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On the D ynam ica l Theory o f  G ratings.

By Lo r d  Ra y l e ig h , O.M., Pres. E.S.

(Received June 11,—Read June 27, 1907.)

In  the usual theory of gratings, upon the lines laid down by Fresnel, the 

various parts of the prim ary w ave-front after undergoing influences, w hether 

affecting the phase or the am plitude, are conceived to pursue the ir course as 

if they still formed the fronts of waves of large area. This supposition, 

justifiable as an approxim ation when the  grating in terval is large, tends to 

fail altogether when the in terval is reduced so as to be comparable w ith the 

wave-length. A simple example will best explain the na tu re  of the failure. 

Consider a grating of perfectly reflecting m aterial whose a lte rnate  parts  are 

flat and parallel and equally wide, bu t so disposed as to form a groove of 

depth equal to a quarter wave-length, and upon this le t ligh t be incident 

perpendicularly. Upon Fresnel’s principles the central regularly  reflected

_J l

F i g . 1.

image m ust vanish, being constitu ted by the com bination of equal and 

opposite vibrations. If  the grating in terval be large enough, th is conclusion 

is approxim ately correct and could be verified by experim ent. B u t now 

suppose th a t the grating in terval is reduced u n til it  is less than  the wave

length of the light. The conclusion is now entirely  wide of the mark. 

Under the circumstances supposed there are no la teral spectra and the 

of the incident energy is necessarily throw n into the regular reflection, 

which is accordingly to tal instead of evanescent. A closer consideration 

shows tha t the recesses in this case act as resonators in a m anner not covered 

by Fresnel’s investigations, and illustrates the need of a theory more stric tly  

dynamical.

The present investigation, of which the in terest is m ainly optical, may be 

regarded as an extension of tha,t given in ‘ Theory of Sound,’* where plane 

waves were supposed to be incident perpendicularly upon a regularly 

corrugated surface, whose form was lim ited by a certain condition of 

symmetry. Moreover, attention was there principally fixed upon the case 

where the wave-length of the corrugations was long in comparison with tha t

* Second edition, § 272«, 1890.
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400

of the waves themselves, so th a t in the optical application there would be 

a large num ber of spectra. I t  is proposed now to dispense w ith these 

restrictions. On the  other hand, it will be supposed th a t the depth of the 

corrugations is sm all in  comparison w ith the length  (A.) of the waves.

The equation of the reflecting surface may be taken  to be =  £, where £ is 

a periodic function of x, whose m ean value is zero, and which is independent 

of y. B y F ourier’s theorem  we m ay w rite

£ =  Cicos p x  +  c2 cos 2 px  -f- 

=  i c i {<?px +  e~ipz) +  \ ( c n- i s n) einP*-t-i (1)

the  w ave-length (e) of the  corrugation being 27 Form erly the s terms 

were om itted and a tten tion  was concentrated upon the case where c\ was 

alone sensible. The omission of the  s term s m akes the  grating symmetrical, 

so th a t a t perpendicular incidence the  spectra on the two sides are similar. 

I t  is know n th a t th is condition is often, and indeed advantageously, departed 

from  in practice.

Lord Rayleigh. [June 11,

F i g . 2.

The vibrations incident a t obliquity 6, POZ, fig. 2, are represented by

\Jr nz g ik (V t+ z  cos 0+a: sin 0) ^2)

where k  == and Y is the velocity of propagation in the upper medium.

H ere yjr satisfies in all cases the same general differential equation, but its 

significance m ust depend upon the character of the waves. In  the acoustical 

application, to which for the present we may confine our attention, \fr is the

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

u
g
u
st

 2
0
2
2
 



On the D ynam ica l Theory o f  Gratings. 4011 9 0 7 .]

velocity-potential. In  optics it is convenient to change the precise in te rp re ta 

tion according to circumstances, as we shall see later.

The waves regularly reflected along OQ are represented by

yjr =  Ao 

in which A0 is a (possibly complex) coefficient to be determ ined. In  all the 

expressions w ith  which we have to deal the  tim e occurs only in the factor 

eikyt, running through. For brevity  th is factor may be omitted.

In  like m anner the waves regularly refracted along OR into the lower 

medium have the expression

yfn =  Bo 0%(*cos$+*sin,<>)> 

<p being the angle of re frac tion ; and, by the law  of refraction,

k i : k  =  Y  : Y i  =  sin 6 : sin (p. (5)

In  addition to the incident and regularly reflected and refracted waves, we 

have to consider those corresponding to the various spectra. For the reflected 

spectra of the n th  order we have

^  3CO S  0 n +  3  s i n  0 n ) _ |_  n  ( $ * (  —  Z COS 0 'n  +  X  S i l l  0 'n )  ( 5  )

where, by the elem entary theory of these spectra,

e sin 6n — esin 6 — + n \ ,  or s in 0 n — sin # =  + n p /k .  (6)

W e shall choose the upper sign for 0n and the lower for d'n. In  virtue 

of (6) the complete expression for ^  in  the upper medium takes the form

\fr. e~ifcx sil1 d =  eiJczcos e +  Ao 0—***cos d +

+  A  n ( f  nv x  e —ikz  cos 6n A  ̂ n  — injp* $ — cos 0'n _|_

where n  has in succession the values 1, 2, 3, etc.

