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Summary

This investigation on the dynamic behaviour of ball bearings was motivated
by the demand for silent bearings in noise-sensitive applications, especially
in the household appliance and automotive industry. The present investiga-
tions are intended to provide a clear understanding of the role of the bearing
in the application with respect to its design, its quality and the way in which
it is mounted in the housings.

Ball bearings can be important generators of noise and vibrations in appli-
cations. Due to the rotation of the lubricated contacts, the stiffness in the
bearing is time dependent and generates parametric excitations. Further-
more, vibrations are generated by geometrical imperfections on the indi-
vidual bearing components. The imperfections are caused by irregularities
during the manufacturing process, and although their amplitudes are on
the nanometer scale, they can still produce significant vibrations in the ap-
plication. An important type of imperfection for noise related problems is
waviness. Waviness is to be understood as global sinusoidally shaped im-
perfections on the outer surface of components. In the present approach,
the waviness is treated using a statistical approach.

In the approach followed the bearing is considered as an integral part of the
application. The time dependent behaviour of the application was studied
by means of predictive modelling. The shaft, the housings and the outer
ring of the bearing were modelled using the finite element method. To solve
the equations of motion of the application by means of time integration, the
large finite element models were reduced by component mode synthesis. To
account for the flexibility of the outer ring in combination with the rotation
of the rolling element set, a new method was developed. By means of a
verification study it was shown that this new method is fast and accurate.
The stiffness and damping of the elastohydrodynamically lubricated con-
tacts between the balls and the guiding rings were modelled as simplified
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spring-damper models. Their constitutive behaviour was predicted before-
hand with the help of transient contact calculations.

The three-dimensional ball bearing model developed here was validated suc-
cessfully with measurements on a standard vibration test spindle. The pre-
dicted resonances of the bearing and the vibrations generated by paramet-
ric excitations and geometrical imperfections agreed well with the measured
ones up to 10 kHz. It was found that in the audible range, most of the
vibrations generated by the bearing can be attributed to waviness imperfec-
tions on the balls. The damping of the individual bearing resonances was
investigated both numerically and experimentally for different lubricants.
For both cases, the effect of the lubricant viscosity showed the same trend.
To demonstrate its strength, the new numerical tool was applied to a rotor
dynamics application consisting of a flexible shaft and two deep groove ball
bearings mounted in plummer block housings. In particular, the effect of
parametric excitation was examined.



Samenvatting

Dit onderzoek naar het dynamisch gedrag van kogellagers wordt gedragen
door de vraag naar ‘stille’ lagers in toepassingen, die gevoelig zijn voor
geluid, met name in de industrie voor huishoudelijke apparaten en in de
auto-industrie. Het onderzoek, dat wordt beschreven in dit proefschrift,
heeft tot doel een beter begrip te verkrijgen over de rol van het lager bij
de productie van geluid. Hierbij wordt gekeken naar het lager als onderdeel
van de toepassing, waarbij aandacht wordt besteed aan het lagerontwerp, de
lagerkwaliteit en de manier waarop het lager is gemonteerd in het lagerhuis.

Kogellagers worden gezien als belangrijke veroorzakers van trillingen en ge-
luid in bepaalde apparaten. Door de rotatie van de gesmeerde contacten
is de stijfheid van het lager tijdsafhankelijk en genereert het een parametri-
sche aanstoting. Daarnaast worden trillingen gegenereerd door geometrische
oneffenheden van de verschillende componenten van het lager. Deze oneffen-
heden worden veroorzaakt door afwijkingen in het productieproces. Hoewel
de grootte van deze oneffenheden meestal in de orde van nanometers is,
kunnen ze toch aanzienlijke trillingen veroorzaken in de toepassing. Een
belangrijk type oneffenheid voor geluidsproblemen is ‘waviness’. Dit zijn
globale, sinusvormige afwijkingen aan de buitenkant van een component. In
de huidige aanpak wordt rekening gehouden met het statistisch karakter van
waviness.

In de gevolgde aanpak wordt het tijdsafhankelijke gedrag van de desbetref-
fende toepassing bestudeerd met behulp van computermodellen. De as, de
huizen en de buitenring van het lager worden gemodelleerd met de eindige-
elementenmethode. Om de bewegingsvergelijkingen te kunnen oplossen door
middel van tijdsintegratie, worden de grote eindige-elementenmodellen gere-
duceerd door middel van een techniek, genaamd ‘component mode synthe-
sis’. Bij deze techniek wordt de constructie onderverdeeld in componenten,
die eerst afzonderlijk worden gemodelleerd met behulp van zogenaamde su-
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perelementen. Om ook de buitenring van een kogellager met deze techniek
te kunnen beschrijven, is een nieuwe methode ontwikkeld. Uit een validi-
teitsonderzoek blijkt dat deze methode goed werkt.
De stijfheid en demping in de elasto-hydrodynamisch gesmeerde contacten
tussen de kogels en de geleidende ringen worden gemodelleerd door middel
van vereenvoudigde veer-dempermodellen. Hun constitutieve gedrag wordt
voorspeld met behulp van tijdsafhankelijke contactberekeningen.

Het driedimensionale kogellagermodel is met succes gevalideerd met behulp
van metingen op een spindel, die wordt gebruikt voor testdoeleinden. De
voorspelde resonanties van het lager, de parametrisch opgewekte trillingen
en de trillingen veroorzaakt door geometrische oneffenheden, komen goed
overeen met de gemeten waarden tot 10 kHz. Er is vastgesteld, dat voor
frequenties in het hoorbare gebied de meeste trillingen worden veroorzaakt
door waviness op de kogels. De demping van de verschillende resonanties
is onderzocht voor verschillende smeermiddelen. Zowel numeriek als experi-
menteel is eenzelfde trend gevonden tussen de demping van de resonanties
in het lager en de viscositeit van het smeermiddel. Om de kracht van het
ontwikkelde numerieke gereedschap te demonstreren, is het toegepast op een
rotordynamisch systeem, bestaande uit een as en twee kogellagers, die ge-
monteerd zijn in standaard lagerhuizen. Er is in deze toepassing met name
gekeken naar het effect van parametrische aanstoting.
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Chapter 1

Introduction

1.1 Background

Manufacturers of equipment in, for example, the household appliance and
automotive industries are increasingly urged to reduce the noise produced
by their products; this development is supported both by the market and
by governmental regulations. Examples of noise-sensitive household appli-
ances are washing machines and air-conditioners. An important source of
vibrations in these appliances is the electric motor (see Figure 1.1). Electric
motors are often equipped with small and medium sized deep groove ball
bearings. Nowadays, the lifetime and load capacity of these bearings is fairly
well controlled thanks to the availability of new materials and improved pro-
duction processes. As a result of these developments, noise is increasingly
becoming the decisive parameter that determines the bearing quality.

Ball bearings are required to overcome the speed difference between a ro-
tating shaft and its surrounding structure. A common ball bearing consists
of a number of rolling elements and two rings, the inner and the outer ring
(see Figure 1.2). Both rings have grooves or raceways to guide the rolling
elements. The rolling elements are separated from each other by a cage. To
reduce the friction and wear in the rolling contacts, bearings are lubricated
with oil. The part of the surrounding structure that is connected to the
bearing is usually referred to as the housing. The bearings and the housings
have to provide sufficient static support for the shaft.

In the application, the housings and the shaft can be important noise radi-
ators. The radiated noise is largely determined by the dynamic behaviour
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of the application in the audible range. Frequencies that can be observed
by the human ear range approximately from 20 Hz to 20 kHz. The ear is
most sensitive to frequencies between 1kHz and 4kHz. It is especially in
this frequency range that ball bearings are able to generate vibrations due
to inevitable form deviations of the components. These imperfections are
the result of irregularities in the manufacturing process, and although their
amplitude is on the nanometer scale, they still produce significant vibration
levels in the application, due to the high stiffness of the contact. A reduc-
tion of form deviations is also important for the running accuracy in, for
instance, machine tool spindles.

Figure 1.1: Example of an electric motor for household appliances.

Another important feature of the bearings, with respect to the dynamic be-
haviour of the application, is their inevitable presence in the transmission
path of vibrations from the shaft to the housings. The transfer of vibra-
tions through ball bearings largely depends on the stiffness and damping in
the lubricated rolling contacts between the balls and the guiding rings. In
general, the stiffness of these contacts depends on the load distribution and
deformations in the whole application. This implies that the bearing has to
be considered as an integral part of the application. Typical applications,
in which the transmission characteristics of the bearings become important,
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are gearboxes. In gearboxes, the contact between two gears forms the main
source of vibrations.

The relative importance of the ball bearings with respect to the dynamic
behaviour of the application has challenged bearing manufacturers to think
of new and improved “silent” bearing designs by optimising the bearing in
the specific application. Due to the increasing capacity of modern comput-
ers and the development of advanced numerical tools this is supported more
and more by means of numerical simulations.

outer ring cage

inner ring ball

Figure 1.2: Example of a deep groove ball bearing.

A solely experimental approach is generally avoided because experiments
are costly, time consuming and less universal than computer models. More-
over, in the case of ball bearings, an experimental approach often leads to a
complex analysis because the individual vibration sources cannot be isolated
and the measurement sensor is always positioned outside the bearing. An
additional complicating aspect in ball bearings is the rotation of the differ-
ent components. To illustrate this, an example of a vibration spectrum of
a typical response measured on the outer ring of a ball bearing is shown in
Figure 1.3.
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Figure 1.3: Typical velocity spectrum of the measured response on the outer
ring of a ball bearing.

1.2 Aim of the investigations

The objective of this study is to provide the noise and vibration engineer
with tools that enable him to efficiently predict the influence of ball bearings
on the dynamic behaviour of the application. With the help of these tools
the engineer can find answers to several design and manufacturing related
questions such as:

• How is the perception of noise and vibrations at the periphery of the
application caused by vibrations generated inside the bearing due to
geometrical imperfections?

• What is the effect of the bearing design on the dynamic behaviour of
the application?

• How does the bearing mounting affect the vibrational behaviour of the
application?

• What is the value of the standard vibration test in relation to the
vibrational behaviour in the application?

The answers to the above questions may help the engineer to improve the
design of the application.
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Generation of vibrations

The vibrations generated in ball bearings can be ascribed to different mecha-
nisms. Most of these mechanisms are related to imperfections in the bearing,
such as waviness, roughness, damage, fatigue spalls and dirt. However, at
all times even perfect ball bearings generate vibrations due to the rotation
of the loaded rolling elements. These vibrations can be attributed to the
variable compliance in the bearing, which leads to parametric excitations.

Bearing design

The dynamic behaviour of the application can be influenced by the design
of the bearings. The design can be altered by changing the geometrical and
material properties of the bearing and the properties of the lubricant.

Important parameters for the internal design of the ball bearing are the
number of rolling elements, the osculation and the radial clearance. The os-
culation is the ratio between the curvatures of the contacting bodies. With
the osculation and the clearance, the stiffness in the contacts can be con-
trolled.
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Figure 1.4: Under an externally applied axial load, the radial clearance
disappears and the bearing is loaded at contact angles α.

The radial clearance Cd is defined as the free radial space in an unloaded
bearing (see Figure 1.4). When the inner ring is fixed and the outer ring is
axially loaded the internal clearance disappears. The optimum clearance is
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dependent on the application. Under an axial load, a bearing with a large
clearance has larger contact angles and is thus better suited to carry axial
loads.

The lubricated contacts in the bearing are expected to be one of the major
damping sources in the application. The damping is ascribed to viscous
losses in the lubricant film. The quantification of contact damping is one of
the main issues in the analysis of ball bearing applications.

Bearing mounting

The way in which the bearing is mounted has a considerable influence on the
dynamic behaviour of the application. Usually, ball bearings are mounted
with an externally applied axial load, to ensure a proper loading of the
rolling elements. The applied load has a significant effect on the contact
stiffnesses in the bearing. To be able to apply an axial load or to account
for temperature expansions of the shaft, one of the bearing outer rings is
usually mounted “loosely” in the bore of the housing.

The mounting of ball bearings is a meticulous job. Mounting errors are
easily introduced. A frequently occurring mounting error is misalignment,
where the central axes of the inner and outer rings of the bearing are not
parallel. Even a misalignment angle of only a few minutes of arc can signif-
icantly increase the vibration level in the application.

Bearing vibration test

After a ball bearing is assembled, its quality is tested on a vibration test
spindle. In general, one would like to see that bearings which perform well
on the test spindle also perform well in the specific application of the cus-
tomer. Unfortunately, this is not automatically true, since the vibrational
behaviour of the bearing is largely determined by the application. With
the numerical model presented in this thesis, both the vibration test and
any customer application can be investigated so that the vibrational perfor-
mance of the bearing on the test rig can be “translated” to the performance
in the application without the need to conduct expensive experiments.

1.3 General approach and outline

The dynamic behaviour of a ball bearing application is studied by means
of predictive modelling. An overview of theoretical models that have been
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published in the literature is presented in Table 1.1. The table indicates
which of the following features are included in the models:

A) The model is three-dimensional.

B) Geometrical imperfections are included.

C) The effect of lubrication is included.

D) The cage is modelled.

E) The flexibility of the application is accounted for.

F) The flexibility of the outer ring is accounted for.

G) The model is validated with experiments.

Literature reference A B C D E F G

Sunnersjö , 1978 ◦ ◦ ◦ ◦ ◦ ◦ •
Gupta, 1979 • ◦ • • ◦ ◦ ◦
Meyer, Ahlgren and Weichbrodt, 1980 ◦ • ◦ ◦ ◦ • ◦
Aini, Rahnejat and Gohar, 1990 • ◦ ◦ ◦ ◦ ◦ •
Lim and Singh, 1990 • ◦ ◦ ◦ • ◦ •
Yhland, 1992 • • ◦ ◦ ◦ ◦ ◦
Su, Lin and Lee, 1993 ◦ • ◦ ◦ ◦ • •
Meeks and Tran, 1996 • ◦ • • ◦ ◦ •
Hendrikx, van Nijen and Dietl, 1998 • • ◦ ◦ • ◦ •
This thesis • • • ◦ • • •

Table 1.1: Selection of literature related to the modelling of the dynamic
behaviour of ball bearings.

Table 1.1 is by no means complete but in the author’s opinion it covers most
of the important publications in this specific research area. Inspired by the
increasing computer capacity the number of publications in the field has
grown significantly over the last years. A lot of research has been conducted
on three-dimensional modelling, the effect of geometrical imperfections and
experimental validations. Much less effort has been devoted to the mod-
elling of the cage, the modelling of lubrication effects and the application
of ball bearings in flexible structures. The inclusion of a flexible outer ring
has only been established in two-dimensional models. It is intended that the
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present work contribute significantly to this particular research area.

The present study focuses especially on the generation of vibrations in the
bearing and the transmission of these vibrations through the application.
An important class of vibrations is generated by the form deviations of the
contacting surfaces. Each individual bearing of course has unique surfaces.
However, due to the fact that the bearings are produced by the same ma-
chining processes, it can be expected that all surfaces have certain features
in common. These features can be described by so-called surface topogra-
phy parameters. In the presented model, the form deviations of the rolling
elements and the rings are described by Fourier series. The amplitudes of
the harmonics are described by a small number of surface topography pa-
rameters with stochastic properties. The magnitude of the parameters is
estimated from surface measurements (Chapter 2).

The dynamics of the lubricated contacts between the rolling elements and
the inner and outer rings are governed by the equations of motion of both
the structural elements and the lubricant film. The nature of the problem
requires the elastic deformations in the structural elements be accounted
for. The calculation of the time dependent solution for a single contact in a
ball bearing is very time consuming, even on modern computers. Hence, in
the present approach the stiffness and damping of the lubricated contacts in
the bearing are described by simplified spring-damper models. Their con-
stitutive behaviour is described by curve-fit relations based on numerical
solutions of time dependent contact calculations (Chapter 3).

The shaft, the housings and the outer ring of the bearing are modelled using
the finite element method. The large system matrices are reduced by writing
the displacements of each component as a series of suitable shape functions.
The adopted method is referred to as component mode synthesis. To ac-
count for the elasticity of the outer ring in combination with the rotation of
the rolling element set, a new method has been developed (Chapter 4).

The equations of motion of the application are derived with the help of La-
grange’s equations. The equations of motion are solved by means of the
Newmark time integration method (Chapter 5).

The new ball bearing model is experimentally validated on a vibration test
spindle. The predicted resonances and vibrations generated by the bear-
ing are compared with measured ones for three different frequency bands.
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Moreover, a method is presented to estimate the damping generated by the
lubricated contacts in the bearing (Chapter 6).

To demonstrate its capabilities, the numerical tool developed is applied in a
radially loaded rotor dynamic application. The example focuses on paramet-
ric excitation. Two ways are presented to reduce the vibrations generated
by parametric excitation (Chapter 7).

In the final chapter of this thesis conclusions are presented (Chapter 8).
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Chapter 2

Vibration generation in ball

bearings

2.1 Vibration sources

Even if the geometry of a ball bearing is perfect, it will still produce vibra-
tions. The vibrations are caused by the rotation of a finite number of loaded
rolling contacts between the balls and the guiding rings. Because these con-
tacts are elastic, the bearing stiffness becomes explicitly dependent on time.
In general, a time varying stiffness causes vibrations, even in the absence
of external loads. Since the stiffness can be regarded as a system param-
eter, the variable stiffness leads to a so-called parametric excitation. It is
one of the major sources of vibration in ball bearings. The first systematic
research on this subject was conducted by Perret (1950) and Meldau (1951).

Due to the irregularities in the grinding and honing process, the contacting
surfaces of the balls and the guiding rings always deviate from their per-
fect shape. A typical imperfection caused by these production processes is
waviness. Waviness consists of global sinusoidally shaped imperfections on
the outer surface of the components. Nowadays, the amplitudes of waviness
in small deep groove ball bearings is of the order of nanometers. In spite
of that, waviness still produces significant vibrations in the entire audible
range. One of the first investigations in this field was made by Tallian and
Gustafsson (1965). Besides waviness, other imperfections that are addressed
in the present work are ball diameter variations and cage run-out.
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2.2 Parametric excitation

The flexibility of the rolling contacts in a ball bearing can be represented by
nonlinear springs (Hertz, 1881). When the mass of the rolling elements is
neglected one spring can be used for both the inner and the outer contacts
(see Figure 2.1).

Figure 2.1: The flexibility of the rolling contacts in a ball bearing is repre-
sented by nonlinear springs.

Often, ball bearings are subjected to an externally applied axial load to
preload the Hertzian contacts. In a two-dimensional model, the effect of an
axial load can be modelled by introducing a negative radial clearance (see
Figure 1.4). In the case of a negative clearance and a perfect geometry, the
outer ring of a ball bearing with eight rolling elements is loaded with eight
uniformly distributed contact loads. The resulting displacement field of the
outer ring consists of both flexural and extensional deformations (see Figure
2.2). The analytical solution of this two-dimensional problem is given in
Appendix A.

Ω c
Ω c

Figure 2.2: Deformations of the outer ring due to eight uniformly distributed
contact loads.
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When the rolling element set and the cage rotate with a constant angular
velocity Ωc, a parametrically excited vibration is generated that is transmit-
ted through the outer ring. The characteristic frequency of this vibration
equals ZΩc/2π and is called the ball pass frequency. This is the frequency
at which the rolling elements pass an observation point fixed on the outer
ring. The parameter Z denotes the total number of rolling elements in the
bearing. In general, the generated vibration is not harmonic, but it does
include harmonics of the ball pass frequency. In the case of an axially sym-
metric outer ring and ditto loading conditions, this vibration will not result
in rigid body motion of the rings because the net forces in the vertical and
horizontal direction equal zero.

The outer ring of the bearing is usually supported by a flexible housing. Most
housings have asymmetric stiffness properties. This effect can be described
by two linear springs with different stiffnesses in the horizontal and vertical
directions (see Figure 2.3).

k1

k2

77777777
77777777
77777777

777
777
777
777
777
777
777
777

Figure 2.3: The ball bearing is mounted in a housing with asymmetric stiff-
ness properties.

In the case of rotation, again, vibrations are generated at the ball pass
frequency and its harmonics. The vibrations are mostly a combination of
flexural vibrations of the outer ring and the housing and rigid body vibra-
tions of the shaft. Since the contact behaviour is nonlinear, the effect of
an asymmetric stiffness distribution in the application is enhanced by the
introduction of a radial or misaligned external load. In the most extreme
case the rolling elements lose contact with the raceway and the system be-
comes strongly nonlinear. The area, within which the rolling elements are
still in contact with the raceway is generally referred to as the loaded zone
(see Figure 2.4).
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Figure 2.4: In the presence of a radial load the rolling elements can lose
contact with the raceway leading to severe parametric excitations.

A phenomenon closely related to parametric excitations is parametric reso-
nance. These are unstable or large amplitude solutions that are not directly
related to the natural frequencies of the system (Nayfeh and Mook, 1979).
In a nonlinear system, such as a ball bearing application, parametric reso-
nance can change the system response dramatically. Under extreme loading
conditions, it might even lead to chaos-like behaviour (Mevel and Guyader,
1993).

2.3 Geometrical imperfections

2.3.1 Description of waviness

An important source of vibration in ball bearings is waviness. These are
global sinusoidally shaped imperfections on the outer surface of the bearing
components (see Figure 2.5). The characteristic wavelengths of the imper-
fections are much larger than the dimensions of the Hertzian contact areas
between the balls and the guiding rings. The number of waves per circum-
ference is denoted by the wavenumber.

Waviness imperfections cause variations in the contact loads when the bear-
ing is running. The magnitude of the variation depends on the amplitude
of the imperfection and the stiffness in the contact. Due to the variations
in the contact loads, vibrations are generated in the bearing. The resulting
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Ωre

Ωc

Ωir

Figure 2.5: Waviness excitation in a ball bearing.

vibration modes of the rings can be either extensional, flexural or rigid body
modes, dependent on the number of rolling elements and the wavenumber of
the imperfection (see Figures 2.6 and 2.7). The extensional mode is usually
accompanied by a rigid body mode in the axial direction. Imperfections
with a different wavenumber cause vibrations at distinct frequencies, each
with a characteristic vibration mode.

(a) (b)

Figure 2.6: Radial vibration modes of the inner and outer rings of a ball
bearing caused by waviness: extensional mode (a) and rigid body mode (b).

Surface measurements

A reliable prediction of the vibrations generated by ball bearings requires
an accurate description of the waviness profiles up to approximately one
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(c) (d)

Figure 2.7: Radial vibration modes of the inner and outer rings of a ball
bearing caused by waviness: oval mode (c) and triangle mode (d).

thousand waves per circumference. One way to obtain the profiles is to
measure the surfaces with a displacements sensor. An example of a measured
waviness profile on a small deep groove ball bearing is depicted in Figure
2.8.

0.4

0.2

0.0

−0.2

µm

2ππ

circumferential coordinate

Figure 2.8: Multi-track waviness measurement on the inner raceway of a
small deep groove ball bearing.

Each individual track of Figure 2.8 can be developed into a Fourier series. As
an example, Figure 2.9 shows the power spectral density for a single track.
In the measured data two regions can be identified, each with a character-
istic behaviour. Usually, due to run-out of the measurement equipment,
the first harmonic is omitted. The run-out equals the maximum radial dis-
placement of the positioning spindle at the frequency of rotation. In the
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Figure 2.9: Power spectral density (PSD) of a measured waviness profile on
the inner ring of a small deep groove ball bearing.

first region, for wavenumbers up to approximately ten waves per circum-
ference, the amplitude decreases quadratically. With a double-logarithmic
scaling of the power spectral density, this corresponds to a straight line with
a slope of minus four. The gradients in Figure 2.9 are determined using the
least-squares method. For wavenumbers higher than ten waves per circum-
ference, the amplitude decreases linearly. In Figure 2.9, this corresponds to
a straight line with a slope of minus two.

For low rotational speeds, the response of the bearing can be considered as
being quasi-static. Measurements at SKF have shown that for wavenumbers
below 10 waves per circumference, the measured waviness profiles correlate
very well with low speed vibration measurements. For wavenumbers higher
than 10 waves per circumference, the correlation becomes poor. The reason
for the poor correlation is attributed to inaccuracies of the measurement
equipment and uncontrolled effects caused by the lubricant film in the con-
tacts. It is noted that for the wavenumbers mentioned, the thickness of the
lubricant film is of the same order of magnitude as the height of the imper-
fections. Moreover, it is noted that the conditions in the contact between
the measurement probe and the raceway are of course different from the
conditions in the actual contact between a rolling element and the raceway.
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Surface description

It is clear that in each individual ball bearing, the finished surfaces are
different. But, because they are generally produced by the same machin-
ing processes, it can be expected that the surfaces have certain features in
common. In the present approach these features are described by a small
number of surface topography parameters that can easily be obtained from
surface measurements. During the manufacturing of bearing components,
statistical errors are introduced. For that reason some surface topography
parameters have stochastic properties.

A single circumferential waviness track of the contacting surface is developed
into a Fourier series. For a single track, the deviation W from the perfect
geometry can be written as:

W (θ) =
∞
∑

n=1

A

ns
cos(nθ + ϕn) (2.1)

The parameter A equals the magnitude of the first harmonic. The exponent
s describes the amplitude decay for subsequent wavenumbers. The phase
ϕn is uniformly distributed over the interval [0, 2π].

The magnitude A is subject to statistical variations. A likely probability
distribution for the stochastic variable A is the Rayleigh distribution, since
A is restricted only to positive values. In general, the Rayleigh distribution
of a stochastic variable x is defined by the probability density function p
and reads:

p(x, α) =

{

2αxe−αx
2

x > 0, α > 0
0 x < 0

}

(2.2)

Rayleigh distributions (see also Figure 2.10) can be derived from normal dis-
tributions. When the stochastic variables X and Y are normally distributed
and R is defined by R2 = X2 + Y 2, then R has a Rayleigh distribution
with σ2

x = σ2
y = (2α)−1. For α = 0.5, equation 2.2 reduces to the standard

Rayleigh distribution (Rothschild and Logothetis, 1986). For each wavenum-
ber n, a new value for A is generated. The parameter α is determined from
series of surface measurements.
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Figure 2.10: Rayleigh distributions of the stochastic variable x for different
values of α.

