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ON THE DYNAMICS OF RATIONAL MAPS

BY R. MANE, P. SAD AND D. SULLIVAN

I. — Introduction

1. It is a remarkable fact that each analytic (1) endomorphism/ofthe Riemann sphere C
exhibits highly non-trivial dynamical phenomena. In this paper we first describe classical
and recent results which give the basic dynamical picture of these mappings. Then we make

use of this picture to construct topological conjugacies or partial topological conjugates
between certain nearby endomorphisms in analytic families of endomorphisms.

The partial or global conjugacies we will construct depend analytically on the parameters
of the family and these satisfy the interesting geometric property of quasi-conformality. One

corollary will be — there is an open dense set C of degree d polynomial mappings of C such that

all mappings in each connected component ofC are conjugate by quasi-conformal

homeomorphisms.

Another corollary will be — an open dense set of polynomial mappings satisfies the Axiom A
expanding property iff there is an open dense set of polynomial mappings where the Julia set has

Lebesgue measure zero. A precise statement of results comes later in this introduction.

2. Our construction of conjugacies depends on a simple but at first surprising proposition
concerning analytic perturbations of the inclusion of an arbitrary subset A of the sphere.

^--LEMMA. - Let Abe a subset ofC, D the open unit disk of C and ;\: A -> C a family of

injections depending analytically on'keD (i.e. the function X-^\(z) is analytic for

all zeA). Suppose that io is the inclusion map A^ C. Then every ;\ has a quasi-conformal

extension ;\: A -> C which is a topological embedding depending analytically on X e D and so

that the map D xA9(^, z) -> z\(z)eC is continuous.

Using the ^-Lemma and the general picture of the dynamics of endomorphisms of C the
topological conjugacies between endomorphisms are built in two steps. First, one builds
analytically varying partial conjugacies on some dynamically easy subset A of the sphere

(1) Without mention to the contrary analytic here means complex analytic.
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194 R. MANE, P. SAD AND D. SULLIVAN

(like the countable set of expanding periodic points union the basins of attracting periodic
cycles). Second, one saturates by the mapping and applies the ^-Lemma to extend this
partial conjugacy to the closure of A.

It is easy to see that from the above version of the ^-Lemma it can be deduced the more
general statement obtained by replacing the unit disk in C by the unit ball in C".

After this paper was written, Sullivan and Thurston [14] proved an extension Lemma that
states that given a compact set A c: C and a family of injections ;\ depending analytically on ^
and satisfying the hypothesis of the ^-Lemma, then there exist a family of quasi-conformal

homeomorphisms ;\: C ̂  extending ;\: A -> C and depending analytically on ^ for X in a
diskDo<=D, whose radius is a universal constant independent of the original
family. Combining this Lemma with the techniques developed in this paper Sullivan
obtained in [13] a substantial improvement of the stability Theorem presented here
(Theorem D).

3. We will work with analytic families/: W x C -> C of endomorphisms where W is a
connected complex manifold and /=/(w, z) is analytic in two variables. For the global
family of all endomorphisms of degree d, End/C), W is an open connected subset of the
complex projective space CP2^ \ with the inherited topology equivalent to the C° topology

on End^(C). The three-dimensional Moebius group { A : z ->(az-\-b)l(cz-}-d)] acts by
conjugation/ -> A ./.A~1 on the global family showing the space of analytically inequivalent
endomorphisms has dimension Id—2. The number Id—1 coincides with the number of
critical points {c|/ '(c)=0} of any endomorphism/of degree af. Critical points have
topological dynamical meaning (/ is not locally injective there) and the reader will observe in
the course of the discussion below a relationship between the structure of the orbits of critical
points and the number of essential analytic parameters for perturbations of/

Similarly, the analytic family of all polynomial mappings of degree dis parameterized by
an open connected dense subset of CP^1 in which the similarity group { z -> az + b} acts by
conjugation. The quotient analytic space of analytically inequivalent polynomial
mappings has dimension d— 1 which coincides with the number of critical points of a
polynomial mapping of degree d.

4. THE JULIA SET AND THE STABLE REGIONS. — Now we describe the dynamical picture of an

analytic endomorphism/ of C. Say that a point xeC is stable for/ if on some
neighborhood of x the family of interates /, /2, /3,..., is an equicontinuous family of
mappings of a neighborhood into the sphere. Note that when x is not stable i. e. unstable,

for any neighborhood the union of images of iterates must cover C except two points at
most. Fatou [3] and Julia [6] showed the set of unstable points J(/) (now called the Julia
set) coincides with the closure of the expanding periodic points (sources).

The open set of stable points consists ofcountably many connected components, the stable

regions off, which are transformed among themselves by/ In Sullivan [9] it is shown that
under the iteration of/each stable region is even tually cyclic. The cycles of stable regions are
classified into five types (Sullivan [9]). The first two types attractive basins and parabolic

basins have fundamental domains for the equivalence relation x^,y \S fx^^y for

4
e
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ON THE DYNAMICS OF RATIONAL MAPS 195

some n, m^O. The third type, superattractive basins do not, but they are foliated by the
closures of the classes of the equivalence relation, x wy iff/"x =f

n
y for some n ̂  0. The last

two types are rotation domains, Siegel disks or Herman rings, which are foliated by the
closures of forward orbits.

(i) An attractive basin D arises from an attractive periodic cycle y with non zero derivative
of modulus less than one, y={z,/(z), . . ../"-^(z)}, /"(z)=z, 0<|(/")(z)[<l, and D

consists of the components of W,(y)=U [y\ lim distance (fn
y,f

n
x)=0} containing

xey n-* +00

points of y. Fatou [3] showed that such a D must contain a critical point of/. Thus there
are no more than 2d—2 attractive basins for an endomorphism of degree d.

Siegel disk

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



196 R MANE, P. SAD AND D. SULLIVAN

If we remove from D the inverse orbit ofy^l j / '^y^theset of - equivalence classes
n^O

(x^y }Sf
n
x=f

m
y) defines a torus with branch points corresponding to the critical points

of/. This follows easily from the local model of/near y, where near a fixed point of a power
of/we have z -> 'kz , 0< | X | < 1.

(ii) A parabolic basin D arises from a non-hyperbolic periodic cycle y with derivative a
root of unity, y={z,/(z), . . . , /" ̂ (z)},/"(z)=z, ((/")' (z))

m
=l, y is contained in the

frontier of D, and each compact in D converges to y under forward iteration of/
(Fatou [3]). The local picture of the dynamics consists of parabolic sectors arranged around
the fixed point of a power of/which in local coordinates is z -> z + z

1 + . . . and topologically
equivalent to z -> z+z

1 (Fatou [3], Camacho [2]).

Local model Fundamental

domain

The local model produces a fundamental domain for the global dynamics on D because all
orbits in D tend to y. Looking at the local picture then shows the quotient of D by
the x ̂  y equivalent classes is a union of twice punctured sphere with branched points coming
from the critical points of/ lying in D (there must be at least one critical point in D,

Fatou [3]).

(iii) A superat tractive basin D is defined just like an attractive basin but now the derivative
of the power of/having a fixed point is zero. Now points arbitrarily near the attracting
cycle are identified by/and there is no true fundamental domain for the ^ equivalence
classes. The more precise relation x wy iff/"^ =f

n
y for some n ̂  0 defines a foliation with

singularities of D' = D — inverse orbit of y by the closures of the w equivalence classes. The
leaves are 1-manifolds which are not necessarily compact and which have singularities at the
inverse orbit of other critical points in D. The local analytic "linearization" near a
superattractive fixed point or, more precisely, its analytical equivalence to z -> Z"

1 for
some m>0 shows the leaves near y are nearly concentric closed curves around the points
of y. The rest of the foliation of D' is obtained by applying / ~1 to this concentric foliation
near y.

(iv) A Siegel disk is a stable region which is cyclic and on which the appropriate power of/
is analytically conjugate to a rotation of the standard unit disk. Siegel [1942] proved these
occur near a non-hyperbolic periodic point if the argument u of its derivative satisfies the

4eSERIE - TOME 16 - 1983 - ?2



ON THE DYNAMICS OF RATIONAL MAPS 197

following diophantine condition: there exists c > 0 and v ̂  2 such that | u — ( p / q ) | ̂  c/^ for
every relatively prime integers p and q.

Fatou and Julia showed that if such regions existed their frontiers were contained in the
union of the co-limit sets of critical points.