Similarly, in the lower medium the spectra of the ?ith order are repre

sented by
\ f n  =  B n e i k '  ( z  C O S  4>n +  X  S i n  <t>n) J J '  (*  COS <*>'« +  *  S i l l  <£'*) ^ g ^

where sin <f>n- s i n  <p= ±np/h.(9)

Accordingly, for the complete expression of yfrh we have w ith use of (5),

'yj/'i. sin ® =  Bo e*̂ ]Z cos ̂  +  ... +  B?l c*nPr c^ iZ cos-{- B /?l ^ \ zc o s (10)

iW e  m ust now introduce boundary conditions to be satisfied at the 

transition between the two media when =  £. I t  may be convenient to 

commence with a very simple case determ ined by the condition th a t 0. 

T he'w hole of the incident energy is then thrown back, and is distributed 

between the regularly reflected waves and the various reflected spectra.

2 e  2
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W e proceed by approxim ation depending on the smallness of £ Expanding 

the exponentials on the righ t side of (7), we get

(1 +  Ao) (1 -  W  ?cos2 0 + . . . )  +  ( 1 - Ao) ( ik£  co

+  A„ einP*{l — ik £cos 0n + . . .

In  th is equation the value of £ is to be substitu ted  from (1), and then 

in accordance w ith F ourier’s theorem  the coefficients of the various 

exponential term s, such as einPx, e~inPx, are to be separately equated to 

zero. As the  first approxim ation, we get from the constant term  (inde

pendent o f ' x )
l + A o =  0, (12)

and from the  term s in  einPx, e~inpx,

A, i  —  —  iJc cos 0  (Cn i%jt), A  n  —  cos 0 ( cn - | -  

Thus, as was to be expected, A,„ A 'n are

stop a t the second order inclusive, (11) m ay be w ritten

1 +  Ao +  2 ^ £ co s  0 +  A n einPx ( l - i k t ,  cos 6n) +  A 'n (1 - ^ £ c o s

(14.)
For the  second approxim ation to A 0 we get

1 +  A 0 — COS 0 % (Cn2 +  ,S’W2)  (cos On

By means of (13) and (15) we m ay verify the principle th a t the energies 

of the  incident, and of all the reflected vibrations taken  together, are equal. 

The energy corresponding to u n it of w ave-front of the incident waves may 

be supposed to be un ity , and for the  o ther waves mod2A0, mod2Ai, mod2 Ah, 

etc. B ut w hat we have to consider are no t equal areas of wave-front, but 

areas corresponding to the same ex ten t of reflecting surface, areas of 

w ave-front proportional to cos 0, cos 0\, cos 0 \ ,  etc. Hence,

cos 0 . mod2 Ao +  % cos 0n . mod2 A n +  X cos O'n • mod2 A 'n cos 0, (16)

w ith which the special approxim ate values already given are in harmony. 

In  the form ation of (16) only real values of cos 0n, cos 0'n are to be 

included. I f  p>Jc ,  no real values exist, i.e., there are no lateral spectra. 

The regular reflection is then total, and this w ithout lim itation upon the 

m agnitude of the c’s. The question is fu rther considered in ‘Theory of 

Sound,’ § 272 a.

In  pursuing a second approxim ation for the coefficients of the lateral 

spectra, we will suppose for the sake of brevity  th a t the terms in (1) are 

omitted. From the term  involving einPx in (14), we get w ith use of (13),

402 Lord Rayleigh. [June 11,
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9 cn +  ^k2 cos cos 6'n cn

+  % k2 COS 0{ (C

+  ( c 2 COS 0n- 2 +  C2n- 2 COS )  Cn - 2 +

-fi (  Cl COS S n +\-4" 
\ -v .• *< ■

+  ( c 2 COS S n + 2 -h C 2n + 2 COS S 'n + 2)  Cn + 2 +  . . . } ,  ( 1 7 )

in which the first (descending) series is to term inate  when the suffix in 

cos 0n_r is equal to unity. • ,

The value of A'„ may be derived from (17) by in terchange of 0' and 6 

in cos#n_r , cos0 '„_r , cos#n+r, cos cos rem aining unchanged. As

a particular case of (17), we have, for the  spectra of the first order,

Ai =  —ikcicos 6 +  kk?cic2 cos 6 cos 9 \

+  Ĵc2 cos 6 {c2 ( cos 2 +  c3 cos )

+  c3 (c3 cos 03 +  c4cos 

A'x =  — ikci cos 6 +  \  cos 9 cos 

+  |  P  COS 0  {  C‘2( c x cos S ' 2 +  c3 cos 

+  Cz (c3cos S'z  •+• ^

the descending series in  (17) disappearing altogether.

