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Secrion I,

Introduction.

g org/ on 04 August 2022

1 THE equations of motion of viscous fluid (obtained by grafting on certain terms to
= the abstract equations of the Eulerian form so as to adapt these equations to the case
E 2 of fluids subject to stresses depending in some hypothetical manner on the rates of
odlstortlon which equations NAVIER* seems to have first introduced in 1822, and
8Whlch were much studied by Cavcmyl and Porssonf) were finally shown by
'S St. Vexant§ and Sir GABRIEL STOKES,|| in 1845, to involve no other assumption than
that the stresses, other than that of pressure uniform in all directions, are linear
& functions of the rates of distortion, with a co-efficient depending on the physical state
of the fluid.

By obtaining a singular solution of these equations as applied to the case of
pendulums in steady periodic motion, Sir G. StokEsY was able to compare the
theoretical results with the numerous experiments that had been recorded, with the
result that the theoretical calculations agreed so closely with the experimental
determinations as seemingly to prove the truth of the assumption involved. This
was also the result of comparing the flow of water through uniform tubes with the
flow calculated from a singular solution of the equations so long as the tubes were
small and the velocities slow, On the other hand, these results, both theoretical and
practical, were directly at variance with common experience as to the resistance
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encountered by larger bodies moving with higher velocities througl.l wa:ter, or by
water moving with greater velocities through larger tubes. This discrepancy
Sir (. Stoxes considered as probably resulting from eddies which rendered the
actual motion other than that to which the singular solution referred and not as
disproving the assumption.

In 1850, after JouLe's discovery of the Mechanical Equivalent of Heat, StoxEs
showed, by transforming the equations of motion—with arbitrary stresses—so as to
obtain the equations of (* Vis-viva”) energy, that this equation contained a definite
function, which represented the difference between the work done on the fluid by the
stresses and the rate of increase of the energy, per unit of volume, which function,
he concluded, must, according to JoULE, represent the Vis-viva converted into heat.

This conclusion was obtained from the equations irrespective of any particular
relation between the stresses and the rates of distortion. Sir G. Sroxes, however,
translated the function into an expression in terms of the rates of distortion, which
expression has since been named by Lord Ravieica the Dissipation- Function.

2. In 1883 I succeeded in proving, by means of experiments with colour bands—
the results of which were communicated to the Society*—that when water is caused
by pressure to flow through a uniform smooth pipe, the motion of the water is direct,
w.e., parallel to the sides of the pipe, or sinuous, i.e., crossing and re-crossing the pipe,
according as U,, the mean velocity of the water, as measured by dividing Q, the
discharge, by A, the area of the section of the pipe, is below or above a certain value
given by

Ku/Dp,

where D is the diameter of the pipe, p the density of the water, and K a numerical
constant, the value of which according to my experiments and, as I was able to show,

to all the experiments by PoiseurLie and Daroy, is for pipes of circular section
between

1900 and 2000,

or, in other words, steady direct motion in round tubes is stable or unstable according
as

DU,
p T <1900 or >2000,

the number K being thus a ecrite
eddying motion.

3. The experiments also showed that Kw
resistance to be overcome—which ol

vion of the possible maintenance of sinuous or

as equally a criterion of the law of the
anges from a resistance proportional to the

* ¢Phil. Trans.,’ 1883, Part I11., p. 935,
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velocity and in exact accordance with the theoretical results obtained from the
singular solution of the equation, when direct motion changes to sinuous, 7.c., when
DU
I

~= K.

4. In the same paper I pointed out that the existence of this sudden change in the
law of motion of fluids between solid surfaces when

DU, =£K
p

proved the dependence of the manner of motion of the fluid on a relation between
the product of the dimensions of the pipe multiplied by the velocity of the fluid and
the product of the molecular dimensions multiplied by the molecular velocities which

I determine the value of
I

5 for the fluid, also that the equations of motion for viscous fluid contained evidence of
this relation.

These experimental results completely removed the discrepancy previously noticed,
showing that, whatever may be the cause, in those cases in which the experimental
vesults do not accord with those obtained by the singular solution of the equations,
the actual motions of the water are different. But in this there is only a partial

explanation, for there remains the mechanical or physical significance of the existence
of the criterion to be explained.

5. [My object in this paper is to show that the theoretical existence of an inferior
limit to the criterion follows from the equations of motion as a consequence : —

(1) Of a more rigorous examination and definition of the geometrical basis on
which the analytical method of distinguishing hetween molar-motions and heat-
motions in the kinetic theory of matter is founded ; and

(2) Of the application of the same method of analysis, thus definitely founded, to
S distinguish between mean-molar- motions and relative-molar-motions where, as in the
case of steady-mean-flow along a pipe, the more rigorous definition of the gcumetnml
basis shows the method to be strictly applicable, and in other cases where it is
approximately applicable.

The geometrical relation of the motions respectively indicated by the terms
mean-molar-, or MEAN-MEAN-MotioN, and relative-molar or ReLaTivE-MEeAN-Morion
being essentially the same as the relation of the respective motions indicated by the
terms molar-, or MEAN-Motiox, and relative-, or HEAT-MoTION, as used iu the theory

of gases.

I also show that the limit to the criterion obtained by this method of analysis and
by integrating the equations of motion in space, appears as a geometrical limit to the
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possible simultaneous distribution of certain guc?n:titz'es n SP“C"}: a'ndl A e wise
depends on the physical significance of these q'uantltles. Yet the physical significance
of these quantities, as defined in the equations, beco'mes so clearly e?zposed as to
indicate that further study of the equations would elucidate the propc.art.‘,les of matter
and mechanical principles involved, and so be the means of explaining wl.la,t has
hitherto been obseure in the connection between thermodynamics and the principles
of mechanices. g

The geometrical basis of the method of analysis used in the kinetic theory of gases
has hitherto consisted :— :

(1) Of the geometrical principle that the motion of any point of a mechanical
system may, at any instant, be abstracted into the mean motion of the whole system
at that instant, and the motion of the point relative to the mean-motion ; and

(2) Of the assumption that the component, in any particular direction, of the
velocity of a molecule may be abstracted into a mean-component-veloeity (say u)
which is the mean-component velocity of all the molecules in the immediate
neighbourhood, and a relative velocity (say £), which is the difference between u
and the component-velocity of the molecule ;* u and € being'so related that, M being
the mass of the molecule, the integrals of (M§), and (Mué), &e., over all the molecules
in the immediate neighbourhood are zero, and =[M (v + £)*] = = [M (v* 4 £%)].t

The geometrical principle (1) has only been used to distinguish between the energy
of the mean-motion of the molecule and the energy of its internal motions taken
relatively to its mean motion; and so to eliminate the internal motions from all
further geometrical considerations which rest on the assumption (2).

That this assumption (2) is purely geometrical, becomes at once obvious, when it is
noticed that the argument relates solely to the distribution in space of certain
quantities at a particular instant of time. And it appears that the questions as to
whether the assumed distinctions are possible under any distributions, and, if so,
under what distribution, are proper subjects for geometrical solution.

On putting aside the apparent obviousness of the assumption (2), and considering
definitely what it implies, the necessity for further definition at once appears,

The mean component-velocity () of all the molecules in the immediate neighbour-
hood of a point, say P, can only be the mean component-velocity of all the molecules in
some space (S) enclosing P.  w is then the mean-component velocity of the mechanical
system enclese.d in 8, and, for this system, is the mean velocity at every point within
S, and multiplied by the entire mass within S is the whole component. momentum
of t'lfe -‘3)’5'5811.'1- BUt,according to the assumption (2),  with its derivatives are to be
continuous functions of the position of P, which functions may vary from point to

point even within S; so that « is not taken to represent the mean component-velocity
of the system within S

B but the mean-velocity at the point P.  Although there seems
to have been no specific statement to that effect, 1t is presumable that the space S has

* " Dynamical Theory of Gases,” ‘ Phil. Trans.,’ 1866, pp. 67. t ¢ Phil. Trans.,’ 1866, p. 71
. ns., 3 o !
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been assumed to be so taken that P is the centre of gravity of the system within S,
The relative positions of P and S being so defined, the shape and size of the space S
requires to be further defined, so that u, &c., may vary continuously with the position
of P, which is a condition that can always be satisfied if the size and shape of S may
vary continuously with the position of P.

Having thus defined the relation of P to S and the shape and size of the latter,
expressions may be obtained for the conditions of distribution of u, for which = (M¢)
taken over S will be zero, i.e., for which the condition of mean-momentum shall be
satisfied.

o Taking 8,, u,, &e., as relating to a point P, and S, v, &c¢., as 1elatmg to P, another
g)omt of which the component distances from P, are z, y, z, P, is the C.G. of S,, and
@y however much or little S may overlap S,, S has its centre of gravity at w, ¥, 2,

and is so chosen that u, &c., may be continuous functions of , Y, 2. u may,
gherefore, differ from %, even if P is within 8,. Let u be taken for every molecule of
ghe system S;. Then according to assumption (2), = (Mu) over S, must represent the
i!omponent of momentum of the system within S, that is, in order to satisfy the
,gpndltlou of mean momentum, the mean-value of the variable quantity « over the
_aystem S, must be equal to %, the mean-component velocity of the system S,, and
:ghns is a condition which in consequence the geometrical definition aheady mentioned
@n only be satisfied under certain distributions of . For since » is a continuous
ﬁmctlon of x, y, z, M (v — u;) may be expressed as a function of the derivatives of u at P,
_%mlt]phed by carresponding powers and produets of , ¥, z, and again by M ; and by
gquatmg the integral of this function over the space S, to zero, a definite expression
:'ﬁz obtained, in terms of the limits imposed on @, y, 2, by the already defined space S,
&br the geometrical condition as to the distribution of % under which the condition of
alean momentum can be satisfied.

& From this definite expression it appears, as has been obvious all through the
érgument, that the condition is satisfied if  is constant. It also appears that there
Bwe certain other well-defined systems of distribution for which the condition is
atnctly satisfied, and that for all other distributions of » the condition of mean-
Auomentum can only be approximately satisfied to a degree for which definite

expressions appear.