Siegel disks around the origin may occur already in the family z->'kz+z
2
,

| X-1 = 1. However, they do not occur when u is sufficiently Liouville because then there are
periodic points tending to zero in this case (an easy calculation).

(v) A Herman ring is a stable region similar to a Siegel disk. Now we have a periodic cycle
of annuli and a power of/which restricted to any of these annuli is analytically equivalent to
an irrational rotation of the standard annulus. Again the frontier is contained in the ©-limit
sets of critical points (Fatou [3]). Such regions were found by M. Herman for the map:

e16 ( z-a \2

z \l-dz ) ?

for appropriate 9 and a. Herman uses Arnold's theorem about real analytic conjugations of
real analytic diffeomorphisms of the circle to rigid rotations when the rotation number is like
a Siegel number. Note that both Siegel disks and Herman rings are foliated by the closures
of orbits and the leaves are closed real analytic curves.

5. MORE DYNAMICAL PROPERTIES. — (i) One knows there are only finitely many cyclic stable
regions described in 4 (Sullivan [9]). But it is a problem to find the sharp upper bound for
the number of cycles in terms of the degree. Is it 2d—2 ?

(ii) Also for polynomials one knows each bounded stable region is simply connected (apply
the maximum principle to/,/2,...). Thus polynomials do not have Herman rings.

(iii) An amusing corollary of the classification of stable regions in 4 is the following - if all

critical points of fare eventually periodic but none are periodic then the Julia set offis all of C
(because each type of cyclic region besides the superattractive basin requires a critical point
with an infinite forward orbit). Examples of this type are z -> ((z — 2)/z)2 and the quotient of
some higher degree endomorphism of a one-dimensional torus by the equivalence
relation x^ —x. See for instance the example due to Lattes [4].

(iv) Fatou and Julia showed that/on J(/) is topologically transitive. In fact, for any z
in J(/) the inverse orbit U /""(z) is dense in J(/). If no critical points tend to J(/) or

71^0

touch it, Fatou showed some power of/is expanding on J(/). He surmised the dynamical

structure was continuous in the coefficients for such examples (now called Axiom A or

hyperbolic systems, see below) and guessed that this property should be true except for special

values of the parameters.

Even when J(/) is contaminated by critical points one may think of J(/) as the hyperbolic

part (2) of the dynamics. The Siegel disks and Herman rings are in the elliptic part of the
dynamics. The attractive basins and the parabolic basins are the properly discontinuous

part of the dynamics.

(2) The words "hyperbolic" and "elliptic" are meant to suggest chaotic and rigid structure respectively in the
dynamics.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



198 R. MANE, P. SAD AND D. SULLIVAN

6. Now we state our theorems about partial conjugacies between members of analytic

families f:WxC->C of endomorphisms. First we shall introduce the concept of
persistently non-hyperbolic periodic point. We shall give first the definition in a particular
case where it is easier to understand. If ZQ is a periodic point of/^, say (/J1 (zo) = ZQ, and if

CO^o)^^ Aen when w moves in a small neighborhood Wo ofwo we can find z(w),
depending analytically on w and such that z (u;o) = ZQ and (/^) (z (w)) = z (w) for every w in the
neighborhood. We say that ZQ is a persistently non-hyperbolic periodic point of/^, if
K/u'yC2^))^! tor every w in a neighborhood ofu;o i.e. if we cannot destroy the
non hyperbolicity of ZQ by moving the parameter. Observe that the condition
\(fiy(

Z
W)\=^ for every w nearby WQ implies that in fact (f^)\z(w)) is constant in that

neighborhood. Unfortunately this definition is not sufficient because we shall need to

handle the case (/^)' (zo) = 1, when it is not always possible to find z (w) as before. To state
the general definition we first introduce the analytic sets:

M^={(u;,z)eWxC|/,;(z)=z,^(z)^z,0^<^}.

Define the projection P^: M^ -> W as P^(u;, z) = w and the eigenvalue function ̂ : M -> C
by:

U^z) /̂,")^).

IfP^ is injective when restricted to a neighborhood of a point (u?o, Zo) e M^, then there exists a

neighborhood Wo of WQ and an analytic function (p : Wo -> C, with (p (wo) = ZQ, such that its
graph {(w, (p(w)) | we Wo } is a neighborhood of(u;o, Zo) in M^. We say that a periodic
point ZQ of/^ is persistently non-hyperbolic if it is non-hyperbolic and:

(i) There exists a neighborhood Wo of WQ and an analytic function (p : Wo -> C such that
(p(wo)=Zo and its graph {(w, (p (w)) | ic G Wo } is a neighborhood of(wo, Zo) in M^;

(ii) ^ is constant in a neighborhood of(wo, Zo) in M^.

By the analicity of / we can reformulate (i) in a weaker form: P^ is injective on a

neighborhood of(zo, Wo). In fact, since/is analytic and the function/J1 (z) - z is not
identically zero, we can find neighborhoods Wo of WQ and Uo of ZQ such that on Wo x Uo we
can factorize/^(z)-z (assuming ZQ=O) as:

^CO-^^+'E ^.(w)z^(w, z),
J=0

where the coefficients aj are analytic functions of w and g is analytic and 7^ 0 in Wo x Uo. If
^/((^ x Uo)n MJ is injective then for every w e Wo there exists a unique (p(w) e Uo such
that (w, (p(w))eM^. Then (p(w) is the unique element ofUo such that
f^(^(w))—^(w)=Q. By Rouche's Theorem, if Wo is small enough, the order of (p(w) as
zero of z ->f^ (z) — z must be the same of ZQ = 0 as root of z ->f^ (z) — z, that is k. But g -^ 0

fc- i
in a neighborhood of (wo, Zo). Hence (p(w) is a root of order k ofz^ ^ a -(w) z

3
. Hence

j=o
this polynomial is (z-^(w)Y. This means that (p(w)=fc^_i(w) and then (p is analytic.
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ON THE DYNAMICS OF RATIONAL MAPS 199

Moreover observe that ̂  is analytic on the analytic set M^ [since it is the restriction of
(w, z) -> (/^y(z)]. Then, if ̂  is constant in a neighborhood of a point, it is constant on the

whole connected component ofM^ containing that point. Since every connected
component of M^ projects onto W, it follows that if for some w^f^ has a persistently non-
hyperbolic periodic point, then/^ has a non-hyperbolic periodic point for
every weW. Therefore, if for some w^ eW, all the periodic points off^ are hyperbolic,
then, for all weW,/^ has no persistently non-hyperbolic periodic points.

Now define the set H(/)cW as the set of values WoeW that have a neighborhood Wo
such that for every w e W every periodic point of/^ is either hyperbolic or persistently non-
hyperbolic. Clearly this set is open. It is also dense:

THEOREM A. - For any analytic family f: W x C -> C, H(/) is an open dense subset ofW.

Thus we have an open dense set of parameters W for which the nature of each periodic
point of/^ stays constant. We can show that in this open dense set of parameters the
dynamical structure of/^ in its Julia set J(/) remains topologically unchanged.

DEFINITIONS. — Two endomorphisms /, g in End C are J-equivalent if there exists a

homeomorphism h: J(/) -> J ( g ) such that hf=gh. Given an analytic family/: W x C -> C
we say that WQ e W is J-stable if WQ has a neighborhood Wo such that/^ is J-equivalent to f^

for all w in Wo and J(/^) depends continuously on we Wo in the sense of the Hausdorff

distance between two closed sets. Say that a map (p of a subset X<=C into the sphere is
quasi-conformal if it is a topological embedding and:

sup ^((p(j0, (p(x))
sup lim sup 26S^———————— ^ oo,
'6X t-0

 inf ^((p(}0, (p(x))
YeS,(;c)

where S,(x)={yeX\d(y, x)=t}.

We ignore whether a quasi-conformal map (p: X -> C can be extended to a quasi-
conformal map of a neighborhood of X.

THEOREM B. — For every analytic family of endomorphisms f: W x C - > C , H(/)cW
coincides with the set of J-stable values of the parameter. Moreover, if WQ belongs to H(/)
there exists a neighborhood Wo m W of WQ and a continuouu conjugacy function

h: Wo x J(f^ ) -> C so that for all w in Wo;

(i) h^ is a conjugacy between f^ on J(/^) andf^ on J(/J and h^ is the identity;

(ii) for each z, h^(z) is analytic in w;

(iii) F of each w, h^ is quasi-conformal;

(iv) the set of J-stable points coincide with the interior of the set of parameters where the
Julia set moves continuously.