2.3.2 Excitation frequencies

The rotational speeds of the inner ring, of the cage and of the rolling el-
ements are different. As a result, inner ring, outer ring and ball waviness
generate vibrations at distinct frequencies. The excitation frequencies are
proportional to the rotational speed of the shaft. The ratio between the
excitation frequency and the shaft frequency is generally referred to as the
excitation order. Most order numbers of excitations generated by the bear-
ing are rational numbers so that they can easily be detected in the vibration
spectrum. A comprehensive overview of the vibrations generated in ball
bearings was given by Wardle (1988) and Yhland (1992).

In the present work, Ωir, Ωc and Ωre denote the angular speeds of, respec-
tively, the inner ring, the cage and the rolling elements (see also Figure 2.5).
An integer q ≥ 0 is introduced to indicate the harmonics of the ball pass
frequency. The parameter Z refers to the total number of rolling elements.
Finally, an integer k ≥ 0 is introduced that is associated with the vibration
mode of the inner and outer rings of the bearing:

• k = 0: extensional vibration and axial rigid body vibration, see Figure
2.6(a).
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• k = ±1: rigid body vibrations moving forward (+1), in the same
direction as the rotating shaft, and backward (−1), see Figure 2.6(b).

• k = ±2, 3...: flexural vibrations with wavenumber k travelling forward
(+k) and backward (−k), see Figures 2.7(c) and (d).

Inner ring waviness

For an observer at a fixed location on the outer ring or the housing, the
vibrations generated by inner ring waviness are modulated at the ball pass
frequency, resulting in combination harmonics. For wavenumbers

n = qZ ± k, (2.3)

the angular excitation frequencies are given by

ω = qZ(Ωir − Ωc) ± kΩir (2.4)

Outer ring waviness

Outer ring waviness is usually of the same order of magnitude as inner
ring waviness. For an observer fixed on the outer ring or the housing, the
vibrations generated by outer ring waviness are not modulated. As a conse-
quence, the individual wavenumbers do not generate vibrations with unique
frequencies, which makes the detection of outer ring waviness with vibration
measurements much harder than the detection of inner ring waviness. With
outer ring waviness, the effect of several wavenumbers can be observed at
the ball pass frequency and its harmonics. For wavenumbers

n = qZ ± k, (2.5)

the angular excitation frequencies are given by

ω = qZΩc (2.6)

In terms of the response, outer ring waviness behaves quite similarly to
parametric excitations. However, the underlying excitation mechanism is
completely different.
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Ball waviness

The waviness on the rolling elements is usually several times less than the
waviness on the inner and outer ring. For low rotational speeds only imper-
fections with even wavenumbers generate vibrations. For uneven wavenum-
bers the resulting contact force in the inner contact is cancelled by the con-
tact force in the outer contact because the contacts have a phase difference
of π radians (see Figure 2.11). In case the centrifugal forces of the rolling
elements become of the same order of magnitude as the contact forces, this
is no longer true.

2Rre

Figure 2.11: For low rotational speeds, uneven ball waviness does not cause
a disturbance in the EHL contacts.

The vibrations generated by ball waviness are always the cumulative effect
of all the rolling elements. The vibrations are modulated with the cage
frequency. Hence, for each wavenumber of the rolling element, vibrations
are generated at multiple frequencies. For wavenumbers n=2q, the angular
excitation frequencies due to ball waviness read

ω = 2qΩre ± kΩc, k 6= qZ ± 1 (2.7)

Ball diameter variations

Ball diameter variations can be regarded as a special case of ball waviness by
taking q=0 in equation 2.7. Hence, the angular frequencies of the vibration
generated by ball diameter variations are given by

ω = kΩc k 6= qZ ± 1 (2.8)

Due to the different ball diameters, the ring is deformed into a complex shape
that turns with the rotational speed of the cage. The shape is composed
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of all flexural modes, with the exception of modes that have wavenumbers
equal to qZ ± 1. For these wavenumbers the outer ring can restore the force
balance by rigid body motion.

Cage run-out

Due to run-out of the cage, the rolling elements no longer stay equally
spaced, as is illustrated in Figure 2.12. The resulting variations of the cir-

ε
Rp

δθj

θj

cage

Figure 2.12: Non-uniform ball spacing due to cage run-out.

cumferential angles for a small run-out ε read

δθj =
ε

Rp
cos(θj) (2.9)

Rp denotes the pitch radius (see Figure 2.12). Due to the non-uniform
spacing, the ball pass frequency is modulated with the cage frequency. The
angular excitation frequencies due to the cage run-out are given by

ω = qZΩc ± kΩc (2.10)

Although the generated vibrations look very similar to the vibrations gen-
erated by ball diameter variations, there are some clear differences. With
cage run-out, vibrations are also generated at Ω = qZΩc±Ωc and, although
both mechanisms excite the bearing at coinciding frequencies, the resulting
vibration modes are different.
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2.4 Summary of excitation frequencies

For the convenience of the reader, the main excitation mechanisms in a ball
bearing together with the corresponding angular frequencies are summarised
in Table 2.1. Also, the corresponding vibration modes of the inner and outer
rings are listed.

vibration source wavenumber ω (rad/s)

parametric excitation N.A. qZΩc

inner ring waviness n = qZ ± k qZ(Ωir − Ωc) ± kΩir

outer ring waviness n = qZ ± k qZΩc

ball waviness n = 2q 2qΩre ± kΩc, k 6= qZ ± 1
ball diameter variations N.A. kΩc, k 6= qZ ± 1
cage run-out N.A. qZΩc ± kΩc

Table 2.1: The excitation frequencies of different vibration sources in a ball
bearing (N.A.: not applicable).

The integer q refers to harmonics of the ball pass frequency, Z denotes the
number of rolling elements and Ωc, Ωir and Ωre denote, respectively, the
angular frequency of the cage, of the inner ring and of the rolling elements.

• k = 0: extensional vibration and axial rigid body vibration, see Figure
2.6(a).

• k = ±1: rigid body vibrations moving forward (+1) and backward
(−1), see Figure 2.6(b).

• k = ±2, 3...: flexural vibrations with wavenumber k travelling forward
(+k) and backward (−k), see Figures 2.7(c) and (d).
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Chapter 3

Stiffness and damping in

EHL contacts

3.1 Modelling of the EHL contacts

Ball bearings are lubricated to reduce friction and wear in the rolling con-
tacts between the raceway and the rolling elements. Due to the high pressure
in the lubricated contacts, a strong interaction exists between the fluid film
formation of the lubricant and the deformations of the contacting surfaces.
This tribological phenomenon is called elastohydrodynamic lubrication, ab-
breviated as EHL. The transfer of vibrations through a ball bearing is largely
affected by the stiffness and damping behaviour of EHL contacts. Also, the
magnitude of vibrations generated by the geometrical imperfections is de-
termined by the stiffness of the lubricated contacts. The stiffness of EHL
contacts is provided both by the lubricant and by the resistance of the con-
tacting surfaces to deformations. Damping is attributed mainly to viscous
losses in the lubricant. Material damping due to hysteresis in the contacting
surfaces is generally low.

The number of rolling elements in common deep groove ball bearings usually
varies between 7 and 10. Consequently, the potential number of lubricated
contacts varies between 14 and 20, hereby excluding the possible contacts
between the rolling elements and the cage. Hence, for an efficient transient
analysis, the number of DOF to model these contacts must remain small to
save computing time. The lubricated contact between the raceway and each
rolling element can be modelled by a single DOF model. It is assumed that
the lubricated contact satisfies the so-called Hertzian assumptions:
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• The material deformations are elastically.

• The loading is directed normal to the contacting surfaces, so that
surface shear stresses can be neglected.

• The dimensions of the contact area are small compared to the radii of
curvature of the contacting bodies.

• The deformations in the contact area are small compared to the di-
mensions of the contact area.

The mutual approach, denoted by δ, is defined as the change in distance
between the centres of curvature of the contacting bodies. The radius of
curvature of both bodies is denoted by R1 and R2. In the case of an unloaded
contact δ = 0, and the corresponding initial distance between the two centres
of curvature is given by R1+R2. This situation is depicted on the left hand
side in Figure 3.1. The right hand side shows the contact under load. The
mutual approach δ accounts for elastic deformations in both bodies.

R1

R2

δ

F

6666
6666
6666

(a) (b)

Figure 3.1: Definition of the mutual approach δ by means of an unloaded
contact (a) and a contact loaded with an external force F (b).

The objective is to find a constitutive equation that describes the stiffness
and damping in a lubricated contact or, in other words, a relation between
the contact force F, the mutual approach δ and its time derivative δ̇. In
general terms, the required relation can be written as:

F = f(δ, δ̇) (3.1)
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In a specific application, relation 3.1 depends on the geometry and the ve-
locities in the contact, the material properties of the elastic bodies and the
properties of the lubricant. In the present investigation, the elastic restoring
forces Fe are separated from the dissipative forces Fd so that:

F = Fe + Fd (3.2)

The elastic restoring forces are assumed to be frequency independent. This
means that Fe is independent of δ̇:

Fe = f(δ) (3.3)

For dry contact situations, a nonlinear expression can be obtained for f(δ)
by using the solution of Hertz for an elliptic point contact. The Hertzian
theory is summarised in Section 3.2. In EHL contact problems, it is often
more convenient to derive the inverse of equation 3.3 i.e.:

δ = g(Fe) (3.4)

To solve Fe, an iterative process is required.

The lubricant is assumed to behave in a Newtonian way. Hence, a viscous
damping model is adopted in which the dissipative forces are proportional to
the time derivative of the mutual approach. The resulting equation yields:

Fd = c(δ)δ̇ (3.5)

where c(δ) is also a function of the contact geometry, the material properties
of the elastic bodies, the properties of the lubricant and the surface veloci-
ties in the contact.

To obtain a constitutive equation that describes the stiffness and damping
in a lubricated contact, the steady state and time dependent behaviour of a
single EHL contact must be studied (Wijnant, 1998). The determination of
stiffness and damping in EHL contacts requires the solution of the equations
of motion for both the lubricant film and the contacting structural elements.
This solution can only be obtained numerically. Nowadays, with the help
of advanced multi-grid techniques (Lubrecht, 1987; Venner, 1991), the time
dependent solution can also be obtained within a reasonable time. To min-
imise the number of calculations and maintain the accuracy, all physical
parameters are replaced by dimensionless ones.
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The steady state numerical solutions of the EHL point contact are used
to construct a relation for the dimensionless mutual approach in an EHL
contact. The actual mutual approach in the EHL contacts is scaled on
the equivalent Hertzian approach. The relation is derived by means of a
curve-fit procedure. With the obtained relation an expression is derived for
g(Fe) in equation 3.4. The final expression can be represented by a nonlinear
spring. From the analysis by Wijnant, it follows that a small increase is to be
expected from the lubricant film on the stiffness in the contact, particularly
for low loads and high speeds.
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Figure 3.2: The time dependent EHL contact problem (a) and an equivalent
spring damper model (b).

It is assumed that the damping generated in the EHL contact can be mod-
elled by a linear viscous damper. To find an expression for the viscous
damping coefficient c, a time dependent EHL calculation is performed to
determine the response of a rolling element subjected to an impact excita-
tion at t=0. The obtained numerical solution is fitted with the response of
the single DOF system depicted in Figure 3.2. The steady state behaviour of
this model is described with the previously obtained relation for the dimen-
sionless mutual approach. Subsequently, the viscous damping coefficient c
is determined by minimising the error between the response of the numer-
ical simulation and the response of the single DOF system with the least
square method. This procedure is repeated for different values of the dimen-
sionless parameters. From the obtained dimensionless curve-fit relation an
expression is found for the physical damping coefficient c in equation 3.5.
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3.2 Hertzian theory

When the unloaded contact between two elastic bodies is limited to a single
point, the contact is called a point contact. The geometry of a point contact
is described by four radii of curvature (see Figure 3.3). By definition, convex
surfaces have positive radii and concave surfaces have negative radii. The
contacting surfaces sketched in Figure 3.3 both have convex surfaces.

R1xR1y

R2xR2y

y

x

z

Figure 3.3: The radii of curvature of the two contacting bodies.

In a ball bearing the rolling elements make contact with the inner and outer
raceway. In the remainder of this thesis these contacts are designated as
inner and outer contacts. The surface of a rolling element is convex whereas
the surface of the outer raceway is concave. The surface of the inner raceway
is convex in the direction of motion and concave in the transverse direction.
A number of important geometrical properties of a ball bearing are depicted
in Figure 3.4.

When Rre denotes the ball radius, then the radii of curvature for the inner
contacts read:

R1x = Rre (3.6)

R1y = Rre (3.7)

R2x =
Rp

cos(α)
−Rre (3.8)

R2y = −Ri (3.9)
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Figure 3.4: A number of geometrical properties of a ball bearing.

In the same way, the radii of curvature for the outer contacts read:

R1x = Rre (3.10)

R1y = Rre (3.11)

R2x = −
(

Rp
cos(α)

+Rre

)

(3.12)

R2y = −Ro (3.13)

The radii of curvature of the raceway depend on the contact angle α. How-
ever, for the calculation of the reduced radii, only a small error is made by
assuming a contact angle of zero degrees. The ratio between the ball radius
and the radius of curvature of the raceway in the transverse direction is
generally called the osculation. Hence, for the inner and outer osculations
it follows:

fi =
Ri
Rre

fo =
Ro
Rre

(3.14)

Usually, the contact problem in Figure 3.3 is reduced to the problem of a
paraboloid shaped surface approaching a flat one. For the reduced radius of
curvature R of the paraboloid, the following relation applies:

1

R
=

1

Rx
+

1

Ry
(3.15)

where:
1

Rx
=

1

R1x
+

1

R2x

1

Ry
=

1

R1y
+

1

R2y
(3.16)

The ratio between both reduced radii of curvature is denoted by λ:

λ =
Rx
Ry

(3.17)
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For the reduced modulus of elasticity, the following relation is valid:

2

E′
=

1 − ν2
1

E1
+

1 − ν2
2

E2
(3.18)

where E1, E2, ν1 and ν2 are the moduli of elasticity and Poisson’s ratios of
the materials of both contacting bodies.

In the case of a dry point contact, f(δ) in equation 3.3 is obtained from the
Hertzian solution. For δ > 0, the solution is given by:

Fe = κδ3/2 κ =
πǫE′

3K

√

2ER
K (3.19)

where K and E denote the elliptic integrals of the first and second kind,
which read:

K =

∫ π
2

0

[

1 −
(

1 − 1

ǫ2

)

sin2 φ

]− 1

2

dφ (3.20)

E =

∫ π
2

0

[

1 −
(

1 − 1

ǫ2

)

sin2 φ

]
1

2

dφ (3.21)

The ellipticity parameter ǫ is defined by:

ǫ =
b

a
a =

(

6ERFe
πǫE′

)1/3

b =

(

6ǫ2ERFe
πE′

)1/3

(3.22)

where a is half the contact length in the direction of motion, and b half
the contact width in the transverse direction. For the relation between the
ellipticity ratio ǫ and the ratio of the reduced radii of curvature λ, defined
in 3.17, it can be derived:

λ = ǫ2
( K − E
E − ǫ2K

)

(3.23)

For the calculation of the elliptic integrals and the ellipticity parameter, ap-
proximations are used (Reusner, 1977) to avoid numerical integration. In
the case of circular contacts λ = 1, ǫ = 1 and K = E = π

2 .

As mentioned earlier, the relationship between the contact force and the
mutual approach of the contacting bodies is nonlinear. Often the gradient
of the Hertzian solution is also required as for instance in an iterative process.
For the stiffness in a dry Hertzian contact it follows that:

∂Fe
∂δ

=
3

2
κ
√
δ (3.24)

with κ given in equation 3.19.
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3.3 EHL theory

The time dependent, isothermal EHL contact problem is governed by three
equations. At first, there is the Reynolds equation, which relates the fluid
film pressures to the geometry of the deformed gap and the velocities of the
contacting surfaces. Secondly, the film thickness equation, describing the
deformation of the contacting surfaces due to the pressures in the film and,
as a third, the dynamic force balance of the rolling element. The pressure
distribution and the corresponding film thickness in a typical EHL point
contact is shown in Figure 3.5.
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Figure 3.5: The pressure and film thickness distribution in an EHL contact.

Near the contact area three regions can be distinguished, the entrance re-
gion (I), the central region (II) and the exit region (III). In the entrance
region, the lubricant is forced into the contact. Usually it is assumed in
the models that there is enough oil in the entrance region to establish a full
lubricant film. This condition is referred to as fully flooded. However, in
reality the amount of oil in the contact is mostly insufficient to establish a
full lubricant film and the contact is called starved. Starvation largely affects
the behaviour of the lubricant film. In general, the film thickness decreases
significantly in the central region of the contact.

Due to the high pressure in the central region of the contact the viscosity
of the oil increases and the lubricant film almost solidifies. The resulting
deformations of the contacting surfaces become of the same order of magni-
tude as the film thickness. For high loads, the pressure distribution in the
central region is similar to the Hertzian pressure distribution. The pressure
variation is hardly affected by the lubricant film. Hence in the central region
of the contact the film thickness is almost constant, except for a constriction
near the exit region. Here, the pressure distribution shows a characteristic
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spike. Seen from above, the constriction has the shape of a horseshoe. In
the exit region the lubricant film cavitates.

In high speed applications the pressure distribution and film thickness in
the contact is significantly influenced by temperature effects as a result of
frictional heating. To fully account for friction effects in the lubricated
contacts, an additional equation would be required, i.e. the energy equation.
However, in the present approach the effect of friction is accounted for by
means of two approximate relations, one describing the temperature rise as
a function of the sum speed and one describing the viscosity as a function
of the temperature rise.

3.3.1 The Reynolds equation

The Reynolds equation prescribes the conservation of mass for the lubricant.
It can be derived from the Navier-Stokes equations by assuming narrow gap
conditions and a Newtonian fluid. Narrow gap conditions imply that the
derivatives with respect to the x− and y− direction are much smaller than
the derivatives with respect to the z− direction. As a result of these narrow
gap conditions, it follows automatically that the pressure is independent of
z. For a point contact the Reynolds equation reads

∂

∂x

(

ρh3

η

∂p

∂x

)

+
∂

∂y

(

ρh3

η

∂p

∂y

)

= 6vs
∂(ρh)

∂x
+ 12

∂(ρh)

∂t
(3.25)

where: η = viscosity
p = hydrostatic pressure
ρ = density
h = gap width
vs = sum speed

The surface velocities in the EHL contacts of a ball bearing are shown in
Figure 3.6. If there is no slip, the sum speeds in the inner and outer contacts
are equal and proportional to the angular shaft speed Ω. For the sum speed
vs we derive:

vs = vor + vre = Ωc



Rp +Rre cos(α)


+ ΩreRre (3.26)

where Ωc denotes the angular speed of the rolling element set or cage, which
is given by (Harris, 1993):

Ωc =
Ω

2








1 − Rre cos(α)

Rp








(3.27)
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Figure 3.6: The surface velocities and angular speeds in a ball bearing.

and Ωre the angular speed of the rolling element:

Ωre =
ΩRp
2Rre

(

1 −








Rre cos(α)

Rp









2
)

(3.28)

Note that the rolling elements rotate in a direction opposite to that of the
inner ring and of the cage.

The two terms on the right hand side in equation 3.25 represent the two
different pressure generation mechanisms in an EHL contact. The first term
represents the wedge effect and the second one the squeeze film effect. At the
edges of the domain, the pressure equals the ambient pressure level. Hence
the pressure in the Reynolds equation has to be understood as the rise from
ambient pressure level. In the outlet region of the contact, where the gap is
widening, the Reynolds equation in general predicts negative pressures lead-
ing to cavitation. In the cavitation area, the pressure is assumed constant.

The viscosity of the lubricant increases exponentially with pressure. This
effect is referred to as piezo-viscosity and can e.g. be described using the
following relation (Barus, 1973):

η(p) = η0e
αpp (3.29)

where η0 denotes the dynamic viscosity at ambient pressure in Pas and αp
denotes the pressure-viscosity coefficient in Pa−1. Due to the extremely
high pressure in the central region of an EHL contact the viscosity increases
enormously and the lubricant film becomes almost solid. This implies that
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in the central region of an EHL contact the lubricant film becomes very stiff.
Unfortunately, equation 3.29 is only accurate for relatively low pressures up
to 0.1 GPa. In a general EHL contact, the pressure can become much higher.
In that case the viscosity of the lubricant is overestimated by equation 3.29.
However, this hardly influences the stiffness and damping behaviour in the
contact. Even for a moderate pressure the lubricant film is already very stiff
and, hence, the stiffness is completely dominated by the Hertzian stiffness
of the structural elements. The damping is mainly determined by the be-
haviour of the lubricant in the low pressure zones in the entrance and in the
exit region. Here, the flow velocities in the direction normal to the raceway
are highest.

The density of the lubricant is also dependent on the pressure (Hamrock
and Dowson, 1977). However, the effect of compressibility on the stiffness
and damping in the contact is small because the density is only influenced
at very high pressures. As mentioned before, at these high pressures the
stiffness is mainly determined by the Hertzian stiffness of the structural ele-
ments, while the damping mainly depends on the lubricant behaviour in the
low pressure zones in the entrance and in the exit region.

An important condition that influences the stiffness and damping of EHL
contacts concerns the amount of oil available in the contact. Under so-called
fully flooded conditions there is enough oil available in the contact to develop
a full lubricant film. However, in standard greased bearings, fully flooded
conditions hardly occur. In these bearings the amount of oil in the contact
is limited and we have the situation of starved contacts. At SKF it has been
found that starvation can decrease the damping in EHL contacts easily by a
factor 2 or more. In the present investigation, all contact models are based
on fully flooded conditions.

3.3.2 Film thickness equation

In the film thickness equation, the structural dynamics model and the EHL
contact model are coupled. When the contact area dimensions are small
compared to the reduced radii of curvature involved, then, locally, the unde-
formed surfaces may be approximated by paraboloids. Hence, the following
relation applies for the film thickness or gap width h:

h(x, y, t) = −δ(t) +
x2

2Rx
+

y2

2Ry
+ d(x, y, t) (3.30)
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The different terms in equation 3.30 are illustrated in Figure 3.7. The circu-
lar arc is approximated by a Taylor series around x = 0 and is described by
z ≈ x2/2Rx. The parameter δ denotes the mean mutual approach between

x

−δ

Rx

x
2Rx

2

d1

d2

h

=

z

Figure 3.7: Geometry of the gap in an EHL point contact for y=0.

the contacting bodies, defined in Figure 3.1, and d(x, y, t) denotes the time
dependent elastic deformation of both structural elements:

d(x, y, t) = d1(x, y, t) + d2(x, y, t) (3.31)

On the basis of the solution for a concentrated point load P acting on
an elastic half-space, the deformation caused by a distributed load can be
determined. The basic solution, which is presented in various publications
(Timoshenko, 1993), was found by Boussinesq and reads:

w(x, y) =
(1 − ν2)P

πE

1
√

x2 + y2
(3.32)

The total deformation d(x, y, t)=d1(x, y, t)+d2(x, y, t), caused by a distributed
load p(x, y, t), follows after integration of equation 3.32 for both contacting
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Figure 3.8: Problem of a point load acting on an elastic half-space.

bodies:

d(x, y, t) =
2

πE′

∫ ∞

−∞

∫ ∞

−∞

p(x′, y′, t)
√

(x− x′)2 + (y − y′)2
dx′dy′ (3.33)

3.3.3 The force balance equation

The dynamic behaviour of a rolling element is described by a single DOF
system. The force balance results in the following equation:

mδ̈ +

∫ ∞

−∞
p(x, y, t)dxdy = F (t) (3.34)

where m denotes the rolling element mass and F (t) a time dependent exter-
nally applied force.

3.3.4 Temperature effects

An important mechanism that must be considered for the investigation of
stiffness and damping at high speeds is the effect of heat generation in the
contact due to friction. The effect of heat generation in EHL contacts can
be incorporated by extension of the steady state model with the energy
equation. This has been investigated by Bos (1995) for fully flooded line
contacts. From the investigation, it was concluded that for pure rolling, the
temperature rise in the contact is well described by the following relation
(Greenwood and Kauzlarich, 1973):

T − T0 =
3

4

η0v
2
s

kf
(3.35)
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where kf is the thermal conductivity of the lubricant in Wm−1K−1. In
equation 3.35, the temperature rise is independent of the load because it is
assumed that all heat is generated in the low pressure entrance region.

Due to the temperature rise, the viscosity of the lubricant decreases consid-
erably. The effect is often described by an exponential relation. In combi-
nation with the Barus equation (3.29) the following relation is obtained for
the viscosity of the lubricant:

η(T ) = η0e
αpp−γ(T−T0) (3.36)

where γ is the temperature viscosity coefficient of the lubricant, αp the
pressure-viscosity coefficient and η0 the viscosity at room temperature and
ambient pressure. Equation 3.36 is convenient for its simplicity but it is
limited to small temperature variations.

In Figure 3.9, equations 3.35 and 3.36 are combined and for several lubricants
and the viscosity η is plotted as a function of the sum speed vs. The thermal
conductivity kf = 0.14 Wm−1K−1 and the temperature-viscosity coefficient
γ = 0.028 K−1 are chosen equal for all lubricants. It can be observed that
the viscosity at ambient pressure drops considerably for high sum speeds. It

Figure 3.9: Effect of friction on the viscosity for different values of the
nominal viscosity η0.
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can also be concluded that a higher nominal viscosity does not automatically
lead to a higher viscosity under rotating conditions because one must be
aware that for the same rotational speed the temperature in each lubricant
is different.

3.4 Determination of EHL stiffness

The stiffness in an EHL contact can be determined from the constitutive
equation that relates the contact force Fe to the mutual approach δ. The
value of δ follows from the film thickness equation. The film thickness can
be approximated by a formula based on a curve-fit of numerical solutions.
In the present investigation, a curve-fit relation is used, as introduced by
Wijnant (1998). The relation is derived from steady state numerical solu-
tions for the fully flooded EHL point contact.