Having obtained the expression for the condition of distribution of u, so as to
satisfy the condition of mean momentum, by means of the expression for M (v — '),
&c., expressions are obtained for the conditions as to the distribution of & &ec., in
order that the integrals over the space S, of the products M (u£), &c. may be zero when
2[M (v — u,)] = 0, and the conditions of mean energy satisfied as well as those of
mean-momentum. It then appears that in some particular cases of distribution of u,
under which the condition of mean momentum is strictly satisfied, certain conditions
as to the distribution of & &ec., must be satisfied in order that the energies of mean-
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-motion may be distinet. These conditions as to the distribution of &, &e.,

and relative )
ed in the case of heat motion, and do not present

are, however, obviously satisfi

themselves otherwise in this paper. . . .
From the definite geometrical basis thus obtained, and the definite expressions

which follow for the condition of distribution of w, &e., under which the method of
analysis is strictly applicable, it appears that this method may be rendered. generally
applicable to any system of motion by a slight adaptation of th.e meaning of the
symbols, and that it does not necessitate the elimination of the internal motion of
the molecules, as has been the custom in the theory of gases.

Taking u, v, w to represent the motions (continuous or discontinuous) of the matter

passing a point, and p to represent the density at the point, and putting , &e., for
the mean-motion (instead of u as above), and «’, &c., for the relative-motion (instead

of £ as before), the geometrical conditions as to the distribution of u, &e., to satisfy
the conditions of mean-momentum and mean-energy are, substituting p for M, of
precisely the same form as before, and as thus expressed, the theorem is applicable to
any mechanical system however abstract.

(1) In order to obtain the conditions of distribution of molar-motion, under which
the condition of mean-momentum will be satisfied so that the energy of molar-motion
may be separated from that of the heat-motion, u, &c., and p are taken as referring to
the actual motion and density at a point in a molecule, and S, is taken of such
dimensions as may correspond to the scale, or periods in space, of the molecular

distances, then the conditions of distribution of u, under which the condition of mean-
momentum is satisfied, become the conditions as to the distribution of molar-motion,
under which it is possible to distinguish between the energies of molar-motions and
heat-motions.

(2) And, when the conditions in (1) are satisfied to a sufficient degree of approxi-

mation by taking u to represent the molar-motion ( in (1)), and the dimensions of
the space S to correspond with the period in space or scale of any possible periodic or

eddying motion. The conditions as to the distribution of 7, &o. (the components of
mean-mean-motion), which satisfy the condition of mean-momentum, show the

conditions of mean-molar-motion, under which it is possible to separate the energy
of mean-molar-motion from the energy of relative-molar- (or relative-mean-) motion .
Having thus placed the analytical method used in the kinetic theory on a definite
geometrical basis, and adapted so as to render it applicable to all systems of motion
ny applying it to the dynamical theory of viscous fluid, I have been able to show —:
Feb. 18, 1895.] '
() That the adoption of the conclusion arrived a
dissipation function represents the rate at which
to the meaning of u, v
previously wanting ;

t by Sir Gasrier Stoxes, that the

l heat is produced, adds a definition
» W—the components of mean or fluid velocity—which was
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(b) That as the result of this definition the equations are true, and are only true
as applied to fluid in which the mean-motions of the matter, excluding the heat-
motions, are steady ;

(¢) That the evidence of the possible existence of such steady mean-motions, while
at the same time the conversion of the energy of these mean-motions into heat is
going on, proves the existence of some discriminative cause by which the periods in
space and time of the mean-motion are prevented from approximating in magnitude
to the corresponding periods of the heat-motions, and also proves the existence of
some general action by which the energy of mean-motion is continually transformed

cunto the energy of heat-motion without passing through any intermediate stage ;
S (d) That as applied to fluid in unsteady mean-motion (excluding the heat-motions),
whowevel steady the mean integral flow may be, the equations are approximately true
ém a degree which increases with the ratios of the magnitudes of the periods, in time
zand space, of the mean-motion to the magnitude of the corresponding periods of the
sheat-motions ;

(e) That if the diseriminative canse and the action of transformation are the result
épf general properties of matter, and not of properties which affect only the ultimate
'_Emotions, there must exist evidence of similar actions as between the mean-mean-
@motlun in directions of mean flow, and the periodic mean-motions taken relative to
che mean-mean-motion but exeluding heat-motions. And that such evidence must be
Hof a general and important kind, such as the unexplained laws of the resistance of
wﬁmd motions, the law of the universal dissipation of energy and the second law of
Sthermodymmlcs -

(/) That the generality of the effects of the properties on which the action of trans-
Sformation depends is proved by the fact that resistance, other than proportional to
gthe velocity, is caused by the relative (eddying) mean-motion.

(9) That the existence of the discriminative cause is directly proved by the
existence of the criterion, the dependence of which on circumstances which limit the
magnitudes of the periods of relative mean-motion, as compared with the heat-motion,
also proves the generality of the effects of the properties on which it depends.

(k) That the proof of the generality of the effects of the properties on which the
diseriminative cause, and the action of transformation depend, shows that—if in the
equations of motion the mean-mean-motion is distinguished from the relative-mean-
motion in the same way as the mean-motion is distinguished from the heat-motions—
(1) the equations must contain expressions for the transformation of the energy of
mean-mean-motion to energy of relative-mean-motion ; and (2) that the equations,
when integrated over a complete system, must show that the possibility of relative-
mean-motion depends on the ratio of the possible magnitudes of the periods of relative-
mean-motion, as compared with the corresponding magnitude of the periods of the
heat-motions,

(1) That when the equations are transformed so as to distinguish between the

MDCCOXCV.—A. 8
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f infinite periods, and the relative-mean-motions of finite periods,
t systems of equations, one system for mean-mean-motion, as
motion and heat-motion, the other system for relative-mean-

mean-mean-motions, o
there result two distine
affected by relative-mean- _
motion as affected by mean-mean-motion and heat-motl.ons. .

(j) That the equation of energy of mean-mean-n?otlo.n,.a? obtained from t:he first
system, shows that the rate of increase of energy 1s dlmuflsh(?d by conversion into
heat, and by transformation of energy of mean-mean-motion in consequence of the
relative-mean-motion, which transformation is expressed by a function identical in
form with that which expresses the conversion into heat; and that the equation of
energy of relative-mean-motion, obtained from the second system, shows that this
energy is increased only by transformation of energy from mean-mean-motion
expressed by the same function, aud diminished only by the conversion of energy
of relative-mean-motion into heat.

(k) That the difference of the two rates (1) transformation of energy of mean-mean-
motion into energy of relative-mean-motion as expressed by the transformation
function, (2) the conversion of energy of relative-mean-motion into heat, as expressed
by the function expressing dissipation of the energy of relative-mean-motion, affords
a discriminating equation as to the conditions under which relative-mean-motion
can be maintained.

(1) That this discriminating equation is independent of the energy of relative-mean-
motion, and expresses a relation between variations of mean-mean-motion of the first
order, the space periods of relative-mean-motion and pu/p such that any circumstances
which determine the maximum periods of the relative-mean-motion determine the
conditions of mean-mean-motion under which relative mean-motion will be maintained
—determine the criterion.

(m) That as applied to water in steady mean flow between parallel plane surfaces,
the boundary conditions and the equation of continuity impose limits to the maximum
space periods of relative-mean-motion such that the discriminating equation affords
definite proof that when an indefinitely small sinuous or relative disturbance exists
it must fade away if

pDU, [

is less than a certain number, which depends on the shape of the section of the
boundaries, and is constant as long as there is geometrical similarity. While for
greater vulu.es of this function, in so far as the discriminating equation shows, the
energy of sinuous motion may increase until it reaches to a definite limit, and rules
the resistance.

: 1 . a . .

.(n).'llm.t besides thus affording a mechanical explanation of the existence of the
crlter;o.an,] the discriminating equation shows the purely geometrical circumstances
on which the value of > 1 ik .

: e K d.cpends, and although these circumstances ‘must satisfy
geometrical conditions required for steady mean-motion other than those imposed by
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the conservations of mean energy and momentum, the theory admits cf the determi-
nation of an inferior limit to the value of K under any definite boundary conditions,
which, as determined for the particular case, is

517.

This is below the experimental value for round pipes, and is about half what might
be expected to be the experimental value for a flat pipe, which leaves a margin to meet
the other kinematical conditions for steady mean-mean-motion.

(o) That the discriminating equation also affords a definite expression for the
aesistance, which proves that, with smooth fixed boundaries, the conditions of
%ynamical similarity under any geometrical similar circumstances depend only on the
Falue of

;%D P 9 b3

i W da

S

§vhere b is one of the lateral dimensions of the pipe ; and that the expression for this

gbsistance is complex, but shows that above the critical velocity the relative-mean-
aotion is limited, and that the resistances increase as a power of the velocity higher
Fhan the first.

1

Secrion 11,

a%societypubl

he Mean-motion and Heat-motions as distinguished by Periods.—Mean-mean-
motion and Relative-mean-motion.—Discriminative Cause and Action of Trans-
Jormation.—Two Systems of Equations.—A Discriminating Equation.

6. Taking the general equations of motion for incompressible fluid, subject to no
xternal forces to be expressed by

du ad ., o {
P == { i (Per+ ) + 5 (e + pu0) + . (ps + prw) |

Downloaded.from https://roy

dv d { i
Py {g; (Pay + pr) + (;y (P + poo) + (P + P“"’)} e - (1)
: dw d d o
Py = {Z, (pe + prn) + ay (p): + pwv) + 5 (p: + pU,'N‘)} 1
with the equation of continuity
0 = du/dx + dv/dy + dw/dz . . . . . . . . (2),

where p,., &ec., are arbitrary expressions for the component forces per unit of area,
resulting from the stresses, acting on the negative faces of planes perpendicular to

8 2
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the direction indicated by the first suffix, in the direction indicated by the second

suffix. .
Then multiplying these equations respectively by u,

adding and putting

v, w, integrating by parts,

oF for p (u*+ v* + )

and transposing, the rate of increase of kinetic energy per unit of volume is given by

o

d . ( ( -
dx (upze) + dy upy) + " Up-.)

{ d d d d d .
(‘:17 e ey 2 F +w _:) B== 4 G (vpz) + dy (pw) + da (vpy)

W

l 7 7
+ g (0p2) + - (wpe) + 5 (wps) |

du du du )
P ;1; + Py @ + Pz de
dv dv v
+ FPugy T Pwg, TPy ¢ . (3)
duw dw dw
L +_Pz: ;Z; + Pz ;]; + P _(l,:’ i

The left member of this equation expresses the rate of increase in the kinetic
energy of the fluid per unit of volume at a point moving with the fluid.

The first term on the right expresses the rate at which work is being done by the
surrounding fluid per unit of volume at a point.

