} \cos \theta^{\prime}{ }_{3}+c_{4} \cos \theta_{3}\right)+\ldots\right\}, \tag{19}
\end{align*}
$$

the descending series in (17) disappearing altogether.
If the incidence is normal, $\cos \theta=1, \cos \theta_{n}^{\prime}=\cos \theta_{n}$, and thus $\mathrm{A}_{n}, \mathrm{~A}_{n}^{\prime}$ become identical and assume specially simple forms. Referring to (7), we see that in this case

$$
\begin{equation*}
\psi=e^{i k z}+\mathrm{A}_{0} e^{-i k z}+2 \mathrm{~A}_{1} e^{-i k z \cos \theta_{1}} \cos p x+\ldots+2 \mathrm{~A}_{n} e^{-i k z \cos \theta_{n}} \cos n p x+\ldots, \tag{20}
\end{equation*}
$$

in which, to the second order,

$$
\begin{equation*}
A_{0}=-1+k^{2} \Sigma c_{n}^{2} \cos \theta_{n} . \tag{21}
\end{equation*}
$$

$$
\begin{align*}
\mathrm{A}_{n}= & -i k c_{n}+\frac{1}{2} k^{2} \cos \theta_{n} \cdot c_{n} c_{2 n} \\
& +\frac{1}{2} k^{2}\left\{\left(c_{1}+c_{2 n-1}\right) c_{n-1} \cos \theta_{n-1}+\left(c_{2}+c_{2 n-2}\right) c_{n-2} \cos \theta_{n-2}+\ldots\right. \\
& \left.+\left(c_{1}+c_{2 n+1}\right) c_{n+1} \cos \theta_{n+1}+\left(c_{2}+c_{2 n+2}\right) c_{n+2} \cos \theta_{n+2}+\ldots\right\} . \tag{22}
\end{align*}
$$

If we suppose that in (1) only c_{1} and c_{2} are sensible, we have

$$
\begin{align*}
& \mathrm{A}_{0}=-1+k^{2} c_{1}^{2} \cos \theta_{1}+k^{2} c_{2}^{2} \cos \theta_{2}, \tag{23}\\
& \mathrm{~A}_{1}=-i k c_{1}+\frac{1}{2} k^{2} c_{1} c_{2}\left(\cos \theta_{1}+\cos \theta_{2}\right), \tag{24}\\
& \mathrm{A}_{2}=-i k c_{2}+\frac{1}{2} k^{3} c_{1}^{2} \cos \theta_{1} \tag{25}\\
& \mathrm{~A}_{3}=\frac{1}{2} k^{2} c_{1} c_{2}\left(\cos \theta_{1}+\cos \theta_{2}\right), \tag{26}
\end{align*}
$$

- while A_{4}, A_{5}, etc., vanish to the second order of small quantities inclusive.

There is no especial difficulty in carrying the approximations further. As
an example, we may suppose that c_{1} is alone sensible in (1), so that we may write

$$
\begin{equation*}
\zeta=c \cos p x \tag{27}
\end{equation*}
$$

and also that the incidence is perpendicular. For brevity we will denote $k \cos \theta_{n}$ or $k \cos \theta_{n}^{\prime}$ by μ_{n}. The boundary condition ($\psi=0$) becomes by (7) in this case,

$$
\begin{align*}
& e^{i k \zeta}-e^{-i k \zeta}+\left(\mathrm{A}_{0}+1\right) e^{-i k \zeta}+2 \mathrm{~A}_{1} e^{-i \mu_{1} \zeta} \cos p x \\
& +\ldots \ldots+2 \mathrm{~A}_{n} e^{-i \mu_{n} \zeta} \cos n p x+\ldots \ldots .=0, \tag{28}
\end{align*}
$$

in which

$$
\begin{align*}
& e^{i k \xi}-e^{-i k \xi}=4 i\left\{\mathrm{~J}_{1}(k c) \cos p x-\mathrm{J}_{3}(k c) \cos 3 p x+\mathrm{J}_{5}(k c) \cos 5 p x-\ldots\right\}, \tag{29}\\
& e^{-i k \zeta}= \mathrm{J}_{0}(k c)-2 \mathrm{~J}_{2}(k c) \cos 2 p x+\ldots \\
&-i\left\{2 \mathrm{~J}_{1}(k c) \cos p x-2 \mathrm{~J}_{3}(k c) \cos 3 p x+\ldots\right\}, \tag{30}
\end{align*}
$$

with similar expressions for $e^{-i \mu_{1} \zeta, e^{-i \mu} \zeta \text {, etc. By Fourier's theorem the terms }}$ independent of x, in $\cos p x, \cos 2 p x$, etc., must vanish separately. The first gives $\left(\mathrm{A}_{0}+1\right) \mathrm{J}_{0}(k c)-2 i \mathrm{~A}_{1} \mathrm{~J}_{1}\left(\mu_{1} c\right)-2 \mathrm{~A}_{2} \mathrm{~J}_{2}\left(\mu_{2} c\right)+2 i \mathrm{~A}_{3} \mathrm{~J}_{3}\left(\mu_{3} c\right)+2 \mathrm{~A}_{4} \mathrm{~J}_{4}\left(\mu_{4} c\right)+\ldots=0$.

The term in $\cos p x$ gives

$$
\begin{align*}
& 2 i \mathrm{~J}_{1}(k c)-i\left(\mathrm{~A}_{0}+1\right) \mathrm{J}_{1}(k c)+\mathrm{A}_{1}\left\{\mathrm{~J}_{0}\left(\mu_{1} c\right)-\mathrm{J}_{2}\left(\mu_{1} c\right)\right\} \\
& -i \mathrm{~A}_{2}\left\{\mathrm{~J}_{1}\left(\mu_{2} c\right)-\mathrm{J}_{3}\left(\mu_{2} c\right)\right\}-\mathrm{A}_{3}\left\{\mathrm{~J}_{2}\left(\mu_{3} c\right)-\mathrm{J}_{4}\left(\mu_{2} c\right)\right\}+\ldots=0 . \tag{32}
\end{align*}
$$

The term in $\cos 2 p x$ gives

$$
\begin{align*}
& -\left(\mathrm{A}_{0}+1\right) \mathrm{J}_{2}(k c)-i \mathrm{~A}_{1}\left\{\mathrm{~J}_{1}\left(\mu_{1} c\right)-J_{3}\left(\mu_{1} c\right)\right\} \\
& +\mathrm{A}_{2}\left\{\mathrm{~J}_{0}\left(\mu_{2} c\right)+\mathrm{J}_{4}\left(\mu_{2} c\right)\right\}+\ldots \ldots=0 . \tag{33}
\end{align*}
$$