If the incidence is norm al, cos 9 =  1, cos 0'„ =  cos 0„, and  thus A„, A'„ 

become identical and assume specially sim ple forms. Referring to (7), we 

see th a t in this case

yfr =  eikz+ A 0e~ikz +  2A±e~ikzcos6' cos px  + . . .  +  2An e~ikz c

1907.] On the D ynam ica l Theory o f  Gratings. 403

in which, to the  second order,

A0 =  — 1 + k 2 '%cn2 cos 0n. (21)

An =  —ikcn +  \ k 2 cos 0n . cn c2n

+  \ k 2 {(cx +  c2n-  1) cn-icos 0n~i +  +  Can- 2) cos 0n- 2

+  (Ci +  C2n+l) C„+1 COS 9 n +\~f" (c3 “K Can+fl) cn+ 2  COS 0w+2 +

I f  we suppose th a t in (1) only cx and c2 are sensible, we 

A0 =  — 1 +  k2cx2cos 

A x =  —ikci +  ^k2cic2 (cos 01 +  cos 02), (24)

A2 =  — ikc2+ ^ k 2cx2 cos9u . (25)

A3 =  \ k 2cxc2 (cos 9 X +  cos 

while A4, A5, etc., vanish to the second order of small quantities inclusive.

1 There is no especial difficulty in carrying the approxim ations further. As
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404 Lord Rayleigh. [June 11,

an example, we may suppose th a t c1 is alone sensible in ( 1 ), so th a t we may 

w rite
£ =  c c (27)

and also th a t the  incidence is perpendicular. For brevity  we will denote 

&cos 0n or k cos 0'n by / in.The boundary condition =  0 ) 

in  th is case,
etk$—e~ikS +  (A 0 + 1 )  e~ikC +  2Ai e~ilJ-  ̂cos 

4 - ....... +  2A„ e~ilXn£ cos + .......  =  0, (28)
in which

eikt —e~ik£ =  4^ {Jx(&c) cos^%e—J 3 (&c)cos 3 2%c + J 5 (fcc) cos 5 p r—...} , (29) 

e-ik{ _  j o ( ) _  2 J 2 ( cos 2  + . . .

— i{2 J i (&e)cosjp«— 2  J 3 (ftc) cos 3 p ; + . . . } , ( 3 0 )

w ith  sim ilar expressions for e r ^ ,  e~{̂ ,  etc. By Fourier’s theorem  the  term s 

independent of x, in  cospx ,  cos 

(A# + 1 )  J q ( kc) — 2-iAiJ 1 (yu-i c) — 2 A 2 J  2 (^ c )  4* 

(31)
The term  in  cos p x  gives

2  iJ1 {kc) — i  (Ao + 1) J i (kc)

— lA 2{Jx ( p 2C) — 3 3 (/M2c)} — A3{J2(^3C) — J4(^2

The term  in cos 2 px  gives

—(A 0 + 1) J 2 (kc) — iA.i{J  x —

4" A 2 {Jo (/M2c) +  J 4 (fl2C)} 4 -...—■ 0 . (33)

The term  in cos 3px gives

— 2i J 3 (kc) 4- i  (Ao + 1 )  J 3 (kc)

— Ax {J 2 (fzic) — J 4 (f^2c)} — { J l  +  J 5 ( p 2C)}

+  A 3 {Jo (M’sc)—J« 0*3®)} +  ••••'•• == 0* (34)

W e see from these th a t Ao +  1 is of the second order in kc, th a t Ax is of 

the first order, A 2 of the second order, A 3 of the th ird  order, and so on. 

Expanding the Bessel’s functions, we find, to the second order inclusive, as in 

(23), (24), (25), (26),

Ao =  — 14- kfjiic2, Ax =  —ike,

Aa =  \k /i \c2,A 3 =  0 .

A4, etc., vanishing. To the  th ird  order inclusive (34) now gives

A 3 =  ^  ike3 (k2 — 3 fii2 

From  (33) to the same order we Shave still for Aa,

A 2 —
and from (32)

Ax =  —ik c + j f i k c 3 (k2+4:k/Mi +  2/Mi/i2—3fMi2)‘

(37)

(38)
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These are complete to the th ird  order of inclusive. To this order 

A4, A5, etc., vanish.

So far as the th ird  order of kc inclusive, A 0 rem ains as in (35 ); bu t i t  is 

worth while here to retain  the term s of the fourth  order. W e find 

from (31)—

A 0 =  — 1 +  k pxc2 +  Ikct — +  —2 +  (39)

I t  is to be noted th a t k, p x, p 2 are not independent. By (6), w

tin =  k2 cos2 6n =  (40)

so th a t
fix3 =  k2- p 2, =  Aj* -4

and
3 P - 4 /* 12+ /*a2 =  0. (41)

By use of (41) it may be verified to the fourth  order th a t when p i ,  are 

real, so th a t the spectra of the second order are actually formed,

mod2 A 0 +  O f  mod2 Ai +  mod2 A 2 =  1, (42)
rC rC

expressing the conservation of vibratory energy.