Rewriting the film thickness equation 3.33 for x = 0 and y = 0 yields the
following expression for the mutual approach:

δ = w0 − h0 (3.37)

where w0 and h0 denote the elastic deformation and the film thickness at
x = 0 and y = 0. The mutual approach δ and the film thickness h0 are scaled
with the Hertzian deformation resulting in the dimensionless quantities ∆
and H0, respectively. With equation 3.19, we obtain:

∆ = δ

(

κh
Fe

)2/3

H0 = h0

(

κh
Fe

)2/3

(3.38)

When the surface deformation w0 is approximated by the Hertzian defor-
mation, the dimensionless film thickness can be approximated by:

∆ = 1 −H0 (3.39)

It was shown (Moes, 1992), that the EHL point contact problem for a circu-
lar contact area and an incompressible lubricant is governed by two dimen-
sionless parameters M and L:

M =
Fe
E′R2

x

(

E′Rx
η0vs

)
3

4

L = αpE
′

(

η0vs
E′Rx

)
1

4

(3.40)

The quantity M is usually referred to as the dimensionless load because it
is proportional to Fe. For the quantity L the direct physical interpretation
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is less clear. In the case of elliptic contacts, the parameter λ is introduced
to account for the different radii of curvature of the contacting bodies in the
direction of motion x and transverse to the direction of motion y. The effect
of the ellipticity is approximated (Wijnant, 1998) with the introduction of
a new dimensionless parameter N , defined by:

N = λ
1

2M λ =
Rx
Ry

(3.41)

The definition of N is based on the rigid isoviscous asymptotic solution of
the EHL point contact. However, Wijnant has experienced that for the es-
timation of stiffness and damping this approach also gives satisfying results
in general EHL contacts. An advantage of introducing N is that the con-
tact needs to be solved only for one value of λ. For the dimensionless film
thickness, it follows that:

∆(N,L) ≈ 1 −H0(N,L) (3.42)

For different values of N and L, numerical solutions are generated for the
mutual approach ∆. As a next step, the computed values are approximated
by the following curve-fit formula:

∆(N,L) = 1 − p(L)N q(L) (3.43)

where

p(L) =
(

(4 − 0.2L)7 + (3.5 + 0.1L)7
)

1

7 (3.44)

q(L) =
(

−(0.6 + 0.6(L + 3)−
1

2

)
1

7

(3.45)

The relation between ∆ and the force Fe is implicit. Once the dimensionless
mutual approach ∆ is determined, for given values of the speed the reduced
radii of curvature, the reduced elasticity modulus, the viscosity and the
pressure-viscosity coefficient, the contact force Fe can be solved by means
of an iterative process. Because in general the relation between ∆ and Fe is
smooth, Fe can be solved with a Newton-Raphson process.

In Figure 3.10, ∆ is plotted for a range of values of N and L. For ∆ = 1 the
mutual approach equals the Hertzian deformation. For high values of N , ∆
approaches unity or, in other words, for these values the stiffness in the EHL
contact resembles the Hertzian stiffness of the structural elements. In this
region the fluid film is extremely stiff due to the relation between viscosity
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Figure 3.10: Results of the numerical simulations and the curve-fit relations
for the dimensionless mutual approach ∆, (source: Wijnant, 1998).

and pressure (see equation 3.29). For lower values of N and higher values
of L, ∆ decreases and the effect of the fluid film becomes more important.
For negative values of ∆, the stiffness in the contact is fully governed by
the lubricant film. The situation resembles rigid isoviscous conditions. It
can be observed that the dimensionless load only asymptotically approaches
zero for infinite negative values of ∆. Due to the assumption of fully flooded
conditions the film thickness can become infinitely large. Hence, in contrast
to the Hertzian model, the EHL model does not predict loss of contact.

In noise-sensitive applications with grease lubricated deep groove ball bear-
ings, N usually varies between 5 and 100 and L between 5 and 15. This
implies that the lubricant film can have a noticeable effect on the stiffness
in the contact, especially in high speed applications. Due to the presence of
a lubricant film the clearance in the bearing decreases and the contacts are
pre-loaded by the film leading to a higher contact stiffness. As a result the
excitation forces caused by geometrical imperfections increase. A further im-
plication of the EHL stiffness model is that the resonance frequencies of the
ball bearing become dependent on the rotational speed. This effect, which
is absent when only the Hertzian stiffness is accounted for, is confirmed by
experiments (Dietl, 1997).
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3.5 Determination of EHL damping

In the EHL contacts of rolling bearings energy is dissipated via viscous losses
in the lubricant. Energy dissipation caused by hysteresis in the contacts can
be neglected. Due to the piezo-viscous effect in the high pressure region,
the fluid film is extremely stiff and the variation in film thickness remains
small. As a result hardly any energy is dissipated in the central region of the
contact in spite of the large viscosity. Instead, most of the energy is dissi-
pated in the entrance region. Although the viscosity is already rising in this
region, the piezo-viscous effect is still sufficiently small to provide enough
flexibility of the lubricant to allow reasonable film thickness variations. A
small amount of energy is dissipated also near the constriction in the exit
region of the contact.

It is assumed that energy dissipation in the lubricant can be modelled with
a viscous damper. The required viscous damping coefficient c has been
determined with the help of numerical solutions of the time dependent EHL
contact problem (Wijnant, 1998). Wijnant considered the damping under
isothermal and fully flooded conditions and derived an empirical relation
for the dimensionless viscous damping C, which is related to the physical
damping parameter c (in Ns/m) by:

C = c
avs

4FeR

K
E (3.46)

where a denotes half the Hertzian contact length in the direction of rolling,
vs the sum speed, R the reduced radius of curvature (see equation 3.15) and
Fe the elastic restoring part of the contact force. The parameters K and E
are the elliptic integrals of the first and second kind (see equations 3.20 and
3.21). Besides the dimensionless parameters N and L, the time dependent
EHL problem is also governed by a third parameter, i.e. the dimensionless
frequency, denoted by Λ. The dimensionless frequency is defined as the
product of the system natural frequency and the time required for a particle
to pass through half of the contact. The speed of a particle passing through
the contact equals half the sum speed vs. Hence, for the dimensionless
frequency Λ, it follows:

Λ =
aωn
πvs

(3.47)

where the quantity ωn denotes the natural frequency of the system in radians
per second. For the present study, results were available for Λ=1.0 and
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different values of N and L. The relation, obtained after curve-fitting, reads:

C(N,L) = r(L)Ns(L) (3.48)

where:

r(L) = 0.98 − 0.017L (3.49)

s(L) = −0.83 − 0.008L (3.50)

In Figure 3.11, the dimensionless damping C is plotted for a wide range of
N and L. It is observed that the dimensionless damping C(N,L) decreases
significantly with both N and L.

Figure 3.11: Numerical results of C(N,L) and the empirical relation of
equation 3.48 for Λ=1.0 and different values of N and L, (source: Wijnant,
1998).

To give an idea of the physical damping values in a 6202 deep groove ball
bearing, the damping coefficient c (in Ns/m) is plotted in Figure 3.12 as a
function of the viscosity η0. The damping is calculated for both the inner
and the outer contact. For Ω=1800 rpm (revolutions per minute), the sum
speed in both contacts equals vs = 2.25 m/s. For that, a contact angle of
13 degrees was assumed. The considered contacts are pre-loaded with 50 N.
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A list of the geometrical and the material properties of the bearing and the
properties of the lubricant is presented in Appendix C.

Figure 3.12: EHL damping as a function of the viscosity for the inner
(dashed line) and outer (solid line) contact of a DGBB 6202.

It can be seen in Figure 3.12 that in an EHL contact the increase in damping
is not quite proportional to the viscosity. From relation 3.48, it can be shown
that the damping in the model increases to the power of 0.55. This result
corresponds well with the value of 0.53 found in experiments by Dietl (1997).
Furthermore, it is observed that the damping in both the inner and outer
contacts of a DGBB 6202 are of the same order of magnitude.

3.6 Implementation of the EHL contact model

The EHL contact model, presented in this chapter, is used in the remainder
of this thesis to model the lubricated contacts in a ball bearing between the
rolling elements and the guiding rings (see Figure 3.13). In each contact,
the stiffness is described by a nonlinear spring and the damping by a linear
viscous damper.

The EHL stiffness model, as described by equation 3.43, is directly imple-
mented in the new bearing model, including the iterative process for the
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Figure 3.13: The lubricated contacts in a ball bearing are modelled with the
EHL contact model, presented in this chapter.

determination of the resulting contact forces. The differences between the
new EHL stiffness model and the Hertzian stiffness model for dry contact
are relatively small. Characteristic for the new model is the asymptotic be-
haviour for negative mutual approaches. This behaviour is inherent to the
assumption of fully flooded conditions.

The EHL damping model, as described by equation 3.48 is used as a pre-
process tool to determine the damping coefficients of the linear viscous
dampers in the contact. Although important aspects like starvation and
the effect of the frequency are not yet included in the model, it can be re-
garded as a first and important step to understand the damping behaviour
in EHL contacts.
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Chapter 4

Modelling of housings and

shafts

4.1 Introduction

A bearing application is considered consisting of a shaft and two deep groove
ball bearings mounted in housings. The bearings and the housings must give
sufficient static support to the shaft in order to provide positioning accu-
racy. As a result, they are relatively stiff. Nowadays, there is a tendency to
manufacture bearing housings out of aluminium because of lower production
costs. The bearing housings and the shaft are considered as potential noise
radiators in the application. The prediction of noise radiated from a bearing
application requires an accurate modelling of the dynamic behaviour of the
housings and the shaft and an accurate knowledge of the excitation of these
components by the bearings.

In most of the bearing models found in the literature, the inner and outer
rings are assumed to be rigid. By neglecting the flexibility of the outer ring,
the transfer of vibrations caused by the rotating rolling elements and the
geometrically imperfect bearing components to the surrounding structure is
not described sufficiently accurate. For this reason, in the present study the
bearing outer ring is treated as a flexible body. Taking into account the flex-
ibility of the outer ring is complicated, because the outer ring is subjected
to a number of rotating loads. The loads are caused by the contacts between
the raceway and the rolling elements. A model to predict the contact forces,
which also accounts for the lubricant, has been presented in Chapter 3.
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For the modelling of the dynamic behaviour of a general bearing applica-
tion, the engineer must generally resort to numerical techniques. A well
known numerical technique in structural dynamics is the so-called finite el-
ement method (FEM). In this method the considered structure is divided
into a finite number of elements defined by corresponding nodes. For each
element, simple shape functions are assumed. By prescribing a continu-
ous displacement field for the structure, a number of equations is obtained
which is proportional to the number of nodes. In a real application, it usu-
ally takes thousands of nodes with associated equations to obtain solutions
of a reasonable accuracy. Especially for the simulation of the time depen-
dent behaviour of complex structures, this may result in unacceptably long
computation times.

For noise radiation problems, however, one is usually only interested in
structural vibrations that may cause audible noise. In that case, the fre-
quency band of interest ranges from 0 Hz to 20 kHz. The human ear is most
sensitive to frequencies between 1 kHz and 4 kHz. After 10 kHz the sen-
sitivity decreases strongly. To limit calculation times in the present study,
the frequency band considered ranges from 0 Hz to 10 kHz. By limiting the
problem to this specific frequency band, the model can be reduced consid-
erably.

Figure 4.1: FEM model of an aluminium bearing housing containing an
outer ring of a deep groove ball bearing.
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A well known method to reduce the size of dynamic problems is the Ritz
method. In this method, the displacements of the structure are described as
a series of global shape functions. Often a structure consists of several sub-
structures or components. When the structure is divided into several com-
ponents and each individual component is described by the Ritz method,
then the method is referred to as component mode synthesis (CMS). In a
simple bearing application, usually two types of linear elastic components
can be distinguished: the bearing housings and the shaft. Both component
types can be modelled using a CMS technique.

Over the years, the development of CMS methods has resulted in several
standard methods. The shaft is modelled according to one of the exist-
ing methods. For the bearing housings and the outer rings, a new CMS
technique has been developed, which accounts also for the effect of rotating
contact loads. Some extra provisions are required when the bearing hous-
ing or the outer ring have the possibility to move as a rigid body. The
performance of the newly developed CMS method is evaluated by compar-
ing natural frequencies and normal mode shapes of the reduced model with
those of the original finite element model. Two examples are discussed, one
of the outer ring of a 6202 deep groove ball bearing that can move as a rigid
body and one of the same outer ring integrated in an aluminium housing.

4.2 Model reduction

In the Ritz method, the displacement field of the structure is approximated
by a linear combination of admissible shape functions. By choosing suitable
shape functions in the frequency range of interest, the size of the problem
can be reduced significantly.

Let us consider a component that is modelled using the finite element
method. The equations of motion for the component are given by

[M ]{ẍ} + [C]{ẋ} + [K]{x} = {F} (4.1)

where [M ] is the mass matrix, [C] the damping matrix and [K] the stiffness
matrix. The vector {F} contains the externally applied forces. Each node
of the finite element model has three degrees of freedom (DOF) i.e. the
displacement in each coordinate direction. The total number of equations
equals the number of finite element DOF. Following the Ritz method, the
displacement field of a component is written as a linear combination of
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suitable shape functions Ψ:

{x} = [Ψ]{p} (4.2)

The vector {p} contains the generalised DOF representing the contribution
of the different shape functions. The shape functions are stored column-wise
in the matrix [Ψ]. The number of generalised DOF is usually much less than
the number of finite element DOF. By substitution of equation 4.2 into 4.1
and after pre-multiplication with [Ψ]T , a new reduced set of equations of
motion is obtained:

[m]{p̈} + [c]{ṗ} + [k]{p} = {f} (4.3)

where the following relations apply for the reduced mass matrix [m], the
reduced damping matrix [c] and the reduced stiffness matrix [k]:

[m] = [Ψ]T [M ][Ψ] [c] = [Ψ]T [C][Ψ] [k] = [Ψ]T [K][Ψ] (4.4)

The reduced vector with externally applied forces obeys:

{f} = [Ψ]T {F} (4.5)

Once the solution is obtained for the reduced system, the displacements of
the original finite element system can be obtained by back-substitution in
equation 4.2.

When the assumed shape functions consist of the undamped natural mode
shapes in the frequency range of interest and when the model is proportion-
ally damped, the problem becomes decoupled. In that case the mass matrix
[m], the stiffness matrix [k] and the damping matrix [c] become diagonal.
This method is known as modal decomposition. Generally, with the Ritz
method, the system can be reduced from several thousands of finite element
DOF to dozens of generalised DOF or mode shapes. Obviously, the number
of required generalised DOF depends on the number of natural frequencies
that exist in the considered frequency range.

For the sake of completeness, Guyan’s reduction must also be mentioned,
which is based on simple Gauss elimination. It is assumed that, within
a certain frequency band, certain degrees of freedom, the so-called master
DOF, are more important than the others, the so-called slave DOF. When
the inertia of the slave DOF is neglected in the equations for the slave DOF,
the slave DOF can be written as a linear combination of the master DOF and
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a significant reduction is obtained. The method (see also Craig, 1981) was
originally developed to solve the eigenvalue problem for large finite element
models. It is also widely used in the field of experimental modal analysis
to construct Test Analysis Models (TAM). However, for most structures
Guyan’s reduction method very seldom leads to an efficient and accurate
reduction that is suited for a time dependent analysis. Hence, it was not
considered as a potential reduction method either for the shaft or the bearing
housings.

4.3 Component mode synthesis

4.3.1 Introduction to CMS

For a more efficient design process, mechanical structures are often subdi-
vided into substructures or components. The components are usually con-
nected to each other with well defined interfaces e.g. a rigid coupling or,
in case of a bearing, a coupling with the EHL springs presented in Chapter
3. In CMS, the reaction forces at the interfaces are usually referred to as
interface loads, here denoted by {Fb}. The DOF at the interfaces are clas-
sified as interface DOF and denoted by {xb}. The remaining internal DOF
are denoted by {xi}. When a mechanical structure has to be modelled, a
component-wise approach can be very advantageous since:

• it is easier to establish criteria for the dynamic performance of indi-
vidual components supplied by subcontractors.

• for reasons of efficiency, design modifications can best be evaluated at
a component level.

• the modelling and analysis at the component level can be left to sub-
contractors.

• identical components only need to be modelled once.

• the testing of a complete structure can be very expensive and some-
times even impossible, so that testing at the component level is the
only remaining option.

• the dynamical properties of components, which are difficult to model,
can possibly be identified by experiments.
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• large systems exhibiting nonlinear behaviour can be analysed more ef-
ficiently when decomposed into components that behave in a nonlinear
way, and components that behave in a linear way, because the latter
can be reduced significantly.

The challenge of CMS methods is to find a minimum set of shape functions
or component modes that accurately describe the dynamic behaviour of
the assembled system in the frequency range of interest. Because of the
component-wise approach, an optimum set of component modes should fulfil
two important conditions:

• The capability to describe the static solution, in order to account for
the effect of interface loads caused by the adjacent components.

• The generalised DOF of the reduced model must explicitly contain the
interface DOF in order to couple adjacent component models.

Component modes are intended to describe the dynamic behaviour of a
component in the assembled system. Consequently, they must also account
for reaction forces at the interface with connecting components and for ex-
ternally applied forces. Since the deformations caused by these forces are
usually of a local character, they are not well described by the lowest nat-
ural mode shapes of the component. Additional component modes, which
are referred to as the static mode set, are required to account for this effect.
In other words, with this extra mode set one must be able to describe the
local deformations of a component at its interface DOF. When applicable,
the static mode set also has to account for rigid body motions.

To enable an easy coupling between the different components after the re-
duction, the vector with generalised DOF of each component must explicitly
contain the interface DOF. In that way a time consuming transformation
to the original finite element DOF can be avoided. Furthermore, to fully
benefit from the component-wise approach, it must be possible to calculate
the component modes independently from other connecting components.
Occasionally, the component modes have to be obtained directly from mea-
surements. The evolution of CMS has brought forward many different types
of component modes. An overview of existing component modes is given in
Table 4.1. For a detailed description of the specific component modes, see
the references in the mentioned table.
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component modes method Literature reference

Redundant constraint modes fixed Hurty, 1965
Boundary constraint modes fixed Craig and Bampton, 1968
Fixed interface normal modes fixed Craig and Bampton, 1968
Free interface normal modes free Hou, 1969
Residual flexibility modes free MacNeal, 1971
Attachment modes free Hinz, 1975
Inertia relief modes free Hinz, 1975
Residual flexibility modes free Rubin, 1975
Boundary inertia relief modes fixed Craig and Chang, 1976
Precessional modes fixed Glasgow and Nelson, 1980

Table 4.1: Different types of existing component modes.

The complex terminology in CMS can be avoided by stating that most
CMS techniques can be subdivided into two categories. The subdivision
is based on the boundary conditions imposed at the interface DOF of the
components:

• Fixed interface methods

• Free interface methods

Each set of component modes usually consists of a static and a dynamic
mode set. In fixed interface methods, both the static and dynamic compo-
nent modes are calculated while keeping the interface DOF suppressed. In
free interface methods, the component modes are calculated while keeping
the interface DOF free. The number of modes in the static mode set is gov-
erned by the number of interfaces of the component. The number of normal
modes in the dynamic mode set is determined by the adopted frequency
range. In general, within a certain frequency range, only a limited number
of normal modes is required to obtain an accurate solution. These are the
kept normal modes. The normal modes that are omitted from the compo-
nent mode set are referred to as the truncated normal modes. Sometimes, in
the literature hybrid methods are also proposed, but these are merely a com-
bination of the two basic methods mentioned before. The use of undamped
normal modes is most efficient when the components are undamped, slightly
damped or proportionally damped.
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4.3.2 Fixed interface methods

The first developments in CMS were based on fixed interface methods, to
enable an easy coupling between connecting substructures. The principle of
fixed interface methods can most easily be explained by the beam problem
of Figure 4.2. The beam is modelled with finite elements. The interface
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Figure 4.2: Structure consisting of two beam components.

node of the beam has one translational DOF xb and one rotational DOF
ϕb. The beam is subdivided into two components, A and B. According to
the method of fixed interfaces, for each component, a component mode set
must be derived consisting of

• constraint modes

• fixed interface normal modes

The static deformations xb and ϕb caused by the reaction forces at the
interface DOF are described by means of constraint modes. A constraint
mode is the resulting displacement field of the beam component caused by a
unit displacement or rotation in one of the interface DOF while keeping the
other interface DOF zero. It is a static analysis. The first constraint mode
for the component on the left hand side (A), with xb=1 and ϕb=0, is shown
in Figure 4.3, the second constraint mode with xb=0 and ϕb=1 is depicted
in Figure 4.4
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Figure 4.3: First constraint mode with xb=1 and ϕb=0.
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Figure 4.4: Second constraint mode with xb=0 and ϕb=1.

The dynamic mode set consists of the normal modes having fixed interfaces
i.e. xb=0 and ϕb=0. The first fixed normal mode for the component is
shown in Figure 4.5. Similar modes must be calculated for the component
on the right hand side (B).
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Figure 4.5: First fixed normal mode with xb=0 and ϕb=0.

The number of fixed normal modes that is required for an accurate solution
is usually higher than the number of actual normal modes of the component
within the frequency range of interest. As a global indicator, it was stated
(Wang, 1981) that the frequency of the highest constraint normal mode
should be about 35% higher than the upper limit of the frequency band
of interest. However, a generalisation of this result is dangerous, since the
outcome depends to a large extent on the specific application. A verification
is recommended.

Because the normal modes suppress the interface DOF, the method is re-
ferred to as a fixed interface method. In the fixed interface method, the
interface DOF automatically appear in the vector with generalised DOF en-
abling an easy coupling with other components. In the past, several publica-
tions have appeared on this types of component modes, with the objective of
making the method more accurate, especially when rigid body motion is in-
volved. One of the most important contributions to fixed interface methods
came from Craig and Bampton and, therefore, the method is also referred to
as the Craig-Bampton method. Because of its simplicity and high accuracy,
their method has been applied successfully in many industrial applications.
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4.3.3 Free interface methods

The principle of the free interface method can also be explained by the
beam in Figure 4.2. For both components A and B, the component mode
set consists of

• Flexibility modes

• Free interface normal modes

A flexibility mode is the resulting displacement field of a component caused
by a unit force Fb or a unit moment Mb acting in one of the interface
DOF, while keeping all other interface DOF free. Just like constraint modes,
flexibility modes account for the static deformation of the assembled system
caused by the connecting interface loads between two components. The first
flexibility mode for the component on the left hand side (A), with Fb=1 and
Mb=0 is shown in Figure 4.6. The second flexibility mode with Fb=0 and
Mb=1 is depicted in Figure 4.7.
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Figure 4.6: First flexibility mode with Fb=1 and Mb=0.
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Figure 4.7: Second flexibility mode with Fb=0 and Mb=1.

The dynamic mode set consists of the free normal modes. The first normal
mode is depicted in Figure 4.8. For the component on the right hand side
(B) similar modes must be calculated.

One of the requirements for a proper component mode set is that the inter-
face DOF should appear in the vector with generalised DOF to enable the
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Figure 4.8: The first free normal mode.

coupling between the components. For free interface methods this requires
an additional transformation procedure in which the generalised DOF {pb}
corresponding to the flexibility modes must be replaced by the interface
DOF {xb}. It can be derived that:

{pb} = [Ψ−1
bb ,−Ψ−1

bb Ψbi]{xb} (4.6)

where the subscript b refers to interface DOF and the subscript i to internal
DOF.

An important improvement of the free interface method was achieved by the
introduction of residual flexibility modes rather than the flexibility modes
just described. The residual flexibility of a component represents that part
of the flexibility that originates from the truncated normal modes. The
residual flexibility matrix [Ga] can be estimated by considering the following
expression for the frequency response matrix of an undamped second order
system:

Hii(ω) =
Ne
∑

i=1

{Φi}{Φi}T
λ2
i − ω2

(4.7)

where λi is the ith natural frequency (rad/s) of the system and {Φi} the
corresponding normal mode shape. Since the system is described in nor-
mal coordinates, the frequency response matrix [H(ω)] becomes a diagonal
matrix. For the truncated modes, it is assumed that ω << λi so it follows
that:

Hii(ω) =

nk
∑

i=1

{Φi}{Φi}T
λ2
i − ω2

+
Ne
∑

i=nk+1

{Φi}{Φi}T
λ2
i

(4.8)

where nk is the number of kept normal modes. The last series in equation
4.8 represents the residual flexibility matrix [Ga]. It can be obtained by
subtracting the contribution of the kept modes from the flexibility matrix
[G] = [K]−1:

[Ga] = [G] − [Φk][Λk]
−1[Φk]

T (4.9)
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where [Λk] is the matrix with the kept eigenvalues λ2
k stored on the diagonal.

Next, the residual flexibility modes {Ψb} can be calculated by multiplying
the residual flexibility matrix [Ga] with the force vectors {Fb} of unit load
in each of the interface DOF:

{Ψb} = [Ga]{Fb} (4.10)

In the presence of rigid body motion, the flexibility matrix [G] = [K]−1 does
not exist and an alternative formulation is required (MacNeal, 1971). The
use of residual flexibility modes greatly improves the accuracy and conver-
gence of the free interface methods. The method using free interface normal
modes and residual flexibility modes is generally believed to most closely
meet the requirements for an optimum component mode set. Furthermore,
the method is well suited to the case in which the component modes are
to be obtained directly from measurements. However, the calculation of
residual flexibility modes is rather complicated and many commercial FEM
packages are not able to compute them, which makes the method less in-
teresting in an industrial environment. The latter is the main reason why
in the present study the fixed interface method is adopted. All component
modes were calculated with the finite element package ANSYS.

4.4 Component mode set for the housings

4.4.1 A new CMS method

The bearing housing together with the outer ring is treated as a single
component with linear elastic properties. The outer ring is subjected to a
number of rotating concentrated contact loads created in the EHL contacts
between the raceway and the rolling elements. Their constitutive behaviour
is described in Chapter 3. The outer ring and the housing are modelled with
the finite element method. For a time dependent analysis, the finite element
model obtained must be reduced. The CMS methods, presented in Sections
4.3.2 and 4.3.3, are not suited for the reduction of structures subjected to
rotating or moving loads, simply because the interfaces are assumed to be
located at fixed positions. For this reason, a new CMS method is developed,
in which an interface surface is defined at which moving interface loads can
be applied.

A characteristic of the contact problem in ball bearings is that the radial
component of the contact load is to a large extent determined by the actual
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position of the balls relative to the housing. The position is influenced by
the clearance and by geometrical imperfections on the contacting surfaces
in the bearing. The moving load problem for ball bearings is illustrated in
Figure 4.9.

interface surfaceinterface surface

Figure 4.9: Illustration of the moving load problem encountered in ball bear-
ings.