The term in cos $3 p x$ gives

$$
\begin{align*}
& -2 i \mathrm{~J}_{3}(k c)+i\left(\mathrm{~A}_{0}+1\right) \mathrm{J}_{3}(k c) \\
& -\mathrm{A}_{1}\left\{\mathrm{~J}_{2}\left(\mu_{1} c\right)-\mathrm{J}_{4}\left(\mu_{2} c\right)\right\}-i \mathrm{~A}_{2}\left\{\mathrm{~J}_{1}\left(\mu_{2} c\right)+\mathrm{J}_{5}\left(\mu_{2} c\right)\right\} \\
& +\mathrm{A}_{3}\left\{\mathrm{~J}_{0}\left(\mu_{3} c\right)-\mathrm{J}_{6}\left(\mu_{3} c\right)\right\}+\ldots \ldots .=0 . \tag{34}
\end{align*}
$$

We see from these that $\mathrm{A}_{0}+1$ is of the second order in $k c$, that A_{1} is of the first order, A_{2} of the second order, A_{3} of the third order, and so on. Expanding the Bessel's functions, we find, to the second order inclusive, as in (23), (24), (25), (26),

$$
\left.\begin{array}{ll}
\mathrm{A}_{0}=-1+k \mu_{1} c^{2}, & \mathrm{~A}_{1}=-i k c \tag{35}\\
\mathrm{~A}_{2}=\frac{1}{2} k \mu_{1} c^{2}, & \mathrm{~A}_{3}=0
\end{array}\right\}
$$

A_{4}, etc., vanishing. To the third order inclusive (34) now gives

$$
\begin{equation*}
\mathrm{A}_{3}=\frac{1}{24} i k c^{3}\left(k^{2}-3 \mu_{1}^{2}+6 \mu_{1} \mu_{2}\right) . \tag{36}
\end{equation*}
$$

From (33) to the same order we thave still for A_{2},

$$
\begin{equation*}
\mathrm{A}_{2}=\frac{1}{2} k \mu_{1} \mathrm{c}^{2}, \tag{37}
\end{equation*}
$$

and from (32)

$$
\begin{equation*}
\mathrm{A}_{1}=-i k c+\frac{1}{8} i k k^{3}\left(k^{2}+4 k \mu_{1}+2 \mu_{1} \mu_{2}-3 \mu_{1}{ }^{2}\right) . \tag{38}
\end{equation*}
$$

These are complete to the third order of he inclusive. To this order A_{4}, A_{5}, ete., vanish.
So far as the third order of $k c$ inclusive, A_{0} remains as in (35); but it is worth while here to retain the terms of the fourth order. We find from (31)-

$$
\begin{equation*}
\mathrm{A}_{0}=-1+k \mu_{1} c^{2}+\frac{1}{8} k c^{4}\left(k^{2} \mu_{1}-4 k \mu_{1}^{2}+2 \mu_{1}^{3}-2 \mu_{1}^{2} \mu_{2}+\mu_{1} \mu_{2}^{2}\right) \tag{39}
\end{equation*}
$$

It is to be noted that k, μ_{1}, μ_{2} are not independent. By (6), with $\theta=0$,
so that

$$
\begin{gather*}
\mu_{n}{ }^{2}=k^{2} \cos ^{2} \theta_{n}=k^{2}-n^{2} p^{2}, \tag{40}\\
\mu_{1}{ }^{2}=k^{2}-p^{2}, \quad \mu_{2}{ }^{2}=k^{2}-4 p^{2}, \\
3 k^{2}-4 \mu_{1}^{2}+\mu_{2}{ }^{2}=0 . \tag{41}
\end{gather*}
$$

By use of (41) it may be verified to the fourth order that when μ_{1}, μ_{2} are real, so that the spectra of the second order are actually formed,

$$
\begin{equation*}
\bmod ^{2} A_{0}+\frac{2 \mu_{1}}{k} \bmod ^{2} A_{1}+\frac{2 \mu_{2}}{k} \bmod ^{2} A_{2}=1, \tag{42}
\end{equation*}
$$

expressing the conservation of vibratory energy.
When μ_{1} is real, but not μ_{2}, we may write $\mu_{2}=-i \nu_{2}$, where ν_{2} is positive. In this case

$$
\begin{aligned}
& \mathrm{A}_{0}=-1+k \mu_{1} c^{2}+\frac{1}{8} k c^{4}\left(k^{2} \mu_{1}-4 k \mu_{1}^{2}+2 \mu_{1}^{3}-\mu_{1} \nu_{2}^{2}\right)+\frac{1}{4} i k c^{4} \mu_{1}^{2} \nu_{2}, \\
& \mathrm{~A}_{1}=-i k c+\frac{1}{8} i k c^{3}\left(k^{2}+4 k \mu_{1}-3 \mu_{1}{ }^{2}\right)+\frac{1}{4} k c^{3} \mu_{1} \nu_{2} ;
\end{aligned}
$$

and in virtue of (41) to the fourth order,

$$
\begin{equation*}
\bmod ^{2} \mathrm{~A}_{0}+\frac{2 \mu_{1}}{k} \bmod ^{2} \mathrm{~A}_{1}=1 \tag{43}
\end{equation*}
$$

Again, if μ_{1}, μ_{2} are both imaginary, equal, say, to $-i \nu_{1},-i \nu_{2}$, we have from (39) with separation of real and imaginary parts,

$$
\mathrm{A}_{0}=-1+\frac{1}{2} k^{2} \nu_{1}^{2} c^{4}-i\left(k \nu_{1} c^{2}+\text { terms in } c^{4}\right),
$$

so that, to the fourth order,

$$
\begin{equation*}
\bmod ^{2} A_{0}=1, \tag{44}
\end{equation*}
$$

expressing that the regular reflection is now total.
In the acoustical interpretation for a gaseous medium ψ represents the velocity-potential, and the boundary condition $(\psi=0)$ is that of constant - pressure. In the electrical and optical interpretation the waves are incident from air, or other dielectric medium, upon a perfectly conducting and, therefore, pegfectly reflecting corrugated substance. Here ψ represents the electromotive intensity Q parallel to y, that is parallel to the lines of the grating, the boundary condition being the evanescence of Q .