W hen p i  is real, bu t not p 2, we may w rite p 2 — where v2 

In  this case

A0 =  — 1 +  kpic2 +  k̂c*(k2p i  — 4kp i2 +  2 p {s—p xv22) +

Ai =  — ik e+ \ ik c z (k2 +  4 kpx — 3 p i2) +  \k<?pxv2; 

and in v irtue of (41) to the fourth order,

mod2 A 0 +  -ffmod2 A
k

Again, if p h p 2 are both im aginary, equal, say, to —Wi, —iv2, we have 

from (39) w ith separation of real and im aginary parts,

Ao =  — 1 +  ^ v i 2̂  — i  (kvxc2 +  term s in c4), 

so that, to the fourth order,

mod2A0 =  l ,  (44)

expressing that the regular reflection is now total.

In  the acoustical in terpretation  for a gaseous medium f̂r represents the 

velocity-potential, and the boundary condition (yjr =  0) is th a t of constant 

pressure. In  the electrical and optical in terpretation  the waves are incident 

from air, or other dielectric medium, upon a perfectly conducting and, there

fore, perfectly reflecting corrugated substance. H ere represents the 

electromotive intensity  Q parallel to y, th a t is parallel to the lines of the 

grating, the boundary condition being the evanescence of Q.

1907.] On the D ynam ical Theory o f  G ratings. 405
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406 Lord Rayleigh. [June 11,

W e now pass on to the boundary condition nex t in  order of simplicity, 

which ordains th a t d^rf dn  =  0, where dn  is draw n norm ally at the surface of 

separation. Since the surfaces z— £ =  0, 

the condition expressed in  rectangular co-ordinates is

4 ;$} dz dx
(45)

yfr being given by (7) and £ by (1).

For the purposes of the first approxim ation, we require in d ^ / d x  only the 

p a rt independent of the c’s and s’s,since 

Thus a t the surface

i 1' =  ik  sin $ siu 1 +  A0).
dx

Also, correct to the first order,

(hjr _  ^  îkx sin e j-cos 0 1 1  _  A„ +  (1 +  A
C C Z

— ...........— COS 0 „ A nd nPx — cos

Thus (45) gives

cos 6 ( 1 —A0) +  cos2 (9(1 +  A0) cos 0nA n einpx

■ COS 0'nA'n e inpx_ .... — s i n  ( 1  +  Ao) (y  =  0 .
CLJU

(46)

From  the term  independent of we see tha t, as was to be expected,

A0 =  1. (47)

' Also A n cos 6n =  i  ( 

A  'ncos 6'n =  i  (cn +  isn) cos2 sin 

W hen n  — 1 in  (48), (49), we m ay pu t Si =  0. These 

the complete solution to a first approxim ation.

For the second approxim ation we m ust re tain  the term s of the first order 

in  dyjrfdx. Thus from (5), (7)

e-ikxsm e ± t  =  ik  [sin 0 {1 +  A0 +  (1— A 0) c
. dx

+  sin 0„An einpx +  sin 0'nA 'n e~tnpx]

=  ik{2 sin 0 +  sin 0

since to the first order inclusive A 0 =  1. Also

e-ikx sined±_  ikcos 0 /
dz

— ik  cos 0nA„ einpx (1 — ik£  cos 0n) — ik  cos 0'nA!n (1 — ik£  cos 0'n). (51)
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On the D ynam ica l Theory o f Gratings. 4071907.]

Thus by (45) the boundary condition is

cos 0 (1 — A0) +  2 cos2 sin 6 —
dx

— A neinPx - f  cos 6n—ik  cos £ + s in  6n ~  l-
L

—A 'ne~inPx cos d'n — ikcos26'n £ +  sin 6'n y "(52)

In  the small term s we m ay substitu te  for An, A '„ their approxim ate values 

from (48), (49).

In  (52) the coefficients of the various term s in e~inPx m ust vanish 

separately. In  pursuing the approxim ation we w ill w rite for brevity

f  =  Si +  gL.j c~{Px +  . . .  +  £» einpx +  Z-n e~inpx, (53)

where £i =  £ -i =  ,

and £ n — ̂  0 n i n̂)> == 2 (Oi 4* (54)

The term  independent of xgives A 0 to the  second approxim ation. 

cos 6 (1 — A0) +  i  A»

+  iA 'n (A; cos2 6'n—np  sin ) £n =  0. (55)

In  (55), as follows from (6),

k cos2 6n +  np  sin 6n =  cos2 

and k  cos2 6'n—np sin 6'n =  k  cos2 6 +  np  sin 6.

Hence with introduction of the values of An, A 'M from (48), (49),

 (1 —Ao) =  . . . . . . +  Tp—  V) (k cos2 — sin 
mJ OOS \J Jl

+  f ,  (kcos2 6 +  sin +

as might also be inferred from (48), (49) alone, w ith the aid of the energy 

equation—

6 =  cos 6mod2A0 + . . .  +  cos 6nmod2A„ +  cos 6'n mod2 A 'n

From the term  in empx in  (52) we get 

cos 0n A n =  2 i  (kcos2 6 — np  sin 6) £n

+  iA 'n (kcos2 0'n—2np  sin 0'n) .........