For a ball bearing, the whole raceway of the outer ring can be regarded as the
interface surface. Consequently, a component mode set based on constraint
modes or (residual) flexibility modes will not lead to an efficient reduction,
because the number of component modes is proportional to the number of
finite element DOF on the interface surface. However, by defining smooth
global functions that describe the deformation of the interface surface, a
more efficient CMS reduction is obtained.

Another drawback of the use of the constraint modes and flexibility modes
presented in Sections 4.3.2 and 4.3.3, is that they only describe the deforma-
tion of the interface surface in discrete points, i.e. the finite element nodes.
However, in general the point of contact does not match the exact location
of these nodes. To determine the deformation at each arbitrary location on
the interface surface, one must interpolate between different nodal results.
This approach was adopted by Nielsen and Igeland (1995), who investigated
a wheel-rail contact. Unfortunately, a method based on low order interpola-
tion is very sensitive to discretisation errors (Rieker, Lin, Trethewey, 1996).
In a transient analysis, local discretisation errors cause artificial excitations
that disturb the real dynamic behaviour of the application. To reduce the
discretisation error, a very fine FEM mesh, with element sizes close to the
dimensions of the contact area, must be used. Since this leads to extremely
large finite element models, this solution method has not been pursued any
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further. Also the use of high order interpolation schemes tends to become
very time consuming, because at each time step a new interpolation is re-
quired for all ball raceway contacts in the bearing. This can be avoided
by describing the deformations of the interface surface with smooth global
functions, which can be evaluated at each arbitrary location. Another ad-
vantage is that no artificial excitations are generated because the resulting
discretisation error is also a smooth continuous function.

F

Figure 4.10: For a concentrated load, the local deformations depend on the
mesh size.

The local deformations caused by the contact load are extremely sensitive
to the mesh size in the finite element model. A solution of reasonable ac-
curacy requires at least an element size smaller than the Hertzian contact
dimensions, thus leading to a large number of elements. A better solution is
to model the local contact deformations with dedicated contact models like
the ones based on Hertzian theory. In that case, the adopted CMS method
only needs to account for global deformations of the structure with charac-
teristic wavelengths much larger than the dimensions of the area containing
local deformations. By definition, constraint modes and flexibility modes
represent the displacements caused by point loads. Hence, for small mesh
sizes it can be expected that these modes also account for local deformations
which are already described by the dedicated contact models. By introduc-
ing global functions with characteristic wavelengths longer than the contact
area dimensions, this model discrepancy is avoided.

It has to be mentioned that the problem of linear elastic structures sub-
jected to moving or rotating loads frequently occurs in all kind of rotating
machinery. Applications for which the new CMS method can be applied are
e.g. gear contacts, cutting tools and wheel-rail contacts.
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4.4.2 Definition of a new component mode set

In this section, a new component mode set is determined for the bearing
housing based on the idea described in the previous section. In this new
CMS approach, the displacements of the outer raceway are written as series
of smooth analytical functions. The raceway is defined in the cylindrical
coordinate system depicted in Figure 4.11.
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Figure 4.11: Description of the outer raceway (shaded surface) with cylin-
drical coordinates.

In the Hertzian theory it is assumed that contact forces act normal to the
contacting surfaces. When friction forces are neglected, this also applies to
ball bearings, so the contact forces act perpendicular to the raceway surface.
To realise the coupling between the raceway and the rolling elements, the
vector with generalised DOF must contain explicitly the radial and axial
displacements of the raceway. Because there are no contact forces in the
circumferential direction, the displacements tangential to the raceway are
eliminated from the vector with generalised DOF. Since the vector with
generalised DOF explicitly contains the DOF corresponding to the analytical
series, the new component mode set can be classified as a fixed interface
method. The component mode set for the bearing housing consists of

• global constraint modes

• fixed interface normal modes

The global constraint modes account for the static deformation of the hous-
ing caused by the contact forces in the bearing. The global constraint modes
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are related to the analytical series that describe the radial and axial displace-
ments of the raceway. To obtain an efficient component mode set, orthogonal
series are introduced. In the circumferential direction Fourier series are used
and in both the radial and axial directions Chebyshev polynomials are ap-
plied. For an optimum performance, the Chebyshev polynomials are scaled
in the radial direction with the radius Ror and in the axial direction with
the distance Zor (see Figure 4.11).

uorr =
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∑
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∑
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ar(t) cos(nθ) cos(m arccos(
z

Zor
)) cos(l arccos(

r

Ror
)) +

+
Nr
∑

n=1

Mr
∑

m=0

Lr
∑

l=0

br(t) sin(nθ) cos(m arccos(
z

Zor
)) cos(l arccos(

r

Ror
)) (4.11)
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where ar, br, az and bz denote the new set of interface DOF of the housing,
i.e

{xb}T = {{ar}T , {br}T , {az}T , {bz}T } (4.13)

A global constraint mode is now defined as the resulting displacement field
of the housing caused by a prescribed displacement field of unit amplitude
in one of the generalised interface DOF ar, br, az or bz, while keeping the
others equal to zero. This means that each individual term in the series
provides one global constraint mode. All interface DOF end up explicitly in
the vector with generalised DOF of the housing, where they represent the
time dependent contribution of the corresponding modes . It is noted that
the series also account for rigid body motion by means of the first terms in
the series n=m=l=0,1. An example of a radial global constraint mode of
the housing is illustrated in Figure 4.12.

The Chebyshev polynomials can be written as polynomial expressions with
the trigonometric identities. Usually this is done by means of the recurrence
formula presented in Appendix B.1. Just like Fourier series, Chebyshev
polynomials satisfy certain orthogonality relations, which make them well
suited for use in the Ritz method. The calculation of trigonometric func-
tions can be very time consuming in computer programs. A lot of time can
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Figure 4.12: Radial global constraint mode of the bearing housing for n=4
and m=l=0.

be gained by storing frequently used functions and by using Clenshaw’s re-
currence formula. This is an efficient way to evaluate a sum of coefficients
multiplied with functions that obey recurrence formula. For completeness,
Clenshaw’s recurrence formula are presented in Appendix B.2.

The dynamic mode set of the housing consists of fixed interface normal
modes, i.e. the normal modes of the housing with radial and axial displace-
ments of the raceway suppressed. An example of the first fixed interface
mode is depicted in Figure 4.13.

In the case of a bearing application, a huge reduction of component modes
is obtained by truncation of the series. The degree of the Chebyshev poly-
nomials can usually be kept very small. The number of Fourier series is
governed both by the number of kept normal modes and by the ability of
the series to describe the static solution. Obviously, the static solution is
largely affected by the number of rolling elements in the bearing. The accu-
racy of the CMS method and the convergence of the series are investigated
in Section 4.5.3 for a realistic bearing housing.

The method presented in this section can also be applied to two-dimensional
problems. In that case, contact forces act only in the radial plane. Moreover,
from the geometry of the raceway, it follows that z=0 and r = Ror. As a
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Figure 4.13: First fixed interface normal mode of the bearing housing with
the DOF on the raceway being suppressed in both the radial and axial direc-
tions.

result, the series of analytical functions of equations 4.11 and 4.12 reduce to

uorr =
Nr
∑

n=0

ar cos(nθ)Ror +
Nr
∑

n=1

br sin(nθ)Ror (4.14)

The model accuracy of the CMS method for a two-dimensional problem was
also investigated by the author (Wensing and Nijen, 1996). Here, the CMS
method was applied to investigate the effect of waviness on the dynamic
behaviour of a bearing housing.

4.4.3 Rigid body motion

The calculation of the global constraint modes requires a number of static
analyses. To be able to calculate the static solution, boundary conditions
must be defined in all coordinate directions to prevent rigid body motions.
With CMS, boundary conditions are imposed on all the interface DOF. How-
ever, as already mentioned before it is assumed that no contact forces act in
the circumferential direction of the raceway and as a result the tangential
displacements do not appear in the vector with interface DOF. This means
that if there are no other interfaces with prescribed tangential displace-
ments, the global constraint modes cannot be calculated because the inverse
of the stiffness matrix [K] in equation 4.1 does not exist. This particular
problem is encountered when a ball bearing is mounted on a vibration test
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spindle and the outer ring is free to move as a rigid body in all six directions.

The problem of the missing inverse of the stiffness matrix is circumvented
by adding an arbitrary tangential DOF of the finite element model to the
vector with interface DOF:

{xb}T = {{ar}T , {br}T , {az}T , {bz}T , ut} (4.15)

The static mode set is then extended by an additional static mode describing
the displacement field caused by a unit displacement of the added tangen-
tial DOF, while keeping all other interface DOF zero. The same problem
is encountered in two-dimensional models. The accuracy of the presented
solution is investigated in Section 4.5.2 for a free bearing outer ring.

4.5 Performance of the new CMS method

4.5.1 Method of evaluation

Before studying assembled systems, the convergence and accuracy of the
newly developed CMS method is shown at the component level. The aim
of the evaluation is to investigate how many global constraint modes are
required to obtain the same modelling accuracy as in classical CMS meth-
ods. Moreover, all the components discussed in this section reappear in the
following sections as parts of assembled applications.

As a first example, the outer ring of a deep groove ball bearing is considered.
The bearing outer ring has six rigid body modes which, as was explained
in Section 4.4.3, requires an additional static mode. In a second example,
the outer ring of a deep groove ball bearing is considered integrated with an
aluminium housing.

The performance of the CMS methods is evaluated by comparing the lowest
natural frequencies with the corresponding normal modes of the reduced
component with those of the original finite element model. It is inherent
to the Ritz method that natural frequencies of the original model are over-
estimated. The accuracy of the natural mode shapes can be evaluated by
computing orthogonality [O] and cross-orthogonality [XO] matrices. It is
assumed that the normal modes are mass normalised. Matrix [Φ]fem con-
tains the normal modes of the finite element model and [Φ]red the normal
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modes of the reduced model.

[O] = [Φ]Tfem[m][Φ]fem (4.16)

[XO] = [Φ]Tfem[m][Φ]red (4.17)

To obtain a square matrix for [XO], the natural modes calculated from the
finite element model have to be expressed in the generalised DOF. The use
of the system’s mass matrix leads to a time consuming procedure. A much
faster method, which does not involve the mass matrix, is the calculation of
the Modal Assurance Criteria or MAC matrix.

MACij =

(

{Φi}Tred{Φj}fem
)2

(

{Φi}Tred{Φi}red
)

(

{Φj}Tfem{Φj}fem
) (4.18)

The orthogonality of the mode shape with respect to the mass matrix is
not validated with the MAC. However, in the case of a homogeneous mass
distribution, an accurate reduction still produces the identity matrix. In
the case of coinciding natural frequencies, the natural mode shapes of the
reduced system form a linear combination of the natural mode shapes of
the original finite element model. The subsequent elements in the MAC
matrix must be aggregated. The rigid body modes, for instance, reduce to
a single row or column in the MAC matrix. In the present work, the Modal
Assurance Criteria method is adopted.

The linear dependence and scaling of the component modes is checked by
applying a singular value decomposition on the matrix [Ψ]. When the sin-
gular values approach zero, the component modes tend to become linearly
dependent and the results become sensitive to numerical errors. In the exam-
ples presented the singular values are reasonably high and, hence, numerical
errors are expected to be small.

4.5.2 Example of a bearing outer ring

For the present investigation, the outer ring of a 6202 deep groove ball bear-
ing is taken. The bearing material is steel. The geometrical properties of a
DGBB 6202 are presented in Appendix C. The outer dimensions of the ring
are defined according to ISO standards (see also SKF’s General Catalogue).
The internal geometry is chosen by the ball bearing manufacturer and is of
a competitive nature.
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A finite element model of the bearing outer ring is built with solid brick
elements. The roundings and the shield groove are not modelled. The solid
brick elements used have quadratic shape functions. The resulting finite
element model contains 288 elements and 2,256 nodes. Each finite element
node contains 3 DOF, so the total number of DOF equals 6,768. The total
mass of the bearing outer ring is approximately 22 g. Because of symmetry,
the first two natural frequencies of the outer ring are accompanied by two
similar normal modes, which can only be distinguished by a phase shift in
the spatial domain. As a result, the natural vibrations of the outer ring
can be described by any linear combination of the two modes. In Figures
4.14 and 4.15, one of the normal modes is depicted for the first two distinct
natural frequencies of the outer ring.

Figure 4.14: Normal mode of a DGBB 6202 outer ring at 6,626 Hz.

Figure 4.15: Normal mode of a DGBB 6202 outer ring at 11,776 Hz.
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The finite element model is reduced using the CMS method presented in
Section 4.4. The outer ring is able to move as a rigid body and thus an
additional mode shape is required as explained in Section 4.4. The accu-
racy of the CMS reduction is investigated by varying the number of Fourier
terms Nr = Nz, and the number of Chebyshev polynomials Mr, Lr,Mz and
Lz in equations 4.11 and 4.12. Also, the number of fixed interface normal
modes H is changed. As a measure for the accuracy, in Table 4.2 the rel-
ative error ǫi of the ith natural frequency and the ith diagonal term of the
MAC matrix are calculated. When less than 21 generalised DOF are used,

f1 = 6,626 Hz f2 = 11,776 Hz

DOF Nr Mr Lr Mz Lz H ǫ1% MAC11 ǫ2% MAC22

21 2 1 0 0 1 0 0.94 0.99992 0.68 0.99997
31 2 1 0 0 1 10 0.84 0.99994 0.24 0.99999
41 2 1 0 1 1 10 0.15 0.99998 0.24 0.99997
41 2 1 1 0 1 10 0.82 0.99993 0.04 0.99999
51 2 1 1 1 1 10 0.07 0.99999 0.04 0.99999
61 2 2 1 1 1 10 0.03 0.99999 0.04 0.99999

Table 4.2: Convergence of the new CMS method for a DGBB 6202 outer
ring.

the error very quickly increases because then the basic shapes necessary for
the description of the normal modes are missing. The effect of harmonics
(Nr = 4) is very small because of the circular geometry. Moreover, it is ob-
served from Table 4.2 that the effect of fixed interface normal modes is very
small because the mass distribution is similar to the stiffness distribution.
The lowest natural frequency of the constraint normal modes equals 49 kHz.

From the investigations so far, it can be concluded that 21 generalised DOF
are sufficient to accurately model the dynamic behaviour up to 20 kHz.
However, in case of a bearing outer ring, the number of generalised DOF
is not only determined by the ability of the series to describe the dynamic
behaviour, but also by the ability to describe the static solution. Obvi-
ously, the static deformation depends on the interface loads applied by the
rolling elements. To incorporate the static deformation caused by the pass-
ing rolling elements, it can be expected that the number of Fourier terms
in equations 4.11 and 4.12 should be at least equal to the number of rolling
elements. For a DGBB 6202 this means that Nr = Nz ≥ 8. An investiga-
tion of the actual static deformation field of the outer ring loaded by eight
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rolling elements shows that at least a second order Chebyshev polynomial
is required for the radial displacement field.

The static deformation field of a DGBB 6202 outer ring is depicted in Fig-
ure 4.16. The ring is loaded with eight equally distributed interface loads at
the centre of the raceway (contact angle is zero). The axial and tangential
displacements of the loaded nodes are suppressed to obtain a statically de-
termined structure. Consequently, extensional deformations of the ring are
suppressed.

Figure 4.16: Static solution of a DGBB 6202, uniformly loaded by eight equal
contact forces.

So far, it can be concluded that in order to incorporate all the essential
deformations of the bearing outer ring with reasonable accuracy, at least 85
global constraint modes are required for the static mode set. It can also be
concluded that the extra mode shape required to enable rigid body motion
of the outer ring does not affect the overall accuracy of the CMS method.
For the bearing outer ring, the 35% criterion stated by Wang (see Section
4.3.2) would result in one fixed normal mode. This does not give satisfying
results. For the bearing outer ring at least three fixed normal modes are
required. The resulting number of generalised DOF equals 89.

4.5.3 Example of a bearing housing

In addition to the example of a bearing outer ring a typical bearing hous-
ing is considered. The bearing housing is made of aluminium and contains
the steel DGBB 6202 outer ring of the previous section. The outer ring is



70 Modelling of housings and shafts

connected to the housing by assuming compatible displacement fields. At
the bottom, a bolt fixture is assumed and the displacements of the bearing
housing are suppressed. The housing is modelled with solid brick elements
that have quadratic shape functions. The resulting finite element model
contains 1,312 elements and 7,278 nodes. The total number of active DOF
equals 19,832. The first two natural modes of the housing are illustrated in
Figures 4.17 and 4.18.

Figure 4.17: First normal mode of the aluminium housing at 5,529 Hz.

Figure 4.18: Second normal mode of the aluminium housing at 8,993 Hz.

Again the finite element model is reduced with the CMS method of Sec-
tion 4.4 and the number of Fourier terms, the number of Chebyshev terms
and the number of fixed interface normal modes are varied. In Table 4.3,
the relative error of the natural frequencies and the diagonal terms of the
MAC matrix are presented for the first two normal modes of the bearing
housing. Compared with the example of a bearing outer ring, the harmonics
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f1 = 5,529 Hz f2 = 8,993 Hz

DOF Nr Mr Lr Mz Lz H ǫ1% MAC11 ǫ2% MAC22

21 2 1 0 0 1 0 1.21 0.99960 12.0 0.97790
31 2 1 0 0 1 10 1.20 0.99959 10.3 0.98407
46 4 1 0 0 1 10 0.18 0.99999 2.00 0.99961
78 8 1 0 0 1 10 0.12 0.99999 0.36 0.99996
88 8 1 0 0 1 20 0.02 0.99999 0.30 0.99998
105 8 2 0 0 1 20 0.02 0.99999 0.24 0.99998

Table 4.3: Convergence of the new CMS method for the aluminium housing
with the DGBB 6202 outer ring.

Nr = 2, 4... have become much more important because the geometry of the
component is no longer axially symmetric. The influence of the fixed inter-
face normal modes has increased. This is also indicated by the frequency of
the lowest fixed interface normal mode, which is 24.7 kHz. Up to 20 kHz,
the housing has four more natural frequencies. However, the total amount
of constraint modes is still determined by the ability of the series to describe
the static deformation field. Just as for the outer ring, at least 85 global
constraint modes are recommended for the static mode set. In this study,
ten fixed interface normal modes were used for the dynamic mode set, leav-
ing a total of 95 generalised DOF for the complete housing. In Table 4.4
the relative error is given for all natural frequencies below 20 kHz based on
a reduction of up to 95 generalised DOF.

i frequency ǫi
1. 5,529 Hz 2e-4
2. 8,993 Hz 2e-3
3. 11,533 Hz 8e-4
4. 13,363 Hz 3e-3
5. 15,651 Hz 2e-3

Table 4.4: Error of the natural frequencies of the aluminium housing with
the DGBB 6202 outer ring after a CMS reduction to 95 DOF.

The results in Tables 4.4, 4.3 and 4.2 show the good performance of the
present CMS method. In all cases, a huge model reduction is obtained,
while the principal dynamic behaviour is still accurately described in the
frequency range of interest. This also includes the static solution.
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4.6 Component mode set for the shaft

Both CMS methods presented in Sections 4.3.2 and 4.3.3 are well suited
for the modelling of flexible shafts. In the present study, the fixed interface
method has been adopted, mainly because of practical reasons. The com-
ponent modes can be calculated directly using a commercial finite element
package. The component mode set for the shaft consists of:

• Fixed interface normal modes

• Constraint modes

The component modes also account for the rigid body motion of the shaft
in all six DOF. Optionally, inertia relief modes can be used to increase the
convergence and accuracy of the method (Craig and Chang, 1976).
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Figure 4.19: Geometry of the flexible shaft indicating the location of the
interface DOF.

The circular shaft shown in Figure 4.19 is made out of steel (ρ= 7800 kg/m3,
E = 210 · 109 N/m2) and weighs 0.628 kg. In the middle, the shaft diameter
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is somewhat larger to position the bearing inner rings. Gyroscopic effects
are neglected. The shaft was modelled in ANSYS with 80 beam elements
(PIPE16) of circular cross section. The total number of finite element DOF
equals 246. Three interface DOF are defined. Two interface DOF are used
for the coupling of the shaft with the bearings and one interface DOF is
used to apply external loads. As a result, the total number of constraint
modes equals 6x3=18. The number of fixed interface normal modes equals
16 and is based on the 35% rule proposed by Wang (see Section 4.3.2). The
final model is reduced from 246 finite element DOF down to 34 generalised
DOF.

In Table 4.5, the relative error ǫ is given between the first four natural bend-
ing frequencies of the reduced shaft model and the corresponding natural
frequencies of the original finite element model. Because the shaft is axi-

i frequency ǫi
1. 1,168 Hz 4e-5
2. 2,782 Hz 4e-5
3. 4,752 Hz 8e-4
4. 7,207 Hz 2e-3

Table 4.5: Relative error between the natural frequencies of the reduced
CMS model and the original FEM model of the shaft.

ally symmetric, all natural frequencies exist in pairs. Table 4.5 shows the
excellent performance of the applied CMS method.
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Chapter 5

Modelling of applications

A model is presented with which the dynamic behaviour can be studied of
a rotor dynamic application containing ball bearings (see Figure 5.1). The
equations of motion of the model are derived with the help of Lagrange’s
equations.

x

y

z

flexible shaft

flexible housing

Ω
flexible outer ring

rolling elements
inner ring

Figure 5.1: Model of a rotor dynamic application containing ball bearings.

The model consists of a flexible shaft supported by two similar deep groove
ball bearings both mounted in flexible housings. In the present approach
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the bearings and the housings are treated in a similar way from a modelling
point of view. For that reason, the equations of motion are presented only
for one bearing and one housing.

The outer rings of the bearings are flexible. The inner rings and the rolling
elements are assumed to be rigid, except for local deformations in the con-
tacts. The stiffness and damping in the lubricated contacts between the
rolling elements and the raceway are described using the contact model pre-
sented in Chapter 3. The contact model is used to couple the rotating shaft
with the fixed inner rings to the housings with the mounted outer rings.

The housing and the outer ring are treated as a single component with linear
elastic material properties. The connection between the outer ring and the
housing is described with a linear constitutive relation so that component
mode synthesis can be applied. The constitutive relation is implemented in
the finite element model with the help of constraint equations between the
DOF of the outer ring and the DOF of the housing at their joint interface.

Figure 5.2: Rigid body mode of the outer ring as a result of the “loose” fit
between the outer ring and the housing.

Often the bearing outer ring can move freely in the axial direction in order
to compensate for temperature effects of the shaft and for the application of
an axial pre-load to the outer ring of the bearing. In that case the bearing
outer ring has one rigid body DOF in the axial direction, as shown in Figure
5.2. The construction of an accurate constitutive model for the connection
between the outer ring and the housing bore is beyond the scope of this re-
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search. In the present model, it is assumed that one of the outer rings is free
to move in the axial direction. In the radial plane the ring is still connected
to the housing by equating the radial and the tangential displacements of
the outer ring to those of the housing at their joint interface.

For the other outer ring it is assumed that at the interface with the housing
all the displacements of the outer ring are equal to the displacements of the
housing. Each unit consisting of a housing and an outer ring is modelled
with solid elements. Their model size is reduced by component mode syn-
thesis and the dynamic behaviour is described by means of the generalised
DOF that represent the contributions of pre-defined component modes. For
the housing with the outer ring the new component mode set, presented in
Section 4.4, is applied.

The circular shaft in Figure 4.19 has linear elastic material properties and
rotates with a constant angular speed. The shaft is modelled with beam
elements. The model size is reduced with component mode synthesis as de-
scribed in Section 4.6. The inner ring of the bearing is press-fitted on the
shaft. Hence, it can be expected that the flexural deformations of the inner
ring are small. The only remaining significant deformations are the local de-
formations in the lubricated contacts. The inner ring is modelled as a rigid
body and its dynamic behaviour is described by three translational DOF
and two rotational DOF. The third rotational DOF of the inner ring is pre-
scribed, since the rotational speed of the inner ring is equal to the rotational
speed of the shaft. At the interface between the inner ring and the shaft, the
DOF of the inner ring are compatible with the generalised DOF of the shaft.

Apart from the local deformations in the lubricated contacts, the rolling el-
ements are modelled as rigid bodies. The dynamic behaviour of each rolling
element is described by translational DOF only, which means that the rota-
tional inertia of the rolling elements is neglected. The rolling elements are
guided by the cage and rotate about the central axis of the bearing with
an angular speed Ωc. The angular speed is proportional to the rotational
speed of the inner ring and depends on the internal geometry of the bearing.
Also, the rolling elements rotate with an angular speed Ωre about their own
central axis. In Figure 5.3 it can be observed that, if the rolling elements
operate at a contact angle α, the direction of the central axis of the bearing
and the direction of the central axes of the rolling elements do not coincide.
This causes gyroscopic forces and spinning motion of the rolling elements.
In Figure 5.3, the spin velocity is denoted by Ωs. Usually, the gyroscopic
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forces are resisted by friction forces and for that reason it is justified not to
include them in the model.

α
Ωc

Ωre

Ωs

α

Figure 5.3: Rotational velocities of a rolling element.

As a rule, the rolling elements are pressed between the inner and outer ring
of the bearing. The rolling elements are separated from the raceway by a
thin lubricant film. Each lubricated contact between a rolling element and
the raceway is described by a spring-damper model.

The stiffness in the contact can be represented by a nonlinear spring. Un-
der load the spring can take different contact angles. Because these contact
angles α are not necessarily small, they are not linearised and the contacts
become geometrically nonlinear. As a result of this nonlinearity second or-
der derivatives of the mutual approach do not vanish. In fact, they provide
an additional term in the stiffness matrix of the bearing. Due to this second
order effect, the rolling elements experience not only a stiffness in the direc-
tion normal to the contact but also in the tangential direction. The latter
implies that, in general, a force is required to change the contact angle in a
pre-loaded bearing. Because this second order effect is the only contribution
to the stiffness in the tangential direction, it cannot be neglected.

Since the tangential contact stiffness is much lower than the Hertzian stiff-
ness normal to the contact, it can be expected that the lowest resonances in
the bearing will have large contact angle variations. To be able to describe
the damping of these resonances, a linear viscous damper is introduced that
operates tangential to the contacting surfaces. To be able to describe the
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damping of resonances with large variations of the mutual approach a sec-
ond linear viscous damper is introduced operating normal to the contact
(see Figure 5.4).

Figure 5.4: The spring damper model that describes an EHL contact in the
three-dimensional bearing model.