We now pass on to the boundary condition next in order of simplicity, which ordains that $d \psi / d x=0$, where $d x$ is drawn normally at the surface of separation. Since the surfaces $z-\zeta=0, \psi=$ constant, are to be perpendicular, the condition expressed in rectangular co-ordinates is

$$
\begin{equation*}
\frac{d \psi}{d z}-\frac{d \psi}{d x} \frac{d \zeta}{d x}=0 \tag{45}
\end{equation*}
$$

ψ being given by (7) and ζ by (1).
For the purposes of the first approximation, we require in $d \psi / d x$ only the part independent of the c 's and s 's, since $d \zeta / d x \cdot$ is already of the first order Thus at the surface

$$
\frac{d \psi}{d x}=i k \sin \theta e^{i k x \sin \theta}\left(1+A_{0}\right)
$$

Also, eorrect to the first order,

$$
\begin{aligned}
\frac{d \psi}{d z} & =i \hbar e^{i k x \sin \theta}\left[\cos \theta\left\{1-\mathrm{A}_{0}+\left(1+\mathrm{A}_{0}\right) i \hbar \zeta \cos \theta\right\}\right. \\
& \left.-\ldots \ldots-\cos \theta_{n} \mathrm{~A}_{n} e^{i n p x}-\cos \theta^{\prime}{ }_{n} \mathrm{~A}_{n}^{\prime} e^{-i n p x}\right]
\end{aligned}
$$

Thus (45) gives

$$
\begin{align*}
& \cos \theta\left(1-\mathrm{A}_{0}\right)+\cos ^{2} \theta\left(1+\mathrm{A}_{0}\right) i k \zeta-\cos \theta_{n} \mathrm{~A}_{n} e^{i n p x} \\
& -\cos \theta_{n}^{\prime} \mathrm{A}_{n}^{\prime} e^{-i n p x}-\ldots \ldots-\sin \theta\left(1+\mathrm{A}_{0}\right) \frac{d \zeta}{d x}=0 \tag{46}
\end{align*}
$$

From the term independent of x we see that, as was to be expected,

$$
\begin{align*}
& A_{0}=1 \tag{47}\\
& A_{n} \cos \theta_{n}=i\left(c_{n}-i s_{n}\right)\left\{k \cos ^{2} \theta-n p \sin \theta\right\} \tag{48}\\
& \mathrm{A}_{n}^{\prime} \cos \theta_{n}^{\prime}=i\left(c_{n}+i s_{n}\right)\left\{k \cos ^{2} \theta+n p \sin \theta\right\} \tag{49}
\end{align*}
$$

Also

When $n=1$ in (48), (49), we may put $s_{1}=0$. These equations constitute the complete solution to a first approximation.

For the second approximation we must retain the terms of the first order in $d \psi / d x$. Thus from (5), (7)

$$
\begin{align*}
e^{-i k x \sin \theta} \frac{d \psi}{d x}= & i \hbar\left[\sin \theta\left\{1+\mathrm{A}_{0}+\left(1-\mathrm{A}_{0}\right) i k \cos \theta\right\}\right. \\
& \left.+\sin \theta_{n} \mathrm{~A}_{n} e^{i n p x}+\sin \theta_{n}^{\prime} \mathrm{A}_{n}^{\prime} e^{-i n p x}\right] \\
= & i k\left\{2 \sin \theta+\sin \theta_{n} \mathrm{~A}_{n} e^{i n p x}+\sin \theta_{n}^{\prime} A_{n}^{\prime} e^{-i n p x}\right\} \tag{50}
\end{align*}
$$

since to the first order inclusive $\mathrm{A}_{0}=1$. Also

$$
\begin{gather*}
e^{-i k x \sin \theta} \frac{d \psi}{d z}=i \hbar \cos \theta\left\{1-\mathrm{A}_{0}+2 i \hbar \zeta \cos \theta\right\} \\
-i k \cos \theta_{n} \mathrm{~A}_{n} e^{i n p x}\left(1-i k \zeta \cos \theta_{n}\right)-i k \cos \theta_{n}^{\prime} \mathrm{A}_{n}^{\prime} e^{-i n p x}\left(1-i k \zeta \cos \theta_{n}^{\prime}\right) \tag{51}
\end{gather*}
$$

Thus by (45) the boundary condition is

$$
\begin{align*}
& \cos \theta\left(1-A_{0}\right)+2 i k \zeta \cos ^{2} \theta-2 \sin \theta \frac{d \zeta}{d x} \\
& -A_{n} e^{i n p x}\left\{\cos \theta_{n}-i k \cos ^{2} \theta_{n} \zeta+\sin \theta_{n} \frac{d \zeta}{d x}\right\} \\
& -A_{n}^{\prime} e^{-i n p x}\left\{\cos \theta_{n}^{\prime}-i k \cos ^{2} \theta_{n}^{\prime} \zeta+\sin \theta_{n}^{\prime} \frac{d \zeta}{d x}\right\}=0 . \tag{52}
\end{align*}
$$

In the small terms we may substitute for $\mathrm{A}_{n}, \mathrm{~A}_{n}^{\prime}$ their approximate values from (48), (49).

In (52) the coefficients of the various terms in $e^{i n p x}, e^{-i n p x}$ must vanish Enseparately. In pursuing the approximation we will write for brevity
where

$$
\begin{gather*}
\zeta=\zeta_{1} e^{i p x}+\zeta_{-1} e^{-i p x}+\ldots+\zeta_{n} e^{i n p x}+\zeta_{-n} e^{-i n p x}, \tag{53}\\
\zeta_{1}=\zeta_{-1}=\frac{1}{2} c_{1}, \\
\zeta_{n}=\frac{1}{2}\left(e_{n}-i s_{n}\right), \quad \zeta_{-n}=\frac{1}{2}\left(e_{n}+i s_{n}\right) . \tag{54}
\end{gather*}
$$

The term independent of x gives A_{0} to the second approximation. Thus

$$
\begin{align*}
& \cos \theta\left(1-\mathrm{A}_{0}\right)+i \mathrm{~A}_{n}\left(k \cos ^{2} \theta_{n}+n p \sin \theta_{n}\right) \zeta_{-n} \\
& +i \mathrm{~A}_{n}^{\prime}\left(k \cos ^{2} \theta_{n}^{\prime}-n p \sin \theta_{n}^{\prime}\right) \zeta_{n}=0 . \tag{55}
\end{align*}
$$

In (55), as follows from (6),

$$
\begin{aligned}
& k \cos ^{2} \theta_{n}+n p \sin \theta_{n}=k \cos ^{2} \theta-n p \sin \theta, \\
& k \cos ^{2} \theta^{\prime}{ }_{n}-n p \sin \theta_{n}^{\prime}=k \cos ^{2} \theta+n p \sin \theta .
\end{aligned}
$$

Hence with introduction of the values of $\mathrm{A}_{n}, \mathrm{~A}^{\prime}{ }_{n}$ from (48), (49),

$$
\begin{align*}
\cos \theta\left(1-A_{0}\right) & =\ldots \ldots .+\frac{c_{n}^{2}+s_{n}^{2}}{2 \cos \theta_{n}}\left(k \cos ^{2} \theta-n p \sin \theta\right)^{2} \\
& +\frac{c_{n}^{2}+s_{n}^{2}}{2 \cos \theta_{n}^{\prime}}\left(k \cos ^{2} \theta+n p \sin \theta\right)^{2}+\ldots \ldots . \tag{56}
\end{align*}
$$

as might also be inferred from (48), (49) alone, with the aid of the energy equation-

$$
\begin{equation*}
\cos \theta=\cos \theta \bmod ^{2} A_{0}+\ldots+\cos \theta_{n} \bmod ^{2} A_{n}+\cos \theta_{n}^{\prime} \bmod ^{2} A_{n}^{\prime} . \tag{57}
\end{equation*}
$$