+  i  A n-r(k cos2 0n- r—rp  sin )

+  iAn+r (k cos2 6n+r -f rp sin 0n+r) £ - r 

+  i A 'n- r ( k cos26'n- r—(2n — r)sin 

+  iA 'n + r (k  cos2 0 ' n + r —sin 0'n+r) . 
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408 Lord Rayleigh. [June 11,

In  (58) r  is to assume the values 1, 2, 3, etc., the descending series 

term inating  when n  — r  =  1.

The corresponding equation for A 'n may be de

the sign of n, w ith the understanding th a t

A—m — A m,A —m — A m , — 0 m, 0 —m — 0m. (59)

If  the incidence be perpendicular, so th a t 0'm =  — 0m, and if £_m =  £m, 

which requires th a t sm =  0, the values of A 'n and A„ become identical.

If  n  =  1, the descending series in  (58) make no contribution. W e have

cos #iAi =  2 i ( J c  cos2 0 — psin 0) £i 

-f iA 2 (Jccos2 02 + p  sin 02) £ - i +  ^A3 cos2 02 +  sin

+  iA !2 (Jc cos2 0'2—3p  sin 0'2) ^  +  iA ' s (Jc co

W e will now introduce the sim plifying suppositions th a t 0, =  0,

m aking A '„ =  A», and also th a t only c\ and c2 are sensible, so that

£3 =  £4 = ....... =  0. W e wrill also, as before, denote cos 0n or ^cos 0'n by fin.

Accordingly (60) gives, w ith  use of (6), (48), (49),

Aj
iWcxJkPcjCi

fix 2/J, 12 Zfli/Lt2
(61)

In  like m anner, we get from (58)

A 2

A 3

iJc2c2_ Jc2ci2

/x2 2/XIH2
W - P ) >

Jc?C\C2 (fi 1 +  fi2) r x  2y>2 1

2/*8 L yai/i2J

^^2^ 4

(62)

(63)

(64 )

after which A 5, A«, etc., vanish to th is order of approximation. In  any 

of these equations we may replace /xn2 by its value from (6), tha t is 

A’2 — n 2p 2.

The boundary condition of th is case, i.e., d^ r /dn  — 0, is realised acoustically 

when aerial waves are incident upon an immovable corrugated surface. In  

the in terpretation  for electrical and luminous waves, y]r represents the 

m agnetic induction (5) paralled to y, so th a t the electric vector is perpen

dicular to the lines of the grating, the boundary condition a t the surface of a 

perfect reflector being db /dn  =  0.

W e have thus obtained the solutions for the two principal cases of the 

incidence of polarised light upon a perfect corrugated reflector. In  comparing
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On the D ynam ica l Theory o f  Gratings. 4091907.]

the results for the first order of approxim ation as given in (13) for the first 

case and in (48), (49) for the second, we are a t once struck w ith the fact th a t 

in the second case, though not in the first, the in tensity  of a spectrum  m ay 

become infinite through the evanescence of cos 6n or cos 9'n, which occurs 

when the spectrum  is ju s t disappearing from the field of view. B u t the effect 

is not lim ited to the particular spectrum  which is on the point of dis

appearing. Thus in (61) A 2, giving the spectrum  of the f irs t  order, becomes 

infinite as the spectrum  of the second order disappears (jx2 =  0). Regarded 

from a m athem atical point of view, the m ethod of approxim ation breaks down. 

The problem has no definite solution, so long as we m aintain  the suppositions 

of perfect reflection, of an infinite tra in  of simple waves, and of a grating 

infinitely extended in the direction perpendicular to its ruling. B u t under 

the conditions of experim ent, we m ay a t least infer the probability  of abnor

malities in the brightness of any spectrum  a t the m om ent when one of higher 

order is ju s t disappearing, abnorm alities lim ited, however, to the case where 

the electric displacement is perpendicular to the ruling.* I t  may be rem arked 

th a t when the incident light is unpolarised, the spectrum  about to disappear 

is polarised in a plane parallel to the ruling.

In  both the cases of boundary conditions hitherto  treated, the circum stances 

are especially simple in th a t the aggregate reflection is perfect, the  whole of 

the incident energy being re tu rned  into the upper medium. W e now pass on 

to more complicated conditions, which we may in te rp re t as those of tw o 

gaseous media of densities a  and E quality  of pressures a t the interface 

requires th a t
cryjr =  criyjri, ( 6 5 )

and we have also to satisfy the continuity  of norm al velocity expressed by

d ty jd n  — (66)

or, as in (45),
dQJr—y}f) 4

dz  ’ V ;

and being given by (7), (10). W e m ust content ourselves w ith a 

solution to the first approximation, a t least for general incidence.