7. Now we will enlarge our topological conjugacies beyond the Julia set using the
structure described in 4. We obtain almost the natural expected result. Whenever Siegel
disks or Herman rings are present there is, however, a glueing problem near their

frontiers. On this problem, see remark after the statement of Theorem D.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



200 R. MANE, P. SAD AND D. SULLIVAN

Now we discuss the orbit structure of critical points: we say aSb if either a == b or a and b

lie in the same leaf of the dynamically defined foliations ofsuperattractive basins, Siegel disks,
or Herman rings discussed in 4. We define a subset C(/)c=W for the analytic family

/: W x C -> C by WQ e C(/) iff there is a neighborhood Wo c= W of WQ and analytic functions
C i , . . . , ̂  on Wo so that:

(i) C i (w) , . . . , ^(w) are all the critical points of/^;

(ii) either /^(c,(w))S/^(c,(w)) for some m^O, n^O and all weWo, or
/^(^(w))^^^)) tor all weWo, m^O, ̂ 0.

Remark. - Note that for w in a component ofH(/) the critical points in J(/) satisfy (ii) by
Theorem B.

THEOREM C. — For any analyticfamilyf: W x C -> C, C(/) is an open dense subset of H(/)
(which is open and dense in W).

Now we will state global or almost global stability results for endomorphisms
of C (/). Given an endomorphism /let A (/) denote the collection of completely invariant

compact sets A [i.e./(A)=A=/ ^(A)] which intersect each (open) Siegel disk or (open)
Herman ring in a compact set. For instance, the closure of all stable regions which are
eventually attractive, superattractive or parabolic basins belongs to A(/).

THEOREM D. - For any analyticfamilyf'. W x C -> C; ifwo belongs to the open dense subset

C(/) c W then for any choice of A e A(/^) there is a neighborhood Wo of WQ and a continuous

mapping h: WQ x A -> C satisfying:

(i) h^is a conjugacy between f^ on A andf^ on /?JA); and /?JA) belongs to A(/J;

(ii) for each z, h^(z) is analytic in w;

(iii) For each w, h^ is quasi-conformal.

Conversely, if for any choice AeA(/^) there exists a neighborhood Wo of WQ and a

continuous mapping h: Wo x A -> C satisfying (i) then WQ eC(/).

Observe that when/^ has no Siegel disks or Herman domains then C eA(/,), and this is

the best choice to which Theorem D applies. It always happens for the family of
polynomials of a given degree. As we explained in the introduction, in [13] Sullivan,
combined the extension Lemma in [14] with the results above to obtain an improvement of

Theorem D that states that it holds globally i. e. if w e C (/) then we can find h: WQ x C -> C

satisfying all the properties in Theorem D. Therefore, the set of values WQ e W such that/^,

is stable in the family (i. e. topologically equivalent to any/^ with w near to Wo) is open and
dense.

8. Say that an endomorphism/is expanding on, the Julia set if for each z in J(/) there is

an n so that | (/")'(z) | > 1. An easy argument shows the expanding property is equivalent
to the Axiom A property: there exist c > 1 and N > 0 such that | (/fc)' (z) \>c

k
, for all k > N

and zeJ(/).

The classification of 4 shows immediately the Axiom A expanding property implies all

critical points are contained in attractive or superattractive basins and these are the only

periodic stable regions. The converse as remarked above follows from Fatou[3].
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ON THE DYNAMICS OF RATIONAL MAPS 201

Note that the Axiom A expanding property implies membership in H(/) for any

family/. Thus we have an intrinsic property. Axiom A, which implies a property,
membership in H(/), determined by perturbations. For example we don't know if
membership in H(/) for the global family/implies the same is true for the
iterates. However, it is obvious the Axiom A expanding property passes to iterates.

A second favorable feature of this property is that there is a powerful theory [Anosov, Sinai,
Smale, Bowen, . . . ] for treating the dynamics of these hyperbolic systems. Markov
partitions and symbolic dynamics can be used to describe/on J(/) (Jacobson [5]).

Also in the conformal case the Axiom A expanding property for/implies J(/) is a quasi-
self similar fractal. It is not hard to show J (/) has finite positive Hausdorff measure in its

dimension which is strictly less than 2 (Sullivan [10], see also Bowen [1] and Ruelle [7]).

For all these reasons it is important to be able to verify the Axiom A expanding
property. It would be important to know whether or not the Axiom A expanding property is

true for an open dense set of endomorphisms (in reasonable families). The openess is known
(see Jacobson [5]). But the density has defied verification.

Say that an endomorphism f has a invariant line field on J(/) if there is a completely
invariant subset A c:J(/) of positive Lebesgue measure, and a measurable family of tangent
lines defined a. e. in A invariant by the tangent action of/

Say that an analytic family of endomorphisms /: W x C -> C is reduced if different
members cannot be analytically conjugate. Define r{w) for weW as the number of
equivalence classes of not eventually periodic critical points in J(/Y under the equivalence
relation c^Cj iff/^ (c,) %/^ (Cj) for some n ̂  0, m ̂  0 (where % is defined before the statement

of Theorem C) plus the number of critical points in JC/u;).

THEOREM E. — Suppose f ' : W x C -» C is a reduced analytic family andw is a point ofC(f)

where r(w)^ dimension W. Thenf^ satisfies the Axiom A expanding property iff'.

(i) all periodic points off^ are hyperbolic',

(ii) /y, has no Herman rings',

(iii) /y, has no invariant line fields on the Julia set.

COROLLARY. — The Axiom A expanding property is true for an open dense set of polynomial

mappings of degree d iff the Lebesgue measure of the Julia set is zero for an open dense set of

polynomial mappings of degree d.

II. — Proof of the X-Lemma and Theorem A and B

The proof of the X-Lemma is based in the following: any analytic map of the unit ^-disk

into the triply punctured sphere C — { 0, 1, oo } is distance non increasing for the complete

Poincare metrics on the unit disk and punctured sphere (Schwarz's Lemma). Choose three
points from A and renormalize / so their images by ;\ are constantly 0, 1, and oo.

For any three other distinct finite points x, y , z of A, consider the functions x(X) = ;\(x),

yW=h(y). z(k)=i^z), ^->(yW-xW)/yW. Let 0<R<1 and 0<m<M be

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



202 R. MANE, P. SAD AND D. SULLIVAN

given. These functions avoid 0, 1 and oo. Applying the above to the second function we
see that |,^(0)[<M implies that^(X,) is not too large for |^ |^R<1 (i.e. bounded by a
function of M). Applying the above to the fourth function we see that if
0<m^|^(0)|^M<oo and |x(0)-j(0)| is small then \(x(0)-v(Q))/y(0)\ is small, which
implies | (x (^) - v (^)) /,y (K) \ is small if | A, | ̂  R < 1, which implies | x (^) - y (k) \ is small by the
first remark.

Thus each ;\ is uniformly continuous on An { z | m ̂  | z | ̂  M }.

Such annuli cover the sphere (permuting the roles of 0, 1, oo) so ;\ has a continuous

extension ;\ : A -> C. Since 0 and any other particular ̂  play symmetric roles in the

hypothesis, the (p^ have continuous inverses. For each z inA, ;\(z) is analytic in X because it
is a uniform limit of analytic functions on each disk | ^ | ̂  R < 1.

To prove ;\(x) is quasiconformal apply the non-increasing property to the
fmctiongW=(xW-yW)/(xW-zW) when |x(0)-^(0)|=[x(0)-z(0)| and conclude

that [ gCk) | is bounded for [ X [ ̂  R. To prove the continuity of i : D x A -> C is sufficient to

show that the family of functions X->;\(x), xeA, is equicontinuous. Again this is a
consequence of the non-increasing property that grants | i^ (x) — ̂  (x) | = | x (^i) — x (X^) | is
small uniformely in x if | X-i —^ \ is small.