From the term in $e^{i n p x}$ in (52) we get

$$
\begin{align*}
\cos \theta_{n} \mathrm{~A}_{n}= & 2 i\left(k \cos ^{2} \theta-n p \sin \theta\right) \zeta_{n} \\
& +i \mathrm{~A}^{\prime}\left(k \cos ^{2} \theta_{n}^{\prime}-2 n p \sin \theta_{n}^{\prime}\right) \zeta_{2 n}+\ldots \ldots \\
& +i \mathrm{~A}_{n-r}\left(k \cos ^{2} \theta_{n-r}-r p \sin \theta_{n-r}\right) \zeta_{r} \\
& +i \mathrm{~A}_{n+r}\left(k \cos ^{2} \theta_{n+r}+r p \sin \theta_{n+r}\right) \zeta_{-r} \\
& +i \mathrm{~A}_{n-r}^{\prime}\left(k \cos ^{2} \theta_{n-r}^{\prime}-(2 n-r) p \sin \theta_{n-r}^{\prime}\right) \zeta_{2 n-r} \\
& +i \mathrm{~A}_{n+r}^{\prime}\left(k \cos ^{2} \theta_{n+r}^{\prime}-(2 n+r) p \sin \theta_{n+r}^{\prime}\right) \zeta_{2 n+r}^{\prime} \tag{58}
\end{align*}
$$

In (58) r is to assume the values $1,2,3$, etc., the deseending series terminating when $n-r=1$.

The corresponding equation for $\mathrm{A}^{\prime}{ }_{n}$ may be derived from (58) by changing the sign of n, with the understanding that

$$
\begin{equation*}
\mathrm{A}_{-m}=\mathrm{A}_{m}^{\prime}, \quad \mathrm{A}^{\prime}{ }_{-m}=\mathrm{A}_{m} ; \quad \theta_{-m}=\theta_{m}^{\prime}, \quad \theta_{-m}^{\prime}=\theta_{m} \tag{59}
\end{equation*}
$$

If the incidence be perpendicular, so that $\theta_{m}^{\prime}=-\theta_{m}$, and if $\zeta_{-m}=\zeta_{m}$, which requires that $s_{m}=0$, the values of $\mathrm{A}^{\prime}{ }_{n}$ and A_{n} become identical.

If $n=1$, the descending series in (58) make no contribution. We have

$$
\begin{align*}
& \cos \theta_{1} \mathrm{~A}_{1}=2 i\left(k \cos ^{2} \theta-p \sin \theta\right) \zeta_{1}+i \mathrm{~A}^{\prime}{ }_{1}\left(k \cos ^{2} \theta^{\prime}{ }_{1}-2 p \sin \theta^{\prime}{ }_{1}\right) \zeta_{2} \\
& +i \mathrm{~A}_{2}\left(k \cos ^{2} \theta_{2}+p \sin \theta_{2}\right) \zeta_{-1}+i \mathrm{~A}_{3}\left(k \cos ^{2} \theta_{2}+2 p \sin \theta_{2}\right) \zeta_{-2}+\ldots \\
& +i \mathrm{~A}_{2}^{\prime}\left(k \cos ^{2} \theta^{\prime}{ }_{2}-3 p \sin \theta^{\prime}\right) \zeta_{3}+i \mathrm{~A}_{3}^{\prime}\left(k \cos ^{2} \theta^{\prime}{ }_{3}-4 p \sin \theta^{\prime}{ }_{3}\right) \zeta_{4}+\ldots \tag{60}
\end{align*}
$$

We will now introduce the simplifying suppositions that $\theta=0, s_{m}=0$, making $\mathrm{A}_{n}^{\prime}=\mathrm{A}_{n}$, and also that only c_{1} and c_{2} are sensible, so that $\zeta_{3}=\zeta_{4}=\ldots \ldots=0$. We will also, as before, denote $k \cos \theta_{n}$ or $k \cos \theta_{n}^{\prime}$ by μ_{n}. Accordingly (60) gives, with use of (6), (48), (49),

$$
\begin{equation*}
\mathrm{A}_{1}=\frac{i k^{2} c_{1}}{\mu_{1}}-\frac{k^{2} c_{1} c_{2} c_{2}}{2 \mu_{1}^{2}}\left(\mu_{1}^{2}+2 p^{2}\right)-\frac{k^{2} c_{1} c_{2}}{2 \mu_{1} \mu_{2}}\left(\mu_{2}^{2}+2 p^{2}\right) . \tag{61}
\end{equation*}
$$

In like manner, we get from (58)

$$
\begin{align*}
& \mathrm{A}_{2}=\frac{i h^{2} c_{2}}{\mu_{2}}-\frac{k^{2} c_{1}^{2}}{2 \mu_{1} \mu_{2}}\left(\mu_{1}^{2}-p^{2}\right), \tag{62}\\
& \mathrm{A}_{3}=-\frac{\hbar^{2} c_{1} c_{2}\left(\mu_{1}+\mu_{2}\right)}{2 \mu_{3}}\left\{1-\frac{2 p^{2}}{\mu_{1} \mu_{2}}\right\}, \tag{63}\\
& \mathrm{A}_{4}=-\frac{l^{2} c_{2}^{2}}{2 \mu_{2} \mu_{4}}\left(\mu_{2}^{2}-4 p^{2}\right), \tag{64}
\end{align*}
$$

after which A_{5}, A_{6}, etc., vanish to this order of approximation. In any of these equations we may replace $\mu_{n}{ }^{2}$ by its value from (6), that is $l^{3}-n^{2} p^{2}$.

The boundary condition of this case, $i . e$, , $d \psi / d x=0$, is realised acoustically when aerial waves are incident upon an immovable corrugated surface. In the interpretation for electrical and luminous waves, ψ represents the magnetic induction (b) paralled to y, so that the electric vector is perpendicular to the lines of the grating, the boundary condition at the surface of a perfect reflector being $d b / d n=0$.