The second term on the right therefore, by the law of conservation of energy,
expresses the difference between the rate of increase of kinetic energy and the rate
at which work is being doune by the stresses. This difference has, so far as I am
aware, in the absence of other forces, or any changes of potential energy, been equated
to the rate at which heat is being converted into energy of motion, Sir GABRIEL
Stoxes having first indicated this* as resulting from the law of conservation of
energy then just established by JouLe.

7. This conclusion, that the second term on the right of (3) expresses the rate at
which heat is being converted, as it is usually accepted, may be correct enough, but
there is a consequence of adopting this conclusion which enters largely into the

method of reasoning in this paper, but which, so far as I know, has not previously
received any definite notice.

* “Cambridge Phil. Trans.’ vol. 9, p. 57.
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The Component Velocities in the Equations of Viscous Fluids.

In no case, that I am awarve of, has any very strict definition of u, », w, as they
oceur in the equations of motion, been attempted. They are usually defined as the
velocities of a particle at a point (z, #, 2) of the fluid, which may mean that they are
the actual component velocities of the point in the matter passing at the instant, or
that they are the mean velocities of all the matter in some space englosing the point,
or which passes the point in an interval of time. If the first view is taken, then the
right hand member of the equation represents the rate of increase of kinetic energy,

oper unit of volume, in the matter at the point; and the integral of this expression
§over any finite space S, moving with the fluid, represents the total rate of increase
Zof kinetic energy, including heat-motion, within that space; hence the difference
2etween the rate at which work is done on the surface of S, and the rate at which
< kinetic energy is increasing can, by the law of conservation of energy, only represent
gthe rate at which that part of the heat which does not consist in kinetic ener gy of
tmma,’t,‘cel is being produced, whence it follows :—
S («) That the adoption of the conclusion that the second term in equation (3) ex-
Epresses the rate at which heat s being converted, defines u, v, w, as not representing
=the component velocities of points in the passing matter.
Further, if it is understood that u, v, w, represent the mean velocities of the matter
in some space, enclosing , 7, z, the point considered, or the mean velocities at a point
Staken over a certain interval of time, so that = (pu), = (pv), = (pw) may express the
omponents of momentum, and 2% (pv) — y= (pw), &ec., &e., may express the com-
Sponents of moments of momentum, of the matter over whlch the mean is taken ;
Zthere still remains the question as to what spaces and what intervals of time ?
; (b) Hence the conclusion that the second term expresses the rate of conversion of heat,
Sdefines the spaces and intervals of time over which the mean component velocities must
'cbe taken, so that E may wnclude all the energy of mean-motion, and exclude that of

“ heat-motions.

alsocietypublishing
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Equations Approximate only except in Thiee Particular Cases.
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8. According to the reasoning of the last article, if' the second term on the right of
equation (3) expresses the rate at which heat is being converted into energy of mean-
motion, either pu, pv, pw express the mean components of momentum of the matter,
taken at any instant over a space S, enclosing the point , 7, z, to which u, v, w
refer, so that this point is the centre of gravity of the matter within S; and such
that p represents the mean density of the matter within this space; or pu, pv, pw
represent the mean components of momentum taken at «, y, z over an interval of time 7,
such that p is the mean density over the time 7, and if ¢ marks the instant to which
u, v, w refer, and ¢’ any other instant, [ (¢ — ¢') pJ, in which p is the actual density,
taken over the interval 7 is zero. The equations, however, require, that so obtained,
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p, U, v, w, shall be continuous functions of space and time, and it can be shown that
Uy 2

this involves certain conditions between the distribution of the mean-motion and the

dimensions of S, and 7.

Mean- and Relative-Motions of Matter.

Whatever the motions of matter within a fixed space S may be at any instant, if
the component velocities at a point are expressed by u, v, w, the mean component

velocities taken over S will be expressed by

7

-ﬁ:"(p”),&c.,&c. 4 g, OGN, IS, SOt U

=p

If then u, v, w, ave taken at each instant as the velocities of @, ¥, z, the tnstantaneous
centre of gravity of the matter within S, the component momentum at the centre of
gravity may be put

pu:pﬁ+pu' T T L

where %' is the motion of the matter, relative to axes moving with the mean velocity,
at the centre of gravity of the matter within 8. Since a space S of definite size and
shape may be taken about any point #, y, z in an indefinitely larger space, so that
x, 71, z 1s the centre of gravity of the matter within S, the motion in the larger space

may be divided into two distinet systems of motion, of which w, », w represent a

mean-motion at each point and ’, v/, w’ a motion at the same point relative to the
mean-motion at the point.

If, however, u, v, w are to represent the real mean-motion, it is necessary that
2 (pv'), Z(pv'), E(pa’) summed over the space S, taken about any point, shall be
severally zero; and in order that this may be so, certain conditions must be fulfilled.

For taking @, y, 2 for G the centre of gravity of the matter within S and @/, ¥/, ¢’
for any other point within 8, and putting o, b, ¢ for the dimensions of S in
directions z, y, z, measured from the point &, 7, 2, since u, v, w are continuous functions
of @, y, 2, by shifting S so that the centre of gravity of the matter within it is at
', Y, 7 the value of u for this point is given by

(’Il

0=, + (& — ) (?)J i <1m>y A <£\ + (@ = o) ("_7) + &e. (6)
7

dy, dz/, dis?

where all the differential coefficients on the left refer to the point @, ¢, z ; and in the
same way for v and w,

Subtracting the value of % thus obtained for the point &', i/, 2’ from that of u at the
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same point the difference is the value of »" at this point, whence summing these
differences over the space S about G at «, ¥, z, since by definition when summed over
the space S about G

2[p(u—u)]=0and S[p(' —2)]=0 . . . . . (7)

3 ’ : "o P "o e
(o)== {42006 =71 (1) + 4200 =y (50)

da? tll/ /g

In the same way if £ ( ) be taken over the interval of time 7 ineluding ¢; and
for the instant ¢

o?
3 +330Ge =PI +ee} L ()
N;; That is
=
2 3 (p) . d*u [ J’u
g 2(p) IS<—{~<4H") +1 (’7/ > +&c J
g
2
o

"= 2}_(5()), and pu = pu + pu’;

hen since for any other instant ¢

u_.u,+(t—t)<du>+%(t— )"<d"> + &e.,

ps://royalsocietxpublishing

Ewhere Z[p(t —t')] =0, and = [p (4, — u)] = 0.

g It appears that

= l*u W

E $(pu) = = $[hp (= ()] G + &e. |

E . . (8m).
= pu’) o [@u

é% G A (\,‘,,‘-;,), cri ,J

From equations (84) and (8B), and similar equations for = (pv’) and = (pu’), it appears
that if

2 (pr') = 2 (pv') = Z(pu') = 0,

where the summation extends both over the space S and the interval 7, all the terms
on the right of equations (84) and (88) must be respectively and continuously zero, or,

what is the same thing, all the differential coefficients of u, v, w with respect to
x, y, z and t of the first order must be respectively constant.
This condition will be satisfied if the mean-motion is steady, or uniformly varying
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with the time, and is everywhere in the same direction, being subject to no variations
for suppose the direction of motion to be that of x, then

in the direction of motion ; . ;s .
a complete period within the distance 2a,

since the periodic motion passes through
s (pu’) will be zero within the space

2a dy dz,

however small dy dz may be, and since the only variations of the mean-motion are in
directions y and z, in which b and ¢ may be taken zero, and du/dt is everywhere
constant, the conditions are perfectly satisfied.

The conditions are also satisfied if the mean-motion is that of uniform expansion or
contraction, or is that of a rigid body.

These three cases, in which it may be noticed that variations of mean-motion
are everywhere uniform in the direction of motion, and subject to steady variations
in respect of time, are the only cases in which the conditions (84), (88), can be perfectly
satisfied.

The conditions will, however, be approximately satisfied, when the variations of

u, v, wof the first order are approximately constant over the space S.
In such case the right-hand members of equations (8a), (88), are neglected, and it

appears that the closeness of the approximations will be measured by the relative
magnitude of such terms as

a dPufda?, &e., v d*u/dt* as compaved with du/dwe, du/dt, &.

Since frequent reference must be made to these relative values, and, as in periodic
motion, the relative values of such terms are measured by the period (in space or time)
as compared with a, b, ¢ and 7, which are, in a sense, the periods of «’, v/, w’, I shall
use the term period in this sense, taking note of the fact that when the mean-motion
is constant in the direction of motion, or varies uniformly in respect of time, it is not
periodic, 7.e., its periods are infinite.

9. It is thus seen that the closeness of the approximation with which the motion of
a.ny.system. can be expressed as a varying mean-motion together with a relative-
motion, which, when integrated over a space of which the dimensions are a, b, ¢, has

no momentum, increases as the magnitude of the periods of u, v, w in comparison with

the periods of «/, ¢/, w/, and is measured by the ratio of the relative order

; : s of magni-
tudes to which these periods belong.

Heat-motions in Matter are Appro.rimately Relative to the Mean-motions.

- 1
The general experience that heat in no way

. affects the momentum of matter, shows
that the heat-motions are velatiy

e to the mean-motions of matter taken over spaces of
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sensible size. But, as heat is by no means the only state of relative-motion of matter,
if the heat-motions are relative to all mean-motions of matter, whatsoever their periods
may be, it follows—that there must be some discriminative cause which prevents the
existence of relative-motions of matter other than heat, except mean-motions with
periods in time and space of greatly higher orders of magnitude than the corres-
ponding periods of the heat-motions—otherwise, by equations (84), (88), heat-motions
could not be to a high degree of approximation relative to all other motions, and we
could not have to a high degree of approximation,

du du du
g pu;l:: = Py (’_3/- + p- 5
E dv dv dv d
é" szd;'l'Pyy@'l"Pry,jz' >=—T[?(ﬂH)- st ol an(B),
= dw duw duw
= p”d.v+p-"’tly p"(lzJ
5
2
5}

here the expression on the right stands for the rate at which heat is converted into
energy of mean-motion.

Transformation of Energy of Relative-mean-motion to Energy of Heat-motion.

10. The recognition of the existence of a discriminative cause, which prevents the
xistence of relative-mean-motions with periods of the same order of magnitude as
Sheat-motions, proves the existence of another general action by which the energy of
é‘ela.tive-mean-motion, of which the periods are of another and higher order of
“magnitude than those of the heat-motions, is transformed to energy of heat-motion.