The cage is not modelled as a structural element. Cages are relatively soft
elements in the bearing. Hence, the contact forces between the cage and
the rolling elements are expected to be small compared to the contact forces
between the rolling elements and the raceway. The omission of cage effects
greatly reduces the size and complexity of the bearing model.

5.1 Lagrange’s equations

The equations of motion that describe the dynamic behaviour of the com-
plete model can be derived using Lagrange’s equations. They read:

d

dt

∂T

∂{ṗ} − ∂T

∂{p} +
∂V

∂{p} +
F
∂{ṗ} = {f} (5.1)

where: T = kinetic energy
V = potential energy
F = Rayleigh’s dissipation function
{f} = vector with generalised external forces
{p} = vector with generalised DOF

The kinetic, potential and dissipation energies can be subdivided into the
contributions from the various components, i.e. from the shaft, from the in-
ner ring, from the housing with the outer ring and from the rolling elements.
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The total kinetic energy amounts to:

T = T sh + T ir + T ho +
Z
∑

j=1

T rej (5.2)

where Z equals the total number of rolling elements. The superscripts sh,
ir and ho refer to, respectively, the shaft, the inner ring and the housing
with the outer ring. The rolling elements are indicated by the superscript
re and the subscript j refers to the element under consideration.

The potential energy is provided by the elastic deformations of the shaft and
the housing with the outer ring and by the local elastic deformations in the
EHL contacts. The contacts between the rolling elements and the raceway of
the outer ring are indicated by the superscript oc and the contacts between
the rolling elements and the raceway of the inner ring by the superscript ic.
The potential energy reads:

V = V sh + V ho +
Z
∑

j=1

V ic
j +

Z
∑

j=1

V oc
j (5.3)

Rayleigh’s dissipation function contains the energy dissipated via material
damping in the structural elements and the energy dissipated via the EHL
contacts by the viscous losses in the lubricant. Local hysteresis in the EHL
contacts is neglected. For Rayleigh’s dissipation function it follows that:

F = Fsh + Fho +
Z
∑

j=1

F ic
j +

Z
∑

j=1

Foc
j (5.4)

The energy dissipated in the EHL contacts can be attributed to a damper
operating normal to the contacting surfaces and one operating in the tan-
gential direction (see Figure 5.4).

The generalised DOF {p} consist of the generalised DOF of the shaft and
the housing and the DOF of the rolling elements. It follows that:

{p}T = {{psh}T , {pho}T , {xre}T } (5.5)

In contrast with the generalised DOF of the housings and the shaft, the DOF
of the rolling elements are physical DOF. The potential energy and the dissi-
pated energy of the inner and outer contacts depend on the mutual approach
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between the centres of curvature of the contacting bodies. In order to derive
the final equations, the mutual approaches must be expressed in terms of
the generalised DOF {p}. In order to calculate the dissipated energy, the
time rate of change of the mutual approach must also be determined for
each contact.

5.1.1 Contribution of the inner ring

Apart from local deformations in the contacts, the inner ring is considered
as a rigid body. To describe the position and the orientation of the ring,
an inertial clockwise Cartesian reference frame is defined with axes x0, y0

and z0 and a second Cartesian frame is defined fixed to the inner ring with
axes x, y and z. The position of the origin of the moving frame relative to
the reference frame is described by three translational DOF, uirx , uiry and
uirz . The orientation of the moving frame relative to the reference frame

x

y

z

y
u

0

z0

x

u z u y
ir

ir

ir

x0

Figure 5.5: Definition of the coordinate frames and the translational DOF
of the inner ring.

is described by three angles, φir, ψir and θir. Following the definition of
Bryant angles, first, the inner ring is rotated by an angle φir about the x0-
axis, then by an angle ψir about the new y−axis, denoted by y1, and finally,
by an angle θir about the z−axis. The rotations are shown in Figure 5.6.
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x0,x1

y0

z0

y1

z1

y1,y2

z1

x1

z2

x2

z2,z

x2

y2

x
yψ θir ir

ψ ir θir

φir

φ ir

Figure 5.6: Definition of the rotational DOF according to Bryant by three
subsequent rotations.

The kinetic energy of the inner ring about its centre of mass is evaluated in
the x−, y−, z− frame. For the angular velocity vector we can derive:

{ω} = φ̇ir[Rθ][Rψ]{ex1} + ψ̇ir[Rθ]{ey2} + θ̇ir{ez} (5.6)

where {ex1}, {ey2} and {ez} are unit vectors along the x1−, y2− and z− axes.
Note that {ex1}={ex0}, {ey2}={ey1} and {ez}={ez2}. The two elementary
rotation matrices in equation 5.6 are given by

[Rθ] =





cos θir sin θir 0
− sin θir cos θir 0

0 0 1



 (5.7)

[Rψ] =





cosψir 0 − sinψir

0 1 0
sinψir 0 cosψir



 (5.8)

Substitution of equations 5.7 and 5.8 in equation 5.6 results in the following
expression for the angular velocity vector:

{ω} =







ωx
ωy
ωz







=







φ̇ir cosψir cos θir + ψ̇ir sin θir

−φ̇ir cosψir sin θir + ψ̇ir cos θir

θ̇ir + φ̇ir sinψir







(5.9)

The mass of the inner ring is denoted bymir and the mass moment of inertia
matrix in the principal direction is given by

[Iir] =





Iirx 0 0
0 Iiry 0
0 0 Iirz



 (5.10)
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The expression for the kinetic energy of the inner ring reads:

T ir = 1
2m

ir
(

u̇irx
2
+ u̇iry

2
+ u̇irz

2
)

+ 1
2

(

Iirx ω
2
x + Iiry ω

2
y + Iirz ω

2
z

)

(5.11)

The expression can be simplified because the ring is axially symmetric and
thus Iirx = Iiry . Furthermore, the angles φir and ψir are small and the

angular velocity around the z-axis is constant i.e. θ̇ir = Ωir. After these
simplifications the expression for the kinetic energy of the inner ring reads:

T ir = 1
2m

ir
(

u̇irx
2
+ u̇iry

2
+ u̇irz

2
)

+ 1
2I

ir
x φ̇

ir2 + Iiry ψ̇
ir2 +

+1
2I
ir
z

(

Ω2
ir + 2Ωirψ̇

irφir
)

(5.12)

where Iirz Ωirψ̇
irφir represents the gyroscopic effect. The term 1

2I
ir
z Ω2

ir is
constant and has no influence on the force balance.

5.1.2 Contribution of the rolling elements

The rolling elements are also considered as rigid bodies. For the determina-
tion of their contribution to the kinetic energy, the position of the jth rolling
element is described by two translational DOF, urerj and urezj, which means
that the mass moment of inertia of a rolling element with respect to its
mass centre is neglected. The translational DOF are defined in a cylindrical
coordinate frame, of which the origin coincides with the origin of the inertial
frame of the inner ring (see Figure 5.7). As a reference for the radial DOF
urerj the pitch radius Rp is taken.

u

Rp θj

z

r

rj
re

u zj
re

Figure 5.7: Definition of the coordinate frame with the translational DOF
of the rolling elements.
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No DOF’s are defined in the tangential direction. The tangential coordinate
θj of a rolling element is known because the rolling element set rotates at
a constant angular speed about the central axis of the bearing. In the
literature, the angular speed of the rolling element set is also referred to
as the cage speed. The relation between the angular speed of the rolling
element set, denoted by Ωc, and the inner ring or shaft speed, denoted by
Ωir, reads:

Ωc =
Ωir

2

(

1 − Rre cos(α)

Rp

)

(5.13)

where Rre is the ball radius and α the average contact angle of the rolling
elements. Due to the time dependent load distribution in the application,
α may vary in time. However, since a variation of α has only a very small
influence on Ωc, it is treated as a constant. For the tangential coordinate of
the jth rolling element, we can derive:

θj = Ωct+
2π

Z
(j − 1), j = 1..Z (5.14)

where t is the time coordinate and Z the total number of equally spaced
rolling elements. All rolling elements have the same mass, here denoted by
mre. The kinetic energy of the jth rolling element reads:

T rej = 1
2m

re
(

u̇rerj
2 + u̇rezj

2 + (Rp + urerj)
2Ω2

c

)

(5.15)

The last term on the right hand side of equation 5.15 also accounts for
centrifugal effects.

5.1.3 Contribution of the housing

The housing and the outer ring are modelled with the finite element method
(SOLID95, ANSYS) as one unit. Subsequently, the system matrices are
reduced with component mode synthesis. The dynamic behaviour of the
system is described with generalised DOF that represent the contributions
of pre-defined component modes, as defined in Section 4.4. The kinetic
energy of the bearing housing reads:

T ho = 1
2{ṗho}T [mho]{ṗho} (5.16)

The contribution of the flexible unit consisting of the housing and the outer
ring to the potential energy amounts to:

V ho = 1
2{pho}T [kho]{pho} (5.17)
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Usually in a flexible structure, a small amount of material damping is
present. In this study the material damping is modelled as proportional
viscous damping and, therefore, modal decoupling is allowed. The following
definition is used:

[cho] = [uho]−T [chod ][uho]−1 (5.18)

where [uho] is the matrix with eigenvectors, which is the solution of the re-
duced undamped eigenvalue problem. The matrix [chod ] is a diagonal matrix,
which contains the viscous damping coefficients ci for each decoupled modal
equation of the housing. The relation between ci and the dimensionless
damping constant ζi is given by

ci = 2ζimiωi (5.19)

where mi is the corresponding modal mass and ωi the corresponding un-
damped natural frequency in radians per second. For steel or aluminium,
common values for ζi range from 0.1% to 0.5%. The contribution of the
bearing housing to Rayleigh’s dissipation function finally reads:

Fho = 1
2{ṗho}T [cho]{ṗho} (5.20)

5.1.4 Contribution of the shaft

The axially symmetric shaft is modelled with beam elements (PIPE16, AN-
SYS). The system matrices of the shaft are reduced with component mode
synthesis and its dynamic behaviour is described with generalised DOF that
represent the contributions of pre-defined component modes as defined in
Section 4.3.2. The kinetic energy of a symmetric shaft rotating at a constant
angular speed Ω reads:

T sh = 1
2{ṗsh}T [msh]{ṗsh} + 1

2I
sh
z Ω2 (5.21)

where Ishz denotes the mass moment of inertia about the axis of rotation of
the shaft. In the present work, gyroscopic effects are neglected. For ways to
include gyroscopic coupling, the reader is referred to the literature (Childs,
1993).

The contribution of the flexible shaft to the potential energy amounts to:

V sh = 1
2{psh}T [ksh]{psh} (5.22)

In the shaft, a small amount of material damping is assumed. The same
damping model is adopted as for the bearing housings (see equations 5.18
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and 5.19). The contribution of the shaft to Rayleigh’s dissipation function
reads:

Fsh = 1
2{ṗsh}T [csh]{ṗsh} (5.23)

5.1.5 Contribution of the EHL contacts

The contact forces in the lubricated contacts can be divided into elastic
restoring forces and dissipative forces. The restoring forces contribute to
the potential energy and the dissipative forces contribute to Rayleigh’s dis-
sipation function.

The potential energy

The restoring contact forces Fe depend in a nonlinear way on the mutual
approach δ. The potential energy, obtained after integration, yields:

V =

∫ δ

0
Fe(δ

′)dδ′ (5.24)

In a dry contact, the restoring contact forces are described by means of
the Hertzian solution. For convenience this solution, given previously by
equation 3.19, is recalled:

Fe = κδ3/2H(δ) κ =
πǫE′

3K

√

2ER
K (5.25)

where H(δ) is the Heaviside step function. After substitution of equation
5.25 in equation 5.24, the following expression is obtained for the potential
energy of the jth inner contact:

V ic
j = 2

5κ
icδicj

5

2H(δicj ) (5.26)

For the jth outer contact, a similar expression is obtained. In the lubricated
contacts, the restoring forces are described by a dimensionless relation based
on a curve-fit of the results of numerical simulations. The relation, given
earlier by equation 3.43, reads:

∆(N,L) = 1 − p(L)N q(L) (5.27)

with:

p(L) =
(

(4 − 0.2L)7 + (3.5 + 0.1L)7
)

1

7 (5.28)

q(L) =
(

−(0.6 + 0.6(L + 3)−
1

2

)
1

7

(5.29)
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The quantity ∆ is the mutual approach between the contacting bodies scaled
on the Hertzian deformation and N is a dimensionless quantity, which is
proportional to the static load Fe. The parameter L is also dimensionless but
independent of the load. As opposed to the Hertzian solution, in equation
5.25, the contact load is not expressed as a function of the mutual approach
but the mutual approach is expressed as a function of the contact load. By
means of a coordinate transformation, the following formulation is obtained
for the potential energy of the inner contacts:

V ic
j =

∫ F icej

0
F ′
dδicj
dF ′

dF ′ (5.30)

A similar expression is obtained for the outer contacts.

Rayleigh’s dissipation function

The dissipation in the lubricated contacts is described by two linear vis-
cous dampers. One is acting normal and one tangential to the contacting
surfaces. The damping coefficient of the damper operating in the normal
direction is determined by a curve-fit relation derived from numerical solu-
tions. The relation, previously presented in equation 3.48, reads:

C(N,L) = r(L)Ns(L), C = c
avs

4FeR

K
E (5.31)

with:

r(L) = 0.98 − 0.017L (5.32)

s(L) = −0.83 − 0.008L (5.33)

where R denotes the reduced radius of curvature of the contacting bodies, a
half of the Hertzian contact length, vs the sum speed and K and E the ellip-
tical integrals of the first and second kind given by equations 3.20 and 3.21.
The contribution of the inner contacts to Rayleigh’s dissipation function
reads:

F ic
j = 1

2c
icδ̇icj

2
+ 1

2µcc
icτ̇ icj

2
(5.34)

For the outer contacts a similar expression is valid. The quantity τ̇ denotes
the time rate of change of the mutual approach in the direction tangential
to the contacting surfaces. With the constant µc, the contribution of the



88 Modelling of applications

tangential damper can be controlled. It shows a great similarity with gen-
eral friction coefficients.

For the inner contacts, we can write:

τ̇ icj = Dic
j α̇

ic
j (5.35)

whereD denotes the instantaneous distance between the centre of the rolling
element and the centre of curvature of the raceway groove (see Figure 5.8)
and α̇ denotes the time rate of change of the contact angle. A similar
expression is obtained for the outer contacts.

αic
j

D
ic
j

τ ic
j

Figure 5.8: Geometry at the inner ball-raceway contact.

The determination of µc from numerical simulations requires an extension
of the present EHL model. In this work µc is derived from measurements.
The results of these measurements are discussed in Chapter 6.

5.2 The mutual approach

The kinetic, potential and dissipated energy of the inner ring, the rolling
elements, the shaft and the unit consisting of the housing and the outer ring
are now expressed in terms of the generalised DOF {p}. The potential and
dissipated energy of the EHL contacts are expressed as a function of the
quantities δ, δ̇ and τ̇ . To obtain the equations of motion, these parameters
have to be expressed also in terms of the generalised DOF {p}.

The parameter δ is defined as the change in distance between the centre of
curvature of the raceway groove and the centre of the rolling element. Due
to the complex internal geometry of a ball bearing, the determination of δ
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results in complicated geometric algebra, which is not essential for under-
standing the essence of the present model. Hence, for a detailed derivation
the reader is referred to Appendix D.

To determine the contribution of the EHL contacts to Rayleigh’s dissipation
function, the time rate of change δ̇ and τ̇ have to be expressed in terms
of the generalised DOF. Due to the rotation of the contacts at a constant
angular speed, δ̇ and τ̇ become explicitly dependent on the time coordinate.
Hence, their time rate of change reads:

dδ

dt
= {ṗ}T ∂δ

∂{p} +
∂δ

∂t

dτ

dt
= {ṗ}T ∂τ

∂{p} +
∂τ

∂t
(5.36)

For the calculation of the partial derivatives, it is referred to Appendix E.
It can be observed that δ̇ and τ̇ are functions of both ṗ and p. This means
that (a small) part of the damping forces contributes to the stiffness matrix
of the bearing.

The displacements of the outer ring are described by the analytical series of
equation 4.11 and 4.12. For the calculation of the mutual approach in the
outer contact, the series have to be evaluated in the centre of curvature of the
outer raceway groove. This particular point is not part of the raceway (see
Figure 5.9). The radial and axial displacements of the centre of curvature of

r

z

Ror

Ro

Rog

uog
rj

uog

zj

Figure 5.9: Centre of curvature of the outer raceway groove.
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the outer raceway groove at the contact with the jth rolling element, yield:

uogrj =
Nr
∑

n=0

Mr
∑

m=0

Lr
∑

l=0

ar(t) cos(nθj) cos(m
π

2
) cos(l arccos(

Rog
Ror

)) +

+
Nr
∑

n=1

Mr
∑

m=0

Lr
∑

l=0

br(t) sin(nθj) cos(m
π

2
) cos(l arccos(

Rog
Ror

)) (5.37)

uogzj =
Nz
∑

n=0

Mz
∑

m=0

Lz
∑

l=0

az(t) cos(nθj) cos(m
π

2
) cos(l arccos(

Rog
Ror

)) +

+
N
∑

n=1

Mz
∑

m=0

Lz
∑

l=0

bz(t) sin(nθj) cos(m
π

2
) cos(l arccos(

Rog
Ror

)) (5.38)

The coefficients ar, br, az and bz denote the time dependent contribution
of the corresponding terms in the series. The parameter Rog is the radius
of the centre of curvature of the outer raceway groove. It is observed that
expressions 5.37 and 5.38 are independent of the contact angle α. This
strongly simplifies the modelling of the contact between the rolling elements
and the flexible outer ring.

5.3 Geometrical imperfections

The waviness imperfections on the rolling elements and on the raceways pro-
vide a time varying disturbance in the contacts. As a result excitations are
generated normal to the contacting surfaces. It is obvious that the ampli-
tude of the waviness is much smaller than the dimensions of the structural
elements. Hence, waviness does not contribute to the mass and stiffness
matrix of the outer ring, of the inner ring and the of rolling elements. Be-
cause the contacts are modelled as point contacts, they over-roll only one
waviness track on the raceway and on the rolling elements (see Figure 5.10).
To ensure harmonic excitations and to avoid aliasing effects, the waviness
tracks are developed into truncated Fourier series. The waviness tracks on
the inner raceway, on the outer raceway and on the rolling elements are each
over-rolled with a different speed.

The inner contacts

For the disturbance W of the mutual approach at the inner contact caused
by waviness on the jth rolling element, the following statistical relationship
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Ωre

Ωc

Ωir

Figure 5.10: Waviness excitation in a ball bearing.

is valid (see also equation 2.1):

W re
j =

Nb
∑

n=1

Aj
ns

cos(nΩret+ ϕn) (5.39)

The amplitude A has a Rayleigh distribution and it is defined by the pa-
rameter α (see equation 2.2). The phase ϕn is uniformly distributed over
the interval [0, 2π]. The exponent s describes the amplitude decay over the
subsequent wave orders. For each wave order, a new number is randomly
generated for A. Each rolling element has a different waviness profile. If
fmax is the upper bound of the frequency range of interest, then the maxi-
mum wave order Nb is given by:

Nb =
2πfmax

Ωre
(5.40)

The inner contacts are also disturbed by inner ring waviness. The distur-
bance of the mutual approach at the contact with the jth rolling element
due to waviness on the inner ring reads:

W ir
j =

Ni
∑

n=1

A

ns
cos(n(θj − Ωirt) + ϕn) (5.41)

The amplitude A in equation 5.41 is different from the one in equation 5.39.
In each contact the disturbance due to inner ring waviness is induced by
the same track, but at different instants or, in other words, at different
phase angles. The circumferential angle θj is given by equation 5.14. After
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including the effect of a non-uniform ball spacing, the expression for θj
becomes:

θj = Ωct+
2π

Z
(j − 1) +

ε

Rp
sin(Ωct) (5.42)

where ε is a measure for the distance between the cage centre and the centre
of the inner or outer ring (see also Figure 2.12). Note that the inner ring
waviness profile is over-rolled in the opposite direction. For the maximum
wave order Ni, it follows:

Ni =
2πfmax

(Ωir − Ωc)
(5.43)

The outer contacts

For the disturbance at the outer contacts due to waviness on the rolling
elements it follows

W re
j =

Nb
∑

n=1

Aj
ns

cos(n(Ωret+ π) + ϕn) (5.44)

The amplitudes Aj in equation 5.44 are the same as in equation 5.39. The
only difference between the two disturbances is a phase shift equal to π ra-
dians. As a result even waves of the rolling elements do not induce a net
disturbance.

The mutual approach in the outer contacts is also disturbed by outer ring
waviness. The disturbance in the outer contacts due to outer ring waviness
reads:

W or
j =

No
∑

n=1

A

ns
cos(nθj + ϕn) (5.45)

Also for outer ring waviness the disturbance in each contact is induced by
the same track. The maximum wave order No is given by

No =
2πfmax

Ωc
(5.46)

The waviness disturbances are superimposed on the mutual approach δ in
each inner and outer contact. For the calculation of the damping forces,
the time rate of change of the disturbances need to be determined also.
The resulting excitation force generated by waviness consists of two parts.
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The first part is generated by the rotating springs and the second part is
generated by the rotating dampers. Generally, the first part is dominant.
However, in the case of low loads and high damping values the contribution
of the second part becomes significant for high frequencies. Since these
conditions frequently occur in noise-sensitive applications, the effect of the
time rate of change must be included in the model.

5.4 The equations of motion

From the various energy contributions presented in the previous sections, the
equations of motion can be derived. Via Lagrange’s equations, the equations
of motion are obtained in terms of the generalised DOF {p}. For the shaft
and the bearing housings the generalised DOF represent the contribution
of pre-defined component modes. Each rolling element is described by two
physical DOF, one in the radial direction and one in the axial direction. The
inner ring is rigidly coupled to the shaft. So in the final model, the DOF
of the inner ring can be eliminated and replaced by the generalised DOF of
the shaft.

The housing and the outer ring

For the unit consisting of the housing and the outer ring the equations
of motion read:

[mho]{p̈ho} + [cho]{ṗho} + [kho]{pho} +
Z
∑

j=1

F ocej
∂δocj
∂{pho} +

+
Z
∑

j=1

cocδ̇ocj
∂δ̇ocj
∂{ṗho} +

Z
∑

j=1

µcc
ocτ̇ocj

∂τ̇ocj
∂{ṗho} = {fho} (5.47)

where {fho} is the vector with the generalised external forces acting on the
housing and the outer ring. The forces F ocej are the elastic restoring forces in
the outer EHL contacts, which can be derived from an expression similar to
the one in equation 5.30. The vector {pho} represents the contributions of
the global constraint modes and the fixed interface normal modes presented
in Section 4.4.

{pho}T = {{ar}T , {br}T , {az}T , {bz}T , {pfx}T } (5.48)

The contributions of the global constraint modes are denoted by the coeffi-
cients {ar}T , {br}T , {az}T and {bz}T . They account for the contribution of
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the analytical series presented in equation 4.11 and 4.12. The contributions
of the fixed interface normal modes of the housing are denoted by {pfx}.
For a description of the partial derivatives in equation 5.47 the reader is
referred to Appendix E.

The rolling elements

The dynamic behaviour of each rolling element is described by two transla-
tional DOF, one in the radial and the one in the axial direction:

{xrej }T = {{urerj}T , {urezj}T } (5.49)

The equation of motion for the radial DOF of the jth rolling element reads:

mreürerj + F ocej
∂δocj
∂urerj

+ cocδ̇ocj
∂δ̇ocj
∂u̇rerj

+ µcc
ocτ̇ocj

∂τ̇ocj
∂u̇rerj

+

+F icej
∂δicj
∂urerj

+ cicδ̇icj
∂δ̇icj
∂u̇rerj

+ µcc
icτ̇ icj

∂τ̇ icj
∂u̇rerj

= mreRpΩ
2
c (5.50)

The forces F icej are the elastic restoring forces in the inner EHL contacts to
be derived from equation 5.30. The equation of motion in the axial direction
reads:

mreürezj + F ocej
∂δocj
∂urezj

+ cocδ̇ocj
∂δ̇ocj
∂u̇rezj

+ µcc
ocτ̇ocj

∂τ̇ocj
∂u̇rezj

+

+F icej
∂δicj
∂urezj

+ cicδ̇icj
∂δ̇icj
∂u̇rezj

+ µcc
icτ̇ icj

∂τ̇ icj
∂u̇rezj

= 0 (5.51)

where mre denotes the mass of a rolling element. The right hand side vector
in equation 5.50 accounts for centrifugal forces acting on the rolling ele-
ments. The partial derivatives are presented in Appendix E.

The shaft and the inner ring

At the interface between the inner ring and the shaft, the displacements
and rotations of the inner ring are equal to the displacements and rotations
of the shaft. Therefore, the equations of motion for the inner ring can be
eliminated. The contribution of the inner ring is still accounted for in the
equations of motion for the shaft. They read:

([msh] + [mir]){p̈sh} + [csh]{ṗsh} + [ksh]{psh} +
Z
∑

j=1

F icej
∂δicj
∂{psh} +
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+
Z
∑

j=1

cicδ̇icj
∂δ̇icj
∂{ṗsh} +

Z
∑

j=1

µcc
icτ̇ icj

∂τ̇ icj
∂{ṗsh} = {f sh} (5.52)

where {f sh} is the vector with the generalised external forces acting on the
shaft. The vector may also account for forces due to imbalance of the shaft.
The generalised DOF {psh} represent the contribution of constraint modes
and fixed interface normal modes. The constraint modes are denoted by
px, py, pz, pφ and pψ and the fixed interface normal modes of the shaft
are denoted by {pfx}. Hence, the vector with generalised DOF of the shaft
reads:

{psh}T = {px, py, pz, pφ, pψ, {pfx}T } (5.53)

The matrix [msh] is the generalised mass matrix of the shaft. The matrix
[mir] is a diagonal matrix, which represents the mass contribution of the
inner ring to the shaft. The matrix reads:

[mir] =













mir 0 0 0 0
0 mir 0 0 0
0 0 mir 0 0
0 0 0 Iirx 0
0 0 0 0 Iiry













(5.54)

Because the inner rings are mounted on a thin shaft, the moments of inertia
of the shaft and the rings can be neglected. For that reason, gyroscopic
forces of the shaft and the inner rings are not accounted for.