We have thus obtained the solutions for the two principal cases of the incidence of polarised light upon a perfect corrugated reflector. In comparing
the results for the first order of approximation as given in（13）for the first case and in（48），（49）for the second，we are at once struck with the fact that in the second case，though not in the first，the intensity of a spectrum may become infinite through the evanescence of $\cos \theta_{n}$ or $\cos \theta_{n}^{\prime}$ ，which occurs when the spectrum is just disappearing from the field of view．But the effect is not limited to the particular spectrum which is on the point of dis－ appearing．Thus in（61）A_{1} ，giving the spectrum of the first order，becomes anfinite as the spectrum of the second order disappears $\left(\mu_{2}=0\right)$ ．Regarded Nom a mathematical point of view，the method of approximation breaks down． \＄he problem has no definite solution，so long as we maintain the suppositions $\overrightarrow{90}$ perfect reflection，of an infinite train of simple waves，and of a grating Kinitely extended in the direction perpendicular to its ruling．But under Se conditions of experiment，we may at least infer the probability of abnor－ ©．alities in the brightness of any spectrum at the moment when one of higher需der is just disappearing，abnormalities limited，however，to the case where bhe electric displacement is perpendicular to the ruling．＊It may be remarked Elat when the incident light is unpolarised，the spectrum about to disappear polarised in a plane parallel to the ruling．

In both the cases of boundary conditions hitherto treated，the circumstances芜资 especially simple in that the aggregate reflection is perfect，the whole of He incident energy being returned into the upper medium．We now pass on To more complicated conditions，which we may interpret as those of two zaseous media of densities σ and σ_{1} ．Equality of pressures at the interface gquires that

$$
\begin{equation*}
\sigma \psi=\sigma_{1} \psi_{1} \tag{65}
\end{equation*}
$$

©nd we have also to satisfy the continuity of normal velocity expressed by总

$$
\begin{equation*}
d \psi / d n=d \psi_{1} / d n \tag{66}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d\left(\psi-\psi_{1}\right)}{d z}-\frac{d\left(\psi-\psi_{1}\right)}{d x} \frac{d \zeta}{d x}=0 \tag{67}
\end{equation*}
$$

and ψ_{1} being given by（7），（10）．We must content ourselves with a solution to the first approximation，at least for general incidence．

From（65），

$$
\begin{gather*}
\frac{\sigma}{\sigma_{1}}\left\{1+\mathrm{A}_{0}+\left(1-\mathrm{A}_{0}\right) i k \zeta \cos \theta+\mathrm{A}_{n} e^{i n p x}+\mathrm{A}_{n}^{\prime} e^{-i n p x}\right\} \\
=\mathrm{B}_{0}\left(1+i k_{1} \zeta \cos \phi\right)+\mathrm{B}_{n} e^{i n p x}+\mathrm{B}_{n}^{\prime} e^{-i n p x} \tag{68}
\end{gather*}
$$

[^1]Distinguishing the various components in ζ as in (53), we find

$$
\begin{gather*}
\frac{\sigma}{\sigma_{1}}\left(1+\mathrm{A}_{0}\right)=\mathrm{B}_{0} \tag{69}\\
\frac{\sigma}{\sigma_{1}} \mathrm{~A}_{n}-\mathrm{B}_{n}=i \zeta_{n}\left\{k_{1} \cos \phi \mathrm{~B}_{0}-\frac{\sigma}{\sigma_{1}}\left(1-\mathrm{A}_{0}\right) k \cos \theta\right\} \tag{70}\\
\frac{\sigma}{\sigma_{1}} \mathrm{~A}_{n}^{\prime}-\mathrm{B}_{n}^{\prime}=i \zeta_{-n}\left\{k_{1} \cos \phi \mathrm{~B}_{0}-\frac{\sigma}{\sigma_{1}}\left(1-\mathrm{A}_{0}\right) k \cos \theta\right\} \tag{71}
\end{gather*}
$$

In forming the second boundary condition (67) we require in $d\left(\psi-\psi_{1}\right) / d x$ only the part independent of ζ. Thus

$$
\frac{d\left(\psi-\psi_{1}\right)}{d x}=i k \sin \theta e^{i k x \sin \theta}\left\{1+\mathrm{A}_{0}-\mathrm{B}_{0}\right\} .
$$

Also

$$
\begin{aligned}
e^{-i k a \sin \theta} \frac{d \psi}{d z}= & i k \cos \theta\left\{1-\mathrm{A}_{0}+\left(1+\mathrm{A}_{0}\right) i k \zeta \cos \theta\right\} \\
& -i k \cos \theta_{n} \mathrm{~A}_{n} e^{i n p x}-i k \cos \theta_{n}^{\prime} \mathrm{A}_{n}^{\prime} e^{-i n p x}, \\
e^{-i k x \sin \theta} \frac{d \psi 1}{d z}= & i k_{1} \cos \phi \mathrm{~B}_{0}\left(1+i k_{1} \zeta \cos \phi\right) \\
& +i k_{1} \cos \phi_{n} \mathrm{~B}_{n} e^{i n p x}+i k_{1} \cos \phi_{n}^{\prime} \mathrm{B}_{n}^{\prime} e^{-i n p x .}
\end{aligned}
$$

Thus (67) takes the form

$$
\begin{align*}
& i k \cos \theta\left(1-\mathrm{A}_{0}\right)-i k_{1} \cos \phi \mathrm{~B}_{0} \\
& -k^{2} \cos ^{2} \theta\left(1+\mathrm{A}_{0}\right) \zeta+k_{1}^{2} \cos ^{2} \phi \mathrm{~B}_{0} \zeta \\
& -e^{i n p x}\left\{i k \cos \theta_{n} \mathrm{~A}_{n}+i k_{1} \cos \phi_{n} \mathrm{~B}_{n}\right\} \\
& -e^{-i n p p x}\left\{i k \cos \theta_{n}^{\prime} \mathrm{A}_{n}^{\prime}+i k_{1} \cos \phi_{n}^{\prime} \mathrm{B}_{n}^{\prime}\right\} \\
& =i k \sin \theta\left(1+\mathrm{A}_{0}-\mathrm{B}_{0}\right) d \zeta / d x . \tag{72}
\end{align*}
$$

From the part independent of x we get

$$
\begin{equation*}
k \cos \theta\left(1-\mathrm{A}_{0}\right)-k_{1} \cos \phi \mathrm{~B}_{0}=0, \tag{73}
\end{equation*}
$$

and from the parts in $e^{i n p x}, e^{-i n p x}$

$$
\begin{array}{r}
k \cos \theta_{n} \mathrm{~A}_{n}+k_{1} \cos \phi_{n} \mathrm{~B}_{n}=i \zeta_{n}\left\{\lambda^{2} \cos ^{2} \theta\left(1+\mathrm{A}_{6}\right)-k_{1}^{2} \cos ^{2} \phi \mathrm{~B}_{0}\right. \\
\left.-n p k \sin \theta\left(1+\mathrm{A}_{0}-\mathrm{B}_{0}\right)\right\}, \tag{74}
\end{array}
$$

and a similar equation involving $\mathrm{A}_{n}^{\prime}, \mathrm{B}_{n}^{\prime}$.
From (69), (73) we find

$$
\begin{equation*}
\mathrm{A}_{0}=\frac{\frac{\sigma_{1}}{\sigma}-\frac{\cot \phi}{\cot \theta}}{\frac{\sigma_{1}}{\sigma}+\frac{\cot \phi}{\cot \theta}}, \quad \mathrm{B}_{0}=\frac{2}{\frac{\sigma_{1}}{\sigma}+\frac{\cot \phi}{\cot \theta}} . \tag{75}
\end{equation*}
$$