To prove Theorem A take WQ e W and any open neighborhood Wo of WQ. We shall show
that WQ contains points of H(/). If we Wo denote a (w) the number of attractive and
superattractive periodic orbits of/y,, and P(uQ the number of non-hyperbolic periodic
orbits. By Fatou[3], a(w)+P(w)^4(J-l). Choose w^eWo such that a(wi)=max
{ a(w) [ weWo }. Then, since attractive and superattractive periodic orbits are persistent,
there exists an open neighborhood W^ <=Wo of w^ such that a/Wi is constant. Choose
w^eWl such that p(w2)=max{ P(w) |weWi }. Denote /? i , . . . , pi the non-hyperbolic
periodic orbits of/^. We claim there exists a neighborhood W^cW^ of w^ and
neighborhoods Uf of p^ l^i^l, such that if n^ is determined by (w^,pi)eM^, then

^/((^ x uf)n M
n) is injective and:

U({w}xC)n ( (W2xU, )nM^) ,

is the set of non-hyperbolic periodic points of/y,, for all weW^. Since the attractive and
superattractive periodic points of/^ move analytically with w and their number is constant in
Wi, it follows that we can find neighborhoods U^. ofp^ and a neighborhood W2 <= W^ of u^
such that for every weW^ and l^i^l, U, doesn't contain attractive or superattractive
periodic points of/^. Suppose W^ and the LJ^'s; = 1, . . . , / so small that M^n (W2 x U^) is
connected for every l^i^l. The absence of attractive or superattractive periodic points in
Uf for all weW^ means that the analytic function ^ on the analytic set M^r\(W^ xU^)

satisfies |X» (w, z)|^l. Hence X^1 is also an analytic function on this analytic set and
is bounded by 1. But \^n,

l
(.

w
2^ .Pi)^!- Hence it attains its maximum at

(w^, pi). Therefore it is constant in the connected analytic set (W^ x LJ^n M^. Then, for

every we W^, the points of({ w ] x C)n((W2 x Uf)nM^) are non-hyperbolic periodic points
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of/y,. Since P attains a maximum at w=w^ it is easy to see that the number of non-
hyperbolic periodic points of/^ also attains a maximum at w=w^ Then:

E #({w}xC)n((W2xU,)nM,)^p(u^)=/ ,
1=1

for every w e W2. But #({ w} x C)n ((W^ x U,)n M^) ̂  1. Hence it must be equal to one
for all weW^. This means that P^W^ xU,)nM^) is injective for all l^i^l. The
previous arguments also show that points in the set:

S (w)=U({w}xC)n( (W,xU, )nM^,
1=1

^{W)= \j HWJ- x^n^w^ xu^nivi^,
1=1

are non-hyperbolic and that # S (w) = /. But since as we observed above the number of non-
hyperbolic periodic points off^ attains a maximum / at w=w^ it follows that number is
bounded by /. Hence S(w) is exactly the set of all the non-hyperbolic periodic points of/^
and this completes the Proof of the Claim. Now we claim that u^ e H(/). If it doesn't,
there exists w^ e W^ such that/^ has a non-hyperbolic periodic point/? that is not persistently
non-hyperbolic. But by the Claim, p must have the form

P
=
({

W
3} xC)n((W2 xU^)nM^) for some l^'^/. Then P^ is injective in a

neighborhood of (w^p) in M^ [in fact, the neighborhood (W^nU^nM^. satisfies this
property]. Hence (w^, p) satisfies condition (i) of the Definition of persistently non-

hyperbolic periodic point (in the equivalent formulation that we gave after the
Definition). But we proved that ̂  is constant in (W^ x U^)n M^. Then it also satisfies
part (ii) of the Definition and p is persistently non-hyperbolic.

To prove Theorem B suppose WQ belongs to H(/)c:W for the analytic family/:

W x C —^ C. Let WQ containing WQ be a simply connected neighborhood of WQ in
H(/)- We claim each expanding periodic point x^ off^ defines an analytic function x^ :

Wo -> C such that x^(w) is a periodic point of/y, of the same period of x^. The implict
function theorem tells us we can analytically continue a transversal fixed point off^ uniquely
for some neighborhood of parameters. Thus by following the periodic point determined by
x^ (wo) we locally define x^ (w) on an open set. At a frontier point w^ of such an open set, the
limit ofx^ (w) is still a periodic point which is hyperbolic if it has period n because Wp c H (/).

Actually, the period can not drop neither when x= lim x^(w) has period k<n
w-^w^

(f^y 00 not a root of unit (if m i=- k is given there exists a neighborhood Uofxso that no point
in U - { x } has period m) nor when (/^)'(x) is a root of unit [use the local model for the
dynamics and the fact that WQ(=H(/)].

Thus x^(wi) is a hyperbolic periodic point of order n which may be analytically continued
on a neighborhood of w^. This definition agrees with the previous one by the
uniqueness. So we can define x^(w) on all of Wo which is simply connected.

Since hyperbolic periodic points cannot collide, as we have already remarked, we may
apply the ^-Lemma to the set A of expanding periodic points. We obtain h(w, z) :

Wo X
Kfw} -

> C, analytic in w, quasi-conformal in z.
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Since the role ofwo and any particular w^ in W\ may be reversed it is clear the x^(w^) must

be all of the expanding periodic points of/^. Thus for each w, h(w, z) defines a
homeomorphism between Julia sets. By definition h(w, z) is a conjugacy between sets of
expanding periodic points. By continuity h(w, z) is a conjugacy between Julia sets.

This proves the first part of Theorem B.

To prove the converse property, let WQ be a J-stable value of W. Since the number of
periodic cycles of/^ in J(/^) stays constant for w in a small neighborhood Wo of WQ, we see

that all periodic cycles of/^ with derivative equal to one have an analytic continuation

through Wo. Now observe that the function W Q B W -> J(/J is continuous with respect

to the Hausdorff metric. We shall show that w e H (/). Obviously this shows that J-stable

values of the parameter belong to H(/). If WO.^H(/), there exists w^ e Wo such that for

some ^0, /^ has a non hyperbolic fixed point z^ that is not persistently non
hyperbolic. This implies that we can find w^ near to w^ such that/^ has a fixed point z^
(near to z^) such that (/y (z^) is a Siegel number and z^ is not a persistently non hyperbolic
periodic point. Then z^ t J (/^).

But since z^ is not persistently non hyperbolic, we can find 1^3 arbitrarily near to w^ and

fixed points z^ of/^, arbitarily near to z^, such that | (/y^) | ̂  1. Hence z^ eJ(/^). We

have thus proved that there exist arbitrarily small perturbations of w^ e Wo that make the
Julia set reach points (like z^) that are bounded away from J(/^) [because z^ is arbitrarily
near to z^, and z^ ̂ J(/^)]. This concludes the proof of Theorem B.

III. - Proof of Theorem C

First we shall show that C (/) is contained in H (/). We shall use the following standard
Lemma:

LEMMA III. 1. - J/Wo <= W is an open simply connected set and (p : Wo -> C is an analytic

function such that for every we Wo the point (p(w) doesn't belong to any forward f^-orbit of a

critical point off^, then there exist analytic functions (p^=Wo-^C, ^0, i^i^a",

satisfying f^^ ^.(w))=(p(w) and (p^ ,(w) -^ (p ̂ .(w) for all n^O, 1^ i ̂ d\ weWo.

The X-Lemma now yields the following property:

LEMMA III. 2. - Suppose tha t Wo and (p sa tisfy the hypo thesis of Lemma III. 1. Moreover

suppose that either (p(w) is not f ̂ -periodic for anyweWQ or that for some N^0 we have

/^((p (w)) = (p (w) for all w e Wo. Then Wo c H (/).

Proof. - We shall prove the Lemma only in the case when (p (w) is not/^-periodic for any
w e Wo. The other case reduces to this just by replacing cp by cp^., where ; is chosen taking

any u;o e Wo and; such that/^ ((p, ^ (wo)) ̂  /^-' (cp (wo)).Then the same relation holds for all
weWo because by III.l preimages of (p(^o) don't collide. Therefore (pi^(w) is not/a-
periodic for any w e Wo. Now fix some WQ e Wo and set A = U f^ ((p (w^)). Define h :

M^O

W o x A - ^ C b y :

M^^iO^
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ifz=(p^ i(wo). Observe that since q)(^o) is not/^-periodic, and (p^/Wo)^^ i(wo)forall
M>O, 1 ̂ i^'^d", the ^ and ;' satisfying z=(p^ i(wo) are unique. This shows that h^(z) is
well defined and depends analytically in w. Moreover, every h^ is injective. In fact if

z^z^ belong to A, then:

z! = <Pn^ (wo), Z2 = (p^,,, (wo), where either ̂  ̂  ̂ 2 o1' "i = "2 and ^i ̂  ̂  ^ n
! ~+

n
^ Ae

equality h^(z^)=h^(z^) implies:

(p^(w)=(p^w)

and then:

/". (̂ , „ (u0) = (P (w) = ̂  (cp^, ̂  (w)) = /", ((p,, „ (w)).

