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On the dynamics of self-sustained one-dimensional detonations:
A numerical study in the shock-attached frame
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In this work we investigate the dynamics of self-sustained detonation waves that have an embedded

information boundary such that the dynamics is influenced only by a finite region adjacent to the

lead shock. We introduce the boundary of such a domain, which is shown to be the separatrix of the

forward characteristic lines, as a generalization of the concept of a sonic locus to unsteady

detonations. The concept plays a fundamental role both in steady detonations and in theories of

much more frequently observed unsteady detonations. The definition has a precise mathematical

form from which its relationship to known theories of detonation stability and nonlinear dynamics

can be clearly identified. With a new numerical algorithm for integration of reactive Euler equations

in a shock-attached frame, that we have also developed, we demonstrate the main properties of the

unsteady sonic locus, such as its role as an information boundary. In addition, we introduce the

so-called “nonreflecting” boundary condition at the far end of the computational domain in order to

minimize the influence of the spurious reflected waves. © 2004 American Institute of Physics.

[DOI: 10.1063/1.1776531]

I. INTRODUCTION

A self-sustained detonation wave is defined as a detona-

tion that once initiated does not require any external support

to sustain its subsequent evolution. Such detonations propa-

gate by means of the interaction of the lead shock with the

following reaction zone only. This is unlike overdriven deto-

nations which require additional external support, such as a

piston, to maintain the detonation structure at its nominal

speed. Self-sustained detonations are of great theoretical and

practical interest precisely because of the property of their

autonomous dynamics and because they can produce useful

work on their own without continuous external energy input.

Existing theoretical and numerical studies have dealt princi-

pally with overdriven detonations because of their simpler

mathematical formulation.

The steady planar Chapman–Jouguet (CJ) detonation is

the classical example of a self-sustained detonation. The dis-

tinct feature of the CJ detonation is the existence of a sonic

point at the end of the reaction zone. We emphasize two

fundamental properties of the sonic point. First, the condition

of local sonicity, namely that the Mach number defined in

terms of the particle speed relative to the lead shock is unity

at the sonic point. In one dimension, enforcement of a sonic

state at the end of the reaction zone as a pointwise condition

(i.e., a boundary condition) serves as a closure equation that

determines the detonation speed for a given explosive mix-

ture. A second fundamental property is that the flow between

the lead shock and the sonic locus is acoustically isolated

from the far-field flow, that is the sonic locus is an informa-

tion boundary such that acoustic information on the down-

stream side of this boundary cannot penetrate into the deto-

nation reaction zone. The second property is important in a

generalization of the sonic point to unsteady detonations.

The lack of understanding of the nature of the confinement

of self-sustained detonation (also sometimes referred to as

“freely propagating” detonation) has been a source of tre-

mendous confusion in the subject and a satisfactory resolu-

tion has been a long-standing open problem in detonation

theory.

In this work we define a sonic locus in an unsteady deto-

nation as a separatrix of the family of forward characteristics.

On the upstream side of the separatrix, the characteristics

flow into the shock in a finite time, while on the downstream

side, they flow away from the shock. In this view the sonic

locus (in one dimension) is a point on a particular forward

space–time characteristics. It agrees entirely with the stan-

dard definition of the sonic locus when the flow is steady.

The definition can be put in precise mathematical terms. By

means of a new numerical approach that we have developed

for this study, we demonstrate the physical properties of the

unsteady sonic locus by computing a pulsating detonation

wave with a finite reaction zone. By placing a variety of

different initial states behind the sonic locus, we demonstrate

that the separatrix is an information boundary. We show that,

as long as the flow within the reaction zone evolves

smoothly, the separatrix exists and indeed acoustically iso-

lates the reaction zone from the subsequent flow.

The present findings about the nature of the sonic locus

in unsteady detonations have important implications for

theories of detonation stability and nonlinear dynamics. We

show that the conditions that must be satisfied at the sonic

locus have a direct relationship to radiation conditions of

detonation stability theory (see, e.g., Ref. 8), as well as con-
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ditions that have been used in nonlinear theories of detona-