Again, eliminating B_{n} between (70), (74), we get, with use of (5),
$\mathrm{A}_{n}\left\{k \cos \theta_{n}+k_{1} \cos \phi_{n} \cdot \sigma / \sigma_{1}\right\}$

$$
\begin{align*}
& =\frac{2 i i^{2} \zeta_{n}}{\mathrm{D}}\left[\frac{\sigma_{1}}{\sigma} \cos ^{2} \theta-\frac{\sigma_{1}-\sigma}{\sigma} \frac{n p}{l_{i}} \sin \theta\right. \\
& \left.-\frac{\sin ^{2} \theta \cos \phi}{\sin ^{2} \phi}\left\{\cos \phi-\cos \phi_{n}+\frac{\sigma}{\sigma_{1}} \cos \phi_{n}\right\}\right], \tag{76}
\end{align*}
$$

The equations (75) for the waves regularly reflected and refracted are those given (after Green) in 'Theory of Sound,' § 270. They are sufficiently general to cover the case where the two gaseous media have different constants of compressibility (m, m_{1}) as well as of density $\left(\sigma, \sigma_{1}\right)$. The velocities of wave propagation are connected with these quantities by the relation, see (5),

$$
\begin{equation*}
k_{1}{ }^{2}: k^{2}=\sin ^{2} \theta: \sin ^{2} \phi=\mathrm{V}^{2}: \mathrm{V}_{1}{ }^{2}=m / \sigma: m_{1} / \sigma_{1} . \tag{77}
\end{equation*}
$$

In ideal gases the compressibilities are the same, so that

$$
\begin{equation*}
\sigma_{1}: \sigma=\sin ^{2} \theta: \sin ^{2} \phi . \tag{78}
\end{equation*}
$$

In this case (75) gives

$$
\begin{equation*}
A_{0}=\frac{\sin 2 \theta-\sin 2 \phi}{\sin 2 \theta+\sin 2 \phi}=\frac{\tan (\theta-\phi)}{\tan (\theta+\phi)}, \tag{79}
\end{equation*}
$$

Fresnel's expression for the reflection of light polarised in a plane perpendicular to that of incidence. In accordance with Brewster's law the reflection vanishes at the angle of incidence whose tangent is $\mathrm{V} / \mathrm{V}_{1}$.
In like manner the introduction of (78) into (76) gives, after reduction,

$$
\begin{align*}
A_{n}\left\{k \cos \theta_{n}\right. & \left.+k_{1} \cos \phi_{n} \cdot \sigma / \sigma_{1}\right\} \\
& =2 i k^{2} \zeta_{n} \cot \theta \tan (\theta-\phi)\{\cos (\theta+\phi) \cos (\theta-\phi) \\
& \left.-\cos \phi\left(\cos \phi-\cos \phi_{n}\right)-n p / k \cdot \sin \theta\right\} . \tag{80}
\end{align*}
$$

If the wave-length of the corrugations be very long, $p=0, \cos \phi_{n}$ becomes identical with $\cos \phi$, and thus A_{n} vanishes when $\cos (\theta+\phi)=0$, that is at the same (Brewsterian) angle of incidence for which $\mathrm{A}_{0}=0$, as was to be expected. In general $\mathrm{A}_{n}=0$, when

$$
\begin{equation*}
\cos (\theta+\phi) \cos (\theta-\phi)=\cos \phi\left(\cos \phi-\cos \phi_{n}\right)+n p / k \cdot \sin \theta . \tag{81}
\end{equation*}
$$

If we suppose that $n p / k$ is somewhat small, we may obtain a second approximation to the value of $\cos (\theta+\phi)$. Thus, setting in the small terms. $\theta+\phi=\frac{1}{2} \pi$, we get

$$
\cos (\theta+\phi)=\frac{1}{2} \sec \theta\left\{\cos \phi-\cos \phi_{n}+n p / l i\right\} .
$$

Here

$$
\cos \phi_{n}=\cos \phi-n p / k_{1} \cdot \tan \phi=\cos \phi-n p / k \cdot \cot ^{2} \theta,
$$

so that

$$
\begin{equation*}
\cos (\theta+\phi)=\frac{n p}{2 k \sin ^{2} \theta \cdot \cos \theta} . \tag{82}
\end{equation*}
$$

This determines the angle of incidence at which to a second approximation (in $n p / k$) the reflected vibration vanishes in the nth spectrum.

Since according to (82) with n positive $\theta+\phi<\frac{1}{2} \pi$, and $\theta_{n}>\theta$, it seemed not impossible that (82) might be equivalent to $\cos \left(\theta_{n}+\phi\right)=0$, forming a kind of extension of Brewster's law. It appears, however, from (6) that

$$
\begin{equation*}
\cos \left(\theta_{n}+\phi\right)=\frac{n p}{k \cos \theta}\left(\frac{1}{2 \sin ^{2} \theta}-1\right), \tag{83}
\end{equation*}
$$

so that the suggested law is not observed, although the departure from it would be somewhat small in the case of moderately refractive media.

For the other spectrum of the nth order we have only to change the sign of n in (82), (83).

When $n p / k$ is not small, we must revert to the original equation (81). Even this, it must be remembered, depends upon a first approximation, including only the first powers of the ζ s.

Another special case of interest occurs when $\sigma_{1}=\sigma$, so that in the acoustical application the difference between the two media is one of compressibility only. The introduction of this condition into (75) gives

$$
\begin{equation*}
A_{0}=\frac{\tan \phi-\tan \theta}{\tan \phi+\tan \theta}=\frac{\sin (\phi-\theta)}{\sin (\phi+\theta)}, \tag{84}
\end{equation*}
$$

the other Fresnel's expression.
Again, from (76),
whence

$$
\begin{gather*}
\mathrm{A}_{n}\left\{k \cos \theta_{n}+k_{1} \cos \phi_{n}\right\}=\frac{2 i k^{2} \zeta_{n}}{\mathrm{D}}\left\{\cos ^{2} \theta-\frac{\sin ^{2} \theta \cos ^{2} \phi}{\sin ^{2} \phi}\right\}, \\
\mathrm{A}_{n}=\frac{2 i k \zeta_{n} \cos \theta \sin (\phi-\theta)}{\sin \phi \cos \theta_{n}+\sin \theta \cos \phi_{n}} \tag{85}
\end{gather*}
$$

In this case the vibration in the nth spectrum does not vanish at any angle of incidence.

