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On the Dynamical Theory of G'ratings.
By Lorp RavreiGH, O.M.,, Pres. R.S.

(Received June 11,—Read June 27, 1907.)

In the usual theory of gratings, upon the lines laid down by Fresnel, the
Jarious parts of the primary wave-front after undergoing influences, whether
Qlffecting the phase or the amplitude, are conceived to pursue their course as
D they still formed the fronts of waves of large area. This supposition,
iﬁ,;stiﬁable as an approximation when the grating interval is large, tends to
zail altogether when the interval is reduced so as to be comparable with the
Syave-length. A simple example will best explain the nature of the failure.
Eonsider a grating of perfectly reflecting material whose alternate parts are
‘ﬁftt and parallel and equally wide, but so disposed as to form a groove of
b‘aoepth equal to a quarter wave-length, and upon this let light be incident
gerpendlculml\ Upon Fresnel’s principles the cenfral regularly reflected
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age must vanish, being constituted by the combination of equal and
pposite vibrations. If the grating interval be large enough, this conclusion

approximately correct and could be verified by experiment. But now
ppose that the grating interval is reduced until it is less than the wave-

ngth of the light. The conclusion is now entirely wide of the mark.
L‘,".’_\}Tnder the circumstances supposed there are no lateral spectra and the whole
of the incident energy is necessarily thrown into the regular reflection,
"Which is accordingly total instead of evanescent. A closer consideration
'ghows that the recesses in this case act as resonators in a manner not covered
gy Fresnel's investigations, and illustrates the need of a theory more strictly
Aynamical.
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i

The present investigation, of which the interest is mainly optical, may be
regarded as an extension of that given in ‘Theory of Sound,™ where plane
waves were supposed to be incident perpendicularly upon a regularly
corrugated surface, whose form was limited by a certain condition of-
symmetry. Moreover, attention was there principally fixed upon the case
where the wave-length of the corrugations was long in comparison with that

* Second edition, § 272u, 1896.
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of the waves themselves, so that in the optical application there would be
a large number of spectra. It is proposed now to dispense with these
restrictions. On the other hand, it will be supposed that the depth of the
corrugations is small in comparison with the length (A) of the waves.

The equation of the reflecting surface may be taken to be z = ¢ where & is
a periodic function of iz, whose mean value is zero, and which is independent
of . ' By Fourier’s theorem we may write

&= ¢1 008 pr+ s €08 2pir+ sasin 2paw+ ... + ¢, COS npic + 3, 8in npr+-...
= 401 (6754 e~ ) 4 L (6n—18,) €7+ % (Cn+180) €7 7F 4., (1)

the wave-length (¢) of the corrugation being 27 /p. Formerly the s terms
were omitted and attention was concentrated upon the case where ¢; was
alone sensible. The omission of the s terms makes the grating symmetrical,
so that at perpendicular incidence the spectra on the two sides are similar,
It is known that this condition is often, and indeed advantageously, departed
from in practice. ;
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The vibrations incident at obliquity 8, POZ, fig. 2, are represented by
,‘P. - eik(Vt+lcoeo+zsln0), (2)

where & = 27 /A, and V is the velocity of propagation in the upper medium.
Here - satisfies in all cases the same general differential equation, bub. its
significance must depend upon the character of the waves. In the acou.stlca.l
application, to which for the present we may confine our attention, 4 is the
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velocity-potential. In optics it is convenient to change the precise interpreta-
tion according to circumstances, as we shall see later.
The waves regularly reflected along OQ are represented by

\1’ = Ao ¢k (Vi—zc08 64x lhle)’ (3)

in which A, is a (possibly complex) coefficient to be determined. In all the
expressions with which we have to deal the time occurs only in the factor
¢*Vt running through. For brevity this factor may be omitted.

In like manner the waves regularly refracted along OR into the lower
medium have the expression ,

\Iﬁ P BU G'kl (zws¢o+xsln¢)’ (4)
¢ being the angle of refraction; and, by the law of refraction,
ky:k=V:V; =sinf:sin¢. (5)

In addition to the incident and regularly reflected and refracted waves, we
have to consider those corresponding to the various spectra, For the reflected
spectra of the nth order we have

‘P = An co‘&'(-—acose.+zsln 0.)_‘|_JA"l L,ik(-:cosd’.+zsin0'.)’ (5’)
where, by the elementary theory of these spectra,
esinfp,—esinf = +an, or sinf,—sind = +a\fe = +ap/k.  (6)

We shall choose the upper sign for 6, and the lower for ’,. In virtue
of (6) the complete expression for 4 in the npper medium takes the form