Suppose ^2 ̂  ̂ i • Then:

y^-"1 (cpW) = /"w-"1 (/". (̂ . ̂  (^))) = ̂  (̂ ... (w)) = ̂  (M;)'

thus contradicting that(p(w) is not/^-periodic. If n^=n^ then:

^w(zl)=^,^(^)^<P^^(^)=^«,(z2)•

Now we can apply the X-Lemma to extend every map h^ : A -> h^ (A) to a homeomorphism

A^ : A -> /?u,(A) that obviously satisfies:

(*) /JU^U/wO^)),

for every zef^ \A). But A contains J (/^) because it contains the full backward orbit of a
point. Therefore, if we show that h ̂  (J (/^)) = J (/J we shall be done. If z e J (/^), it is the
limit of a sequence z^ of/^-periodic points different from z. Then A „, (Zy,) is a sequence of/^-
periodic points different from h^(z) and converging to h^(z). Hence /^(z)eJ(/J thus
proving A „ (J (/^)) c J (/J. To prove J (/J c A ̂  (J (/^)) we just observe that interchanging
the roles of w and WQ we obtain /i „;1 instead of h ̂  Then h ̂

1 (J (/„,)) c: J (/^) and J (/J = /z ,̂

(A;1 (J(/J))<=MJ(/J) thus concluding the Proof of Lemma III. 2.

To prove C(/)<=H(/) we start observing than any endomorphism g : C<pnot satisfying

Axiom A, has a critical point Zg such that U g~
n
(zo) doesn't contain critical points. In

n^O

fact, if such a critical point doesn't exist, it is easy to see that every critical point must be
periodic. Therefore g satisfies Axiom A. Now suppose that WQ e C(/). Then either/^
satisfies Axiom A (and then WQ e H(/)) or it doesn't, in which case we can take ZQ with the
above property. The definition ofC(/) grants the existence of a neighborhood WQ of WQ

and an analytic function v|/ : Wo -> C such that v|/(wo)=Zo and (/^)' (\|/(w))=0 for all
w e Wo. Also from the definition of C (/) we know that \|/ (w) doesn't belong to the forward
/y,-orbit of any critical point because ZQ =\|/(wo) is not in the/^-forward orbit of any critical

points. Applying Lemma III. 2 to v|/ : Wg -> C it follows that W()C=H(/).
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The openness of C(/) is trivial. To prove its density we shall produce a dense set
S c: H(/) whose elements can be aproximated by elements in C(/). First define the critical
set:

C,={(w,z)|(/,y(z)=0}.

I f 7 c : W x C - ^ W i s the projection, let So be the set of regular values of n/Cy Then So is
open and dense in W. Moreover given any WQ e So there exist a neighborhood Wo <= So of

WQ and analytic functions c ^ : Wo -> C, 1 ̂  i^k, such that { c^ (w), . . . , c^(w)} is the set of
critical points for all we Wo. Define SQ',7, n, m) as the set of values Wo^Son H(/) such

that either/^ (c,(wo))S/^ (c/Wo)) or/", (c,(w))^(c,(u0) holds for every w in a
neighborhood of WQ. Now we set:

SO'^-nsay^m)
n, m

We claim that each S(i,j\n,m) is open and dense and that if u?oeS(i,j), it has a
neighborhood Wo such that for all ^0, m>0 either /^(c,(w))g^(c/w)) or

/^(^iO^) J$/S(^(^)) holds for every we Wo. It follows from the claim that the residual

(thus dense) set S = 0 S (i, j, n, m) is contained in C (/). The Proof of the Claim requires a
u

series of Lemmas that describe how cyclic domains vary with the parameter.

LEMMA III. 3. - Let ZQ be an attractive periodic point off^ with period m. Then there

exist neighborhoods Vo and Wo of ZQ and WQ and analytic functions fi: Wo xVo -> C, (p :

^o "-)> ̂ o suc
^

 t
^

lat:

(^)/S(Vo)c=Vo/^a//weWo;

W f^(w))=^w)for all weWo;

(c) ^((p(w))=0,u;eWo;

W (/^((PO^M^. (fW)for all weWo, zeVo.

LEMMA III. 4. — Suppose that for some i and w>0,/^(Cf(w))=c^(w)/or every w in a

neighborhood of some WoCSo. Then there exist neighborhoods VQ and Wo O/ZQ and
 ^o

respectively and an analytic function fi: Wo x Vo -> C ^MC/? ^a^;

(^)/S(Vo)<=Vo/^^u;eWo;

(^) ^(^(w))=0,weWo;

(c) fi^zY^, {f^z))for all weWo, zeVo,

w/z^r^ n is the multiplicity ofc,(wo) as a critical point off^ .

LEMMA III. 5. - Suppose that WQeH(f) and ZQ is a parabolic periodic point of f^ of

period m. Then there exist neighborhoods Vo and Wo of ZQ and WQ respectively and a

continuous map fi: Wo xVo-^C such that:

(a) fi^(.)==fi(w, .) is continuous and injective for all weWo;

(b) for all zeVo, the map w -> ̂ (z) is analytic;

(c) fwfiw^^^wfw^for every weWo and zeVon/u,'/(Vo).
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LEMMA III. 6. — Suppose that WQ e H(/) and A is a Herman ring or Siegel disk satisfying

/m (A) = A. Le t U <= A be an open /w
-invarian t (i. e. /w (U) = U) disk or annulus whose closure

is contained in A and whose boundary consists in one or two /w
-invariant analytic curves. Then

there exist a neighborhood Wo of WQ, an open disk or ring Tc=C and an analytic function

n '. Wo xT -> C such that every n^ is a conformed representation satisfying:

U^)=/w(^00).

for all zeU, where 6 is the rotation number off^/A, and ^o(T)=U.

Lemma III. 3 is an analytically parametrized version ofPoincare 's linearization Theorem,
and its Proof follows immediately from the usual technique used to prove this
Theorem. Lemma III. 4 is in a similar situation with respect to the analytic linearization
Theorem of super attractive periodic points. The Proofs of Lemmas III. 5 and III. 6 will be
presented after completing the Proof of the Claim. First observe the Lemmas above imply
easily that each S (/, j, n, m) is open and dense. Suppose that WQ e S (i, j). The Proof of the

Claim will be divided according to the following cases:

(I) There exist ̂ 0, m>0, such that/^ (c, (wo)) S/^ (^(^o))- Suppose that HQ is the
minimum positive integer such that the equality above is satisfied for some m > 0. Then take

as mo the minimum integer such that the equality/^ (c,(wo) ®^° (c^(wo)) holds. Since
WQ e S (i, 7, no, mo) there exists a neighborhood Wo such that/"^ (c,(w)) ®/^° (^.(w)) for all
w e Wo. Restricting Wo if necessary, we can grant that/^(c,(w)) ̂ /^(^.(w)) for all w e Wo
and O^n^Uo, 0^m<mo. From these facts it follows that Wo satisfies the property

required by the Claim.
?

(II)/^ (c, (w)) ^f^ (Cj(w)) for every n^O, m>0. This case is subdivided in two
situations:

(II a) c,(wo) or c^Wo) (perhaps both) belong to J(/^). Then it suffices to takes as Wo the
connected component of H (/) that contains WQ . Then the topological equivalence between

the Julia sets off^ and f^ for any w e Wo, given by Theorem B, plus the fact that the number
(counted with multiplicity) of critical points in J(/J is constant on connected components of
H(/) (again a Corollary of Theorem B), implies the Claim.

(II b) c, (wo) t J (/^), Cj (wo) i J (/wo) and they eventually belong to orbits of different cyclic
domains of J(/^y. Then Lemmas III. l,2,3or4implythat/"J^(w)) ^/^(c/w)) for every
n^O, m^O and all w in a neighborhood of WQ.

(He) c,.(wo)^J(/^), Cj(wo)tJ(f^) and they eventually belong to the orbit of the same
cyclic domain. Taking as Wo the neighborhood given by Lemma 1.1, 2, 3 or 4 (according
to which type belongs the cyclic domain that eventually contain the orbits of c^Wo) and
Cj(Wo)) the parametrized linearization shows that/^(c,(w)) ̂ /^(c/w)) for every we Wo.