For if relative-mean-motions cannot exist with periods approximating to those of
heat, the conversion of energy of mean-motion into energy of heat, proved by JouLs,
cannot proceed by the gradual degradation of the periods of mean-motion until these
gperiods coincide with those of heat, but must, in its final stages, at all events, be the
Sresult of some action which causes the energy of relative-mean-motion to be trans-

formed into the energy of heat-motions without intermediate existence in states of
relative-motion with intermediate and gradually diminishing periods.

That such change of energy of mean-motion to energy of heat may be properly
called transformation becomes apparent when it is remembered that neither mean-
motion nor relative-motion have any separate existence, but are only abstract
quantities, determined by the particular process of abstraction, and so changes in the
actual-motion may, by the process of abstraction, cause transformation of the

abstract energy of the one abstract-motion, to abstract energy of the other abstract-
motion.

All such transformation must depend on the changes in the actual-motions, and so
MDCCCXCV.—A., T
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must depend on mechanical principles and the properties of matter, and hence the

i ; elative- -motion to energy of heat-motions is evidence
direct passage of energy of relative-mean mot ay

of a general cause of the condition of actual-motion which results in transformation—

which may be called the cause of transformation.

The Discriminative Cause, and the Cause of Transformation.

11. The only known characteristic of heat-motions, besides that of being relative
to the mean-motion, already mentioned, is that the motions of matter which result
from heat are an ultimate form of motion which does not alter so long as the mean-
motion is uniform over the space, and so long as no change of state occurs in the
matter. In respect of this characteristic, heat-motions are, so far as we know,
unique, and it would appear that heat-motions are distinguished from the mean-
motions by some ultimate properties of matter.

Tt does not, however, follow that the cause of transformation, or even the
discriminative cause, are determined by these properties. Whether this is so or not
can only be ascertained by experience. If either or both these causes depend solely
on properties of matter which only affect the heat-motions, then no similar effect
would result as between the variations of mean-mean-motion and relative-mean-
motion, whatever might be the difference in magnitude of their respective periods.
Whereas, if these causes depend on properties of matter which affect all modes of
motion, distinctions in periods must exist between mean-mean-motion and relative-
mean-motion, and transformation of energy take place from one to the other, as
between the mean-motion and the heat-motions.

The mean-mean-motion cannot, however, under any circumstances stand to the
relative-mean-motion in the same relation as the mean-motion stands to the heat-
motions, because the heat-motions cannot be absent, and in addition to any trans-
formation from mean-mean-motion to relative-mean-motion, there are transformations
both from mean- and relative-mean-motion to heat-motions, which transformation
may have important effects on both the transformation of energy from mean- to
relative-mean-motion, and on the discriminative cause of distinction in their periods.

In spite of the confusing effect of the ever present heat-motions, it would, however,
seem t?nat evidence as to the character of the properties on which the cause of trans-
format.lon and the diseriminative cause depend should be forthcoming as the result of
observing the mean- and relative-mean-motions of matter. ‘
rualtil.'[;;elzfl::n:g tzxi)]elzuﬁc;izatln eYidence that the effects of these pr0pe.rties of

i : at-motions, would be to prove a negative; but if these
properties are in any degree common to all modes of matter, then at first sight it
zz:f]-sf:(ll ";;i:;vl:i?::i_i‘ii‘s;I“\IVPI'Olblab}ie that the effects of these causes on the
delicate tests. For properties \vilicllol(: e Obsc}“?’ m_]d only to be observed by

: \ an cause distinctions between the mean- and
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heat-motions of matter so fundamental and general, that from the time these motions
were first recognized the distinetion has been accepted as part of the order of nature,
and has been so familiar to us that its cause has excited no curiosity, cannot, if they
have any effect at all, but cause effects which are general and important on the
mean-motions of matter. It would thus seem that evidence of the general effects of
such properties should be sought in those laws and phenomena known to us as the
result of experience, but of which no rational explanation has hitherto been found;
such as the law that the resistance of fluids moving between solid surfaces and of
solids moving through fluids, in such a manner that the general-motion is not
~periodic, is as the square of the velocities, the evidence covered by the law of the
guniversal tendency of all energy to dissipation and the second law of thermo-
wdynanncs
%" 13. In considering the first of the instances mentioned, it will be seen that the
frewdence it affords as to the general effect of the properties, on which depends transforma-
ogtion of energy from mean- to relative-motion, is very direct. For, since my experiments
+with colour bands have shown that when the resistance of fluids, in steady mean flow,
Svaries with a power of the velocity higher than the first the fluid is always in a state
.Sof sinuous motion, it appears that the prevalence of such resistance is evidence of the
=existence of a general action by which energy of mean-mean-motion with infinite
eriods is directly transformed to the energy of relative-mean-motion, with finite
Bperiods, represented by the eddying motion, which renders the general mean-motion
sinuous, by which transformation the state of eddying-motion is maintained, not-
withstanding the continual transformation of its energy into heat-motions.
We have thus direct evidence that properties of matter which determine the cause
mof transformation, produce general and important effects which are not confined to the
< heat-motions.
In the same way, the experimental demonstration I was able to obtain, that
9 relative-mean-motion in the form of eddies of finite periods, both as shown by colour
csbands and as shown by the law of resistances, cannot be maintained except under
c circumstances depending on the conditions which determine the superior limits to the
[ velocity of the mean-mean-motion, of infinite periods, and the periods of the relative-
mean-motion, as defined in the criterion

y_%ubhsh ng.org

SOClCt

s://royal
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DUM/F’ = K;

1s not only a direct experimental proof of the existence of a discriminative cause which
prevents the maintenance of periodic mean-motion except with periods greatly in excess
of the periods of the heat-motions, but also indicates that the discriminative cause
depends on properties of matter which affect the mean-motions as well as the heat-
motions.
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Eapressions for the Rate of Transformation and the Discriminative Cause.

14, Tt has already been shown (Art. 8) that the equati(?ns of motion approximate
to a true expression of the relations between the mean-motions and iitresses, Wh.e;n the
ratio of the periods of mean-motions to the periods of the heat-nfotlc.ms approximates
to infinity. Hence it follows that these equations must of necessity include whatever
mechanical or kinematical principles are involved in the transformation of energy of
mean-mean-motion to energy of relative-mean-motion. It has also been shown that
the properties of matter on which depends the transformation of energy of varying
mean-motion to relative-motion are common to the relative-mean-motion as well as to
the heat-motion. Hence, if the equations of motion are applied to a condition in
which the mean-motion consists of two components, the one component being a mean-
mean-motion, as obtained by integrating the mean-motion over spaces S, taken about
the point @, 9, 2, as centre of gravity, and the other component being a relative-mean-
motion, of which the mean components of momentum taken over the space S, every-
where vanish, it follows :—

(1) That the resulting equations of motion must contain an expression for the rate
of transformation from energy of mean-mean-motion to energy of relative-mean-
motion, as well as the expressions for the transformation of the respective energies of
mean- and relative-mean-motion to enerqy of heat-motion ;

(2) That, when integrated over a complete system these equations must show that the
possibility of the maintenance of the energy of relative-mean-motion depends, whatsoever
may be the conditions, on the possible order of magnitudes of the periods of the relative-
mean-motion, as compared with the periods of the heat-motions.

The Equations of Mean- and Relative Mean-Motion.

15. These last conclusions, besides bringing the general results of the previous

argument to the test point, suggest the manner of adaptation of the equations
of motion, by which the test may be applied.
Put

u=u-+7, v=uv4 7, W=Wdw. « « « o (11),
where

~

L:E(p?l)/i(p),&c., . T A Tl (12),

the summation extending over the space S, of which the centre of gravity is at the
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point @, ¥, 2. Then since u, v, w are continuous functions of z, 7, z, therefore

— - —

u, v, w, and ', v/, ', are continuous functions of 2, », 2. And as p is assumed
constant, the equatlons of continuity for the two systems of motion are :

dw du'  dv dw

also both systems of motions must satisfy the boundary conditions, whatever they

Joay be.

§ Further putting p.., &c., for the mean values of the stresses taken over the space

%, and
p’x,c=p;¢x —E:. . . . . . . . . . (14)

nd defining S, to be such that the space variations of %, v, w are approximately

Fonstant over this space, we have, putting «%’, &e., for the mean values of the squares
%nd products of the components of relative-mean-motion, for the equations of mean-

3nean motion,

gLorg/-on 04 Aug

du d — e T T =T
Pd—t=—{d—x(Pu+P'¢m+pm7)+(,J(Py: puv + pu'v’)
dz(p +puw—|—puw)} Ee o LEERY,
&e. = &e.
&e, = &e. g

hich equations are approximately true at every point in the same sense as that in
hich the equations (1) of mean-motion are true.

lgadgd from https://royalsocietypubli

% Subtracting these equations of mean-mean-motion from the equations of mean-
Emotion, we have
r (l ’ g ) s S 7 7
e P+ p (' + wu)+ p (v —uwn)}
% d x P = o ST S0
P ;: Sisa ke Wet e (w’ + wv) + p (W' — u)} p &e., &e. (16),
. ;l; P+ p (w' +u'w) 4 p (W' — mE)}J
" ~

which are the equations of momentum of relative-mean-motion at each point.
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Again, multiplying the equations of mean-mean-motion by u, v, w respectively,
)

adding and putting 2E = p (u® + v* + ), we obtain

;}l,[u(])u+w 0+ g, [ (B 500 3 L (% (pur + W)

v

"Ry ['U(Pr/+'vu)] +d/ [¢ (pw +¥7) ] +d~ [0 (psy + vW) ]

+ [—’ (Pt w')] + [w(pﬁ-{—wv)] +(;—z[70‘(1—7_.:+m')]J

5 A (N d die i |
— du du du —— du —— dit — d
Pze +1”¢1J+1'$ dz i J‘U—}-uv (ly+uw 2
dv dv —7 l_; et f[_- —— (Z_E 17)
+4 +P”d + 7 ,J’[J+1,de S e o B (I;u+lv(ly+vzvdz P
- dw — dw , - dw — 7! — d —, dw
Pes 5= + Py 5 o — 4wV — 4 ww
¢ + 1‘)4': (lnb‘ + py- d,'/ + p~~ (lz J g + w d-U + d?/ + dz ]

which is the approximate equation of energy of mean-mean-motion in the same sense
as the equation (3) of energy of mean-motion is approximate.