.‘P._ e—ik.‘caino = Eilzcoe6+Aoe—il~:cosO+ o
+An ginpe e—ik:cosa._'_ A’n g inpr 8—i'k.'cos9’.+ Sk (7)

where » has in succession the values 1, 2, 3, ete. e
Similarly, in the lower medium the spectra of the nth order are repre-
sented by
.\P.l — Bu piky (:c‘oud;.+:sill¢.)+B'" otk (xcos¢'.+xshl¢’-)’ (8)
where sin ¢y —sin ¢ = +up k. (9)
Accordingly, for the complete expression of 4, we have with use of (5),

.4‘.1 L e~ tkzying B“ gikz cos A T B" onpr pikiz cos da 4 P,'” e—ihpx pikyz cos ¢l (]_0)

We must now introduce boundary conditions to be satisfied at the
transition between the two media when z= ¢ It may be convenient to
commence with a very simple case determined by the condition that 4 = 0.
The®whole of the incident energy is then thrown back, and is distributed
between ' the regularly reflected waves and the various reflected spectra.
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We proceed by approximation depending on the smallness of & Expanding
the exponentials on the right side of (7), we get

(14Ay) (1 =342 cos? O+ ...)+ (1 — Ay) (ikE cos 0+ ...)
+ Ay 9% (1 =ik cos Ou+ ... )+ Ay e (1 —ikcos 8/ u+...) = 0. (11)

In this equation the value of ¢ is to be substituted from (1), and then
in accordance with Fourier’s theorem the coefficients of the various
exponential terms, such as ¢"7%, ¢="7 are to be separately equated to
zero. As the first approximation, we get from the constant term (inde-
pendent of )

14A,=0, (12)
and from the terms in ¢™pr, ¢~z

Ay = —ik cos 0 (ca—1s,), A’y = —ilcos 0 (ca+1s,). (13)

Thus, as was to be expected, A,, A, are of the first order in ¢ and if we
stop at the second order inclusive, (11) may be written

1+ Ag+2ik§cos 8 + A, €77 (1 — ik cos 8,)+ A’y e~ ™= (1 =ik cos §/,) = 0.
(14)
For the second approximation to A, we get
1 - An—%ku cOs 0 S (C"z + -\'"3) (UOS 01; <+ COSs 0',,) = 0. (15)

By means of (13) and (15) we may verify the principle that the energies
of the incident, and of all the reflected vibrations taken together, are equal.
The energy corresponding to unit of wave-front of the incident waves may
be supposed to be unity, and for the other waves mod?® Ay, mod? A;, mod® A",
etc. But what we have to consider are not equal areas of wave-front, but
areas corresponding to the same extent of reflecting surface, i.c., areas of
wave-front proportional to cos @, cos 6y, cos ', ete. Hence,

cos 8. mod? A+ = cos 0, mod* A+ cos @, . mod? A’y = cos 8, (16)

with which the special approximate values already given are in harmony.
In the formation of (16) only real values of cos#@,, cosé’, are to be
included. If p>/, no real values exist, 7., there are no lateral spectra.
The regular reflection is then total, and this without limitation upon the
magnitude of the ¢’s. The question is further considered in ‘Theory of
Sound,’ § 272 a. '

In pursuing a second approximation for the coefficients of the lateral
spectra, we will suppose for the sake of brevity that the s terms in (1) are
omitted. From the term involving ¢r« in (14), we get with use of (13),
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A, = —ikcos@cy+ 3% cos 0 cos @', ¢, 02,

+ 342 cos 6 { (e co8 Oy + Can—1 €O 6 5—1)

+ (g €08 Op—3 + Can—3 €08 0'y—2) Cu—2+ ...

+ (€1 €08 Opir + Cans1 COS @'441) L : :

+ (2 cos Oy 42+ Cap+2 COS 0’,.+2)C,.+3+...}, (17)
in which the first (descending) series is to terminate when the suffix in
o8 0, _, is equal to unity.

The value of A, may be derived from (17) by interchange of 6 .and 6

in cosBy_,, cos@,_,, co880u,,r, c088°,,,, cos@ remaining unchanged. As
a particular case of (17), we have, for the spectra of the first order,

A, = —ike; cos 8+ }_(&’c;cg cos @ cos 8,
+34% cos 0 {cg (¢ cos @3+ ¢3 cos 8'3)
+ ¢3(ca cos O3+ ¢4 oS 0'3) + ... }. (18)
A’y = —ikey cos 8+ §h*eyes cos @ cos 6,
+ 3k* cos @ {e3(cy co8 0’3+ c3cos 03)
+ 3 (cacos @3+ ¢ co8 O3)+ ... }, (19)
the descending series in (17) disappearing altogether.
If the incidence is normal, cos @ = 1, cos @', = cos d,, and thus A,, A’,

become identical and assume specially simple forms. Referring to (7), we
see that in this case '