We have now to consider the application of our solutions to electromagnetic vibrations, such as constitute light, the polarisation being in one or other principal plane. In the usual electrical notation,

$$
\mathrm{V}^{2}=1 / \mathrm{K} \mu, \quad \mathrm{~V}_{1}{ }^{2}=1 / \mathrm{K}_{1} \mu_{1},
$$

$\mathrm{K}, \mathrm{K}_{1}$ being the specific inductive capacities, and μ, μ_{1} the magnetic permeabilities; while in the acoustical problem,

$$
\mathrm{V}^{2}=m / \sigma, \quad \mathrm{V}_{1}^{2}=m_{1} / \sigma_{1}
$$

The boundary conditions are also of the same general form. For instance, the acoustical conditions

$$
\sigma \psi=\sigma_{1} \psi_{1}, \quad d \psi / d n=d \psi_{1} / d n,
$$

may be written

$$
(\sigma \psi)=\left(\sigma_{1} \psi_{1}\right), \quad \sigma^{-1} d(\sigma \psi) d n=\sigma_{1}^{-1} d\left(\sigma_{1} \psi_{1}\right) / d n ;
$$

and in the upper medium where σ is constant it makes no difference whether we deal with ψ or $\sigma \psi$. Thus if in the case of light we identify ψ with β, the
omponent of magnetic force parallel to y, the conditions to be satisfied at the surface are the continuity of β and of $\mathrm{K}^{-1} d \beta / d n$.*
$\stackrel{S}{00}_{0}^{0}$ Comparing with the acoustical conditions, we see that K replaces σ, and
 golution (75), (76), it is only necessary to write K in place of σ. For optical gurposes we may usually treat μ as constant. This corresponds to the special soppposition (78), so that (79), (80) apply to light for which the magnetic orce is parallel to the lines of the grating, or the electric force perpendicular the lines, i.e., in the plane of incidence.
From (76) we may fall back upon (48) by making $\mathrm{K}_{1}=\infty, \mu_{1}=0$, in such way that V_{1}, and therefore ϕ, remains finite.
The other optical application depends upon identifying ψ with Q, the lectromotive intensity parallel to y, i.e., parallel to the lines of the grating. Whe conditions at the surface are now the continuity of Q and of $\mu^{-1} d \mathrm{Q} / d n$. Squations (75), (76) become applicable if we replace σ by μ. If μ be onvariable, this is the special case of (84), (85); so that these equations are applicable to light when the electric vibration is parallel to the lines of the登rating, or perpendicular to the plane of incidence. The associated Fresnel's Expression (79) or (84) suffices in each case to remind us of the optical tircumstances.
In order to pass back from (76) to (13), we are to suppose $\mathrm{K}_{1}=\infty$, $\tilde{\sigma}_{\varkappa_{1}}\left(\right.$ or $\left.\sigma_{1}\right)=0$, so that ϕ remains finite. Thus $\mathrm{D}=\cot \phi / \cot \theta$, and the Frnly terms to be retained in (76) are those which include the factor σ / σ_{1}.

The polarisation of the spectra reflected from glass gratings was noticed by Fraunhofer:-"Sehr merkwürdig ist es, dass unter einem gewissen Einfallswinkel ein Theil eines durch Reflexion entstandenen Spectrums aus vollständig polarisirtem Lichte besteht. Dieser Einfallswinkel ist für die verschiedenen Spectra sehr verschieden, und selbst noch sehr merklich für die verschiedenen Farben ein und desselben Spectrums. Mit dem Glasgitter $\epsilon=0.0001223$ ist polarisirt: $\mathrm{E}(+\mathrm{I})$, d.i., der griine Theil dieses ersten

[^2]Spectrums, wenn $\sigma=49^{\circ}$ ist; $\mathrm{E}(+\mathrm{II})$, oder der grüne Theil in dem zweiten auf derselben Seite der Axe liegenden Spectrum, wenn $\sigma=40^{\circ}$ beträgt; endlich $\mathrm{E}(-\mathrm{I})$, oder der grüne Theil des ersten auf der entgegengesetzten Seite der Axe liegenden Spectrums, wenn $\sigma=69^{\circ}$. Wenn $\mathrm{E}(+\mathrm{I})$ vollständig polarisirt ist, sind es die übrigen Farben dieses Spectrums noch unvollständig."*

In Fraunhofer's notation σ is the angle of incidence, here denoted by θ, and $\lambda(E)=0.00001945$ in the same measure (the Paris inch) as that employed for ϵ, so that $p / k=\lambda / \epsilon=0 \cdot 159$. If we suppose that the refractive index of the glass was $1 \cdot 5$, we get

Order.	θ.	$\operatorname{Sin} \theta$.	$\operatorname{Sin} \phi$.	ϕ.		$\theta+\phi$.	
	\bigcirc			-	,		,
E (+I)	49	0.755	$0 \cdot 503$				
E $(+$ II) $\ldots \ldots \ldots \ldots$	40	$0 \cdot 643$	0.429				
$\mathrm{E}(-\mathrm{I}) \ldots \ldots \ldots \ldots \ldots$	69	0.934	0.623	107		107	

On the other hand, from (82) we get for $\mathrm{E}(+\mathrm{I}) \theta+\phi=77^{\circ} 44^{\prime}$, for $\mathrm{E}(+\mathrm{II}) 59^{\circ} 48^{\prime}$, and $\mathrm{E}(-\mathrm{I}) 104^{\circ} 45^{\prime}$, a fair agreement between the two values of $\theta+\phi$, except in the case of $\mathrm{E}(+\mathrm{II})$.

It appears, however, that the neglect of p^{2} upon which (82) is founded is too rough a procedure. By trial and error I calculate from (81) for $\mathrm{E}(+\mathrm{I}) \quad \theta=48^{\circ} 52^{\prime}$; for $\mathrm{E}(+\mathrm{II}) \theta=42^{\circ} 17^{\prime}$; for $\mathrm{E}(-\mathrm{I}) \theta=65^{\circ} 46^{\prime}$. These agree perhaps as closely as could be expected with the observed values, considering that they are deduced from a theory which neglects the square of the depth of the ruling. The ordinary polarising angle for this index (1.5) is $56^{\circ} 19^{\prime}$.

It would be of interest to extend Fraunhofer's observations; but the work should be in the hands of one who is in a position to rule gratings himself. On old and deteriorated glass surfaces polarisation phenomena are liable to irregularities.

In the hope of throwing light upon the remarkable observation of Professor Wood, \dagger that a frilled collodion surface shows an enhanced reflection, I have pursued the calculation of the regularly reflected light to the second order in ζ, the depth of the groove, limiting myself, however, to the case of perpendicular incidence and to the supposition that ζ_{1} and its. equal

[^3]ζ_{-1} are alone sensible. Although the results are not what I had hoped, it may be worth while to record the principal steps.