Let us prove Lemma III. 5. Suppose that/^(zo)=Zo to simplify the discussion. Set

^(/woV^o)- ^ ̂ =1 and X^l for 0</<<7, we can write, after an analytic change of
coordinates in a neighborhood of ZQ C^[2] for details):

/,(z)=?iz+f; a,(w)z^\
7=1
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where the series converge in a fixed disk B,. (zo) for every w e Wo (taking Wo sufficiently small)

and the functions cij are analytic. Observe that we are here using that ZQ ̂  a persistently
where the series converge in a fixed disk B,. (zo) for every w e Wo (taking Wo sufficiently small)
and the functions Oj are analytitic. Observe that we are here using that ZQ is a persistently

non hyperbolic fixed point of/^ because WQ e H (/). This grants that the fixed point ZQ has
an analytic continuation as fixed point z(w) o{f^ and that/^(z'(w))=^ for every w

near WQ. We claim that if ^.(wo)=0 for l^ /<m and a^(wo)^0 then ^.(w)=0 for all
l^ /<m and every w near to WQ, To prove this we shall again use the hypothesis
WoeH(/). Write:

/^(z)=z+ f ^.(w)z^
j= i

and observe that a^Wo)=Q for 1 ̂ j<m and ^(wo)^O. Then:

/JU7)-^ Z ^(Oz^^z^- ( f ^(Oz^-V
.7=1 \ j = m /

I fVoisa neighborhood of 0 where the second factor in the last term is ^0, then z=0 is the

unique fixed point of/^ in Vo. The J-stability off^ implies that f^ has a unique fixed point
in Vo for w near to WQ. This implies that ^.(w)==0 for every 1 ̂ j<m and every w in a

neighborhood ofwo. Hence Oj(w) =0 for every w in the same neighborhood and 1 ^/<m
completing the Proof of the Claim. Now with a linear change of coordinates we can write:

00

/^(z)=^z+ ^ a^z^J.
j=m+l

Ky [2],/u, is equivalent to the map z-^^z+z4 '""1 in a neighborhood of 0 and the
homeomorphism/^ that conjugates both maps can be chosen depending analytically in w.

Now let us prove Lemma III. 6. To simplify the notation suppose that m=l. Let
U\ c: U be an invariant annulus whose boundary has two analytic closed curves. We shall
need the following Lemma, to be proved later:

LEMMA III. 7. — There exists a neighborhood Wo ofWQ such that for every we Wo, U^
doesn't contain eventually periodic points off^ or points ofJ(f^).

Now take some point z^eUi and if C={e
inQ

\n^O} define h^ : C-^C, weWo, by

^w^1"6)=
 fw^i)' This family of maps depends analytically on the parameter w e Wo. To

apply the ̂ -Lemma to this family we have only to check that every h ̂  is injective. If/^is not
injective, there exist n and m such that/^(zi)=/^(zi). Thenz^ is an eventually periodic
point of/^, contradicting Lemma III. 5. Now, applying the ^-Lemma we obtain a

conjugacy/^ between the rotation z -> e
19

 z in the circle C and the restriction off^ to the

Jordan /^-invariant curve /^(C). By Lemma III. 5 this Jordan/^-invariant curve must
belong to some fixed connected component of^/J^ Clearly it must be either a Herman
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ring or a SiegeRs disk. But ho (C) is a Jordan /^-invariant curve and has points of J (/^) in

its interior if and only if A is a Herman ring. Moreover h y,(C) contains points ofJ(/y,) in its

interior if and only if/?o (C) does. Therefore h y, (C) belongs to a Siegel disk or Herman ring if

and only if/?o (C) belongs to the same type of component. Moreover it is an analytic curve

and since it belongs to a Herman ring or Siegel disk, the restriction of/y, to Ay,(C) is real

analytically equivalent to a rotation of the circle. Say that the circle is C and let

F : Ay,(C) -> C be this real analytic conjugacy. Then F~1 Ay, is a conjugacy between two
rotations. Therefore the rotations must coincide. In particular Ay, is real analytic. Now

let ^w
=
{

z
\
r
l(

w
)<\

z
\<

r
2(

w
)} ^e tne maximal ring where an analytic extension

H y , : B y , - » C o f / z ^ : C - ^ C exists. From the identity principle it is easy to conclude that
fw^

l
w(

z
)

=
^w(

elQ z
) f01" every zeBy,. We claim that for values of w near to WQ the relation

h y, (B J =) U holds. This will clearly prove Lemma III. 6. In fact we can show that h y, (B J

is the Herman ring A (w) containing h y, (C). This follows from the fact that if Ay, (By,) <= A (w)

then one of the boundaries of Ay, (By,) must be an/y.-invariant real analytic curve or reduce to
a point. In the first case, the extension property ofconformal representations would show
that By, is not maximal. We leave to the reader to verify that the second only arises when
r
l(

w
)

=
Q and then Ay, extends to an analytic map of By, u {0}.

To prove Lemma III.7, take Wo so small that J(/y,)nU=0 for all weWo. This is
granted by Theorem B. It remains to show that there are no eventually periodic points of/y,
in Ui,for w in Wo.

Take a neighborhood V of the periodic orbits of/y, not contained in J(/y,) or in A if A is a
Siegel disk. Take V so small that Vn A = 0. Since WQ e H (/), all the /^-periodic orbits
not in J (/y,) are contained in V for all w e Wo, if Wo is chosen small enough. Now suppose
that for some we Wo and zeU^ there exists N>0 such that/^(z) is /^-periodic. Since
J(/JnU=0,/^(z)^J(/,). Hence/^(z)eV.

Moreover ifAy,:J (/yj -> J (/J is the homeomorphism given by Theorem B, the fact that V

and Ui belong to different connected components of the complement of J(/y,), implies that
they are also in different connected components of ^u,(J(/^))=J(/Jfor all we Wo, if Wo is
small enough.

But we can take Wo such that/y,(Ui)n U^ ̂  0 all w e Wo. Then/y^1 (Ui)n/^(Ui) ̂  0
for all n, thus implying that U /y;(Ui) is connected. On the other hand the property

n^O

/y;(z)eV implies that U /^(Ui))nV^0 then U and V belong to the same connected
n^O

component of the complement of J (/y,).

Lastly, suppose A is Siegel disk with fixed point ZQ; let Zo(w) be its local analytic
continuation. If U^ still belongs to the Siegel disk corresponding to Zo(w), clearly
U /u*(U) ^ZQ (w) for w close to WQ.

n'^0
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IV. - Proof of Theorem D

Suppose that WQ e C (/) and that A is a compact totally invariant set of/^ i. e. f^~
1 (A) == A

such that its intersection with any Siegel disk or Herman ring is compact. We shall
construct a set Ao<=A, a simply connected open neighborhood Wo of WQ and a map

h: Wo x AQ -> C with the following properties:

(^Uo(Ao)=Ao;

(b) A=U/^(Ao);
n^O

(c) The map w-^h^z) is analytic for every zeAo, ^ (z)=z and h^ is injective for
al lweWo;

(^0 ^i^) belongs to the orbit of a critical point of/^ if and only if z belongs to the orbit of a
critical point of/^ .

(^) /JU^))=U400)for every weWo, zeAo.

Let us show how to prove the partial stability follows from the existence of /z, Wo
and AQ. Let Ao be Ao minus the intersection of forward f^ -orbits of critical points

with Ao. Set A= (J ^"(Ao). Then A is dense in A. Define h^: A -. C as follows:
n^O

i f zeA choose n such that/^(z)eAo and let (p:Wo -^C be an analytic function such that
(p(u;o)=z and:

^(cpO^U/^)),

for all w e Wo. Then define h ̂  (z) = cp (w). The existence of (p in a neighborhood od WQ is
granted by the implicit function theorem and the fact that (/^y(z)^0 (because orbits of
critical points don't intersect Ao). Now let W^cWo be the maximal simply connected
open set to which (p can be extended. Suppose that W^Wo. Then there exists a
sequence w^eW^ converging to some weWo\Wi. Suppose that cp(wj converges

toz^. Then/^(zJ=/^(^(z)), We claim that 0"J(z)^0. If no t,^(/^(z)) belongs
to the orbit of a critical point of/^. By (e) this can happen only if/^ (z) has same property

with respect to f^. But this is impossible because/^ (z) e Ao. Then (f^J (zj ̂  0 and the

implicit function theorem gives an analytic function cp: W^ -> C, where W^ is a
neighborhood ofw^ satisfying (p(w^)=z^ and (/«;)(p(w))=V/^(z)) for
all w e W. Moreover, the uniqueness property of the implicit function theorem grants
(p (w)= (p (w) for all we W^ n W^. Then this contradicts the maximality of W^ thus proving
thatWi=Wo.