5.5 Implementation in computer code

To make the equations of motion for the shaft, for the rolling elements, and
for the housing with the outer ring suitable for implementation in computer
code, they must be written in matrix notation:

[m]{p̈} + [ c ]{ṗ} + [ k ]{p} = {R(t)} − {F (p, ṗ, t)} (5.55)

The mass matrix [m], the damping matrix [c] and the stiffness matrix [k] are
constant and determined beforehand with component mode synthesis. The
vector {F (p, ṗ, t)} accounts for the nonlinear contact forces in the bearing,
which explicitly depend on time. The vector {R(t)} contains the external
forces {f} and the centrifugal forces of the rolling elements.
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To find a good initial approximation for the transient analysis, first, the
static solution is solved, i.e. the displacements of the application as a result
of the externally applied and centrifugal forces. The nonlinear equations
are solved using Newton-Raphson iteration. As a next step, the eigenfre-
quencies and the normal modes of the application are calculated based on
the linearised stiffness matrix that was obtained from the static solution.
Finally, the nonlinear equations of motion are numerically integrated with
the Newmark method, which is based on a constant-average acceleration
scheme (Bathe, 1982). The nonlinear equations are solved using a modified
Newton-Raphson iteration (For details, see Appendix F). Usually, before
the actual time interval is calculated, the simulation is run for some time to
allow transient effects to die out.

A schematic overview of the software developed for the present investigation
is given in Figure 5.11. First, the individual components are modelled with
the finite element method resulting in huge mass and stiffness matrices. The
geometry of the components is read from the binary output files provided by
the ANSYS program. In particular, the geometry of the raceway is needed
to prepare the load cases for the calculation of the static and dynamic com-
ponent mode sets. The dynamic mode set is calculated by solving the fixed
interface eigenvalue problem in the ANSYS program using subspace itera-
tion. The static mode set is determined with a static analysis. The mode
shapes are read from the binary output files of ANSYS and stored in a com-
ponent mode matrix. As a next step, the large finite element matrices are
reduced with the just obtained component mode matrix. The symmetric el-
ement matrices are treated one by one to avoid the storage of the complete
system matrices.

The reduced system matrices are read by the main program, which reassem-
bles the components, using the EHL contact model, and solves the obtained
equations. Other input data for the main program are the bearing geome-
try, given in Appendix C, the waviness tracks of the rings and the rolling
elements, as defined in Chapter 2 and the operating conditions like the rota-
tional speed of the shaft and the magnitude of the externally applied loads.
The output of the main program are the generalised coordinates {p} as a
function of time. To retrieve the calculated response in terms of the original
finite element DOF, the solution vector is multiplied with the component
mode matrix. The obtained result can be used for vibration analyses. With
the help of the original finite element models, a graphical simulation module
is built, with which the time dependent behaviour can be studied.
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Figure 5.11: Schematic overview of the computer software developed.
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Chapter 6

Experimental Validation of

the bearing model

6.1 Vibration test spindles

After the ball bearings are assembled, their quality is tested on a vibration
test spindle, to ensure silent running in the application. The test complies
with the ANSI/AFBMA Standard 13-1987, an international standard, which
prescribes a vibration testing method for ball bearings. The test must be
performed under well defined conditions so that external influences are lim-
ited. Under such conditions, a computer simulation of the test requires only
the modelling of the bearing to be tested. This makes the test very well
suited for validation of our bearing model with experiments.

In the present investigation, two different spindle configurations are used.
The standard test is usually performed on a spindle, which is supported by
hydrodynamic bearings, rotating at a fixed angular speed. The spindle is
connected to an electric motor by means of a belt tension unit as shown in
Figure 6.1. The inner ring of the bearing to be tested is mounted on the
rotating spindle. The spindle is designed in such a way that it represents a
fixed reference frame for the central axis of the inner ring. In the standard
test, the spindle rotates at 1800 rpm (±2%) for test bearings with an outer
diameter of up to 100 mm. Due to the relatively large mass of the spindle,
a constant angular speed is maintained within the required accuracy range.
The outer ring of the bearing to be tested is free and subjected to a constant
externally applied axial load. The load is applied by means of air pressure.
To ensure freedom of motion of the outer ring in all directions, the load-



100 Experimental Validation of the bearing model

111111111111111
111111111111111
111111111111111
111111111111111

3
3
3
3
3

3
3
3
3

111111111111111
111111111111111

77
77
77
77
77

77
77
77
77

3333
3333
3333
3333

3333
3333
3333
3333

3333
3333
3333
3333

3333
3333
3333
3333

77777777
77777777

77777777
77777777

&&&&
&&&&
&&&&
&&&&
&&&&
&&&&
&&&&
&&&&
&&&&

7
7
7

electric motor

belt
loading tool

velocity pickup

hydrodynamic bearings

spindle

test bearing

F

Figure 6.1: Scheme of the hydrodynamic test spindle for standard vibration
testing of ball bearings.

ing tool is equipped with a soft rubber material. At the interface with the
bearing, the rubber contains a steel ring to avoid misalignment of the test
bearing.

The standard test prescribes 4 different load levels dependent on the size of
the bearing to be tested. For small deep groove ball bearings the standard
load is 60 N. The radial load on the bearing must be less that 1.1 N and the
misalignment angle less than 3 minutes of arc. The eccentricity of the load-
ing device should be less than 0.25 mm. The vibrations of the bearing outer
ring are measured in the radial direction with a velocity pickup. According
to the international standard, the vibrations are represented in terms of the
root mean square (rms) velocity. Since the kinetic energy is proportional to
the square of the velocity, the root mean square average of the velocity is a
better measure for the energy content of the vibration signal than its peak
value.

In the present research, also a high speed spindle, of which the rotational
speed can be varied, was used. The maximum speed of the spindle is ap-
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proximately 8500 rpm. The high speed spindle is supported by aerostatic
bearings. The spindle acts at the same time as the rotor of an electric mo-
tor as shown in Figure 6.2. For the determination of the frequency response
functions of the bearing, the loading tool is extended with a soft wave spring,
to avoid damping effects from the rubber loading tool. The radial and axial
vibrations of the bearing outer ring and the axial vibrations of the motor
casing are measured with accelerometers.
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Figure 6.2: Scheme of the high speed air test spindle for vibration testing of
ball bearings.

Usually, the quality of the bearings is quantified by the rms velocity in three
different frequency bands, i.e. the low band (50-300 Hz), the medium band
(300-1,800 Hz) and the high band (1,800-10,000 Hz). The question now
arises of whether these velocities are indeed representative for the actual vi-
brational behaviour of the bearing in the application. In the low frequency
band quasi-static conditions apply. Under these conditions, a clear relation
between the excitation forces in the bearing and the band power exists. In
the medium and high frequency band the behaviour is much more com-
plex due to the presence of resonance frequencies. In general, resonance
frequencies are determined by the properties of both the bearing and the
application. In the vibration test it is assumed that the bearing is mechan-
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ically decoupled from the spindle and the loading tool. Here, the resonance
frequencies are solely determined by the properties of the bearing. The am-
plitude of vibrations with the resonance frequency is bounded by the amount
of damping available. It is assumed that most of the damping is generated
by the lubricant film. Therefore, it is expected that the velocities in the
medium and high frequency bands be very sensitive to the properties of the
lubricant, in particular its viscosity.

6.2 Description of the simulations

The bearing tested was a 6202 deep groove ball bearing. The geometrical
and material properties of the bearing are presented in Appendix C. Be-
cause the inner ring is assumed to be rigidly connected to the spindle, the
displacements of the inner ring are taken equal to zero. This eliminates the
five equations of motion for the inner ring. The response of the bearing
is usually determined on the outer ring. The bearing model, used in the
numerical simulations, is shown in Figure 6.3.

x
y

z
Ω

sensor location

Figure 6.3: The ball bearing model used for simulations of the vibration test.

The outer ring of the bearing was loaded with a uniform axial load equal
to 60 N. The flexibility of the outer ring is described with harmonics, of
up to 16 waves per circumference. This accurately describes the first and
second harmonic of the ball pass frequency. In the present investigation, the
following excitation mechanisms were considered:

• variable compliance

• inner ring waviness
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• outer ring waviness

• ball waviness

• cage run-out

The inner ring, the outer ring and the rolling elements all contain geomet-
rical imperfections. In the model, account was also taken of unavoidable
statistical variations of the imperfections. The non-uniform spacing of the
rolling elements due to run-out of the cage was studied for both steel and
plastic cages. Ball diameter variations were not considered in the present
investigation. They mainly generate low frequency vibrations, which are less
important in (audible) noise-related problems.

To minimise transient effects at the start of the simulation, the static solu-
tion is used as an initial condition. The static deformation field of an axially
loaded ball bearing, as shown in Figure 6.4, is dominated by extensional and
flexural deformations of the outer ring with 8 waves per circumference. For

x

y

z

Figure 6.4: Static deformation field of an axially loaded ball bearing with
geometrical imperfections mounted on the vibration test spindle.

clarity, the deformations are strongly exaggerated. The actual extensional
deformation of the outer ring is of the order of 100 nm and the amplitude
of the flexural mode is approximately 20 nm. Furthermore, it is observed
that the symmetry of the statically deformed outer ring is disturbed by the
presence of the geometrical imperfections.
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An accurate vibration analysis of waviness requires a sufficient resolution in
the frequency domain. For the investigations in the low frequency band, a
resolution of 0.3 Hz was aimed at. During the simulations, a total of 30,000
time steps were calculated corresponding to 10,000 samples per second. For
investigations in the medium and high frequency bands the resolution was
1 Hz. Here, a total of 200,000 time steps were calculated corresponding to
200,000 samples per second. Before the actual time signal was collected,
a simulation was run for some time to allow transients effects to die out.
In Figure 6.5, the instantaneous deformation field of the bearing is shown
at some arbitrary point in time. For reasons of visualisation, the static
deformation field of Figure 6.4 was subtracted from the actual solution.

y
x

z

Figure 6.5: Snapshot of the time dependent solution of a rotating ball
bearing after subtraction of the static deformation field.

The predicted radial response at the sensor location (see Figure 6.3) is plot-
ted in Figure 6.6. To analyse the complex time signals, a Fast Fourier
Transform was performed and a Hanning window was used to avoid signal
leakage in the frequency domain. The loss of energy caused by the Han-
ning window was compensated for by multiplying the vibration signal by
a factor of

√

8/3 in order to obtain the same moduli (de Kraker, 1992).
After the Fourier transform was obtained, the spectral contributions of the
displacement signal were multiplied by π

√
2f to obtain the rms velocities.

The Fourier spectrum in the low frequency band of the signal in Figure 6.6
is shown in Figure 6.7.
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Figure 6.6: Predicted radial displacement at the sensor location on the outer
ring of a DGBB 6202 for Ω = 1800 rpm.
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Figure 6.7: Predicted vibration spectrum of the radial velocity on the outer
ring of a DGBB 6202 for Ω = 1800 rpm.
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The most important peaks in the spectrum of Figure 6.7 are the ball pass
frequency (bp1) at 92 Hz, the second harmonic of the ball pass frequency
(bp2) at 184 Hz and the response of the outer ring due to inner ring ovality
(ir2) at 60 Hz.

6.3 The low frequency band

6.3.1 Vibration generation due to waviness

The waviness profiles for the inner and outer rings and the rolling elements
are each described by Fourier series, as presented in equations 2.1 and 5.39.
For the waviness imperfection W it follows that:

W (θ) =
Nw
∑

n=1

A

ns
cos(nθ + ϕn) (6.1)

The phase angle ϕn has an arbitrary value between 0 and 2π. The parame-
ter s describes the amplitude decay of subsequent harmonics. For vibrations
generated in the low frequency band, only the first twelve waves are of impor-
tance. From surface measurements it was found that for low wavenumbers
the amplitude decay of inner ring profiles is quadratic, which means s = 2
(see Figure 2.9). It is assumed that this also applies to the outer ring and
the rolling elements.

The quantity A denotes the magnitude of the first harmonic. It has a
Rayleigh distribution and is described by the stochastic property α (see
equation 2.2). The magnitude A can be determined by the following rela-
tion:

A =
√

A2
c +A2

s (6.2)

where Ac denotes the amplitude of the cosine term and As the amplitude
of the sine term. Both Ac and As have normal distributions with equal
standard deviations σc= σs=(2α)−1.

When the stochastic properties of a normal distribution are known , one
can calculate the number of samples required to obtain results with a cer-
tain statistical accuracy and probability. In the present investigation, the
number of collected bearing samples was limited to 10. The total number
of rolling elements in the case of DGBB 6202’s (Z=8) was 8 x 10 = 80. It
can be shown that for 10 samples, the standard deviation has an error of
31% with 95% confidence. In the present study, this applies to inner and
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outer ring waviness. For 80 samples the error in the same confidence interval
equals 11%. This applies to the waviness on the rolling elements.

Predictions

For all present waviness profiles, the standard deviation σc ≈ 0.5µ, where µ
denotes the mean value of A. From surface measurements it emerged that µ
≈ 30 nm for the inner and outer rings. For ball waviness, µ was about five
times smaller. In Figure 6.8, the predicted velocity spectrum is shown of the
radial vibrations of the outer ring generated solely by inner ring waviness.
The numbers in the figure refer to the individual wavenumbers.
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Figure 6.8: Predicted velocity spectrum of the radial vibrations on the outer
ring of a DGBB 6202 caused by inner ring waviness at Ω = 1800 rpm.

The most important peaks in the spectrum of Figure 6.8 are related to oval-
ity n=2 at 60 Hz, n=7 at 117 Hz and n=9 at 177 Hz. The latter two peaks
correspond to rigid body vibrations of the outer ring. For the complete list
of spectral peaks, see Table 2.1 with ω = 2πf .

The predicted radial vibrations of the outer ring generated by ball waviness
n = 2 are shown in the velocity spectrum of Figure 6.9. The numbers in
the figure refer to the integer k, which is associated with the mode of the
vibration. The most important peaks for k = ±1 at 108 Hz and 131 Hz
correspond to rigid body vibrations. Note that the frequency of the spectral
peaks is independent of the number of rolling elements Z.
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Figure 6.9: Predicted velocity spectrum of the radial vibrations on the outer
ring of a DGBB 6202 caused by ball waviness at Ω = 1800 rpm.

In general, the effect of outer ring waviness differs from the effect of inner ring
and ball waviness. Because the sensor does not move relative to the outer
ring, the vibrations generated by outer ring waviness are not modulated.
As a result the individual wavenumbers do not generate vibrations with
unique frequencies. Outer ring waviness generates vibrations with the ball
pass frequency and harmonics of the ball pass frequency. In Figure 6.10 the
sensor is placed at different locations along the circumference of the outer
ring and the vibration amplitude is predicted at the ball pass frequency.
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Figure 6.10: Predicted amplitude of the ball pass frequency as a function of
the circumferential position on the ring at Ω = 1800 rpm.
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The vibration amplitude strongly varies with the circumferential coordinate
on the ring. This means that the location of the sensor is critical for mea-
suring outer ring waviness. In general, for DGBB 6202’s, the low frequency
band is dominated by the ball pass frequency. Hence, the velocity of the low
band also depends strongly on the location of the sensor. Furthermore, for
a DGBB 6202, the amplitude of the ball pass frequency strongly depends
on the axial coordinate of the outer ring. This is a consequence of the static
deformation field of the outer ring as a result of eight equal uniformly dis-
tributed contact forces (see Figure 4.16).

Comparison with measurements

To increase the signal-to-noise ratio in the measurements, a high pass filter
is often used to suppress the dominant effect of the rotation frequency of the
spindle. As a result, frequencies up to 50 Hz are distorted and, therefore,
omitted in the presented results. A measured velocity spectrum in the low
frequency band of the outer ring of the bearing is shown in Figure 6.11. The
measured spectrum can be compared with the predicted spectrum in Figure
6.7.
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Figure 6.11: Measured velocity spectrum of the radial velocity on the outer
ring of a DGBB 6202 at Ω = 1800 rpm.

Also in the measurements the most important peaks are the ball pass fre-
quency (bp1) at 92 Hz, the second harmonic of the ball pas frequency (bpf2)
at 184 Hz and the response of the outer ring due to inner ring ovality (ir2)
at 60 Hz.
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To investigate the statistical variations in the frequency spectra, a batch of
10 bearings was measured and simulated. In Table 6.1, the mean value µ and
the standard deviation σ of the measured and predicted spectral velocities
are presented for vibrations generated by waviness on the inner ring, on the
outer ring and on the rolling elements. For ball waviness, the rms velocity
was calculated for all values of k (see Table 2.1).

vibration source n µmeas σmeas µpred σpred

outer ring waviness 4..11 24.3 7.0 28.0 2.6
12..19 9.6 4.7 10.5 0.7

inner ring waviness 2 15.5 8.2 14.3 6.3
3 3.2 1.7 3.5 2.5
4 1.0 0.6 1.0 0.5
5 2.0 0.8 1.2 0.6
6 2.1 1.1 2.7 1.4
7 4.9 3.2 2.4 1.9
9 3.4 1.6 2.7 1.2
10 1.7 0.9 2.3 0.9

ball waviness 2 5.3 3.3 5.7 1.7
4 4.2 1.3 2.9 0.5

low band all 35.8 6.9 35.3 4.1

Table 6.1: Measured and predicted spectral velocities (µm/s) in the standard
vibration test due to different waviness orders n at Ω = 1800 rpm.

In the table, it can be observed that, although the imperfect surfaces are
described using only a few parameters, a significant statistical agreement is
obtained between measured and predicted results. The differences between
the measurements and predictions are always less than the corresponding
standard deviations. The statistical variations of vibrations generated by
outer ring waviness are much smaller than for vibrations generated by inner
ring and ball waviness. This is explained by recalling that also a perfect
bearing generates vibrations at the ball pass frequency (and harmonics) as
in the case of outer ring waviness.

6.3.2 Determination of cage run-out

It is assumed that the non-uniform spacing of the rolling elements can be
attributed to a small run-out of the cage (see also Figure 2.12). At low
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speeds, the run-out is largely determined by the clearances in the bearing.
With respect to the clearance, it is important to know whether the cage is
inner ring-, outer ring-, or ball-guided. All cages used in the present study
are ball-guided, which means that the total clearance of the cage is deter-
mined by the clearances in the cage pockets. For the investigation on the
effect of different cages, both steel and plastic cages were used.

Predictions

With the help of the numerical model, the run-out parameter ε can be deter-
mined from vibration measurements. In Figure 6.12 the predicted velocity
spectrum is shown of the radial vibrations on the outer ring of a perfect
bearing with a small run-out of the cage ε = 0.1 mm.
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Figure 6.12: Predicted velocity spectrum of the radial vibrations on the outer
ring of a DGBB 6202 at Ω = 1800 rpm, caused by a small run-out of the
cage.

The most important peaks in the spectrum are the cage frequency at 11 Hz,
the ball pass frequency (bp1) plus and minus the cage frequency at 81 Hz
and 103 Hz and the second harmonic of the ball pass frequency (bp2) plus
and minus the cage frequency at 173 Hz and 195 Hz. The complete list of
vibrations generated by cage run-out is presented in Table 2.1.

Measurements

The radial vibrations were measured on the outer rings of 20 bearings, of
which 10 had plastic cages and 10 had steel cages. For each bearing, the
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Figure 6.13: The vibration velocity as a function of ε for a DGBB 6202 at
Ω = 1800 rpm.

rms velocity was determined for the vibrations generated by cage run-out .
In Table 6.2, the mean values of the velocities are presented together with
the corresponding standard deviations. In the table, it can be observed that
steel cages cause much higher vibration amplitudes than plastic cages. Also,
the statistical variations are much higher for steel cages.

cage material µmeas σmeas
steel 2.7 2.4
plastics 1.2 0.4

Table 6.2: The measured rms velocities on the outer ring of a DGBB 6202
with steel and plastic cages, Ω = 1800 rpm.

To determine the run-out parameter ε for the steel and plastic cages, the
vibration velocity was predicted as a function of ε (see Figure 6.13). The
predictions result in a linear relationship between the run-out and the vi-
bration velocity, because for small run-outs the pre-loaded bearing behaves
in a linear way.
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In Figure 6.13, the measured average velocities for the steel and plastic
cages are marked. It can be deduced that for steel cages the run-out must be
approximately 285 µm and for plastic cages 125 µm. From the results, it can
be concluded that steel cages have larger cage pocket clearances compared
to plastic cages. Moreover, considering the standard deviations, it seems
that the manufacturing accuracy for plastic cages is higher than for steel
cages.

6.4 The natural modes of the bearing

6.4.1 Predicted natural frequencies

The lowest natural frequencies of the bearing all lie in the medium and high
frequency bands. Hence, it could be expected that these frequencies show up
in the vibration characteristics of the bearing in these bands. The natural
frequencies and the corresponding normal mode shapes can be predicted by
solving the undamped eigenvalue problem. In this eigenvalue problem, the
generalised mass matrix and the stationary part of the generalised stiffness
matrix must be used. In Figure 6.14, the natural frequencies and the normal
mode shapes are presented for a DGBB 6202. The bearing is subjected to
an externally applied axial load of 60 N. The inner ring of the bearing is
fixed. The geometrical and material properties of the bearing are presented
in Appendix C.

The first two normal modes are the so-called rocking or tilting modes, in
which the bearing rotates out of the radial plane. In the case of a geometri-
cally perfect bearing, both natural frequencies coincide. Due to additional
deformations in the contact, which are the result of geometrical imperfec-
tions, the contact stiffness is changed. Hence, in the presence of geometrical
imperfections, the natural frequencies of the rocking modes are slightly dif-
ferent. When the normal modes are scaled to unit length, the modal mass
of the rocking modes is half the mass of the outer ring. Nevertheless, their
natural frequency is very low because of the extreme low stiffness for rota-
tions.

The third normal mode is a single one, in which the bearing oscillates in the
axial direction. The modal mass is approximately equal to the mass of the
outer ring. The next eight normal modes are the so-called rolling element
modes. They can exist due to the low stiffness in the direction tangential to
the contacting surfaces. Each individual rolling element mode has a char-
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rocking mode: 0.7 kHz (2x) axial mode: 3.0 kHz (1x)

ball mode: 4.0 kHz (8x) radial mode: 8.7 kHz (2x)

Figure 6.14: Normal modes and natural frequencies of an axially loaded ball
bearing

acteristic pattern and the corresponding natural frequencies differ slightly
in the presence of geometrical imperfections, as explained before with the
rocking modes. The amplitude of the outer ring is almost zero, which in-
dicates that these modes will be hard to detect during measurements. The
last two modes just below 10 kHz are radial modes. In both modes the outer
ring vibrates as a rigid body along perpendicular axes and the correspond-
ing natural frequencies differ slightly when geometrical imperfections are
present. For both modes, the modal mass approximately equals the mass
of the outer ring. The first two modes just above 10 kHz are twisting and
flexural modes with two waves in the circumferential direction.



6.4 The natural modes of the bearing 115

The natural frequencies of the bearing depend on the externally applied
axial load and the radial clearance. Both must be measured before starting
a vibration measurement. In general, all the predicted natural frequencies
will increase when the axial load is increased. This has to do with the
Hertzian character of the contact deformations. When the radial clearance
is increased, the contact angles also increase (see also Figure 1.4). As a
result the natural frequency of the axial mode increases, whereas the natural
frequencies of the radial, rocking and rolling element modes will decrease.

6.4.2 Measured resonance frequencies

To investigate the stiffness and damping contributions of the lubricant film,
the measurements must be performed under rotating conditions. The res-
onance frequencies and the modal damping in a ball bearing can be de-
termined with the help of a frequency response function. Under rotating
conditions, the frequency response function of the bearing cannot be deter-
mined using classical modal analysis because the excitation spectrum in the
bearing is not known.

In the present approach, the acceleration spectra of the axial and radial
vibrations on the outer ring of a DGBB 6202 are measured for increasing
rotational speeds. The measured spectra are collected in a matrix. The
contour plot of this matrix is called a Campbell diagram. In a Campbell
diagram, resonance frequencies show up as vertical bands. The width of
such a band is a measure for the amount of modal damping. Excitation fre-
quencies are characterised by straight (order) lines, which are proportional
to the rotational speed of the spindle. The ratio between the excitation
frequency and the spindle frequency is referred to as the excitation order.
When an excitation order line intersects the vertical band of a resonance,
the vibration amplitude increases. The increase is largest when the spatial
distribution of the excitation matches the normal mode shape.

In Figures 6.15 and 6.16 the Campbell diagrams are shown of the axial
and radial vibrations on the outer ring of a DGBB 6202. The bearing was
subjected to an externally applied axial load of 60 N. The rotational speed
of the spindle was varied from 2,000 to 8,000 rpm in 100 steps. The res-
olution of the frequency spectra is 12.5 Hz. The measurements showed a
good reproducibility of the results. The most clear excitation orders in the
Campbell diagram are related to ball waviness and harmonics of the ball
pass frequency. The importance of ball waviness is a consequence of the
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Figure 6.15: Campbell diagram of the axial accelerations on the outer ring
of a DGBB 6202.
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Figure 6.16: Campbell diagram of the radial accelerations on the outer ring
of a DGBB 6202.
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Figure 6.17: High resolution Campbell diagram of the axial accelerations of
the outer ring.

Figure 6.18: An order line intersecting a resonance is curve-fitted with the
frequency response function of a single DOF system.
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high rotational speed of the rolling elements compared to the rotational
speed of the cage and the inner ring. Even wavenumbers of the order of 40
can still be observed.

In Figure 6.15, two resonance frequencies are identified at approximately
0.7 and 3.0 kHz. These resonance frequencies were predicted by the numer-
ical model to within an accuracy of 5%. According to the simulations, the
frequencies correspond to, respectively, a rocking mode and an axial mode.
The modal damping is low so the frequency of the damped system is about
the same as the frequency of the undamped system. The rolling element
modes predicted at 4.0 kHz are not observed in the measurements. For
each of these modes, the outer ring displacements are very small. Moreover,
rolling element modes are heavily damped because of their low modal mass.

In Figure 6.16, a resonance is observed at approximately 8.7 kHz. In the
computed results, this resonance frequency corresponds to a radial mode
of the bearing. The radial mode is also predicted to within 5% accuracy.
The rocking mode at 0.7 kHz is slightly visible. Furthermore, a resonance
frequency is observed around 5.5 kHz. This resonance frequency is, however,
not related to the bearing but to the spindle motor. This was verified by
measuring the accelerations on the casing of the spindle motor in the axial
direction in the absence of the bearing.