In a similar manner multiplying the equations (16) for the momentum of relative-
mean-motion respectively by «/, v', w’, and adding, the result would be the equation
for energy of relative-mean-motion at a point, but this would include terms of
which the mean values taken over the space S, are zero, and, since all corresponding
terms in the energy of heat are excluded, by summation over the space S, in the
expression for the rate at which mean-motion is transformed into heat, there is no
reason to include them for the space 8, ; so that, omitting all such terms and putting

W =p@®+v"+w?) ., . L . .. . . (18),

we obtain
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(dt+1~—+'v +w> =

r d ’ ’ ’ d ’ ’ Lo (l ’ / / ’ =
0 (Pt )] o 31 [0 (B 0] 00 (e 0]
d / / ’ d / / Ly ) (l / / . /
4 + L[ (Pye + )] +7[v (P + )]+ o[V (P + V)]
d
[0 (Pt )]+ [0 (Bt 00)] [0 (e w)]
- dut W el bod wisemile dii i |
s A pd i i s
S P g, T Pyg, +P= pu’ - + puv’ < i + puw o
s v
@ e v’ L dv T (L[_ —— dv 19
§° +{ +p ¢lb+2y’d;/ TPy dz ; %+Pvu( At dy/+pthls H )
<
< dw dw’ —— dio dw -, dw
) [ s Tt Ty e wa —
5 L+ (IL +Py ¢7J+P:d;:_J k-{-pwll‘(,x-{-p?b'vdy-}-pww dz |
et
éwhele only the mean values, over the space S, of the expressions in the right member
are taken into account.

This is the equation for the mean rate, over the space S, of change in the energy
f relative-mean-motion per unit of volume.

It may be noticed that the rate of change in the energy of mean-mean-motion,
ogether with the mean rate of ch‘mge in the energy of relative-mean-motion, must
gbe the total mean-rate of change in the energy of mean-motion, and that by adding
ﬁ;he equations (17) and (19) the result is the same as is obtained from the equation (3)
gbf energy of mean-motion by omitting all terms which have no mean value as summed
aover the space ;.

)g)ublis

a]ts_ociet

The Expressions from Transformation of Enerqgy from Mean-mean-motion to Relatives
MeAn-motion.

Downloaded fro

16. When equations (17) and (19) are added together, the only expressions that
do not appear in the equation of mean energy of mean-motion are the last terms on
the right of each of the equations, which are identical in form and opposite in sign.

These terms which thus represent no change in the total energy of mean-motion
can only represent a transformation from energy of mean-mean-motion to energy of
relative-mean-motion. And as they are the only expressions which do not form part
of the general expression for the rate of change of the mean energy of mean-motion,
they vepresent the total exchange of energy between the mean-mean-motion and the
relative-mean-motion.

It is also seen that the action, of which these terms express the effect, is purely
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kinematical, depending simply on the instantaneous characters of .the mean- and
relative-mean-motion, whatever may be the properties of the matter involved, or the
mechanical actions which have taken part in determining these characters. The
terms, therefore, express the entire result of transformation from energy of mean-
an-motion to energy of relative-mean-motion, and of nothing but the transforma-
tion. Their existence thus completely verifies the first of the general conclusions
in Art. 14.

The term last but one in the right member of the equation (17) for energy of
mean-mean-motion expresses the rate of transformation of energy of heat-motions
to that of energy of mean-mean-motion, and is entirely independent of the relative-

me

mean-motion.
In the same way, the term last but one on the right of the equation (19) for

energy of relative-mean-motion expresses the rate of transformation from energy of
heat-motions to energy of relative-mean-motion, and is quite independent of the
mean-mean-motion,

17. In both equations (17) and (19) the first terms on the right express the rates
at which the respective energy of mean- and relative-mean-motion are increasing
on account of work done by the stresses on the mean- and relative-motion
respectively, and by the additions of momentum caused by convections of relative-
mean-motion by relative-mean-motion to the mean- and relative-mean-motions
respectively,

It may also be noticed that while the first term on the right in the equation (19)
of energy of relative-mean-motion is independent of mean-mean-motion, the corre-

sponding term in equation (17) for mean-mean-motion is not independent of relative-
mean-motion,

A Discriminating Equation.

18. In integrating the equations over a space moving with the mean-mean-motion
of the fluid the first terms on the right may be expressed as surface integrals, which
integrals respectively express the rates at which work is being done on, and energy
is being received across, the surface by the mean-mean-motion, and by the relative-
mean-motion, ﬁ

If the space over which the integration extends includes the whole system, or such
part that the total energy conveyed across the surface by the relative-mean-motion is
zero, then the rate of change in the total energy of relative-mean-motion within the
space is the difference of the integral, over the space, of the rate of increase of this
energy by transformation from energy of mean-mean-motion, less the integral rate

at wh.ich energy of relative-mean-motion is being converted into heat, or integrating
equation (19), )
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f”(% + u p +'—';, + w —> "daedy dz =

pus -+ puw 7 + puu ’:}
e ] —— —— v , -
e “T 2 _|_ pou ;17 _'_p,,, ) + pv ’IU (—: da (13/ o=
— dw S I —= (/u

L+pwu ’—+pw v a0 + pw'w —- d |

( (lu' du’ , du Y
+ P

, dv’ , dv , dv’ '
+ [”{ Py gy +Pw Oy T >dedyde . . . . . (20)

dw’ duw’ , '
p i o

This equation expresses the fundamental relations :—

2 (1) That the only integral effect of the mean-mean-motion on the relative-mean-
otion s the wntegral of the rate of tramsformation from enerqy of mean-mecn-
otion to energy of relative-mean-motion.

(2) That, unless relative energy is altered by actions across the sui “face within which
he integration extends, the integral energy of relative-mean-motion will be increasing
997 diminishing according as the integral rate of transformation from mean-mean-
>motion to relative-mean-motion is greater or less than the raie of conversion of the

ypub shéng .org/ on 04 August 2022
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Senergy of relative-mean-motion into heat.

&

= 19. For p',,, &c., are substituted their values as determined according to the

Etheory of viscosity, the approximate truth of which has been verified, as already

”_éexplamed. )

< Putting

% ' a t?u’ dv' . dw' du

g Pax=p+Ep —|— Ry 7 = 5 &c., &e.

8 du'  dv PR (R,
pyr=—I"<_(_l?/ +(IL»& &e. J

we have, substituting in the last term of equation (20), as the expression for the
rate of conversion of energy of relative-mean-motion into heat,

= ]’” % (pH) dx dy dz = H[[ <‘(l[: o ((Zlf, 4 d;.)
—e{=a(E 5+ + o) + () + ()]

dw’ W\ 2 T’ \? dv’ du”\2
_|_<.’?£+(%) +('¢]l“+(dw) +<,1%.-+ )}_]dl(lj((-. . (22)

dy dy
MDCCUXCV.—A, U
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in which p is a function of temper
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dv’

j

AN

ature only ; or since pis here considered as constant,

dv’\? ( dw'\2 dw’
'_’z/> ¥ </z> ]+ <d.!/

(23),

whence substituting for the last term in equation (20) we have, if the energy of
relative-mean-motion is maintained, neither inereasing or diminishing,

. _——
m— T ]
, e TEAT
W i W dy dz

e AT .~ O —— @D
= P{H TR .y o B R W

- da dy dz
du dy dz

s PN —— T
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fi duw/\? dv'\2 [’ \2
21— S irid
h [(d.r) i <1‘(]/> i ( dz > J

- ‘dre’ .le fdad’ l.,_rg
—ufl[{ +(G+%)+(E+%) tdedydz=0 . (20)
v’ dn\?
oAk sl

which is a discriminating equation as to the conditions under which relative-mean-
motion can be sustained.

20. Since this equation is homogeneous in respect to the component velocities of
the relative-mean-motion, it at once appears that it is independent of the energy of
relative-mean-motion divided by the p. So that if u/p is constant, the condition it
expresses depends only on the relation between variations of the mean-mean-motion
and the directional, or angular, distribution of the relative-mean-motion, and on the
squares and products of the space periods of the relative-mean-motion.

Al:ld since the second term expressing the rate of conversion of heat into energy of
relative-mean-motion is always negative, it is seen at once that, whatscever may be
tpe distribution and angular distribution of the relative-mean-motion aund the varias
tions o‘f t.he mean-mean-motion, this equation must give an inferior limit for the rates
of \.zarmtlon of .the components of mean-mean-motion, in terms of the limits to the
periods of. reh}tl.ve-mea.n—motion, and p/p, within which the maintenance of relative-
mean-motion is impossible. And that, so long as the limits to the periods of relative-

mezm-motfon are not infinite, this inferior limit to the rates of variation of the mean-
mean-motion will be greater than zevo,
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Thus the second conclusion of Art. 14, and the whole of the previous argument is
verified, and the properties of matter which prevent the maintenance of mean-motion
with periods of the same order of magnitude as those of the heat-motion are shown to
be amongst those properties of matter which are included in the equations of motion
of which the truth has been verified by experience.

The Cause of Transformation.

21. The transformation function, which appears in the equations of mean-energy of
flean- and relative-mean-motion, does not indicate the cause of transformation, but
;%jnly expresses a kinematical principle as to the effect of the variations of mean-mean-
%otion, and the distribution of relative-mean-motion. In order to determine the
Froperties of matter and the mechanical principles on which the effect of the variations
& the mean-mean-motion on the distribution and angular distribution of relative-mean-
ﬁiotlon depends, it is necessary to go back to the equations (16) of relative-momentum
ﬁf a point ; and even then the cause is only to be found by considering the effects of
ghe actions which these equations express in detail. The determination of this cause,
:—Q)ough it in no way affects the proofs of the existence of the criterion as deduced from
Fhe equations, may be the means of explaining what has been hitherto obscure in the
&énnection between thermodynamics and the principles of mechanics. That such may
ﬁe the case, is suggested by the recognition of the separate equations of mean- and
-@latlve mean-motion of matter.

The Equation of Energy of Relative-mean-motion and the Equation of
Thermodynamics.
Yy

22. On consideration, it will at once be seen that there is more than an accidental
'gorrespondeuce between the equations of energy of mean- and relative-mean-motion
—,gespectlvely and the respective equations of energy of mean-motion and of heat in
Ehermodynamlcs.