Retaining only the terms independent of x, we get from the first condition (65),
$\sigma / \sigma_{1} \cdot\left\{\left(1+\mathrm{A}_{0}\right)\left(1-k^{3} \zeta_{1}^{2}\right)-2 i k \zeta_{1} \cos \theta_{1} \mathrm{~A}_{1}\right\}=\mathrm{B}_{0}\left(1-k_{1}^{2} \zeta_{1}^{2}\right)+2 i k_{1} \zeta_{1} \cos \phi_{1} \mathrm{~B}_{1}$,
and from the second condition (67),

$$
\begin{gather*}
k\left(1-\mathrm{A}_{0}\right)\left(1-k^{2} \zeta_{1}^{2}\right)+2 i k^{2} \zeta_{1} \mathrm{~A}_{1} \cos ^{2} \theta_{1}-k_{1} \mathrm{~B}_{0}\left(1-k_{1}^{2} \zeta_{1}^{2}\right)-2 i k_{1}^{2} \xi_{1} \mathrm{~B}_{1} \cos ^{2} \phi_{1} \tag{86}\\
=-2 i p^{2} \zeta_{1}\left(\mathrm{~A}_{1}-\mathrm{B}_{1}\right) . \tag{87}
\end{gather*}
$$

Eliminating $B_{0}\left(1-k_{1}^{2} \xi_{1}^{2}\right)$, and remembering that

$$
\begin{align*}
& k^{2} \cos ^{2} \theta_{1}+p^{2}=k^{2}, \quad k_{1}^{2} \cos ^{2} \phi_{1}+p^{2}=k_{1}^{2}, \\
& k\left(1-\mathrm{A}_{0}\right)-\sigma / \sigma_{1} \cdot k_{1}\left(1+\mathrm{A}_{0}\right)+2 i k^{2} \xi_{1} \mathrm{~A}_{1} \\
& +\sigma / \sigma_{1} \cdot 2 i k k_{1} \xi_{1} \mathrm{~A}_{1} \cos \theta_{1}+2 i k_{1}^{2} \xi_{1} \mathrm{~B}_{1} \cos \phi_{1}-2 i k_{1}^{2} \xi_{1} \mathrm{~B}_{1}=0, \tag{88}
\end{align*}
$$

which we are to substitute the values of $\mathrm{A}_{1}, \mathrm{~B}_{1}$ from (70), (74). From is point it is, perhaps, more convenient to take the principal suppositions parately.
Let, as in (78), $\quad \sigma_{1}: \sigma=\sin ^{2} \theta: \sin ^{2} \phi=k_{1}{ }^{2}: k^{2}$; have

$$
\mathrm{A}_{0}=\frac{k_{1}-k}{k_{1}+k}, \quad \mathrm{~B}_{0}=\frac{2 k^{2}}{k_{1}\left(k_{1}+k\right)},
$$

d accordingly, from (70), (74),

$$
k^{2} \mathrm{~A}_{1}-k_{1}^{2} \mathrm{~B}_{1}=2 i k^{2} \zeta_{1}\left(k_{1}-k\right), \quad k \cos \theta_{1} \mathrm{~A}_{1}+k_{1} \cos \phi_{1} \mathrm{~B}_{1}=0 ;
$$

$$
\text { that } \quad A_{1}\left\{k \cos \phi_{1}+k_{1} \cos \theta_{1}\right\}=2 i k \zeta_{1}\left(k_{1}-k\right) \cos \phi_{1} .
$$

Hence, from (88),

$$
\begin{equation*}
\frac{1-\mathrm{A}_{0}}{1+\mathrm{A}_{0}}=\frac{k}{k_{1}}+\frac{2 k \zeta_{1}{ }^{2}\left(k_{1}{ }^{2}-k^{2}\right)}{k_{1}}\left\{1-\frac{\left(k_{1}{ }^{2}-k^{2}\right) \cos \theta_{1} \cos \phi_{1}}{k_{1}\left(k \cos \phi_{1}+k_{1} \cos \theta_{1}\right)}\right\} . \tag{89}
\end{equation*}
$$

Again, when $\sigma_{1}=\sigma$,

$$
\mathrm{A}_{0}=\frac{k-k_{1}}{k+k_{1}}, \quad \mathrm{~B}_{0}=\frac{2 k}{k+k_{1}}
$$

and from (70), (74),

$$
\begin{equation*}
\mathrm{A}_{1}=\mathrm{B}_{1}=\frac{2 i k \zeta_{1}\left(k-k_{1}\right)}{k \cos \theta_{1}+k_{1} \cos \phi_{1}} . \tag{90}
\end{equation*}
$$

The introduction of these into (88) gives

$$
\begin{equation*}
\frac{1-\mathrm{A}_{0}}{1+\mathrm{A}_{0}}=\frac{k_{1}}{k}-\frac{2\left(k_{1}^{2}-k^{2}\right) \zeta_{1}^{2}}{k}\left\{k_{1}-\frac{k_{c_{1}^{2}}^{2}-k_{2}^{2}}{k \cos \theta_{1}+k_{1} \cos \phi_{1}}\right\} . \tag{91}
\end{equation*}
$$

The question is whether the numerical value of A_{0} is increased or diminished by the term in $\zeta_{1}{ }^{2}$. In (89) it is easy to recognise that in the standard case of k_{1} greater than k (air to glass in optics) the term in $\zeta_{1}{ }^{2}$ is positive, θ_{1} and ϕ_{1} being supposed real. The effect of the second term is thus to bring the right-hand member nearer to unity than it would otherwise be, and thus to diminish the reflection. Again, in (91), the second term is negative, even when $\cos \theta_{1}=0$, as we may see by introducing the appropriate value of $\cos \phi_{1}, v i z,, \sqrt{ }\left(1-k^{2} / k_{1}^{2}\right)$. The effect is therefore to subtract something from k_{1} / k, which is greater than unity, and thus again to diminish the reflection.

If in (89), (91) we neglect the terms in $\left(k_{1}{ }^{2}-k^{2}\right)^{2} \zeta_{1}{ }^{2}$, which will be specially small when the two media do not differ much, the formulæ become independent of the angles θ_{1} and ϕ_{1}. In both cases the effect is the same as if the refractive index, supposed greater than unity, were diminished in the ratio $1-2\left(k_{1}{ }^{2}-k^{2}\right) \zeta_{1}^{2}: 1$. It appears then that the present investigation gives no hint of the enhanced reflection observed in certain cases by Professor Wood.

[^0]: * Second edition, § $272 u, 1896$.

[^1]: ＊See a＂Note on the Remarkable Case of Diffraction Spectra described by Professor Wood，＂recently communicated to the＇Philosophical Magazine，＇vol．14，p．60， 1907.

[^2]: * See 'Phil. Mag.' vol. 12, p. 81, 1881 ; 'Scientific Papers,' vol. 1, p. 520.

[^3]: * Gilbert's 'Ann. d. Physik,' vol. 74, p. 337 (1823) ; 'Collected Writings,' Munich, 1888, p. 134.
 + 'Physical Opties,' p. 145.