¥ = e Ag o7k 4 2A 07 % 0088 0og it ... + 24, e~ R0 cog upa ..., (20)
in which, to the second order,

Ay = —1+k?3e,2cos b, (21)
A, = —ikey+ 342 o8 Oy . cn Can
+ 37 { (14 can—1) ea—1 €08 Gy + (Co+ Can—2) Cu—z COS By + ...
+ (e1+ Cons1) ns1 €08 Qpar + (C2+ Cans3) Cura COS Orpa+... ). (22)

Downloaded from https:/royalsocietypublishing.org/ on 09 August 2022

If we suppose that in (1) only ¢; and ¢, are sensible, we have

Ay = — 14722 cos 0, + k%4 cos O, (23)
Ay = —ikey+ §k%eieq (cos 6y + cos 6,), (24)
) Ay = —ikeg+§3%® cos 6y (25)
Ag = Yk%eea(eos 6, +cos 8,), (26)

* while Ay, A, ete., vanish to the second order of small (mantities inclusive,

. There is no especial difficulty in carrying the approximations further, As
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an example, we may suppose that ¢, is alone sensible in (1), so that we may
write S
¢ = ccos pa, (27)
and also that the incidence is perpendicular., For brevity we will denote
% cos B, or kcos 8y by u,. The boundary condition (v = 0) becomes by (7)
in this case,
M — =R (Ap+1) o™ * 24, e~ 8 cos pa
+ o vees +2A, "¢ cos npa+ ...... =0, (28)
in which
e — e~ = 47 {J, (ke) cos pae—Jg (ke) cos 3pz+J5 (ke) cos bpr—...}, (29)
e~ = Jy (ke)—2J 5 (k) cos 2pa + ...

—1 {2J; (ke) cos pae— 203 (ke) cos 3pa: + ...}, (30)
with similar expressions for e~ =& etc. By Fourier’s theorem the terms
independent of z, in cos pz, cos 2px, etc., must vanish separately. The first gives
(Ag+1) Jg (ke)—21A1Ty (ae) = 2A0T 5 (pae) + 20457 3 (pac) + 2A4T 4 (uat)+ ... =0.

(31)
The term in cos pz gives
2t Jy (ke)—1 (Ao + 1) Iy (ke)+ Ay {Jo (pae)—J 2 (mae)}
—iAa {J1 (par) =I5 (pa0)} — As{Ja (use)—Js (ma0)} +... = 0. (32)

The term in cos 2pz gives
—(Ag+1) Ja (ke) —iAy {Jy (o) —J5 (pe) }
+ Az {Jo (uae)+ Ja (pat)} + ... = 0. (33)
The term in cos 3pz gives
— 20 T3 (k) +1i (Ag+1) I3 (Jee)
— Ay {Ja (pae) =Ty (pat) } —iAg {1 (pae) + 5 (pac) }
+Ag {Jo (use)—Jes (uac)} + ... = 0. (34)
We see from these that Ag+1 is of the second order in ke, that A, is of
the first order, As of the second order, Az of the third order, and so on.
Expanding the Bessel’s functions, we find, to the second order inclusive, as in
(23), (24), (25), (26),

Ay = =14k, Ay = —ike, }, (35)
Ay =hpa®, A;=0.
Ay, ete., vanishing. To the third order inclusive (34) now gives
Ay = ¢ the® (2 — 3+ Burpea). (36)
From (33) to the same order we'have still for Ag,
A = Yewe?, (37

and from (32) . .
i Ay = —ike+ L iked (24 Ao + 2papa— Bpua®)- (38)
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These are complete to the third order of /e inclusive. To this order
A;, Aﬁ, ete., vanish.

So far as the third order of ke inclusive, A, remains as in (35); but it is
worth while here to retain the terms of the fourth order. We find
from (31)—

Ao = — 1 ket + Yok (B —Shpr® + 2’ — 2 pops?). (39)

It is to be noted that %, w1, us are not independent. By (6), with 8 =0,

pn® = k? cos? 0, = k*—n?p?, (40)
80 that :
w? = 1B2=p? pa® = 12 —4p?,
and
3P —4pP 4 p® = 0. (41)

By use of (41) it may be verified to the fourth order that when u, u, are
real, so that the spectra of the second order are actually formed,

9 i
mod? Ay+ “Tf“ mod? A, + :Zi-* mod? Ay = 1, (42)
2 expressing the conservation of vibratory energy.
When g, is real, but not us, we may write us = —ivs, where v, is positive.
In this case

Ay = =14k +Fhet (P —4hopa® + 2p0® — paws®) + $iket pa®vs,
Ay = —ike+Yike® (32 + 4hpy — 3pa?) + e pava 5

and in virtue of (41) to the fourth order,

mod? Ag+2M mod? A, = 1. (43)