If instead of including only the effects of the heat-motion on the mean-momentum
as expressed by p.., &e., the effects of relative-mean-motion are also included by

ed from https://roy

putting p.. for p.. + pu'v, &e., and p,. for p,. + pw’, &e., in equations (15) and (17),
the equations (15) of mean-mean-motion become identical in form with the equations
(1) of mean-motion, and the equation (17) of energy of mean-mean-motion becomes
identical in form with the equation (3) of energy of mean-motion.

These equations, obtained from (15) and (17) being equally true with equations (1)
and (3), the mean-mean-motion in the former being taken over the space S, instead of
B, as in the latter, then, instead of equation (9), we should have for the value of the
last term—

U 2
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 Ers d (pH) —7—7 du c
Per 3 + o, =— S5 FUE kA
(12N

in which the right member expresses the rate at which heat is convet:ted into energy
of mean-mean-motion, together with the rate at which energy of relative-mean-motion
is transformed into energy of mean-mean-motion ; while equation (19) shows whence
the transformed energy is derived.

The similarity of the parts taken by the transformation of mean-mean-motion into
relative-mean-motion, and the conversion of mean-motion into heat, indicates that
these parts are identical in form ; or that the conversion of mean-motion into heat is
the result of transformation, and is expressible by a transformation function similar
in form to that for relative-mean-motion, but in which the components of relative
motion are the components of the heat-motions and the density is the actual density
at each point. Whence it would appear that the general equations, of which equations
(19) and (16) are respectively the adaptations to the special condition of uniform
density, must, by indicating the properties of matter involved, afford mechanical
explanations of the law of universal dissipation of energy and of the second law of
thermodynamics.

The proof of the existence of a criterion as obtained from the equations is quite
independent of the properties and mechanical principles on which the effect of the
variations of mean-mean-motion on the distribution of relative mean-motion depends.
And as the study of these properties and principles requires the inclusion of condi-
tions which are not included in the equations of mean-motion of incompressible fluid,
it does not come within the purpose of this paper. It is therefore reserved for
separate investigation by a more general method.

The Criterion of Steady Mean-motion.

23. As already pointed out, it appears from the discriminating equation that the
possibility of the maintenance of a state of relative-mean-motion depends on p/p, the
variation of mean-mean-motion and the periods of the relative-mean-motion.

Thus, if the mean-mean-motion is in direction only, and varies in direction y
only, if «/, v/, w’ are periodic in dirvections x, v, 2, a being the largest period in space,
so that their integrals over a distance @ in direction z are zero, and if the co-efficients
of all the periodic factors are a, then putting

-+ (Zz._t/dy =

taking the integrals, over the space a® of the 18 squares and products in the last
term on the left of the discriminating equation (24) to be
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— 18uC, (27/a)? o*a®
the integral of the first term over the same space cannot be greater than
pCye®C 2a®.

Then, by the discriminating equation, if the mean-enercy of relative-mean-motion is
3 oD

to be maintained,
pC,? is greater than 700 p/a®,

P’f ‘du\* e 20
#V<’/y)_7oo. SEE e 26

as a condition under which relative-mean-motion cannot be maintained in a fluid of
Gvhich the mean-mean-motion is constant in the direction of mean-mean-motion, and
Subject to a uniform variation at right angles to the direction of mean-mean-motion.
gt is not the actual limit, to obtain which it would be necessary to determine the actual
Qbrms of the periodic function for ', ¢', w’, which would satisfy the equations of
motlon (15), (16), as well as the equatlon of continuity (13), and to do this the
-i'uncmons would be of the form

2 [A,. cos {r ("nt + -):r .13> }] "

here  has the values 1, 2, 3, &e. It may be shown, however, that the retention of
1e terms in the periodic series in which » is greater than unity would increase the

or

~
—

st 2022

secietypubli

Jiumerical value of the limit.

24. It thus appears that the existence of the condition (26) within which no
elative-mean-motion, completely periodic in the distance «, can be maintained, is a
Droof of the existence, for the same variation of mean-mean-motion, of an actual
Bimit of which the numerical value is between 700 and infinity.

?é In viscous fluids, experience shows that the further kinematical conditions imposed

gJy the equations of motion do not prevent such relative-mean-motion. Hence for

Such fluids equation (26) proves the actual limit, which discriminates between the
possibility and impossibility of relative-mean-motion completely periodic in a space a,
is greater than 700.

Putting equation (26) in the form

V(du/dy)* = 700 p/pa,

it at once appears that this condition does not furnish a criterion as to the possibility
of the maintenance of relative-mean-motion, 1rrespective of its periods, for a certain
condition of variation of mean-mean-motion. For by taking a® large enough, such
relative-mean-motion would be rendered possible whatever might be the variation of
the mean-mean-motion.

m-https:/royal
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The existence of a criterion is thus seen to depend on the existence of certain

restrictions to the value of the periods of relative-mean-motion —on the existence of

conditions which impose superior limits on the values of . .

Such limits to the maximum values of @ may arise from various causes. If du/dy
is periodic, the period would impose such a limit, bnt.the or}lyf restrictions ?vhlch it is
my purpose to consider in this paper, are those which arise fro.m the sohd. Sl.lrfaces
between which the fluid flows. These restrictions are of two kinds—restrictions to
the motions normal to the surfaces, and restrictions tangential to the surfaces—the
former are easily defined, the latter depend for their definition on the evidence to be
obtained from experiments such as those of PoiseuiLLE, and I shall proceed to show
that these vestrictions impose a limit to the value of @, which is proportional to D,
the dimension between the surfaces. In which case, if

v (du/dy) = U/D,
equation (26) affords a proof of the existence of a criterion
pDU =K . sned sts Sondbines it ot

of the conditions of mean-mean-motion under which relative or sinuous-motion can
continuously exist n the case of a viscous fluid between two continuous surfaces
perpendicular to the direction ¥, one of which is maintained at rest, and the other in
uniform tangential-motion in the direction z with velocity U.

SecrioNn IT1.

Yann N of oty s \ . .
The Criterion of the Conditions under which Relative-mean-motion cannot be main-

tained o the case of Incompressible Fluid in Uniform Symmetrical Mean-flow
between Parallel Solid Surfaces.— Expression for the Resistance.

25. The only conditions under which definite experimental evidence as to the value
of the criterion has as yet been obtained are those of steady flow through a straight
round tube of uniform bore ; and for this reason it would seem desirable to choose
for theoretical application the case of a round tube. But inasmuch as the application
of the theory is only carried to the point of affording a proof of the existence of an
inferior limit to the value of the criterion which shall be greater than a certain

quantity determined by the density and viscosity of the fluid and the conditions of
flow, and as the necessary expressions for

the round tube are much more complex
than those for par

: allel plane surfaces, the conditions here considered are those defined
by such surfaces,
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Case I.  Conditions.

26. The fluid is of constant density p and viscosity u, and is caused to flow, by

a uniform variation of pressure dp/dx, in direction x between parallel surfaces,
given by
U="—0n =05 - . o v « w . s (28),

the surfaces being of indefinite extent in directions z and .

The Boundary Oo;zclz'tions.
(1.) There.can be no motion normal to the solid surfaces, therefore
v=0wheny=+4b, . . . . . . . . (29).
(2.) That there shall be no tangential motion at the surface, therefore

u=w=0wheny=+40b, . . . . . . . (30);

ietypublishing.org/ on 04 August 2022

Shence by equation (21), putting » for «/, p,, = — pdu/dy.
By the equation of continuity du/dxz + dv/dy 4+ dw/dz = 0, therefore at the
undaries we have the further conditions, that when y = + b,,

dufde = dv/dy = dw/dz=0 . . . . . . . (31).

Singular Solution.

wnloaded from https://rog‘alsoc

27. If the mean-motion is everywhere in direction x, then, by the equation of
aontinuity, it is constant in this direction, and as shown (Art. 8) the periods of mean-
motion are infinite, and the equations (1), (3), and (9) are strictly true. Hence if

=Y =y =0 =0, . . . . - .« 5 (32)

we have conditions under which a singular solution of the equations, applied to this
case, is possible whatsoever may be the value of b, dp/dx, p and p.

Substituting for p.., p,. &e., in equations (1) from equations (21), and substituting
u for o', &e., these become

du dp d’??,!_' d*u >

Pw™= T g + p <,(ye & dz? (33).
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This equation does not admit of solution from a state of rest;* but assuming a
condition of steady motion such that du/dt is everywhere zero, and dp/dx constant,

the solution of i 7\ $ T )

/:11 ({{j?j (= ) s " il_ — 0’

p \dy a2 p du
if '

w=du/dze=0wheny=+b, ¢ . . . . . . (34)
is ;

e dp ¥ = b
W 1z dr 2 >

This is a possible condition of steady motion in which the periods of u according to
Art. 8 are infinite; so that the equations for mean-motion as affected by heat-
motion, by Art. 8, are exact, whatever may be the values of

u, by, ps by and dp/dz.

The last of equations (34) is thus seen to be a singular solution of the equations (15)
for steady mean-flow, or steady mean-mean-motion, when 2/, o', ', p’, &e., have
severally the values zero, and so the equations (16) of relative-mean-motion are
identically satisfied. s

In order to distinguish the singular values of u, I put

b
uw=TU, (u oy =20,

¥ —h

whence : s et el G

tp S 3 R
= — — LT = — T 0 L
dar b Un U 2 =M ps

According to the equations such a singular solution is always possible where the
conditions can be realized, but the manner in which this solution of the equation (1)
of mean-motion is obtained affords no indication as to whether or not it is the only
solution—as to whether or not the conditions can be realised. This can only be
ascertained either by comparing the results as given by such solutions with the results

obtained by experiment, or by observing the manner of motion of the fluid, as in my
experiments with colour bhands.

* In a paper on the “E
before Section
integrated,

quations of Motion and the Boundary Conditions of Viscous Fluid,” read

1.\ n% thfa mecting of the B.A., 1883, I pointed out the significance of this disability to be
as indicating the necessity of the retention of terms of higher

and advanced certain confirmatory evidence as deduced from the theo
was not published, as I hoped to be able to obtain evidence of a more definit

which is now adduced in Articles 7 and 8 of this paper g
except for steady motion, and that to render them in.teé
be retained, and thus confirms the argument I advanced

orders to complete the
ry of gases. The paper
character, such as that
which shows that the equations are incomplete,
rable from rest the terms of higher orders must
» and completely explains the anomaly.

equations,
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The fact that these conditions are realized, under certain circumstances, has afforded
the only means of verifying the truth of the assumptions as to the boundary con-
ditions, that there shall be no slipping, and as to p being independent of the
variations of mean-motion.