6.5 Determination of EHL contact damping

An accurate prediction of the vibration amplitudes in the medium and high
frequency bands requires a reliable estimation of the damping of the natural
modes of the bearing. The damping is expected to be generated by viscous
losses in the EHL contacts. In Chapter 3, the EHL damping of a single
contact was predicted by means of a computational model.
In the experiments on the high speed spindle, first, the dimensionless modal
damping was determined for the individual bearing resonances. This was
done for several lubricants. With the computer model of Chapter 5, the
modal damping was “translated” to the viscous damping coefficients of the
dampers in the contact model.

6.5.1 Determination of modal damping

In order to determine the frequency response functions of the bearing, order
tracks, taken from the Campbell diagram, were plotted against the fre-
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quency. As an example, the 8th harmonic of the ball pass frequency was
considered. For this purpose, the rotational speed of the spindle was varied
from 6,500-8,000 rpm in 100 steps. The resolution of the frequency spectra
was changed to 2.5 Hz.

A Campbell diagram of the collected frequency spectra is shown in Figure
6.17. Two excitation orders can be observed that intersect the vertical band
of the axial resonance mode. The lower one with the highest excitation order
corresponds to the 8th harmonic of the ball pass frequency (bp8). The sec-
ond excitation order, intersecting the resonance, is induced by ball waviness
n = 12 (re12). Generally, ball waviness causes very high vibration ampli-
tudes when the excitation frequency coincides with the resonance frequency
because the spatial distribution of the excitation matches the normal mode
shape.

The 8th harmonic of the ball pass frequency intersects the vertical band
of the axial resonance at approximately 7300 rpm. The modal damping is
determined with the help of a curve-fit, based on the frequency response
function of a single DOF system (see Figure 6.18). In this way, the modal
damping coefficients are determined for three normal modes of the bear-
ing (see Table 6.3). The lubricant viscosity is η0=0.220 Pas at 40 ◦C. For
one mode, the modal damping was determined also for η0=0.009 Pas and
η0=0.050 Pas.

lubricant viscosity rocking mode axial mode radial mode

η0 = 0.220 Pas 4.0% 2.0% 3.0%
η0 = 0.050 Pas - 1.2% -
η0 = 0.009 Pas - 0.7% -

Table 6.3: Modal damping ζ of three normal modes of an axially loaded (60
N) DGBB 6202 rotating at Ω = 1800 rpm.

The damping is very sensitive to certain parameters, for instance, the amount
of oil injected in the bearing, that are hard to control. Nevertheless, the re-
producibility of the results proved to be rather good. In the measurements
it was observed that after the oil was injected, the damping decreased with
time because of oil leakage. The values given in Table 6.3 were obtained
after a few hours’ running and it is expected that at this point in time the
lubricated contacts be rather starved.
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An additional uncertainty in the experiment was the temperature. In Sec-
tion 3.3.4, it was shown that the damping is very sensitive to temperature
variations. In the present experiment, the temperature in the bearing was
not measured.
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Figure 6.19: The relation between the modal damping of the axial mode and
the viscosity η0.

For the axial mode of vibration at 3.0 kHz, the modal damping was deter-
mined for three different values of the viscosity. The measured results are
presented in Figure 6.19. Almost all theoretical models on EHL damping
in the literature (Walford and Stone, 1983; Dietl, 1997) conclude that the
damping is proportional to the square root of the viscosity. The same is
true for the model presented in Chapter 3. This information can be used
to generalise the measured results in Figure 6.19. An important conclusion
that follows from the present results is that in general a large increase of the
viscosity is required in order to significantly increase the damping.

6.5.2 Modal damping versus EHL contact damping

The model of a single EHL contact contains two linear viscous dampers,
characterised by the parameters c and µc (see Section 5.1.5). With the help
of numerical simulations, the values of these parameters can be determined
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using the results obtained in the previous section. The measured frequency
response functions (FRF’s) of the bearing were fitted with predicted FRF’s
for given values of c and µc. For the determination of the FRF’s of the
numerical bearing model, a random excitation was applied in each modal
coordinate of the bearing. Since the bearing was loaded with a pure axial
force, it could be assumed that all lubricated contacts had the same operat-
ing conditions, which means that c and µc were equal for each contact.

The real part of the FRF of a single DOF always has a maximum at f1 and
a minimum at f2 (see Figure 6.20). The modal damping can be determined
from the real part with the following expression (Tijdeman, 1990):
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Figure 6.20: Example of the calculated real part of the frequency response
function for the axial mode of vibration, ζ = 2%.

After curve-fitting the calculated FRF’s with the measured FRF’s for the
rocking mode at 0.7 kHz, for the axial mode at 3.0 kHz and for the radial
mode at 8.7 kHz, the following values were obtained for the viscous damping
coefficients in the model:

c = 40Ns/m µc = 0.07

The results are based on a lubricant viscosity equal to η0=0.220 Pas at 40
◦C. The obtained values for c are of the same order of magnitude as the ones
predicted by Wijnant (1998), discussed in Chapter 3.
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6.6 The medium and high frequency bands

The frequency response functions of the axially loaded ball bearing was ver-
ified successfully with experiments below 10 kHz. With this knowledge, the
validity of the excitation model, as presented in section 2.3.1, was investi-
gated for the medium and high frequency bands. It is of particular interest
to investigate the validity of the assumption that the amplitudes of sub-
sequent wavenumbers decrease with the power of 2, since this assumption
greatly influences the total power of the response.

Predictions

The predicted velocity spectrum of the radial vibrations on the outer ring of
an axially loaded bearing is shown in Figure 6.21. The vibration spectrum is
characterised by two resonance frequencies at 3.0 kHz and 8.7 kHz. The res-
onance at 0.7 kHz does not show up in the radial direction because it is only
marginally excited. The total power of the spectrum is largely influenced by
the damping of the resonances. The damping is provided by viscous losses
in the lubricant. The present lubricant viscosity equals η0=0.1 Pas.
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Figure 6.21: Predicted spectral velocities in the low, medium and high fre-
quency bands for Ω = 1800 rpm.

In Figure 6.22 the predicted rms velocities of the low, medium and high fre-
quency bands are plotted as a function of the circumferential coordinate on
the outer ring. It can be observed that contrary to the low frequency band,
the velocities in the medium and high frequency bands hardly depend on
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the circumferential coordinate. The strong dependence of the low frequency
band is caused by the dominant contribution of the ball pass frequency (see
also Figure 6.10).
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Figure 6.22: Predicted spectral velocities in the low (L) medium (M) and
high (H) frequency bands as a function of the circumferential coordinate on
the outer ring of a DGBB 6202 rotating at Ω = 1800 rpm.

Comparison with measurements

In the medium frequency band it is still possible to relate the peaks in
the spectrum to the individual wavenumbers of the imperfections, but it
requires a sufficient resolution in the frequency domain. In the numerical
study as well as in the measurements the spectral resolution is 1 Hz. In the
high frequency band, the identification of the peaks has proven to be very
cumbersome. In the calculations this is mainly due to period elongation (of
the order of 1%), which is inherent to the Newmark time integration method.

In Table 6.4 both measured and predicted velocities are presented for the
medium and high frequency bands. For the medium frequency band, the
contributions from the individual bearing components were also determined.

Several explanations can be offered to explain the differences between the
measured and the predicted results. First of all, the numerical model de-
scribes an idealised situation. In practice, there will always be (small) exter-
nal influences from the spindle and the loading tool, which will increase the
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measured predicted

Medium band 12.1 6.3
- Ball waviness 7.9 4.5
- Inner ring waviness 5.5 3.6
- Outer ring waviness 3.8 2.6
- Unclassified 6.3 0.0

High band 11.9 6.9

Table 6.4: Measured and predicted rms velocities of the bearing outer ring
(µm/s) for the medium and high frequency band.

vibration level. In addition to that, small contributions can also be expected
from transient effects in the bearing caused by defects and dirt. This might
also explain the amount of unclassified rms velocity in the measurements.
Namely, in the predictions, all the velocity could be related to the individual
bearing components.

In Table 6.5, the unclassified rms velocity in the medium frequency band is
subtracted from the total rms velocity. Subsequently, the relative contribu-
tions were determined for the individual bearing components.

measured % predicted %

Medium band classified 10.3 100 6.3 100
- Ball waviness 7.9 59 4.5 51
- Inner ring waviness 5.5 28 3.6 32
- Outer ring waviness 3.8 13 2.6 17

Table 6.5: Measured and predicted contributions of the bearing components
to the classified rms velocity (µm/s) in the medium frequency band.

Although the absolute levels in the measurements are still higher, the rela-
tive contributions of the individual components are predicted quite well. It
can be concluded that ball waviness contributes most to the vibrations in
the medium frequency band. Also in the high frequency band it is expected
that ball waviness generates most of the vibrations.
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Amplitude decay of waviness harmonics

The comparison between calculated and measured results did not yet give
conclusive evidence that the amplitude of waviness harmonics decreases with
the power of 2. Therefore, it was investigated numerically how the rms ve-
locity in the medium and high frequency bands changes as a function of the
exponent s. The parameter was introduced by equation 2.1:

W (θ) =
∞
∑

n=1
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cos(nθ + ϕn) (6.4)
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Figure 6.23: Spectral velocities in the medium (M) and high (H) frequency
bands as a function of the exponent s, describing the amplitude decay of
waviness harmonics.

It is observed that the spectral velocities in the medium and high frequency
bands increase exponentially for a decreasing value of the exponent s. There-
fore, it is concluded that the considered exponent must have a value of at
least very close to 2 also for large wavenumbers. This is different from the
surface measurements presented in Figure 2.9, since in these measurements
the amplitudes of the harmonics decreased linearly for high wavenumbers.
However, it has to be recalled that the present excitation model does not
describe the surface imperfections themselves, but the disturbances in the
contacts due to the imperfections.
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6.7 Summary of validated results

The bearing model presented in the previous chapters was validated by
experiments for frequencies of up to 10 kHz. The validation concerned both
the frequency response functions of the bearing and the vibration generation
due to waviness imperfections, parametric excitations and run-out of the
cage. The bearings under consideration were 6202 deep groove ball bearings
of high surface quality. The following conclusions were drawn:

• The stiffness of the outer ring and the EHL contacts is accurately
described by the present approach.

• The waviness profiles are well described by a limited number of (stochas-
tic) surface topography parameters.

• Plastic cages generate less vibrations than steel cages.

• The frequency response functions of the bearing are well described af-
ter curve-fitting of the measured damping values with the EHL contact
model presented here.

• The viscosity dependence of the damping is predicted well by the
present EHL damping model. The absolute damping values are less
accurate.

• The excitation in the contact due to waviness approximately decrease
with the power of 2 with the corresponding wavenumber.

As a next step, the bearing model can be applied to investigate the influ-
ence of the bearing on the dynamic behaviour of a complete rotor dynamic
application. Ball bearings are usually an uncertain factor in the analysis of
rotating applications. With the new numerical models this uncertainty is
significantly reduced.



Chapter 7

Example of a rotor dynamic

application

7.1 Case description

To illustrate the importance of the ball bearings on the dynamic behaviour
of the application, the rotor dynamic system in Figure 7.1 was studied using
the new numerical model. The system consists of a steel shaft supported by
two 6202 deep groove ball bearings mounted in aluminium plummer block
housings. The dimensions and the material properties of the shaft have
been given in Section 4.6. The geometrical and material properties of the
ball bearings are presented in Appendix C. The aluminium housings on
both sides of the application are identical, except for the way in which they
are connected to the outer ring of the bearing. In the one case, the outer
ring forms an integral part of the housing. The unit is similar to the one in
Section 4.5.3. The other housing is connected “loosely” to the outer ring,
which means in this case that the outer ring is free to move in the axial direc-
tion relative to the housing (see also Figure 5.2). In the other directions the
outer ring is connected to the housing by prescribing equal displacements
for the outer ring and the housing at their mutual interface.

In the previous chapter the influence of geometrical imperfections on the
dynamic behaviour of a single ball bearing was examined. The outer ring
of the bearing considered was loaded with an externally applied axial force,
which resulted in almost equal contact forces. In such a system the contri-
bution of parametrically excited vibrations is relatively low and the response
of the bearing is mainly dominated by vibrations that can be attributed to
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waviness on the components. Since parametric excitation is induced by time
dependent stiffness variations of the system, its contribution to the overall
vibration level will be much larger when the load distribution in the bear-
ing is asymmetrical. In the present example, a clear parametric excitation
is created by applying a vertical load of 500 N at the centre of the shaft.
Figure 7.1 shows the static deformation field resulting from this load. The
static solution is calculated for a stationary rotating system.
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Figure 7.1: Static deformation field of the application due to an externally
applied vertical load of 500 N.

Naturally, the shaft will bend as a result of the vertical load. Furthermore,
large deformations will occur in the contacts between the rolling elements
in the loaded zone and the raceways. In the present example, the number of
rolling elements in the loaded zone is 2 or 3, depending on the circumferential
position of the rolling elements (see Figure 7.2). When the bearing rotates
the loaded zone will change as a function of time resulting in parametric
excitations. Under the present loading conditions, the EHL stiffness model
presented in Section 3.4 does not always converge. For convenience the EHL
stiffness model has been replaced by the stiffness model for dry contacts.

The bearing housings are relatively stiff compared to the shaft. In the
example they are fixed to a body of infinite stiffness and mass. This is
modelled by placing constraints on the bottom of each housing. Figure 7.1
clearly shows the different behaviour of the two bearing housings. The outer
ring which is mounted loosely in the housing moves in the axial direction due
to the reaction forces in the bearing. The other outer ring, which is fixed
to the housing, maintains its position. The different numbers in Figure 7.1
refer to the locations in which the response of the system will be studied.
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Figure 7.2: The loaded zone is a function of the circumferential position of
the rolling elements resulting in parametric excitations.

7.2 Natural frequencies

The dynamic behaviour of the application is largely determined by its nat-
ural frequencies and its normal modes. In a linear system the undamped
natural frequencies are found by solving the eigenvalue problem. In the
present example this is not a straightforward matter since the stiffness ma-
trix is nonlinear and time dependent. However, the stiffness matrix can be
linearised around the static equilibrium position. Furthermore, it is justified
to assume that the time variant part of the stiffness matrix is much smaller
than the time invariant part.

In accordance with the philosophy of component mode synthesis, the natural
frequencies and the normal modes are first calculated at the component level.
For both housings and the shaft the undamped natural frequencies are given
in Tables 7.1, 7.2 and 7.3.

f (Hz) normal mode

5,529 (1x) axial mode
8,993 (1x) radial mode

Table 7.1: Undamped natural frequencies of the housing with the fixed outer
ring (see also Section 4.5.3).
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f (Hz) normal mode

0 (1x) rigid body mode
6,996 (1x) axial mode
9,176 (1x) radial mode

Table 7.2: Undamped natural frequencies of the housing with the loose outer
ring.

f (Hz) normal mode(s)

0 (5x) rigid body modes
1,168 (2x) bending mode n=1
2,783 (2x) bending mode n=2
4,753 (2x) bending mode n=3
7,207 (2x) bending mode n=4
9,848 (1x) extensional mode

Table 7.3: Undamped natural frequencies of the shaft (see also Section 4.6).

The normal modes of the housing with the loose outer ring at 6,996 Hz
and 9,176 Hz are similar to the normal modes of the housing with the fixed
outer ring at, respectively, 5,529 Hz and 8,993 Hz, shown in Figures 4.17 and
4.18. The shaft has 5 rigid body modes instead of six. Torsional motion is
suppressed because the torsional modes are not excited by the bearings (no
friction). The bending modes of the shaft are characterised by the number
n, which denotes the number of waves per shaft length.

The undamped natural frequencies of the assembled system below 8 kHz are
listed in Table 7.4 together with a short description of the normal modes. A
number of important normal modes is shown in Figure 7.3. The total num-
ber of natural frequencies has grown significantly compared to the number
of natural frequencies of the individual components.

Each ball bearing has 5 rolling elements outside the loaded zone. Due to the
presence of centrifugal forces, they are all pressed against the outer raceway
resulting in a small contact stiffness. Consequently, 10 normal modes are
observed at 294 Hz, characterised by large rolling element displacements rel-
ative to the raceways. Because the corresponding displacements of the shaft
and the housing remain small, the modes are hard to observe at the pe-
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216 Hz 831 Hz

887 Hz 1,552 Hz

1,687 Hz 2,073 Hz

2,109 Hz 2,867 Hz

5,066 Hz 5,543 Hz

6,957 Hz 7,308 Hz

Figure 7.3: A number of important normal modes of the application.



132 Example of a rotor dynamic application

f (Hz) normal mode f (Hz) normal mode

216 axial shaft 2,867 y-bending shaft n=2
294 rolling elements (10x) 4,381 extensional shaft
831 x-bending shaft n=1 4,426 extensional shaft
887 y-bending shaft n=1 4,856 x-bending shaft n=3

1,215 axial outer ring 5,066 y-bending shaft n=3
1,552 θx-rigid shaft 5,543 axial right house
1,687 x-bending shaft n=1 6,957 axial right house
2,073 θy-rigid shaft 7,167 x-bending shaft n=4
2,109 y-bending shaft n=1 7,233 y-bending shaft n=4
2,806 x-bending shaft n=2 7,308 y-bending shaft n=4

Table 7.4: Undamped natural frequencies of the assembled system.

riphery of the application. The outer ring of the bearing, which is mounted
loosely in the housing on the left hand side of Figure 7.1 has a local axial
mode at 1,215 Hz. Also for this mode the displacements of the shaft and the
housings are small. Hence, the mode is only observed on the outer ring itself.

The shaft has many bending modes. Some of them seem to be similar, for in-
stance, at 831 Hz and 1,687 Hz. However, these modes can be distinguished
by a different motion relative to the housings.

7.3 Parametric excitation

The application sketched in Figure 7.1 is externally loaded with a vertical
force of 500 N. Due to this force the effective stiffness between the balls
and the guiding rings depends on the circumferential position of the rolling
elements. As a result the application is parametrically excited. In para-
metrically excited systems, it is always difficult to estimate the frequency
content of the response in advance. This information is needed to determine
the time step in the Newmark time-integration method. It was experienced
that harmonics up to 50 kHz could easily be excited. Hence, in the calcu-
lations time steps were chosen equivalent to 400,000 time steps per second.
A total of 100,000 time steps were calculated, which resulted in a resolution
of 4 Hz in the frequency domain.
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The effect of parametric excitation is studied first with geometrically perfect
bearings. In the example, the outer groove radius of the bearings is chosen
Ro = 3.15 mm and the clearance is chosen Cd=20µm. In the first example
the shaft rotates at 5,000 rpm. Imbalance of the shaft is not accounted for.
The damping coefficients of the viscous contact dampers in the bearings are
all given by c = 30 Ns/m. In the flexible components material damping is
modelled as proportional viscous damping. The modal damping coefficient
is ζi = 0.005 for all normal modes (see also equation 5.19). The rolling
elements in the bearing on the left hand side have the same circumferential
positions as the rolling elements in the bearing on the right hand side.
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Figure 7.4: Horizontal response of the shaft (point 1 in Figure 7.1) for
Ω=5,000 rpm and T≈0.004s.

The horizontal response at the end of the shaft (point 1 in Figure 7.1) is
shown in Figure 7.4. The plotted response corresponds with one revolution
of the bearing. Although the response looks complex, it is still periodic.
The amplitudes are of the order of 2 µm. It is recalled that the total ra-
dial clearance in the bearing is 20 µm. The rms velocity spectrum of the
response in Figure 7.4 is shown in Figure 7.5.

Peaks in the spectrum are found at the ball pass frequency (256 Hz) and
its harmonics. The harmonics cover a wide frequency range. In particu-
lar, harmonics close to natural frequencies of the application are important.
Their amplitude is bounded by the amount of damping provided both by
the material damping of the components and the contact damping in the
bearings. Resonances that can be observed in the spectrum of Figure 7.5
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Figure 7.5: Velocity spectrum of the horizontal vibrations of the shaft (point
1 in Figure 7.1) for Ω=5,000 rpm.

are indicated by arrows. They correspond to bending modes of the shaft at,
respectively, 1.7 kHz (n=1), 4.9 kHz (n=3) and 7.2 kHz (n=4).

The ball pass frequency is proportional to the shaft speed. When it is in-
creased beyond the first natural frequency corresponding to a bending mode
of the shaft (831 Hz) the character of the response can suddenly change. In
Figure 7.6 the velocity spectrum is shown of the horizontal response of the
shaft (point 1 in Figure 7.1) for Ω=20,000 rpm. If we look closely, it can
be observed that the principal frequency of the response is no longer the
ball pass frequency at 1,024 Hz, but half the ball pass frequency at 512 Hz.
In other words, the solution contains a subharmonic component. This is
an important observation, since this subharmonic component is not listed
in Table 2.1 as being one of the main excitation frequencies in the bearing.
The table is based on a linear bearing model (Yhland, 1992).

The system in Figure 7.1 has a vertical axis of symmetry. However, due to
the rotation of the rolling elements, the response of the application is not
symmetrical about the y−axis. The rotating contact dampers, for exam-
ple, contribute to the stiffness matrix with skew-symmetric terms. The final
response of the application is anti-symmetric with respect to Ω. This is illus-
trated by Figure 7.7, where the shaft orbit is plotted for both Ω = +20, 000
rpm (counter clockwise) and Ω = −20, 000 rpm (clockwise). The response
in the figure on the left hand side is exactly the mirror image of the re-
sponse in the figure on the right hand side. The amount of asymmetry in
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Figure 7.6: Velocity spectrum of the horizontal vibrations of the shaft (point
1 in Figure 7.1) for Ω=20,000 rpm.

the response is considerable, which indicates the significant contribution of
skew-symmetric damping terms.
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Figure 7.7: Shaft orbits at point 1 in Figure 7.1 for Ω = +20, 000 rpm (left)
and Ω = −20, 000 rpm (right).

7.4 Geometrical imperfections

In an axially loaded ball bearing the parametrically excited vibrations are
usually much smaller than the vibrations generated by geometrical imper-
fections, in particular waviness. In radially loaded applications the contri-
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bution of parametrically excited vibrations can be much larger, as shown in
the previous section. Figure 7.8 shows the velocity spectrum of the horizon-
tal vibrations of the shaft, when geometrical imperfections in both bearings
are accounted for. The same profiles are used as in Chapter 6. The wavi-
ness profiles in the bearing on the left hand side are shifted by an arbitrary
number of degrees compared to the waviness profiles in the bearing on the
right hand side.
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Figure 7.8: Velocity spectrum of the horizontal vibrations of the shaft (point
1 in Figure 7.1) for Ω=5,000 rpm, including geometrical imperfections.

Figure 7.8 clearly shows the resonance frequencies corresponding to bend-
ing modes of the shaft. Evidently, the vibrations generated by parametric
excitation dominate the spectrum. It is recalled that the surface quality of
the ball bearings is relatively high.

In Figure 7.9 the velocity spectrum is shown for the axial vibrations of the
housing with the fixed outer ring. One resonance frequency can be observed
at 5.5 kHz. Also, on the housing the vibrations generated by parametric
excitation are the dominant ones. Because the stiffness of the housings is
much higher than the stiffness of the shaft and the ball bearings, the vibra-
tion level of the housings is significantly smaller than the vibration level of
the shaft.
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Figure 7.9: Velocity spectrum of the axial vibrations on the housing (point 2
in Figure 7.1) for Ω=5,000 rpm, including geometrical imperfections.

7.5 Reduction of parametric excitation

7.5.1 Changing the radial clearance

The radial clearance largely influences the parametric excitation in the bear-
ing. When the clearance is reduced, the number of rolling elements in the
loaded zone will increase (see also Figure 2.4), resulting in smaller stiffness
variations. In the present example, the radial clearance is decreased from 20
µm down to 5 µm. In the new design, the number of rolling elements in the
loaded zone is 4 or 5. The velocity spectra of the horizontal vibrations of
the shaft and the axial vibrations of the housing are shown in Figures 7.10
and 7.11.
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Figure 7.10: Velocity spectrum of the horizontal vibrations of the shaft (point
1 in Figure 7.1) for Ω=5,000 rpm with Cd = 5µm.
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Figure 7.11: Velocity spectrum of the axial vibrations on the housing (point
2 in Figure 7.1) for Ω=5,000 rpm with Cd = 5µm.

In both spectra it can be observed that the level of the parametrically excited
vibrations have decreased significantly compared to the levels in Figures 7.8
and 7.9, respectively. At low frequencies the vibrations of the housing are
still dominated by parametric excitation. At higher frequencies geometrical
imperfections have become the most important vibration source, in partic-
ular imperfections of the balls.

7.5.2 Introduction of an axial preload

When ball bearings with a smaller clearance are not available, an axial
preload can be used to decrease the level of the parametrically excited vi-
brations. In the present example, an axial preload is applied on the outer
ring which is mounted loosely in the housing. The load is directed outwards,
as shown in Figure 7.12.

500 N

x

y

z

50 N

Figure 7.12: Static deformation field of the application due to an externally
applied vertical load of 500 N and an axial preload of 50 N.
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The velocity spectra of the horizontal vibrations of the shaft and the axial
vibrations of the housing are shown in Figures 7.13 and 7.14.
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Figure 7.13: Velocity spectrum of the horizontal vibrations of the shaft (point
1 in Figure 7.1) for Ω=5,000 rpm, after applying an axial preload of 50N.
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Figure 7.14: Velocity spectrum of the axial vibrations on the housing (point
2 in Figure 7.1) for Ω=5,000 rpm, after applying an axial preload of 50N.

Also here, it can be observed that in both spectra the levels of the vibrations
generated by parametric excitation are reduced compared to the levels in
Figures 7.8 and 7.9. As a consequence of the preload the natural frequencies
and the normal mode shapes of the application have changed to some extent.
In the spectrum in Figure 7.14 an additional resonance can be observed at
approximately 2 kHz (see arrow). Here, the bending mode of the shaft with
n = 1 has a strong interaction with the housing via the ball bearing. The
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resonance increases the vibration level of the housing. However, the overall
level is still lower than the vibration level of the shaft.

7.6 Summary of results

A ball bearing application loaded with a pure radial load may be subject
to severe parametric excitation. In that case the resulting response of the
application is highly dependent on the material damping of the flexible com-
ponents and the viscous losses in the lubricant. Above the first natural fre-
quency corresponding to a bending mode of the shaft, the response may also
contain subharmonic components, which would not have been predicted by
a linear model.