Again, if u), ps are both imaginary, equal, say, to—iv;, —ivs, we have
from (39) with separation of real and imaginary parts,
Ay = =14 32— (Jyie® 4 terms in ),
so that, to the fourth order,
: mod? Ay =1, (44)

Downloaded from https://royalsocietypublishing.org/ on 09 August. 2022

expressing that the regular reflection is now total.
In the acoustical interpretation for a gaseous medium ¥ represents the
velocity-potential, and the boundary condition (¥ = 0) is that of constant
+ pressure. In the electrical and optical interpretation the waves are incident
from air, or other dielectric medium, upon a perfectly conducting and, there-
fore, pegfectly reflecting corruga.ted' substance. Here + represents the
electromotive intensity Q parallel to , that is parallel to the lines of the
grating, the boundary condition being the evanescence of Q.

P -
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Wemnow pass on to the boundary condition next in order of simplicity,
which ordains that dr/dn = 0, where dn is drawn normally at the surface of
separation. Since the surfaces =— § = 0, ¥» = constant, are to be perpendicular,
the condition expressed in rectangular co-ordinates is

dyr_dr d§ _ (45)

I[:u !l' l]l '
Y being given by (7) and & by (1).

For the purposes of the first approximation, we require in dyr/dz only the
part independent of the ¢’s and s's, since d&/dux"is already of the first order .

Thus at the surface

'(—;k = 4k gin @ e%esind (1 4 A,).

Also, eorrect to the first order,

D = il eier0[005 6 {1— Mg+ (L+ Ao) ikt cos 6}

= wrxpen — cos 8,A, #"P*—cos 0',A", e-inpz].
Thus (45) gives
cos 6 (1 —Ao) + cos? @ (1 -+ :\") 'I.A{—GOS onAn onpT

0B O Ay i —gin O (14 Ay) ‘;é' =0. (46)
o
From the term independent of »» we see that, as was to be expected,
Ap =1, (47)
Also A, cos 0, = i (c,—1s,) {k cos? @—np sin 0}, (48)
A’y cos 0, = 7 (cy+1s,) {kcos? @+np sin 6}, (49)

When 7 =1 in (48), (49), we may put s; = 0. These equations constitute
the complete solution to a first approximation.

For the second approximation we must retain the terms of the first order
in dyr[de.  Thus from (5), (7)

kim0 D — i [sin 6 {1+ Ao+ (1 —Ao) ik cos 0}
o
+sin 0,A, "7 4 gin @', A", e~"%]
=i {2 sin @4 sin O'An g"ﬂﬂ.l.sin 9,nA’n 6—|'npz}’. (50)

since to the first order inclusive Ay = 1. Also
s O — i1 cos 9 {1— A+ 2ikt cos 6)
iz

— ik o8 BuA,, ¢m97 (1 =ikt cos 8,)— ik cos @'y Ay ¢~ "% (1— ik cos 8'5).  (51)
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Thus by (45) the boundary condition is
cos 8 (1— Ag)+ 20kt cos? 6—2 sin eg_f

— A, ¢t {cns 0, — ik cos®*@, £+sin 6, (g—c}
o
— A/, e {cns 0’ —ik cos?8’, {+sin @', :%} = 0. (52)

In the small terms we may substitute for A,, A’, their approximate values

§ from (48), (49). : :

= In (52) the coefticients of the various terms in ¢™#% ¢~™P* must vanish
goseparately. In pursuing the approximation we will write for brevity

< E=GeP Lo P g 4 G e G, T (53)
%where &= 8a=1a,

S and b=} (a—isy), Eon =¥ (Catis). (54)
Eb The term independent of « gives A, to the second approximation. Thus

é cos 8 (1 —Ay)+iA, (kcos? 8, +npsin 6,) &,

% +iA’, (kcos? @'y —npsin 6',) &, = 0. (55)
% In (55), as follows from (6), 1

'§ kcos® @, 4np sin 8, = k cos* @—np sin 6,

'73 and kcos? @', —np sin §',, = I cos® 0+ np sin 6.

§ Hence with introduction of the values of A,, A’, from (48), (49),

é* cos O (1—Ag) = ...... UZZ:J (k cos? @—np sin §)?

é :%:se—",i (keos* @+npsin 0P +...... ; (56)
"qg) as might also be inferred from (48), (49) alone, with the aid of the energy
.g equation—

é cos € = cos @ mod?Ay+ ... 4 cos 8, mod2A, + cos ', mod? A’,. (57)

From the term in ¢##* in (52) we get
cos 0,A, = 2i (k cos® §—npsin 6) &,
+iA’, (kcos? 8, —2np sin 6',) Lon+ ...
+14 Ay—y (kcos? -, —7psin 0,-,) &
+i Apsr (b cO8* Opar + 1p sin O, y) &
+ 4 Al yr (k 080 5 —(2n—7) p 8in @'py) Lon—r
1A iy (ke co8? 0 i r—(2047) p sin 0’ p4r) Gonstre (58)
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In (58) » is to assume the values 1, 2, 3, ete., the descending series
terminating when n — » = 1.