Erom (65),

— {1 +  A0 +  (1 — A0) ik£  cos 6 +  A„ eP** +  A 'n
< 7 i

=  Bo (1 +  i k ^  cos <j>) +  Bn einPx +  B 'n (68)
{ ,  ; . t\ • - ,

* See a “ N o te  on the Remarkable Case of D iffraction Spectra described by Professor  

Wood,” recently  communicated to the ‘ Philosophical M agazine,’ vol. 14, p. 60, 1907.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 A

u
g
u
st

 2
0
2
2
 



D istinguishing the various components in  f  as in (53), we find

410 Lord Rayleigh. [June 11,

(1 +  Ao) — Bo

— A »—B» =  i £ncos <]>B0—— (1 — A0) cos 

— A 'm—B'n =  k\ cos B0— — (1 — A0) &cos .
° " i  L  i  J

(69)

(70)

(71)

In  forming the second boundary condition (67) we require in  d(y\r—^ x)jdx  

only  the  p a rt independent of £. Thus

_  . f o )  =  i f ;  s j n  e ikx  sin j l  _j_ A 0 —  ^

Also

e-ikxs in e ^  __ ^ cos q ( 1 _ A 0 +  (1 +A o) i&fcos 6}

— ik  cos A „  einPx— ik  cos d 'nA 'n e~inPx,

e - i k x  s in  9 f[ ± l  _  ^  COS 0  Bo ( 1  +  i h g  COS <j>)

+  i h  cos 4>n B„ einPx +  ik i  cos <£'„B'„

Thus (67) takes the  form

ik  cos 6(1 — A0)— iki cos 

— k 2 cos2 0 (1 +  A0) £ +  cos2 (J> B0 £

—  e inpx  c o s  6 n A n COS </>mB „  }

_ e - i n p x  { Q .CQg +  COS ^j 'mB 'm}

=  sin 6 (1 +  A0—B0)

From  the  p a rt independent of x  we get

. k cos 0 (1 — A0)—ki cos <£ B0 =  0,
\ 9 - f . . . .  •

and  from the  parts in  einpz,

A; cos A„ +  h  cos <£„ B« =  i%n cos2 (1 +  A (J) —L 2 cos2 </> B0

—npk  sin (1 +  A0—B0) },

and  a sim ilar equation involving A'„, B'„ 

From (69), (73) we find

CTi COt <£

. a  c o t  6  
Ao =   ........ —T >

o\ , cot 9  
a  cot 6

Bo
(Ti  , COt <

a  cot d

(72)

(73)

(74)

(75)
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1907.] On the D ynam ical Theory o f  Gratings.

Again, elim inating Bn between (70), (74), we get, w ith use of (5), 

A„ {k cos dn +  kxcos (f>n . a/<ri}

411

2 i l ^ n

sin2 (f>

D denoting the denom inators in (75)

24 cos2 0 — TLZT. Vfsin Q
cr k

sin2 0 cos <f> f  , _  , . (t __ , 4
------  — — -Z-ACOS <b—COS © n d ------------ COS<£„ ^

sm 2 6  L o-i J J
(76)

The equations (75) for the  waves regularly reflected and refracted are those 

given (after Green) in ‘ Theory of Sound,’ § 270. T hey are sufficiently general 

to cover the case where the two gaseous media have different constants of 

compressibility (m, mi) as well as of density (<r, <n). The velocities of wave 

propagation are connected w ith  these quantities by the relation, see (5),

kx2 : k2 =  sin2 6 : sin2 <£ =  V 2 : V i2 =  m

In  ideal gases the compressibilities are the same, so th a t

a x : a  =  sin2 6 : sin2 <£. (78)

In  this case (75) gives

. _  sin 2 0 —  sin 2<£ _tan  

sin 20  +  sin 2$  tan  1

Fresnel’s expression for the reflection of light polarised in a plane perpen

dicular to tha t of incidence. In  accordance w ith B rew ster’s law the reflection 

vanishes at the angle of incidence whose tangent is V /V i.

In  like m anner the introduction of (78) into (76) gives, after reduction,

A„ { k  cos 6n +  kxcos cf)n . a / a x}

= 2 ik2£n cot 6 tan  (6—cj>) (cos (6 + <£) cos (6 — <f>)

— cos </> (cos 0  —cos <pn) — n p / k . sin #}. (80)-

If the wave-length of the corrugations be very long, 0, cos <pn becomes 

identical w ith cos and thus A„ vanishes when cos 0, th a t is a t the

same (Brewsterian) angle of incidence for which A 0 =  0, as was to be 

expected. In  general An =  0, when

cos (6  +  (j>)cos (0  — (fi) =  cos cf)(cos 

If we suppose th a t np/k is somewhat small, we may obtain a secon

approximation to the value of cos (# +  <£). Thus, setting in the small term s 

6 +  <f) =  \ir, we get

cos(0 +  <|>) =  \  sec 6 {cos cos
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412 Lord Rayleigh. [June 11,

H ere 

so th a t

cos <pn =  cos <p— np/  k \ . tan  cp cos (p

(82)

This determ ines the  angle of incidence a t which to a second approximation 

(in np / k) the reflected vibration vanishes in  the spectrum.

Since according to (82) w ith n  positive </> < and >  it  seemed not 

impossible th a t (82) m ight be equivalent to cos (#„ +  <£) =  0, forming a kind 

of extension of B rew ster’s law. I t  appears, however, from (6) th a t

cosW ‘+ w = ^ (  w , - 1) -  <83>

so th a t the  suggested law is not observed, although the departure from it 

would be somewhat sm all in  the  case of m oderately refractive media.