With numerical simulations two ways were shown to suppress parametric
excitation in ball bearings. One way was to reduce the radial clearance
and the other way was to apply an axial preload. An overview of the rms
velocities in the low (50 Hz - 300 Hz), medium (300 Hz - 1,800 Hz) and
high (1,800 Hz - 10,000 Hz) frequency bands for the cases calculated in this
chapter is given in Tables 7.5 and 7.6.

frequency waviness clearance preload
band (Fig. 7.8) (Fig. 7.10) (Fig. 7.13)

L 682 508 191
M 5,445 446 840
H 1,277 347 190
P

5,634 760 881

Table 7.5: The rms velocities (µm/s) of the horizontal vibrations of the shaft.

frequency waviness clearance preload
band (Fig. 7.9) (Fig. 7.11) (Fig. 7.14)

L 80 14 55
M 5 3 22
H 13 5 136
P

81 15 148

Table 7.6: The rms velocities (µm/s) of the axial vibrations of the housing.
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In the simulations, a reduction of the radial clearance appeared to be the
most effective way to reduce the vibration level in the considered applica-
tion. An axial preload load could also be applied, although it increased the
overall vibration level of the housing.

The present numerical study has shown that the new simulation tool can
provide the engineer with useful (quantitative) guidelines that can help him
to solve real noise and vibration related problems in rotor dynamic applica-
tions with ball bearings.
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Chapter 8

Conclusions

Component mode synthesis (CMS) is a very efficient method for modelling
the dynamic behaviour of flexible machine components. In this work the
method was successfully applied to an application with ball bearings. To
deal with the rotating contact loads on the raceway of a flexible outer ring, a
new method had to be developed. In this new CMS technique, the displace-
ments of the outer raceway are written as combinations of Fourier series
and Chebyshev polynomials. The method has proven to be very fast and
accurate and it can be applied to general moving load problems in all kinds
of engineering applications.

An advantage of the present approach is the possibility to treat the lubri-
cated contacts between the guiding rings and the rolling elements as indi-
vidual massless components. Here, their stiffness and damping behaviour
was described at the component level first with advanced time dependent
contact calculations. These computations were done in a parallel project.

With the help of the new CMS method it was found that the outer ring
of a 6202 deep groove ball bearing deforms significantly in real applications
as a result of the time varying contact forces caused by the geometrical
imperfections on the rotating components in the bearing. The geometrical
imperfections are well described by a small number of stochastic surface to-
pography parameters that can be measured relatively easy. This was applied
to the bearing model and good agreement was obtained with measurements.
Moreover, it was shown with the help of measurements that for small deep
groove ball bearings of high quality the amplitude of waviness harmonics
approximately decreases by a power of 2. Although the imperfections on
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the rolling elements are usually much smaller than the imperfections on the
inner and outer ring, they proved to be one of the most important sources
of vibration in the bearing. This is a direct consequence of their high rota-
tional speed compared to the rotational speeds of the cage and the inner ring.

A comparison between measured and predicted frequency response functions
of the bearing showed that the stiffness in a ball bearing is well described by
the present model. With respect to the damping it was concluded that the
dissipation in a lubricated contact cannot be described by one single damper.
At least two dampers are required in each contact to damp all principal res-
onances in the bearing. An important parameter that greatly influences the
damping of the resonances in the bearing, is the viscosity of the lubricant
used. Both predictions and measurements showed that the viscosity must
be increased considerably in order to obtain a higher damping value. With
respect to the absolute damping values, the damping model appeared to be
less consistent with the measurements. The model predicted too low values,
even without the inclusion of starvation effects. A possible reason for this
discrepancy might be the frequency dependence of the damping. This was
confirmed by line contact calculations at SKF.

Also, the cage may act as an additional damping source in the bearing
but this was beyond the scope of the present work. The influence of the
cage on the dynamic behaviour of the bearing seems to be small since the
predictions based on the present “cageless” model correlated well with the
measurements. The main dynamic effect induced by the cage concerns the
generation of vibrations due to a small run-out. In this respect the plastic
cages performed better than the steel ones.
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Nomenclature

Roman scalars

A magnitude of the first waviness harmonic
Ac amplitude of cosine term of first waviness harmonic
Aor cross-sectional area of the outer ring
As amplitude of sine term of first waviness harmonic
a half of the Hertzian contact length
b half of the Hertzian contact width
C dimensionless damping
Cd radial clearance
c damping coefficient
ck coefficients
D distance between ball centre and groove centre
D0 initial distance between ball centre and groove centre for δ = 0
Dr radial distance between ball centre and groove centre
Dz axial distance between ball centre and groove centre
d, d1, d2 elastic contact deformations
E,E1, E2 moduli of elasticity
E′ reduced modulus of elasticity
F,Fi force
Fb interface load
Fd dissipative force
Fe elastic restoring force
f1, f2 natural frequencies
fi inner osculation
fmax upper bound frequency range of interest
fo outer osculation
H(δ) Heaviside step function
H0 dimensionless film thickness or gap width at x = 0 and y = 0
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H(δ) Heaviside step function
h film thickness or gap width
h0 film thickness or gap width at x = 0 and y = 0
Ior area moment of inertia of the cross-sectional area
k, q integers
k1 horizontal housing stiffness
k2 vertical housing stiffness
kf thermal conductivity
L dimensionless parameter
Lr,Mr,Nr number of terms in series for uorr
Lz,Mz,Nz number of terms in series for uorz
M dimensionless parameter
Mb interface moment
m mass
N dimensionless parameter
Nb maximum wave number ball waviness
Ne number of nodal degrees of freedom
Ni maximum wave number inner ring waviness
No maximum wave number outer ring waviness
n wave number
nk number of kept normal modes
P point load
p hydrostatic pressure
p(x, α) Rayleigh distribution
R reduced radius of curvature
R1, R2 radii of curvature
R1x, R2x radii of curvature in x-direction
R1y, R2y radii of curvature in y-direction
Rig radius centre of curvature of inner groove
Rog radius centre of curvature of outer groove
Ror bottom radius outer raceway
Rx reduced radius of curvature in x-direction
Ry reduced radius of curvature in y-direction
r, θ, z cylindrical coordinates
s exponent amplitude decay waviness
T temperature (Chapter 3)
T kinetic energy (Chapter 5)
T0 room temperature
Tn Chebyshev polynomial of degree n
t time
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ut tangential interface degree of freedom
ui displacement
ux, uy, uz displacements in Cartesian coordinate frame
ur radial displacement
uz axial displacement
V potential energy
v1, v2 surface velocities
vir surface velocity inner ring
vor surface velocity outer ring
vre surface velocity rolling element
vs sum speed
vmax maximum spectral peak velocity
vrms root mean square velocity
w deformation
w0 deformation at x = 0 and y = 0
W waviness imperfection
X,Y stochastic variables
x, y, z Cartesian coordinates
xb translational interface degree of freedom
Z number of rolling elements
Zor half-width of the outer raceway

Greek scalars

α contact angle
αp pressure-viscosity coefficient
γ temperature-viscosity coefficient
∆ dimensionless mutual approach
δ mutual approach between contacting bodies
ǫ ellipticity ratio Hertzian contact (b/a)
ǫi, ǫ1, ǫ2 errors
ε eccentricity of the cage
ζ modal damping
η viscosity
η0 nominal viscosity
κ Hertzian stiffness coefficient
Λ dimensionless frequency
λ ratio between radii of curvature (Rx/Ry)
µ mean value
µc constant for tangential damper
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ν, ν1, ν2 Poisson’s ratios
ρ density
φ,ψ, θ Bryant angles
ϕ phase angle
ϕb rotational interface degree of freedom
ω angular frequency
ωi ith angular frequency
ωn natural angular frequency
Ω rotational speed shaft
Ωc rotational speed of the cage
Ωir rotational speed of the inner ring
Ωre rotational speed of the rolling elements
Ωs spin velocity
σx, σy standard deviations
τ tangential approach between contacting bodies

Other scalars

E ellipticity integral of the second kind
K ellipticity integral of the first kind
F Rayleigh’s dissipation function

Roman vectors

{ar}, {br} vectors with contributions of the series for uorr
{az}, {bz} vectors with contributions of the series for uorz
{c} vector with modal viscous damping coefficients
{ex}, {ey}, {ez} unit vectors along x−, y− and z-axes
{F} vector with external forces
{f} vector with generalised external forces
{Fb} vector with interface loads
{m} vector with modal masses
{p} vector with generalised degrees of freedom
{pb} vector with generalised interface degrees of freedom
{pfx} vector with contributions of fixed interface normal modes
{R} right hand side vector

{R̂} residual vector of dynamic force balance
{x} vector with nodal degrees of freedom
{xb} vector with nodal interface degrees of freedom
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{xi} complement of {xb}

Greek vectors

{ζ} vector with dimensionless modal damping coefficients
{λ} vector with natural angular frequencies
{ω} angular velocity vector

Roman matrices

[C] damping matrix
[c] generalised damping matrix
[c̃] linearised damping matrix
[cd] diagonal modal viscous damping matrix
[G] flexibility matrix
[Ga] residual flexibility matrix
[H] frequency response matrix
[I] mass moments of inertia matrix
[K] stiffness matrix
[k] generalised stiffness matrix

[k̃] linearised stiffness matrix

[k̂] tangent matrix Newmark
[M ] mass matrix
[m] generalised mass matrix
[MAC] modal assurance criteria matrix
[O] orthogonality matrix
[Rθ] elementary rotation matrix about z-axis
[Rψ] elementary rotation matrix about y-axis
[XO] cross-orthogonality matrix

Greek matrices

[Λk] diagonal matrix with kept eigenvalues λ2
k

[Ψ] matrix with column-wise stored shape functions
[Φ] matrix with column-wise stored normal modes

super-/subscripts

ho referring to the housing/outer ring
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ic referring to the inner contacts
ig referring to the centre of curvature of the inner groove
ir referring to the inner ring
j referring to rolling element number
meas measured values
oc referring to the outer contacts
og referring to the centre of curvature of the outer groove
or referring to outer raceway
pred predicted values
re referring to the rolling elements
sh referring to the shaft

abbreviations

CMS component mode synthesis
DGBB deep groove ball bearing
DOF degrees of freedom
EHL elasto-hydrodynamic lubrication
FEM finite element method
MAC modal assurance criteria
TAM test analysis model



Appendix A

Analytical solution for a

flexible ring

The analytical solution of the extensional and flexural deformations of a
rectangular ring loaded with Z equal uniformly distributed loads in the
radial plane (see Figure A.1) was derived by Yhland in an internal SKF
report (1965).

F

F
F

F

F

F
F

F

θθ

Figure A.1: Deformations of the outer ring due to eight uniformly distributed
contact loads.

The problem is solved using Castigliano’s theorem (Timoshenko, 1955) by
taking into account the elastic energy V contributed by the bending moment
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and by the longitudinal force. Castigliano’s theorem states that:

∂V

∂Fi
= ui i = 1...Z (A.1)

In other words, if the strain energy V of an elastic body can be expressed as
a function of the loads Fi, then the partial derivative of the strain energy,
with respect to a particular load, gives the corresponding displacement at
the point of application of that particular load in the direction of that load.

For the radial displacements of the outer ring as a function of the circum-
ferential position, it can be derived:

ur(θ) =
FZRor
2πEAor

+
FZR3

or

πEIor

∞
∑

q=1

1

((qZ)2 − 1)2
cos(qZθ) (A.2)

The first term on the right hand side accounts for extensional deformations
of the ring and the second term for flexural deformations. The parameter
Ror denotes the centre radius of the outer ring and Ior the area moment of
inertia of the cross section area Aor. The analytical solution is used in the
present work to validate the results of the two-dimensional model presented
in equation 4.14.



Appendix B

Evaluation of series

B.1 Chebyshev polynomials

A Chebyshev polynomial of degree n, denoted as Tn(x), is given by

T0(x) = 1

T1(x) = x (B.1)

Tn(x) = 2xTn−1(x) − Tn−2(x) n ≥ 2

The first four terms of a Chebyshev polynomial are plotted in Figure B.1
for the interval [-1,1].

Figure B.1: First four terms of a Chebyshev polynomial.
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Just like Fourier series, the Chebyshev polynomials satisfy a discrete orthog-
onality relation. Within the interval [-1,1], the polynomial Tn(x) has n zeros
and n+1 extrema including two boundary extrema at -1 and +1. At all the
maxima Tn(x) = 1 and at all the minima, Tn(x) = −1.

B.2 Clenshaw’s recurrence formula

The Clenshaw recurrence formula is an efficient way to evaluate a sum of
coefficients ck times functions Fk that obey a recurrence formula. For the
Chebyshev polynomials, the recurrence formula of equation B.1 applies, for
Fourier series the following recurrence formula applies:

cos(kθ) = 2 cos(θ) cos((k − 1)θ) − cos((k − 2)θ) (B.2)

sin(kθ) = 2 cos(θ) sin((k − 1)θ) − sin((k − 2)θ) (B.3)

Now consider the following series

f(θ) =
N
∑

k=0

ckFk(θ) (B.4)

Define the quantity yk (k = N...1, backwards!) by the recurrence

yN+2 = yN+1 = 0

yk = 2cos(θ)yk+1 − yk+2 + ck (B.5)

Then the evaluated function f(θ) for, respectively, cosine and sine series
yield

f(θ) = −y2 + cos(θ)y1 + c0 (B.6)

f(θ) = sin(θ)y1 (B.7)

Using this recurrence, only one cosine function has to be calculated at each
time step.



Appendix C

Properties of a DGBB 6202

The geometrical and material properties of a 6202 deep groove ball bearing,
required for the calculations in Chapter 4 and 6, are listed in Table C.1.
Frequently used properties for the lubricant are also mentioned. The listed
properties are used unless it is mentioned otherwise.
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Figure C.1: Geometrical properties of a deep groove ball bearing.
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ball bearing

outer ring width: B = 11.0 mm
outer bore radius: Rob = 17.5 mm
outer shoulder radius: Ros = 14.6 mm
outer groove radius: Ro = 3.24 mm
inner bore radius: Rib = 7.5 mm
inner groove radius: Ri = 3.07 mm
number of rolling elements: Z = 8
pitch radius: Rp = 15.63 mm
radial clearance: Cd = 15 mm
ball radius Rre = 3.0 mm
modulus of elasticity: E = 2.06e11 Pa
Poisson’s ratio: ν = 0.3
density: ρ = 7800 kg/m3

lubricant

nominal viscosity: η0 = 0.1 Pas
pressure-viscosity coefficient: αp = 1.0e-8 Pa−1

temperature-viscosity coefficient: γ = 0.028 K−1

thermal conductivity: kf = 0.14 Wm−1K−1

Table C.1: Geometrical and material properties of a DGBB 6202.

Because the outer ring is modelled as a flexible body some additional prop-
erties must be defined compared to the inner ring. These properties are
needed for the modelling of the outer ring with finite elements.



Appendix D

Determination of the mutual

approach

D.1 The inner contacts

The contact between a rolling element and the raceway of the inner ring is
depicted in Figure D.1. For a geometrically perfect ball bearing, the mutual
approach in the contact is defined by the change in distance between the
centre of curvature of the raceway groove and the centre of the jth rolling
element, i.e.

δicj = Dic
j −Dic

0 (D.1)

The parameter Dic
0 denotes the initial distance between the centres of cur-

vature in the case δicj = 0. It is defined by

Dic
0 = Ri −Rre (D.2)

The geometrical properties Ri and Rre denote, respectively, the inner groove
radius and the ball radius (see Figure C).

The instantaneous distance Dic
j between the centre of curvature of the inner

groove and the ball centre is given by

Dic
j = sign(Dic

rj)
√

(Dic
rj)

2 + (Dic
zj)

2 (D.3)

where

Dic
rj = Rig + uigrj −Rp − urerj (D.4)

Dic
zj = uigzj − urezj (D.5)
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R ig

r

z

αic

j

D
ic

0

u
ig
rj

u
ig

zj

u
re

rj

u
re
zj

D
ic

j

Figure D.1: Contact between the raceway of the inner ring and the jth rolling
element.

The parameter Rig denotes the radius of the centre of curvature of the inner
raceway groove. It can be derived from the main geometrical properties of
the bearing presented in Appendix C (see also Figure C):

Rig = Rp −Rre − 1
4Cd +Ri (D.6)

The displacements of the centre of curvature of the inner raceway can be
expressed in terms of the inner ring DOF defined in Section 5.1.1. When it
is assumed that the displacements and rotations of the inner ring are small,
the following expressions apply:

uigrj = uirx cos(θj) + uiry sin(θj) (D.7)

uigzj = uirz +Rig



φir sin(θj) − ψir cos(θj)


 (D.8)

where θj denotes the circumferential position of the jth rolling element (see
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also Figure 5.7). The inner contact angles αicj are defined by

αicj = arctan

(

Dic
zj

Dic
rj

)

(D.9)

The contact angle is bounded because of the finite width of the raceway.
For most ball bearings it approximately follows that -π3 < αicj <

π
3 .

D.2 The outer contacts

In Figure D.2, the contact is depicted between the jth rolling element and
the flexible outer ring.

r

z

αoc

j

Rog

D
oc
0 ure

rj

u re
zj

u
og
rj

u
og
zj

D
oc
j

Figure D.2: Contact between the raceway of the outer ring and the jth

rolling element.

For the mutual approach between the centre of curvature of the outer race-
way groove and the ball centre it follows:

δocj = Doc
j −Doc

0 (D.10)

The initial mutual approach reads:

Doc
0 = Ro −Rb (D.11)
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The instantaneous mutual approach is given by:

Doc
j = sign(Doc

rj)
√

(Doc
rj)

2 + (Doc
zj)

2 (D.12)

where

Doc
rj = Rp + urerj −Rog − uogrj (D.13)

Doc
zj = urezj − uogzj (D.14)

The definition for the outer contact is different compared to the definition
for the inner contact. This is done to get an equal sign for the contact angle
in both contacts. The parameter Rog denotes the radius of the centre of
curvature of the outer raceway groove. The following relation applies (see
also Figure C):

Rog = Rp +Rre + 1
4Cd −Ro (D.15)

The displacements of the raceway are described by the analytical series of
equation 4.11 and 4.12. The series are evaluated in the centre of curvature
of the outer raceway. It follows:

uogrj =
Nr
∑

n=0

Mr
∑

m=0

Lr
∑

l=0

ar(t) cos(nθj) cos(m
π

2
) cos(l arccos(

Rog
Ror

)) +

+
Nr
∑

n=1

Mr
∑

m=0

Lr
∑

l=0

br(t) sin(nθj) cos(m
π

2
) cos(l arccos(

Rog
Ror

)) (D.16)

uogzj =
Nz
∑

n=0

Mz
∑

m=0

Lz
∑

l=0

az(t) cos(nθj) cos(m
π

2
) cos(l arccos(

Rog
Ror

)) +

+
N
∑

n=1

Mz
∑

m=0

Lz
∑

l=0

bz(t) sin(nθj) cos(m
π

2
) cos(l arccos(

Rog
Ror

)) (D.17)

Finally, the outer contact angles read

αocj = arctan

(

Doc
zj

Doc
rj

)

(D.18)

As already mentioned, for most ball bearings it approximately follows that
−π

3 < αocj < π
3 .
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The partial derivatives

The partial derivatives of the mutual approach with respect to the gener-
alised degrees of freedom of the unit consisting of the housing and the outer
ring read:

∂δocj
∂{ar}

= − cos(αocj ) cos(nθj) cos(mπ
2 ) cos(l arccos(

Rog
Ror

)) (E.1)

∂δocj
∂{br}

= − cos(αocj ) sin(nθj) cos(mπ
2 ) cos(l arccos(

Rog
Ror

)) (E.2)

∂δocj
∂{az}

= − sin(αocj ) cos(nθj) cos(mπ
2 ) cos(l arccos(

Rog
Ror

)) (E.3)

∂δocj
∂{bz}

= − sin(αocj ) sin(nθj) cos(mπ
2 ) cos(l arccos(

Rog
Ror

)) (E.4)

∂τocj
∂{ar}

= sin(αocj ) cos(nθj) cos(mπ
2 ) cos(l arccos(

Rog
Ror

)) (E.5)

∂τocj
∂{br}

= sin(αocj ) sin(nθj) cos(mπ
2 ) cos(l arccos(

Rog
Ror

)) (E.6)

∂τocj
∂{az}

= − cos(αocj ) cos(nθj) cos(mπ
2 ) cos(l arccos(

Rog
Ror

)) (E.7)

∂τocj
∂{bz}

= − cos(αocj ) sin(nθj) cos(mπ
2 ) cos(l arccos(

Rog
Ror

)) (E.8)

The partial derivatives of the mutual approach with respect to the degrees
of freedom of the rolling elements read:

∂δocj
∂ure

rj
= cos(αocj )

∂δocj
∂ure

zj
= sin(αocj ) (E.9)

∂δicj
∂urerj

= − cos(αocj )
∂δicj
∂urezj

= − sin(αocj ) (E.10)

∂τocj
∂ure

rj
= − sin(αocj )

∂τocj
∂ure

zj
= cos(αocj ) (E.11)

∂τ icj
∂urerj

= sin(αocj )
∂τ icj
∂urezj

= − cos(αocj ) (E.12)
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The partial derivatives of the mutual approach with respect to the gener-
alised degrees of freedom of the shaft read:

∂δicj
∂px

= cos(αicj ) cos(θj) (E.13)

∂δicj
∂py

= cos(αicj ) sin(θj) (E.14)

∂δicj
∂pz

= sin(αicj ) (E.15)

∂δicj
∂pφ

= Rig sin(αicj ) sin(θj) (E.16)

∂δicj
∂pψ

= −Rig sin(αicj ) cos(θj) (E.17)

∂τ icj
∂px

= − sin(αicj ) cos(θj) (E.18)

∂τ icj
∂py

= − sin(αicj ) sin(θj) (E.19)

∂τ icj
∂pz

= cos(αicj ) (E.20)

∂τ icj
∂pφ

= Rig cos(αicj ) sin(θj) (E.21)

∂τ icj
∂pψ

= −Rig cos(αicj ) cos(θj) (E.22)

Because the partial derivatives can be calculated analytically, the the non-
linear equations converge relatively fast.
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Newmark time integration

The nonlinear equations of motion are integrated with the Newmark method
(see Bathe, 1982). The method is based on a constant-average acceleration
scheme and is also referred to as the trapezoidal rule. The following assump-
tions are employed:

{p}t+∆t = {p}t + ∆t
2

(

{ṗ}t + {ṗ}t+∆t
)

(F.1)

{ṗ}t+∆t = {ṗ}t + ∆t
2

(

{p̈}t + {p̈}t+∆t
)

(F.2)

The constant-average-acceleration method is unconditionally stable for lin-
ear problems. For most nonlinear problems in structural dynamics this also
applies. An accuracy analysis shows that the method does not suffer from
amplitude decay. With respect to the choice of the time step ∆t one must
be aware that the method may suffer from period elongation. When the
characteristic time period of the solution is denoted by T then a time step
∆t = T/20 is sufficient to keep the error below 1%.

Nonlinear dynamic analysis requires also an iterative procedure. Due to
the effect of inertia the response of the system is generally smooth. As a
result only a few iterations are sufficient to satisfy the convergence criteria.
Convergence is always achieved, provided the time step ∆t is small enough.
Due to the fact that in a nonlinear analysis the response is highly path-
dependent, the allowed convergence error must be very small. In the present
study, use is made of the modified Newton-Raphson iteration, for which the
following equations are valid:

[m]{p̈}t+∆t
k + [c̃]t{∆ṗ}k + [k̃]t{∆p}k = {R}t+∆t − {F}t+∆t

k−1 (F.3)

{p}t+∆t
k = {p}t+∆t

k−1 + {∆p}k (F.4)
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{ṗ}t+∆t
k = {ṗ}t+∆t

k−1 + {∆ṗ}k (F.5)

The vector {R} denotes the externally applied forces and the vector {F}
denotes the nonlinear contact forces, which are a function of both {p} and
{ṗ}. The stiffness matrix [k̃]t and the damping matrix [c̃]t are used as
appraisers, which are defined as:

[k̃]t =
∂{F t}
∂{p} [c̃]t =

∂{F t}
∂{ṗ} (F.6)

Both matrices can be calculated analytically from the expressions for the
contact forces in the equations of motion. The contributions of the restoring
forces if the inner and outer contacts to the approximated stiffness matrix
read

[k̃]t =
∂F ei
∂δoci

∂δoci
∂{p}

∂δoci
∂{p}T + F ei

∂2δoci
∂{p}∂{p} +

+
∂F ei
∂δici

∂δici
∂{p}

∂δici
∂{p}T + F ei

∂2δici
∂{p}∂{p} (F.7)

Due to the geometrically nonlinear nature of the contact problem in ball
bearings, the second order derivatives in equation F.7 do not vanish. In
fact, they provide the tangential stiffness in the contact.

The contributions of the dissipative contact forces to the approximated
damping matrix yield:

[c̃]t = coc
∂δoci
∂{p}

∂δoci
∂{p}T + µcoc

∂τoci
∂{p}

∂τoci
∂{p}T +

+cic
∂δici
∂{p}

∂δici
∂{p}T + µcic

∂τ ici
∂{p}

∂τ ici
∂{p}T (F.8)

As already mentioned in Section 5.2, the dissipative forces also contribute
to the approximated stiffness matrix because the time rate of change of the
mutual approach is not only a function of {ṗ}, but also of {p}. The contri-
bution leads to skew-symmetric terms. Since the stiffness matrix is merely
used as an appraiser these terms can be omitted in order to maintain sym-
metric system matrices which is favourable from a computational point of
view.

After substitution of equation F.1 in equation F.3, a linear set of equations
is obtained:

[k̂]{∆p}k = {R̂}k−1 (F.9)
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with

[k̂] = [k̃] + 2
∆t [c̃] +

4
∆t2

[m] (F.10)

and where {R̂} is the residual of the dynamic force balance from the previous
iteration. To solve {∆p}k, the full matrix [k̂] must be decomposed. Both
the evaluation of [k̃] and [c̃] and the decomposition of the matrix [k̂] are very
time consuming operations. Hence, the calculation of [k̂] must be avoided as
much as possible. Usually the same appraisers can be used for several time
steps, which considerably improves the efficiency of the computations.
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