Now that we have well defined maps h^: A -> C, that depend analytically in w, let us show
that every h^ is injective. Suppose that z^ ̂  and h^z^=h^(z^). Take ̂ 0 such that
/"(z,)eAo,/=l,2. Then:

/^.a:(^))=^"(^.(^))=/u;(^J^2))=^.a:(^)).
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But h^ is injective on Ao. Then f^(z^)=f^(z^). Take the minimum no>0 such that

f^(z^)=f^(z^).. On the other hand:

U^-K^^U/^0-^))

for values of w near to WQ. Then we can assume that there exists a sequence w^ -
>

 w such
that:

M^r î̂ M^o0"^))-
But:

(*) ^(^(^
o-l

(^)))=^/^
o
(^))=^Wo

o
(^))=/.„(^^^

Hence /^ (/^^(zi)) and h^ C^"0"1^)) are different, converge to the same point:

^J/^-K^))=^o-l(AJ^l))=^o-l^.(^))=^J^O-l((z2)))-

and its images under f^ are by (*) the same. This means that:

U^-1^))^^0-1^)) is a critical point of/,. But:

fn-(no-l)(h^-l(z^)=h^(z^.

By (d) this means that/^°(zi) belongs to the orbit of a critical point, contradicting the
definition of Ao.

To finish the Proof of Theorem D we have only to show the existence ofAo, Wo and

h: Wo xAo -> C. To simplify the exposition suppose that every non hyperbolic periodic
point or Herman ring is fixed. Without loss of generality we can suppose that A contains
the attractive regions of attractive and superattractive fixed points. Let Si , . . . , S^ be the
Siegel disks of/^ and Hi , . . . . H,. its Herman rings. Let z ^ , . . . , z, be the attracting cycles
and superattracting fixed points of/^ and let V\ , . . . , V^ be disjoint neighborhoods of
z^,. . ., z, obtained by the application of Lemmas III. 3 and III. 4 to these attracting and
superattracting fixed points. Finally, if z, + 1 , . . . , z^+ j are the parabolic periodic points, we
take open sets Aj c= V^ + p j = 1,. . . , / where V^ 4- j is obtained applying III. 5 to these points,

such that/^ (A •) <= A • and U / ~ n (A^) is the union of all the parabolic domains with z^ + j in
n=0

its boundary. The existence of these sets follows from the discussion in the
introduction. First we shall show that if we take a neighborhood Wo of WQ contained in all
the neighborhoods ofwo given be Lemmas III. 3 to III. 6, and setting:

Ao-(U S,n A) u (U H,n A) u (U V,) u (U A,),
i i i i

then, it is possible to define the map-/?: Wo x Ao -> C with the desired properties [that Ao
satisfies (a) and (b) is obvious]. If we forget about condition (d), the construction of h^ can
be easily completed as follows. Suppose we want to define h^ on Si. Then look at the
preimage ofz under the map h^ given by Lemma III. 4 and compose it with h^
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i.e. h^(z)=h^h^(z). This definition satisfies (c) and (e) (on S^) but (d) may fait to be
true. To satisfy also (d) we define h^ as the composition h^g^h^, where g^ is a

homeomorphism of the domain D of the map h^ that maps the /^-prelmage of the" set of

points where/^-forward orbits of critical points of/^ first hit Si onto the /^-preimage of the
set of points where/^-forward orbits of critical points of/^ first hit /^(T). Require also
that g^ depends analytically in w and that commutes with the rotation z -> ze

19
, where 9 is

the rotation number of/^/S^. Then h^h^g^ satisfies also property (d). To
formalize the construction of the rearrangement map g^ we need the following Lemma:

LEMMA IV. 1. - Let D be the unit disk, U a complete manifold, and (p,: U -> D, 1 ̂ i^k

analytic functions without zeroes such that for all l^i<j^k either \ (p^(w)|^| cp-(w)[ for

all we U or there exists a e R such that (pi (w) = ̂ ia (p^(w) for all w e U. Then given WQ e U
there exists g: U x D -> D such that:

(a) for all weU, ^«,(.)==^(w, .) is a homeomorphism ofD and g^ = Identity;

(b) for every zeD ̂  m^/? w -> g^(z) is analytic;

(c) gw^i{^o))=^i(w)for allweV, l^i^k;

W g^
iQ

z)=e
iQ

g^z)for all weU, zeD, 9eR.

Proo/. - Arrange the indexes of the family { (p ,} in such a way that:

l<Pl(^o)l<J(P2(^o)l<...<|(Pn(^o)l

and for all n <j^k, there exists 1 ̂  ;(j) ̂  ̂  satisfying:

l<P/Wo)|=|(p,(,)(wo)|.
Then

(*) 0<| (pi(w) [ <| (p2(w) | < ... <| (pn(w) | < 1

and

l<P/^) l= | (PfO-) (w) l ,
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for every weU, n<j^k. Write the functions (p, in polar coordinates as:

(p,(w)=(r,(uO,e,(M;)).

Let Fy,: [0, 1] be the unique monotone continuous function such that logFy, is piecewise
linear and logF,(r,(wo))=logr,(uO for l^i^n, F,(0)=0, F,(l)==l.

The existence of Fy, follows from (*).

Let G^: [0, 1] -> (R be the continuous piecewise linear function satisfying:

G.W-O,

G.(0)=0,

Gw(^(<))=e,(w)-9^wo).

Now define (in polar coordinates) g^(r, 6)=(F^,(r), G^(r)+9). Clearly every g^ is a
homeomorphisms satisfying (a), (c) and (d). To prove (b) observe that in each annulus
{(r, 9) | r,(wo) < r < r,+1 (wo)} we can write:

logF^(r)=[r^l(wo)-r,(wo)]~ l[(r-^(wo))logr^l(w)-(r-r^l(wo))log^•(w)]

and:

logG,(r)=[r^l(wo)-r,(wo)]~ l[(r-r,(wo))e,4.l(w)-(r-r^l(wo))e,(w)].

Clearly, for each fixed r, these are harmonic conjugate functions. Hence {b) is satisfied in all
these annulus. A similar computation shows that it is also satisfied in the disk r < r^ (w^) and
in the annulus r^(wo)<r<l, so the Lemma is proved.

Now take analytic functions (p,:Wo -^D,;=l , . . . , A:suchthat/^((pf(u0), l^f^/r,arethe
points where the/^-forward orbits of critical points of/y, first hit S^. If we show that these
functions satisfy the hypothesis of Lemma IV. 1 we are done. Restrict Wo to grant that if

l<Pi (^o) l^ l<Pj (^o) l for some 1^'</^ then | (p^(w)|^| (p,(^o)l for a11 ^eWo. Now
suppose that | (p,(^o)l=l ^-(^o)! for some 1^'<7^. Since WoeC(/) we must have
I ̂ iW I = I <Pj(^) I for every w e Wo. Hence (p,/(p^ has constant modulus. Therefore it is
constant i.e. (^(^^"(p^w) for all weWo.

Now we shall show how to construct h^ on a set of type A^. To simplify the notation

set f= 1 and let V a neighborhood of z^ is defined a map h: Wo x V -> C such that h^ is a

local conjugacy between f^ and /y,. This map is given by Lemma III. 5. We can take A^
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such that AI //^ (Ai) is a union of sets whose boundaries are closed arcs: as in the Figure (see

the discusion in the Introduction). Then every /^-orbit intersects U(wo) =Ai \fw,(^i)
 m

at most one point, and, by the existence of a local conjugacy, every /^-orbit intersects
U (w) = h „ (U (wo)) in at most one point. Take the images by h ̂

1 of the intersections of the
forward /^-orbits of critical points of/^ with U(w).

U(wo) /^\ U(w)

Describe these images by analytic functions (pi (w), . . . , (p^(w), w e Wo. Restricting Wo if
necessary it is easy to construct a map g ^ : U(wo)<p, that is a homeomorphism for ^
all w e Wo, is the identity in the boundary of U(wo), depends analytically in w, is the identity *
for W=WQ and maps (p,(wo) in (p,(w), l^i^m. Extend g ^ : U(wo)<p to ̂ : Ai -P using

A, i .e.:
g.Wz))=f^g^ if ^^0, weWo, zeU(wo).

Now define /?^:A,^Cby/z^=^^^^; 1 . Clearly h ̂  satisfies conditions (a)-(d). As in the
case of Siegel disks and Herman rings the role of the rearrangement map g^ is to make h^

satisfy condition (d).