For the other spectrum  of the n th  order we have only to change the sign of 

n  in  (82), (83).

W hen n p /h  is not small, we m ust revert to the  original equation (81). 

Even this, it  m ust be rem em bered, depends upon a first approximation, 

including only the first powers of the £”s.

A nother special case of in te rest occurs when =  a, so th a t in the 

acoustical application the  difference betw een the  two media is one of com

pressibility  only. The in troduction of th is condition into (75) gives

tan  (f>— tan  0 _  sin

tan  <p +  tan  0 sin (</> +  ’
(84)

th e  other Fresnel’s expression.

Again, from (76),

A n {&cos 0 n  +  h xcos ( p n }  =  j ' j 

whence A n
2ik£n cos 0 sin (0  — 0) 

sin <p cos 0n +  sin 0  cos (pn '
(85)

In  th is case the vibration in  the  ?ith spectrum  does not vanish at any angle 

of incidence.

W e have now to consider the application of our solutions to electro

m agnetic vibrations, such as constitu te light, the polarisation being in one or 

o ther principal plane. In  the usual electrical notation,

V 2 =  1/K/*, V 12 = l / K i p i ,

K, K i being the  specific inductive capacities, and p, p i  the magnetic 

perm eabilities ; while in the acoustical problem,

V 2 =  m/o-, V i2 =  o-!.
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On the D ynam ica l Theory o f  Gratings. 4131907.]

The boundary conditions are also of the  same general form. For instance, 

the acoustical conditions

a y j r  =  =  < I j  d l l ,

may be w ritten

(cr^fr) =  (criyfri), a ~ ld  (cn/c) = 

and in the upper m edium where a  is constant it m akes no difference w hether 

we deal w ith or ayfr. Thus if in  the case of light we identify  \Jr w ith  j3, the 

component of m agnetic force parallel to the conditions to be satisfied a t the 

surface are the continuity of /3 and of K

Comparing w ith the acoustical conditions, we see th a t K  replaces a, and 

consequently (by the value of V 2) y  replaces 1 /m . Hence

solution (75), (76), it  is only necessary to w rite K  in place of a. For optical 

purposes we may usually tre a t y  as constant. This corresponds to 

supposition (78), so th a t (79), (80) apply to ligh t for which the m agnetic 

force is parallel to the lines of the grating, or the electric force perpendicular 

to the lines, i.e., in the plane of incidence.

From (76) we may fall back upon (48) by m aking K i =  co , 0, in  such

a way th a t Vi, and therefore <£, rem ains finite.

The other optical application depends upon identifying yjr w ith  Q, the 

electromotive in tensity  parallel to y,i.e., parallel to the lines

The conditions a t the surface are now the continuity  of Q and of 

Equations (75), (76) become applicable if we replace a  by I f  y  be 

invariable, this is the special case of (84), (85); so th a t these equations are 

applicable to light when the electric vibration is parallel to the lines of the 

grating, or perpendicular to the plane of incidence. The associated F resnel’s 

expression (79) or (84) suffices in each case to rem ind us of the optical 

circumstances.

In  order to pass back from (76) to (13), we are to suppose K i =  o o , 

y i  (or <t i) =  0, so tha t <£ rem ains finite. Thus D =  cot <£/ cot 6, and the

only terms to be retained in (76) are those which include the factor a/cri.

The polarisation of the spectra reflected from glass gratings was noticed by 

F raunhofer:— “ Sehr merkwiirdig ist es, dass un te r einem gewissen 

Einfallswinkel ein Theil eines durch Reflexion entstandenen Spectrums aus 

vollstandig polarisirlem Lichte besteht. D ieser Einfallsw inkel ist fu r die 

verschiedenen Spectra sehr verschieden, und selbst noch sehr m erklich fur die 

verschiedenen Farben ein und desselben Spectrums. M it deni G lasgitter 

€ = 0 ‘0001223 ist po laris irt: E ( +  I ) , d i ,  der grune Theil dieses ersten

* See ‘ Ph il. M ag.,’ vol. 12, p. 81, 1881 ; ‘ Scientific Papers,’ vo l. 1, p. 520.
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Spectrum s, wenn a  — 49° i s t ; E  ( +  II) , oder der grim e Theil in dem zweiten 

auf derselben Seite der A xe liegenden Spectrum , wenn a  =  40° b e trag t; 

endlich E  ( — 1), oder der griine Theil des ersten auf der entgegengesetzten 

Seite der A xe liegenden Spectrum s, w enn =  69°. W enn E ( + I )  

vollstandig po larisirt ist, sind es die ubrigen Farben  dieses Spectrum s noch 

unvollstandig.’’*

In  F raunhofer’s notation a  is the angle of incidence, here denoted by 

and X (E) =  0-00001945 in the  same m easure (the Paris inch) as that 

employed for e, so th a t p / k  =  X/e =  0159. I f

refractive index of the glass was 1*5, we get

414 Lord Rayleigh. [Juhe 11,

Order. e. Sin 0.
1

Sin (p. <*>• e + cp.