The corresponding equation for A’, may be derived from (58) by changing
the sign of », with the understanding that

. I — AI,,,, Al_, = 7 U4l Q= 0',,,, 0'...,,, = 0,,‘, (59)

If the incidence be perpendicular, so that ', = — On, and if &_, = &,
which requires that s, = 0, the values of A’, and A, become identical.
If n = 1, the descending series in (58) make no contribution. We have

cos hA, = 2i(kcos® 0—psin 0) G+ iA"y (k cos? 81 —2psin 0'1) &

+ 1Ag (K cos® @2+ psin 0) &1 +1A5 (k cos? Ba+ 2p sin 0y) E-s+ ...
+1A 3 (k cos® 8'3—3p sin 0'y) La+iA'y (kcos® @'3—4p sin 8'3) &+...  (60)
We will now introduce the simplifying suppositions that 6 = 0, s, = 0,
making A’, = A,, and also that only ¢ and ec; are sensible, so that

L=&=......= 0. We will also, as before, denote % cos 8, or I cos 8', by .
Accordingly (60) gives, with use of (6), (48), (49),

ey k2eye 2010
Ay =" 0 (2 4 ) — 2 (g 42 61
e 7 l,,( 2p*)— ( +2p°). (61)

In like manner, we get from (58)

Ay =T B0l (0 (62)
Mo 2pap
e _k 11'2()#1+P2) {1 ‘)1’2} ] (63)
Zus M
RN . e 64
A= — 2/.Lp(l-‘- 41’) (64)

after which Aj Ay ete, vanish to this order of approximation. In any
of these equations we may replace w,? by its value from (6), that is
e Ly o

The boundary condition of this case, i.., dyr[dn = 0, is realised acoustwall)
when aerial waves are incident upon an immovable corrugated surface. In

the interpretation for electrical and Iuminous waves, ¥ represents the

magnetic induction (5) paralled to y, so that the electric vector is perpen-
dicular to the lines of the grating, the boundary condition at the surface of a
perfect reflector being db/dn = 0.

We have thus obtained the solutions for the two principal cases of 1.;ha
incidence of polarised light upon a perfect corrugated reflector. In comparing
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the results for the first order of approximation as given in (13) for the first
case and in (48), (49) for the second, we are at once struck with the fact that
in the second case, though not in the first, the intensity of a spectrum may
become infinite through the evanescence of cos @, or cos’,, which occurs
when the spectrum is just disappearing from the field of view. But the effect
is not limited to the particular spectrum which is on the point of dis-
appearing. Thus in (61) A,, giving the spectrum of the first order, becomes
dufinite as the spectrum of the second order disappears (us = 0). Regarded
Som a mathematical point of view, the method of approximation breaks down.
ﬁhe problem has no definite solution, so long as we maintain the suppositions
@perfect reflection, of an infinite train of simple waves, and of a grating
fhfinitely extended in the direction perpendicular to its ruling. But under
Bre conditions of experiment, we may af least infer the probability of abnor-
Balities in the brightness of any spectrum at the moment when one of higher
Ebder is just disappearing, abnormalities limited, however, to the case where
&e electric displacement is perpendicular to the ruling.* It may be remarked
Emt when the incident light is unpolarised, the spectrum about to disappear

.:s polarised in a plane parallel to the ruling.

5
5» In both the cases of boundary conditions hitherto treated, the circumstances

&re especially simple in that the aggregate reflection is perfect, the whole of
_ale incident energy being returned into the upper medium. We now pass on
55 more complicated conditions, which we may interpret as those of two
:Ea.seous media of densities ¢ and ¢;. Equality of pressures at the interface

qmres that
= oy = oy, (65)
f@d we have also to satisfy the continuity of normal velocity expressed by
3 dr[dn = dy [dn, (66)
'gr, as in (45),
= d (‘P‘ ) _ 4 (f—r1) d{ : (67)
% dz da da: 0,

%‘ and 4 being given by (7), (10). ‘We must content ourselves with a
solution to the first approximation, at least for general incidence.
From (65),

. :—1 {14 Ao+(1—Ag) ikEcos 0+ A, ez 4 A, c~inws}
= By (1 +ik1¢ cos ¢)+ B, emez 4 B, o—inrx, (68)

* See a “ Note on the Remarkable Case of Diffraction Spectra described by Professor
Wood,” recently communicated to the ¢ Philosophical Magazine, vol. 14, p. 60, 1907.
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Distinguishing the various components in ¢ as in (53), we find
o 1
;(1+Ao) = By, (69).