Verification of the Assumptions in the Equation of Viscous Fluid.

28. As applied to the conditions of PoISEUILLE'S experiments and similar experi-
ments made since, the results obtained from the theory are found to agree throughout
§1e entire range so long as u/, v', w are zero, showing that if there were any slipping
it must bave been less than the thousandth part of the mean flow, although the
BAngential force at the boundary was 0°2 gr. per square centimetre, or over 6 Ibs. per
éluare foot, the mean flow 376 millims. (1'23 feet) per second, and

0

du/dr = 215,000,

ad 30 inches of mercury.

2 Considering that the skin resistance of a steamer going at 25 knots is not 6 Ibs.
ger square foot, it appears that the assumptions as to the boundary conditions and
e constancy of p have been verified under more exigent circumstances, both as
égards tangential resistance and rate of variation of tangential stress, than occur in
g&ything but exceptional cases.

=
5]
B0
8
the diameter of this tube being 0:014 millim., the length 125 millims., and the
Be
G
=

/

Evidence that other Solutions are possible.

9. The fact that steady mean-motion is almost confined to capillary tubes—and
at in larger tubes, except when the motion is almost insensibly slow, the mean-
fotion is sinuous and full of eddies, is abundant evidence of the pessibility, under
Sertain conditions, of solutions other than the singular solutions.

In such solutions %', ¥', w" have values, which are maintained, not as a system of
steady periodic motion, but such as has a steady effect on the mean flow through the
tube ; and equations (1) are only approximately true,

lgaded from https
[

The Application of the Equations of the Mean- and Relative-mean-motion.

30. Since the components of mean-mean-motion in directions y and z are zero, and
the mean flow is steady,

=0 w=0, du/dt=0, gulde = 0" " . . . (86),
MDCCCXCV.—-A. X
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) N . S
and as the mean values of functions of ', ¥, w’ are constant in the direction of flow,

d (W) _ 0 d(w) _ 0, LA 0y&0ir ) dudy HaplBEE
= ; d. da p

By equations (21) and (37) the equations (15) of mean-motion become

du _ _ ¢l[»+#({lﬂfi+'lﬂ>_ { (u'v)-1- W)}

P de dy? dz

I/;;_ fl/' i =2 ‘
Pae= " dy plrl./(vv)-'_ W )} Foer RS
e )

The equation of energy of mean-mean-motion (17) becomes

d(E) _ —.r_/]z d [—du d [-du o d —— _d_ 7——,—,—}
a - Y T {(7,'/ (\ (/./) il dz ( dz ; dy Wik dz (v w'w') (39)
du \* du o e dw ——y (l’lI
—”{<(’y>+<d )}+P{u" dy+uwd-=} J

Similarly the equation of mean-energy of relative-mean-motion (19) becomes

(IE, (l ’ ’ Y ’ ' 7 7 ’ o O
& = = oy e ) + 0 (9 + 70) 0 (pe+ 00)]

e ! e, 00
— [0 (Pee - 00) + 0 (py 4 5W) 4 0 (Pl + 00)]

= [o "‘]_"">2 <’L" s dw’ 2} dw' | dv'\* du’ | dw'\? de’ | du'\?
’Ll_ {(.tl.z i (l;l/) + dz +(rly +(lz + (lz+ da + du i dz

SR TR 7
—p{’lll!/+tl,wl}................ (40).

wz

Iutegrating in directions 7 and z between the boundaries and taking note of the

boundary conditions by which w, «/, v/, ' vanish at the boundaries together with the
integrals, in direction z, of

d = (771

@ (== d ., S
= \ o > - [ (w'w)], (;: [ ( pee+2u'w')], &e.,

the integral equation of energy of mean-mean-motion becomes

”dl‘ dydz = — “’[ ZZ, T {(:;j) b

N fww i +r"““dy do . (41)
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(7]
(]

The integral equation of energy of relative-mean-motion becomes

”—E’ dy dz = ”[p {—u—'?% + ww” f }j' dy dz — p H[ (j;,,d)o + (rh/) <l:1;:>

dw dv du! dw'\2 a
i <¢IJ o+ —_) =+ (;E +E> 1 </l.'z +0'J >](lea .« . (42)

If the mean-mean-motion is steady it appears from equation (41) that

‘e ]’[ dpd?/ (]~

st 2022

gghe work done on the mean-mean-motion u, per unit of length of the tube, by the
<constant variation of pressure, is in part transformed into energy of relative-mean-
Snotion at a rate expressed by the transformation function

= “p( o + Wz-h>(lydz

@nd in part transformed into heat at the rate

)+ (v

< While the equation (42) for the integral energy of relative-mean-motion shows
&hat the only energy received by the relative-mean-motion is that transformed from
guean-mean- motion, and the only energy lost by relative-mean-motion is that
gonverted into heat by the relative-mean-motion at the rate expressed by the last
@erm

2 And hence if the integral of E' is maintained constant, the rate of transformation
g'rom energy of mean-mean-motion must be equal to the rate at which energy of
Relative-mean-motion is converted into heat, and the discriminating equation becomes

”p (u VS ww (fc) dydz:= — p H[Q {(;5—:)2 + (:j;;) = C%ﬂz}

dw’ | dv'\? du'  dw\? dv | du’
C <,1J -+ [13'> ¥ <d~ = = ,"-,”) = <'[‘,L_ + 7 ) ]d/df’ . (48).

s://royalsocietypublishing.org/ on

The Conditions to be Satisfied by w and w', v/, u

4
aa
3 .

31, If the mean-mean-motion is steady w must satisfy —
X2
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(1) The houndary conditions

#=0 when y=+b; . . - o+ » . . o (448

(2) The equation of continuity
dufdr=0" ., « & « S5 el (45);

(3) The first of the equations of motion (38)

v = (’[‘Z’ ) — < ' 1 46);
de = F\ap + "7‘1) P ’I!/(u't’)-l-d.( : )J coe e (46)5

or putting

w="U+u—"U and dp/de = pd*U/dy?

as in the singular solution, equation (46) becomes

p(PED L EEZ D) = p L@ + @] . ()

dy* a2

(4) The integral of (47) over the section of which the left member is zero, and

the mean value of pdu/dy = pdU/dy wheny = + b, . . . (48).

From the condition (3) it follows that if » is to be symmetrical with respect to the
boundary sarfaces, the relative-mean-motion must extend throughout the tube, so
that

® [(duv | dww , . . i
[_m<( :,’”l + ”:I:_", )dz is ‘a funietion of 9 .| 1L N HETEGH

And as this condition is necessary, in order that the equations (38) of mean-mean-
motion and the equations (16) of relative-mean-motion may be satisfied for steady
mean-motion, it is assumed as one of the conditions for which the criterion is sought.
The components of relative-mean-motion must satisfy the periodic conditions as
expressed in equations (12), which become, putting 2¢ for the limit in direction 2,

(1)

Y0 0

(“u' da = r-v' dx = rn" de =0 ]
; & (50).

Uy 5
[ [ w dy dy = '
- by - J

(2) The equation of continuity

dv'[de 4+ dv'[dy - dw’[dz = 0,
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(3) The boundary conditions which with the continuity give
W= =w = du)de=dv'|dy=dw|dz =0 wheny = 1. . (51).
(4) The condition imposed by symmetrical mean-motion

O AN T '
e R

These conditions (1 to 4) must be satisfied if the effect on u is to be symmetrical
%owever arbitrarily «/, ¢/, w’ may be superimposed on the mean-motion which results
Trom a singular solution.

(5) If the mean-motion is to remain steady u', v', w’ must also satisfy the kine-
Jatical conditions obtained by eliminating p from the equations of mean-mean-motion
238) and those obtained by eliminating p’ from the equations of relative-mean-

o .
Jnotion (16).

4-Augus

Conditions (1 to 4) determine am inferior Limit to the Chriterion.

32, The determination of the kinematic conditions (5) is, however, practically
mpossible ; but if they ave satisfied, «/, », w’ must satisfy the more general conditions
mposed by the diseriminating equation. From which it appears that when «/, o', '

ypublishing.or

saclet

re such as satisfy the conditions (1 to 4), however small their values relative to o
Snay be, if they be such that the rate of conversion of energy of relative-mean-motion

ghnto heat is greater than the rate of transformation of energy of mean-mean-motion

ginto relative-mean-motion, the energy of relative-mean-motion must be diminishing.
S R e 2 5 :

SWhence, when #/, v, ' are taken such periodic functions of 2, y, 7, as under
o) R » . . .
Seonditions (1 to 4) render the value of the transformation function relative to the
< - - - - - . - -
Svalue of the conversion function a maximum, if this ratio is less than unity, the
Emaintenance of any relative-mean-motion is impossible. And whatever further
) S : : : : i 3
Qrestrictions might be imposed by the kinematical conditions, the existence of an

inferior limit to the criterion is proved.

psé/rgyal

Eapressions for the Components of possible Relative-mean-motion.

33. To satisfy the first three of the equations (50) the expressions for w, v, w’, must
be continuous periodic functions of @, with a maximum periodic distance @, such as
satisfy the conditions of continuity.

Putting
| = 2m/a; and « for any number from 1 to =,
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and
1B 18,\ .
=2l {((l]ﬂ + ‘i%‘> cos (nlx) + <l£/ + (‘—1;> sin (nlm)}}
dy /2 %
y - > 53),
v =3y {nla,sin (nlz) — nlB, cos (nlx)} | (53)
w' = 3¢ {uly, sin (nlx) — nl 8, cos (nlx)} 5,
W, o', w' satisfy the equation of continuity. And, if
w=B=ry=28=da/dy=dB/dy= dy/dz = d8/dz = 0 when y = + bo (54)
and af, ay, «8 are all functions of »* only J

it would seem that the expressions are the most general possible for the components

of relative-mean-motion.

Cylindrical-relative-motion.

34. If the relative-mean-motion, like the mean-mean-motion, is restricted to
motion parallel to the plane of zy,

y = 8 = w' = 0, everywhere,

and the equations (53) express the most general forms for u’, ¥’ in case of such
cylindrical disturbance. J

Such a restriction is perfectly arbitrary, and having regard to the kinematical
restrictions, over and above those contained in the discriminating equation, would
entirely change the character of the problem. But as no account of these extra
kinematical restrictions is taken in determining the limit to the criterion, and as it
appears from trial that the value found for this limit is essentially the same, whether
the relative-mean-motion is general or cylindrical, I only give here the considerably
simpler analyses for the cylindrical motion.