To construct h^ on sets of type V^, associated to an attractive fixed point, the construction

is exactly the same replacing Lemma III. 5 by Lemma III. 3. Let h: Wo x V, -> C be the
parameterized linearization given by III.3. Set ^=(/^y(z,). By composing fi^ with a
convenient map we can suppose that ̂  is a conjugacy between/^: V, <p and D a z -> 'kz eD,

where D is a disk. Set U=D\^D. This set is a ring and we have analytic functions
(pi(uQ, . . . , (p^(w) indicating the images by h^ of the points where forward/^,-orbits of
critical points of/., hit V,\/JV,). Take g ^ : U,p as before and extend it to g ^ : D <D by:

^,,(X"z)=^,(z). Finally define: h^=h~^g,h^.

This map satisfies the required conditions. Once more observe that h~^ h^ would

satisfy (a), (b\ (c) and (^), and that the role of g^ is to make it satisfy also (d). It remains to

consider the case of super attracttive fixed points.
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By Lemma III. 4 there is a map h: Wo x V, -> D, where D is a disk centered at 0, such that
each h^ conjugates f^: V, <p with D: z -^ z" e D. Set U = D \ {z" | z e D }. Let
(pi(w), . . . , (p^(w) be analytic functions describing the images by h^ of the points of/y,
intersect U. Let g ^ : U <p be a family ofhomeomorphisms of U, that are the identity in the
boundary of U, depending analytically in w, and satisfying gw(.^>i(wo))==n>i(w). Require
also thatg^, acts as a linear map in circles z= Const. Such family is given by
Lemma IV. 1. Now extend g^ to D by setting g^z)=g^Zo)

nm i fzeD, ZoeU and
z^"=z. The fact that g^ acts as a linear map on circles grants that this definition is
independent of the root ZQ of z used. Now define h^=h~^

1
 g^h^ .

To prove the converse property is sufficient to observe that a map h ̂  satisfying (i) maps the

set of critical points of/^ onto the set of critical points of/y,, preserving their orders, and
maps the foliations of superattractive regions, Herman rings and Siegel disks of/^, onto the
corresponding foliations for/^. Those properties immediately yield that WoeC(f).

V. - Proof of Theorem E

We start proving the following property:

LEMMA V . I . — Suppose that f and g are analytic endomorphisms of C such that there exists

a quasi-conformal homeomorphism h: C ^ satisfying gh=hfand analytic in the complement

°f^(f)' Then, if f has no invariant line fields in J(/), h is analytic.

Proof. - Associate to a.e. zeC the ellipse C(z)=/?(z)~1 Co(/?(z)) where Co(/z(z)) is the

unit circle of T^ ̂  C. The relation gh = hf implies:

(*) /'(z)C(z)=C(/(z)),

for a. e. ze C. If J(/) has measure zero, the Lemma is proved because h is in this case 1-
quasi-conformal, hence conformal. Then we can suppose that J(/) has non zero
measure. Let S be the set of points of zeJ(/) where C(z) is defined and is not a
circle. Then (*) shows that /^(S^E. If ze£ define E(z) as the one dimensional

subspace of T^C containing the major axis of C(z). Again, (*) proves that
/'(z)E(z)=E(jf(z))forzeE. Since/has no invariant line fields in J(/), it follows that the

measure ofS is zero. This means that C(z) is a circle for a. e. z e J(/). Outside J(/), C(z) is
always a circle by the analyticity of h in the complement ofJ(/). Therefore C(z) is a circle

for a. e. z e ̂ . This means that h is 1-quasi-conformal, therefore conformal as we wanted to

prove.

Now suppose that WQ e C(f) satisfies the hypothesis of Theorem E. First of all observe
that the hypothesis WoeC(f) plus the non existence of Herman rings and non hyperbolic

periodic points imply that J(/^ )^C because by Theorem D, every f^ with w near WQ, is

topologically equivalent tof^ via a quasi-conformal map. By the previous Lemma this
means that these maps are analytic, thus implying that every /„,, with w near WQ, is

analytically equivalent to /^ contradicting the hypothesis that the family is reduced. Then
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J(/wo)=C, and since there are no Herman rings or Siegel disks, there exist attracting cycles
and superattracting cycles whose attractive sets cover the complement ofJ(/^). Recall

^Sy tf/^MS/u"^) for some ̂ 0, m^O. Let r^(w) be the number of (§ ̂ equivalence
classes of critical points not contained in J (/J and not eventually periodic. The next step of
the proof is the construction of an analytic function ^F: W^ -> M of constant rank, where
Wi c=W is open and M is a complex manifold with dimension r^(wo), such that for every
value ce^(Wi) and every connected component S of ^F"1^), all the endomorphisms f^

with w e S are analytically conjugate. If such a function exists, then the fact that the family
of endomorphisms that we are considering is reduced implies that every S must consist of at
most one point. Hence dimW^r^Wo). But on the other hand dimW^r(wo) by
hypothesis. Then y"i(wo)=r(wo). This means that there are no critical points in J(f^ ),
hence, as observed in the introduction, f^ satisfies Axiom A.

Therefore the proof of Theorem E is now reduced to construct the function ^F. In fact we
shall construct this function satisfying the a priori weaker property that all the
endomorphisms f^ with M; in a set S as above, are topologically equivalent via a conjugacy
that is quasi-conformal and analytic outside J(/J. But then Lemma V.I shows that the
conjugacy is in fact analytic. To simplify the construction of ^F, we shall suppose that every

attractive periodic point of/^ is fixed. Then the same property holds for every w in Wo,

if Wo is small enough. Let (p^: Wo -> C, ;'= 1,.. . , k be analytic functions describing the
position of the attractive and superattractive fixed points (pi (w) , . . . , cp^(w) of/,p,
weWo. Suppose that (pi(wo) is superattractive for ;'=1,..., k^ and that(/y, y((pf(wo))7^0

for k^ <i^k. Define ̂ : Wo -> C, k^<i^k, by ^(w)=(/.J((p,(w)). Let V ^ , . . . , V^ be

neighborhoods of (pi (wo),..., (pfc(wo) given by Lemma III .4. Assume that Wo is so small
that the maps h^ given by this Lemma are defined for we Wo. If 1 ̂ i^k^, let n^ be the
number of (i§ ̂ equivalence classes of critical points of/^ whose orbits intersect V, and don't
coincide eventually with cp^ (wo). For each i^i^k^ take an analytic function ̂  : Wo -> C"1

such that each coordinate is the image under /^ofa point in the forward/^-orbit of a critical
point of/y, and moreover different coordinates correspond to different (^-equivalence
classes of critical points. For k^ <i^k, define n^ as before and let M^ be the quotient of
(C - { 0 })̂  by the action of C - { 0 } given by ( z^ , . . . , z^) =(^1,..., Xz^). Define

^i'- Wo ->
 Mi as an analytic function that to every we Wo associates the element of M^

determined by the images under h^ of the forward /^-orbits of critical points. Finally,
define:

x
? : Wo -^ d> x . . . x C^ x M^+i x . . . x Mfc x C x . . . x C,

by ̂ (w) =CPi (w),. . . . ̂ (w), T^+i (w), . . . , ̂ (w)). The manifold at right has dimension:

^ i+ . . .+^+(^+i-l)+.. .+(^-l)+(^-^i)=ri(wo),

as we wished. Now restrict ^F to W^czWo where it has maximal rank. Let S be a
connected component of ^P"1 (c) where c e ̂ (W^). Fix some w^ e S. Let A be the union
of the attractive sets of the attractive fixed points of/y, minus the orbits of the eventually fixed
points. In a neighborhood W^ of w^ there exist, for every weW^, an analytic conjugacy
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Ay, : A -> /^(A) between/^/A and/^//^(A), depending analytically in w, constructed by the
same method used in Section IV to prove Theorem D i. e., starting with local conjugacies
nearby the attractive fixed points that map/^-orbits of critical points of/^ onto/^-orbits of
critical points of/^, and then pulling back these conjugacies byf^ and/^, in order to
fill A. The new fact we have now is that w varies in S. Then the property
lF(w)=c=XF(wo) makes it possible to take these local conjugacies to be analytic because
now that there are only attractive and superattractive fixed points to consider and
the rearrangement functions g^ can be taken as linear maps depending in w. Then

h ̂ : A -> h y, (A) is analytic. The extension of h ̂  to C (granted as before by the ^- Lemma) is

(also by the ^-Lemma) quasi-conformal and analytic in A. Since A is C —J(/^) minus a
discrete set of points, it follows that h^ is analytic in A—J(^, ) as we wished.
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