Z_, An—B, = if, {/.-, cos ¢ Bo—:—l(l —A)k cos@} : (70)

T A=W = it { oosg Bo=T (Ao kenso L. ()

In forming the second boundary condition (67) we require in o (Y—An)/dz
only the part independent of & Thus

Also

(z“’“““’% = ik cos @ {1—Ag+(1+ Ag) ikt cos 6}
— ik cos 0,A,, ¢"PF —if; cos @' A’y e~ Pz
e-ww‘% = iky 08 ¢ By (14 ilst cos ¢)
+ il c08 b By 27 4 iky 008 'y B’y 6=,
Thus (67) takes the form
thcos @ (L—Ay)—iky cos ¢ By
—hk*cos? @ (14+Ay) E+MPcos® p By &
— e Ll cos 0, A, + il cos B, |
— e~z L) cos 'y A", + ik cos ¢, By}
=tk sin @ (14 Ay—Bg) d&/d. (72)
From the part independent of » we get
Ji cos 8 (L—Ag) =y cos ¢ By = 0, | (73)
ax‘xd from the parts in emer, o=

k o8 By An+ K1 008 ¢ B, = i, {12 cos* 8 (1 + Ag)—Fi? cos? ¢ By
—upl sin @ (1+Ay—By)}, (74)
and a similar equation involving A%, B,
From (69), (73) we find

o1_oot g
_o cotd - 5
o T AR bW T 8
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Again, eliminating B, between (70), (74), we get, with use of (5),
A, {k cos 0,4 Ky cos ¢, . q’/a‘;}

19 — i .
s z/..)C,. l‘gx. cos? 0—~2=% X sin @

I o g S
_sini&:;s Bl ocmroos ot - cos ¢}J , (76)

D denoting the denominators in (75).

The equations (75) for the waves regularly reflected and refracted are those
F 2 given (after Green) in  Theory of Sound,” § 270. They are sufficiently general
2to cover the case where the two gaseous media have different constants of
;E compressibility (m, m,) as well as of density (o, a1). The velocities of wave

2 propagation are connected with these quantities by the relation, see (5),
o

t 2022

k?: 82 =gin? :sin*p = V2: V2 = mfo : mufa. (77
In ideal gases the compressibilities are the same, so that
gy : 0 = sin? @ : sin? ¢. (78)
In this case (75) gives

__8in20—sin 2¢ _ tan (6 —¢)
T sin20+sin2¢  tan(6+¢)’

0 (79)
Fresnel’s expression for the reflection of light polarised in a plane perpen-
dicular to that of incidence. In accordance with Brewster’s law the reflection
= vanishes at the angle of incidence whose tangent is V/V,.

In like manner the introduction of (78) into (76) gives, after reduction,

/[royalsocietypublishing.org/

A, {kcos 8, + 1y cos ¢, . oo}
= 2ik7G, cot 6 tan (8—¢) {cos (0+ ) cos (6 —¢)
—co8 ¢ (cos p—cos ¢,)—ap/[k.sin 6}. (S0)
If the wave-length of the corrugations be very long, » = 0, cos ¢, becomes
identical with cos ¢, and thus A, vanishes when cos (8+¢) = 0, that is at the

same (Brewsterian) angle of incidence for which Ay = 0, as was to he
expected. In general A, = 0, when

" Downloaded from https

cos (0 + ¢) cos (6 —) = cos ¢ (cos p—cos ¢)+np [l . sin 6. (81)

If we suppose that np/k is somewhat small, we may obtain a second
approximation to the value of cos(8+¢). Thus, setting in the small terms
J 0+ = bm, we get

cos (0 +¢) = 4 sec @ {cos p—cos p+up[l).
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Here cos ¢y = C08 p—np[ly.tan ¢ = cos p—np[k.cot?f,
- np
so that cos (0+¢) = Ty (82)

This determines the angle of incidence at which to a second approximation
(in np[Fk) the reflected vibration vanishes in the nth spectrum,

Since according to (82) with » positive 8+ ¢ < 4o, and 6, > 8, it seemed not
impossible that (82) might be equivalent to cos(6.+¢) = 0, forming a kind
of extension of Brewster’s law. It appears, however, from (6) that

np 1
el G s k cos 6 (2 sin® @ 1) ¢ 6%

so that the suggested law is not observed, although the departure from it
would be somewhat small in the case of moderately refractive media.

For the other spectrum of the nth order we have only to change the sign of
n in (82), (83).

When zp/k is not small, we must revert to the original equation (81).
Even this, it must be remembered, depends upon a first approximation,
including only the first powers of the {'s.