E (  + I) ..................

o

49 0-755 0-503

O /

30 11

o /

79 11
E ( + 1 1 ) .................. 40 0-643 O -429 25 25 65 25

E ( - I )  .................. 69 0-934 0-623 107 33 107 33

On the o ther hand, from (82) we get for E (  +  I)  77° 44', for

E (  +  I I ) 5 9 °  48 ', and E (  — I) 104° 45V a fair agreem ent between the two 

values of 6 +  except in the case of E  ( +  II) .

I t  appears, however, th a t the neglect of upon which (82) is founded is 

too rough a procedure. By tria l and error I  calculate from (81) for 

E (  +  I )  0 = 4 : 8 °  5 2 '; for E (  +  I I )  0 =  42° 1 7 '; for E ( - I )  65° 46'.

These agree perhaps as closely as could be expected w ith the observed 

values, considering th a t they  are deduced from a theory which neglects the 

square of the depth  of the ruling. The ordinary polarising angle for this 

index (1*5) is 56° 19'.

I t  would be of in te rest to extend F raunhofer’s observations; but the work 

should be in  the  hands of one who is in  a position to rule gratings himself. 

On old and deteriorated glass surfaces polarisation phenomena are liable to 

irregularities.

I n  the hope of throw ing light upon the rem arkable observation of 

Professor W ood,f th a t a frilled collodion surface shows an enhanced reflec

tion, I  have pursued the calculation of the regularly reflected light to the 

second order in £ the depth of the  groove, lim iting myself, however, to the 

case of perpendicular incidence and to the supposition tha t £1 and its. equal

* G ilbert’s ‘Ann . d. P h y s ik ,’ vo l. 74, p. 337 (1823); ‘Collected W ritings,’ Munich, 

1888, p. 134.

t  ‘ Physica l Optics,’ p. 145.
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On the D ynam ical Theory o f  Gratings. 4151907.]

^_xare alone sensible. A lthough the results are not w hat I  had hoped, it  may 

be worth while to record the principal steps.

Retaining only the term s independent of x, we get from the first 

condition (65),

(Tjcr\. {(1 +  A0) ( l — &a£i2) — 2ifc$i cos 6x Ax} =  B0 (1 — &i2£i2) 

(86)
and from the second condition (67),

( — A 0) (1—k2£i2) +  2ik2£iAicos2 6X — &XB0(1 — — 27£X2£XBX cos2 fa

=  — 2ip2£x( Ax — Bx

Elim inating B0 (1 — kx2%x2), and rem em bering th a t

k? cos2 0\ +y>2 =  k2, ki2 cos2 fa  + p 2 =  kx ,
we get

k (1 —Ao) — cr/cri. k \(1 +  Ao) +

+  o-/cri. 2ikki£iAicos $i +  2icos fa  — 2

in which we are to substitu te  the values of A x, B x from (70), (74). From 

this point it is, perhaps, more convenient to take the  principal suppositions 

separately.

Let, as in (78), a x : a  — sin2 6 : sin2 <£ =  : k

we have

Ao
k \—k 

h  +  k ’
Bo

2k2

h  o h+ky

and accordingly, from (70), (74),

&2A X — ftx2Bx =  2ik2%i (k i—k), k  cos cos </>xB x =  0 ;

so th a t Ax {A; cos fa  +  k xcos =  

Hence, from (88),

1 — A0 _  k_2/j î2 (kx2 — k2) f 1 _  cos flxcos

1 +  Ao k\ kx L k\ {k cos fa  +  &x cos f

Again, when =  cr, 

Ao

and from (70), (74),

Ax

k—h  p  _

k +  h '  ° ~ k + h

2 i k & j k - h )  

k cos 0X -f- k\ cos (px

The introduction of these into (88) gives

1 -A o  _ h f 7

1 + A0 k k 1

VOL. LXXIX.— A.

h 2- k 22 

k cos 0i +  kx cos

2 F

(89)

(90)

(91)
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4 1 6  On th e  D ynam ica l Theory o f  G ratings

The question is w hether the num erical value of A0 is increased or 

dim inished by the  term  in £i2. In  (89) it is easy to recognise th a t in the 

standard  case of k\ g reater than  k  (air to glass in  optics) the

positive, 6\ and <£i being supposed real. The effect of the second term  is 

thus to bring the right-hand m ember nearer to un ity  than  it would otherwise 

be, and thus to dim in ish  the reflection. Again, in (91), the second term  is 

negative, even when cos 0\ =  0, as we m ay see by introducing the 

appropriate  value of cos fa, viz., — The effect is therefore to

sub tract som ething from k \ jk ,  which is greater than  unity , and thus again 

to dim inish the  reflection.

If in (89), (91) we neglect the  term s in (ki2—k2)2%x2, which will be 

specially sm all when the  two media do not differ much, the  formulae become 

independent of the angles 6\ and <£i. In  both cases the effect is the same as 

if the  refractive index, supposed greater than  unity, were diminished in the 

ratio  1 — 2 (&i2—&2)£i2: 1. I t  appears then  th a t the present investigation 

gives no h in t of the  enhanced reflection observed in  certain cases by 

Professor Wood.
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