The Functions of Transformation of Energy and Conversion to Heat for Cylindrical
Motion.

d ,
< gy

\\

35. Putting

for the rate at which energy of relative-mean-motion is converted to heat per unit of
volume, expressed in the right-hand member of the diseriminating equation (43),

m(—; (1) dee dy d=
= + P} (4 () 4o e . e

\
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Then substituting for the values of «', v', w’ from equations (53), and integrating in
direction x over 27/l,and omitting terms the integral of which, in direction y, vanishes
by the boundary conditions,

([ 45 () dy e = 4[] oy e + 8 + 2 i | () + ()]
+<%>’+<(LB’”> }‘ljfl~ St SN (T

In a similar manner, substituting for %’ ', integrating, and omitting terms which
Qvanish on integration, the rate of transformation of energy from mean-mean-motion,
o . MUl :

Nas expressed by the left member in the discriminating equation (43), becomes

”pz?? Z—; dy dz = 3 HE [nl (a,, ‘(]gi — B, d“") J”J dyde 0 0 i (B8)

dy ] dy

ré/ on 04 August

nd, since by Art. 31, conditions (3) equation (47),

{l:". -3 l.l e T
#,;i,/e(:o—U)=p;,;(?"")~ DN TEETEE R )

ntegrating and remembering the boundary conditions,

s://royalsocietypublishing.o

,L-(;;- (@—U)=pu?, p(@—U)=p[wdy . . . . (60)
‘ =t
2And since at the boundary u — U is zero,
E gy
g pj(u'-v')dy:O S o G . {BE)
z
9 5 .
9 Whence, putting U+ u —U for » in the right member of equation (58), substituting
E = ! ! >
Efor u — U from (60), integrating by parts, and remembering that
o .
A bE T
o AR L';‘, which is constant. .. . . . . . (62),
dy' by
also that
- 13, e, ’
i S g p 5% ¢
uv__gz{nl<a,, i B. dy>} S PR ) 8

we have for the transformation function
4
v —— du

! (pu'v dy >d'/

=3[8p;3 [ty [t (" = %Yty + & ['y? (5 - B oY ay) . (64)
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If «'. o ave indefinitely small the last term, which is of the fourth degree, may be

neglected. : i
i St i b he fi
Substituting in the discriminating equation (43) this may be put in the form

% Q 979 (lﬁu 2 iﬁy ? <@)2 (Iiﬁ-">2}
2pb, U, 2by" J —%'{n-l-l'!' (a,,2+ Br) +: 2 [(ciy) s <_r1y > ]j-_ dy? + ( dy? dy (65),

e T [, [¥ da, (['_BL'
o 3{([;1/[ S {')zl <,B,, S @, dy)}dy

-y -y

Limats to the Periods.

36. As functions of y the variations of «,, B, are subject to the restrictions imposed
by the boundary conditions, and in consequence their periodic distances are subject
to superior limits determined by 2b,, the distance between the fixed surfaces.

In direction @, however, there is no such direct connection between the value of b,
and the limits to the periodic distance, as expressed by 2a7/nl. Such limits necessarily
exist, and are related to the limits of @, and B, in consequence of the kinemetical
conditions necessary to sutisfy the equations of motion for steady mean-mean-
motion ; these relations, however, cannot be exactly determined without obtaining a
general solution of the equations.

But from the form of the discriminating equation (43) it appears that no such exact
determination is necessary in order to prove the inferior limit to the eriterion.

The boundaries impose the same limits on a,, B, whatever may be the value of ul ;
so that if the values of «,, 8, be determined so that the value of

20b,U,, . s
1S & 1minimum

for every value of nl, the value of 17, which renders this minimum a minimum-
minimum may then be determined, and so a limit found to which the value of the
complete expression approaches, as the series in both numerator and denominator
become more convergent for values of nl differing in both directions from 7.

Putting 7, a, B for 71, «,, B, respectively, and putting for the limiting value to be
found for the criterion

2pb6,U,
K] — pbﬂL mn

SRR
(/) / \ 0 \
4 (2 2 o7l [da\? dp\? i a\? P*B\?
- —b‘d'["‘"{l (e + B°) + 21 [((,y)+(d_u)]+<w> +(%V]ay
o = 0y : \ T/ 9% Y A
] lj‘l; d!/fy ( fl_a f[/3 I . (()7)
-3, -7 r/'z/— ad?)(y

when « and B are such

. . functions of y that K, is a minimum whatever the value of 2
and [ is so determined a :

s to render K, 4 minimum-minimum,



FLUIDS AND THE DETERMINATION OF THE CRITERION, 161

Having regard to the boundary conditions, &c., and omitting all possible terms
which increase the numerator without affecting the denominator, the most general

form appears to be
a =3 [Ayy8in (28 + 1)p], )

B = 3 [bx sin (2tp)], ML o o 168
where |
p = my/2b J
o To satisfy the boundary conditions
S
z ¢ = 2r, when s 18 even, s = 2r 4+ 1, when s is odd.
;%D t = 2r 4+ 1, when t is odd, t = 2(r+ 1), when ¢ is even.
N
S
gSince @ = 0, when p = + 3, B
%" S5 (@41 — Ogrys) = 0, !
o > (69).
Sand since dB/dy = 0, when p = + i, |
e ST —(Ar +2) by + 4 (r+1) by} =0
=
'§ From the form of K, it is clear that every term in the series for « and B increases
Zthe value of K, and to an extent depending on the value of ». K, will therefore be

é]mnimum, when

g o= @, sin p + ay sin 3p . (70)
= B= b, sin 2p + b, sin 4p ’
g

=

2which satisfy the boundary conditions if

g

©

= g =a

= A S R Ry L s (TT
a bg = 21)4

Therefore we have, as the values of @ and B, which render K, a minimum for

any value of [

aa, = sin p + sin 3p, B/b, = sin 2p + % sin 4p. 3
And \
2by da 2b,dB o b S b2
g sl + 3 cos 3p, Bl 2 cos 2p + 2 cos 4p (72)
2by [adf 3(7« | < s b < &3
=2 < ay o {— 3 sin p — 3 sin 3p + sin 5p + s 7p;

MDCCCXCV.—A. X
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and integrating twice

by 'y ]z ”76 458 %)
]( Lﬂ‘lﬂ j_h“(ﬁ',; = a’/!/> dy = — 1325 l? Dy o, ey i (TS E

Putting

v
5 I‘;'(,L for 1,

- 3 ;
the denominator of SK,, equation (67}, becomes
it ].325 Lale.

In a similar manner the numerator is found to be

\4
bt ( ",> 14 (20,2 + 125b%) 4 212 (10a,® + 8D,%) + 824, + 805,23,

P
28,

and as the coefficients of @, and b, are nearly equal in the numerator, no sensible error
will be introduced by putting

by = — ay,
then
3o _ L++42x 5B3LA+ 50 [\t
QK' i 04081, (2) : (74}
which is a minimum if
L=T%2. . « " v v o v s a0 rdl
and
SRR TR L e (76).
Henee, for a flat tube of unlimited breadth, the eriterion
p 20U,/ is greater than 517 . . . . . . . (77)

= ML y ! . . T .
37. This value must be less than that of the criterion for similar circumstances.
How much less it is impossible to determine theoretically without effecting a general

solution of the equations; and, as far as T am aware, no experiments have been made

in a flat tube. Nor can the experimental value 1900, which T obtained for the round
tube, be taken as indicative of the value for a flat tube, except that, both theoretically
and practically, the critical value of U, is found to vary inversely as the hydraulic
mean depth, which would indicate that, as the hydraulic mean depth in a flat tube is
(%ouble that for a round tube, the eriterion would be half the value, in which case the
limit found for K, would be about 061 K. This is sufficient ’to show that the
absolute theoretical limit found is of the same order of magnitude as the experimental
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value ; so that the latter verifies the theory, which, in its turn, atfords an explanation
of the observed facts.

The State of Steady Mean-motion above the Critical Value.

38. In order to arrive at the limit for the criterion it has been necessary to consider
the smallest values of «/, v/, ', and the terms in the discriminating equation of the
fourth degree have been neglected. This, however, is only necessary for the limit,
and, preserving these higher terms, the diseriminating equation affords an expression
$fpr the resistance in the case of steady mean-mean-motion.

N The complete value of the function of transformation as given in equation (64) is

VJ
=)
(__I,—T !/M\
=l \ Pl 3 (/?//
2 —x[,3Us j 1y ' B _ g, %Ny + £ [Nt (2, % — g "'“>g dy|. (77a)
b =3y Ay 2l — B T) W+ G100 (T~ B ) W) (T
S)
)
HVhence putting U 4 w — U, for w in the left member of equation (77), .md inte-
72}
Zrating by parts, remembering the conditions, this member becomes
:
= LT By
'§ = j'cl‘/fpnudy-l- [(zm') G o, @ o) i ot e B
2] ) —by
E
@1 which the first term corresponds with the first term in the right member of
@quation (64), which was all that was retained for the criterion, and the second term
<=orresponds with the second term in equation (64), which was neglected.
g Since by equation (35)
= 30, 1 dp
D = L L P o s b L (78(6),
= b,? wode
S
E
Zve have, substituting in the discriminating equation (43), either
A
dldt (pH') dy P’ J""ﬂ —n2
2 by® dp 2b,° (5 M T W —(h.?.cl ) (/]/>‘[ b
f— -3—p—l ;(i;:: T ™ s —— A . . . (19),
¥ — ( clyj’ wv dy J
s —=by —by
or
. dp :
s ™ 3 s e e s e (80).
Therefore, as long as
i 0%
/,Lg (1.1_'

Y 2
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s of constant value, there is dynamical similarity under geometrically similar circum-

stances.
The equation (79) shows that,

b dp .
4o 0. 22 :

when — 3 p B dn greater than K,
/7" must be finite, and such that the last term in the numerator limits the rate of

transformation, and thus prevents further increase of v,
The last term in the numerator of equation (79) is of the order and degree

p*Ltat/p* as compared with L*a®

.1 d ; . .
the order and degree of e (,H) the first term in the numerator.

It is thus easy to see how the limit comes in. It is also seen from equation (79)
that, above the critical value, the law of resistance is very complex and difficult of
interpretation, except in so far as showing that the resistance varies as a power of the
velocity higher than the first.