Another special case of interest occurs when ¢ = o, so that in the
acoustical application the difference between the two media is one of com-
pressibility only. The introduction of this condition into (75) gives

__ tan ¢—tan @ _ sin (¢—0)

" tan¢+tan 6 sin(¢p+6)’ (4
the other Fresnel’s expression.
Again, from (76),
72 2 2
A, {k cos O+ cos ¢, } = 202G {cos" 60— m—i’}
D sin?
Nk . 1 =

whence 2l cos 0 sin (¢—6) (85)

" sin ¢ cos G, +sin 6 cos ¢,

In this case the vibration in the nth spectrum does not vanish at any angle
of incidence.

We have now to consider the application of our solutions to electro-
magnetic vibrations, such as constitute light, the polarisation being in one or
other principal plane. In the usual electrical notation,

V2 = I/K/L, v12 == I/Klll'l’

K, K; being the speéiﬁc inductive capacities, and g, w1 the magnetic
permeabilities ; while in the acoustical problem,

V2= m/o', ‘719 = 0)&1/0'1.
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The boundary conditions are also of the same general form. For instance,
the acoustical conditions

ayr = a1, dp[dn = din [dn,

may be written
(ay) = (a1yn), o™l (o) dn = a7 (aryn)[dn;

, and in the upper medium where o is constant it makes no difference whether

we deal with 4 or . Thus if in the case of light we identify - with 3, the

mponent of magnetic force parallel to y, the conditions to be satisfied at the

Qurface are the continuity of 8 and of K~'d3/dn.*

?o Comparing with the acoustical conditions, we see that K replaces o, and
é’onsequently (by the value of V?) u replaces 1/m. Hence, in the general
golution (75), (76), it is only necessary to write K in place of o. For optical

urposes we may usually treat w as constant. This corresponds to the special

Sypposition (78), so that (79), (80) apply to light for which the magnetic
&rce is parallel to the lines of the grating, or the electric force perpendicular
iﬁ) the lines, 7.c., in the plane of incidence,

@ From (76) we may fall back upon (48) by making K; = w0, u; = 0, in such
8 way that V,, and therefore ¢, remains finite.

% The other optical application depends upon identifying 4 with Q, the
-glectromotive intensity parallel to y, 7., parallel to the lines of the grating.
Qhe conditions at the surface are now the continuity of Q and of u-1dQ/dn.
Fquations (75),(76) become applicable if we replace ¢ by . If u be
Fnvariable, this is the special case of (84),(85); so that these equations are
@pplicable to light when the electric vibration is parallel to the lines of the
..%rating, or perpendicular to the plane of incidence. The associated Fresnel’s
xpression (79) or (84) suffices in each case to remind us of the optical
“Eircumstances.

In order to pass back from (76) to(13), we are to suppose K; = oo,
1(or 03) =0, so that ¢ remains finite. Thus D = cot ¢/cot 6, and the
nly terms to be retained in (76) are those which include the factor o /oy,

1

lpaded £rom

Dowanl

The polarisation of the spectra reflected from glass gratings was noticed by
Fraunhofer :— “ Sehr merkwiirdig ist es, dass unter einem gewissen
Einfallswinkel ein Theil eines durch Reflexion entstandenen Spectrums aus
vollstimdig polarisirtem Lichte besteht. Dieser Einfallswinkel ist fiir die
verschiedenen Spectra sehr verschieden, und selbst noch sehr merklich fiir die
verschiedenen Farben ein und desselben Spectrums. Mit dem Glasgitter
e = 00001223 ist polarisirt: E (+ I),d.4., der grimne Theil dieses ersten

* See ‘ Phil. Mag.,’ vol. 12, p. 81, 1881 ; ‘Scientific Papers,’ vol. 1, p, 520.



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

414 Lord Rayleigh. - [June 11,

Spectrums, wenn o = 49° ist ; K (4 I1), oder der griine Theil in dem zweiten
auf derselben Seite der Axe liegenden Spectrum, wenn o = 4(° bétrﬁgt‘;
endlich E (—1I), oder der griine Theil des ersten auf der entgegengesetzten
Seite der Axe liegenden Spectrums, wenn o = 69°. Wenn E(+ I)
vollstindig polarisirt ist, sind es die iibrigen Farben dieses Spectrums noch
unvollstindig.”*

In Fraunhofer’s notation ¢ is the angle of incidence, here denoted by @, «
and A (E) = 000001945 in the same measure (the Paris inch) as that
employed for e, so that p/k =\/e=0159. If we suppose that the
refractive index of the glass was 15, we get

Order. ' 0. i Sin 6. Sin ¢. ¢. 0+ 0.

| .
L i lns eacd
I S 5 DR SR ’ 49 0 755 0503 30 11 79 11
RO TIY e T 40 0643 0429 25 25 65 25
Ty A T e 69 0934 0623 107 33 107 33

On the other hand, from (82) we get for E(+1I) 8+¢ = 77° 44, for
E(+1I) 59° 48’ and E (—1I) 104° 45’,a fair agreement between the two
values of @4 ¢, except in the case of E (+1I).

It appears, however, that the neglect of p® upon which (82) is founded is
too rough a procedure. By trial and error I calculate from (81) for
E(4+1) 6 =48 52'; for E(+II) 6 =42° 17"; for E(—1I) 6 = 65° 46".
These agree perhaps as closely as could he expected with the observed
values, considering that they are deduced from a theory which neglects the
square of the depth of the ruling. The ordinary polarising angle for this
index (1'5) is 56° 19"

It would be of interest to extend Fraunhofer’s observations; but the work
should be in the hands of one who is in a position to rule gratings himself.
On old and deteriorated glass surfaces polarisation phenomena are liable to

irregularities,

"In the hope of throwing light upon the remarkable observation of
Professor Wood,T that a frilled collodion surface shows an enhanced reflec-
tion, T have pursued the caleulation of the regularly reflected light to the
second order in & the depth of the groove, limiting myself, however, to the
case of perpendicular incidence and to the supposition that & and its. equal

* Gilbert’s ‘Ann. d. Physik,’ vol. 74, p. 337 (1823); ‘Collected Writings,” Munich,

1888, p. 134.
t ¢ Physical Opties,” p. 145.
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¢_;are alone sensible. Although the results are not what T had hoped, it may
be worth while to record the principal steps.
Retaining only the terms independent of z, we get from the first
condition (65),
oo {(1+Ag) (1 — k&%) —2ik& cos 61 Ar} = By (1 —1‘712§19)+ 2iky& cos ¢y By,
86
and from the second condition (67), (0

S L (1 —A.u) (1 —]13;‘12) o 2’1:]1‘.‘2§1A1 COS2 91 '-‘-]JlBo (1 -— ,(.lzga) — Oiklzngl COSB ¢1

K = —2ip*t (A1 —B)). (87)
aEliminating By (1—7%2%?), and remembering that

=)

< 3 cos? 01 +p° = 2, Ji? cos? y+p* = ke,

e geb )

8 k (1 —Ao)— 0’/0'1 L (1 - Ao) -+ 21'/i'2§1A1

B +0 /oy 2ikkyGA; cos O+ 2026 B, cos ¢y — 2k 6B = 0,  (88)
S}

&9 which we are to substitute the values of A,, B, from (70), (74). From

Hhis point it is, perhaps, more convenient to take the principal suppositions

gl,et,a,sin('?s), g1:0 = sin? §:5in?Pp = &?: /3;

D)

se have - | o = ,

4k ky (ky+ 1)

md accordingly, from (70), (74),

I2Ay—1"By = 2026 (ly—k), % cos 61A1+4 4y cos By = 0;
Ay {k cos py+ki cos 61} = 2iky (ka—F) cos ¢y

Hence, from (88),

A=

Downloaded from https:#royalso
=
=~

1—-A,_k 0A &2 (Alz_La) { _ (& —1?) cos 6, cos ¢y (89
[ R 1.1 Iy ( cos ¢y + &y cos 6;) )
Again, when o, = o,
le—Fk 2k
.A = _1, B ] s
M S 3 T t+h
and from (70), (74),
_n — _ 2k (k—k)
Ay =By = 3
: '™ Tcos O +kycosgy (20)
The introduction of these into (88) gives
1—Ay _ ko _ 2(k? k’) &* { key® —Fkg? } 91
1+4A & = I cos 6y + Iy cos ¢y 1)
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The question is whether the numerical value of A, is increased or
diminished by the term in &2 In (89) it is easy to recognise that in the
standard case of %; greater than % (air to glass in optics) the term in &? is
positive, 6, and ¢, being supposed real. The effect of the second term is
thus to bring the right-hand member nearer to unity than it would otherwise
be, and thus to dimynish the reflection. Again, in (91), the second term is
negative, even when cos#, =0, as we may see by introducing the
appropriate value of cos ¢y, viz, /(1 —*[y?). The effect is therefore to
subtract something from Fy [k, which is greater than unity, and thus again
to diminish the reflection.

If in (89), (91) we neglect the terms in (%*—7%%) &% which will be
specially small when the two media do not differ much, the formule become
independent of the angles 6; and ¢;. In both cases the effect is the same as
if the refractive index, supposed greater than unity, were diminished in the
ratio 1—2 (*—4*)&*:1. It appears then that the present investigation
gives no hint of the enhanced reflection observed in certain cases by
Professor Wood.