tion shock dynamics.
9

The computation of detonation dynamics is difficult due

to the need for tremendous resolution and because there are

many sources of noise and error from the numerics, and first-

order error from the lead shock, in particular. Therefore we

have developed a highly accurate numerical method based

on a transformation to a frame attached to the lead shock. In

this approach, the lead shock is treated as a boundary instead

of being tracked, or captured. This allows us to carry out

simulations of the dynamics of self-sustained detonations, in

particular, and enables direct comparisons with theories cast

in terms of the detonation shock speed and its derivatives. It

is fair to say that despite the number of high-resolution simu-

lations carried out by various researchers over recent years

(see, e.g., Refs. 1–6), a definitive conclusion as to what it

means to have an adequate resolution has yet to be made,

even for one-dimensional detonations. Close to the stability

boundary when detonation propagates in the form of regular

pulsations, one can obtain a converged solution provided suf-

ficient resolution is used and the computational domain size

is sufficiently large. But far from the stability boundary when

detonation propagation is irregular with seemingly chaotic

pulsations, interpretation of the calculations is not straight-

forward. There can be a strong dependence of the computed

solution on the grid size and the size of the computational

domain as well as on the numerical algorithm. As simula-

tions show, for a wide range of system parameters, complex

multimode or chaotic solutions are much more common than

regular ones. Clearly, understanding the nature of such com-

plex solutions is of great interest. In order to attain such

understanding one needs to have reliable tools in hand. If the

problem is addressed by means of a numerical integration of

governing equations, then the effects of all possible sources

of numerical error must be minimized, and a high-resolution

numerical algorithm must be used. In terms of numerical

algorithms for solving Euler equations, a variety of highly

accurate discretization schemes are available presently. Still

an accurate treatment of detonation shocks is a problem in

schemes that capture or track the shock because of inherent

oscillations present near the shock that preclude accurate cal-

culations of the shock position, speed, and hence the shock

pressure. Inaccurate (first order) calculation of the lead shock

generates errors in the pressure and density (and hence the

temperature) and in turn generate accuracy errors in the ini-

tial chemical reaction rate at the shock that in turn propagate

into the reaction zone.

In addition to the errors that have their origin in discreti-

zation and shock tracking, the rear boundary conditions can

also be a source of error. In all previous studies the issue of

the far-field boundary condition has been avoided by using

very large computational domains, sometimes employing

adaptive mesh refinement, and setting the “outflow” or “soft”

boundary condition. In outflow boundary conditions, one ex-

trapolates the flow variables from the interior side of the

numerical boundary into the ghost points, thus imposing zero

gradients of the flow variables (see, e.g., Refs. 4 and 5). The

outflow boundary condition is not based on physical reason-

ing and is used because it does not produce any visible re-

flections and because it is efficient and simple to implement

when the flow is supersonic. As we will show below, the

outflow condition does produce spurious reflected waves.

Various other conditions have also been used, such as con-

tinuous gradients, fixed pressure,
2,6

etc., again these are all

nonphysical, because strong outgoing oscillating waves gen-

erated by the pulsating detonation reaction zone do change

both the gradients of flow variables and pressure at the out-

flow boundary.

In order to contribute to proper theoretical understanding

of detonation dynamics, numerically generated results must

be unambiguous and independent of discretization schemes

and unphysical effects of domain size and boundary condi-

tions. That said, it must be realized that such a requirement

may not be achievable in certain cases, one such being the

computation of chaotic dynamics. If a detonation wave is

chaotic by its nature, it implies exponential sensitivity to

initial conditions; that is, small differences in initial condi-

tions will be amplified over time leading to completely dif-

ferent long-time solutions. It may be possible to demonstrate

the existence of “chaos” in such cases, but nearly impossible

to compute a “converged” solution in the conventional sense.

In such cases, the strong grid dependence will be intrinsic to

the computed dynamics and thus higher resolutions would

not appear to produce a converged solution. At the time of

this writing, careful analysis of such chaotic solutions is ab-

sent in the literature.

In order to address the issues related to the errors in

determining shock location and speed as well as to the ef-

fects of outflow boundary conditions, we employ a simple to

implement method for calculation of the one-dimensional

detonation waves in a frame of reference attached to the lead

shock front and have implemented a dynamic rear boundary

condition that reduces the spurious reflections at the outflow

boundary. High accuracy, simplicity of implementation, and

convenience in analyzing the results makes our approach ap-

pealing as it can be used as a tool for careful comparisons of

high-resolution simulations with theoretical results. Detona-

tion theories are often posed in the shock-attached frame. For

example, the entire theory of detonation instability is posed

in terms of shock-attached coordinates, see, e.g., Refs. 7 and

8. Similarly, the theory of detonation shock dynamics, which

is a weak disturbance theory is also formulated in shock-

attached coordinates, see, e.g., Ref. 9.

For the region behind the shock, we use a standard

shock-capturing algorithm but posed in the shock-attached

frame. As a consequence of the coordinate transformation to

the lead shock, the shock speed, Dstd, enters the governing

equations explicitly as an unknown and must be calculated at

each time step. We do this by local method of characteristics

integration of the equation for the forward characteristic near

the shock, combined with the application of the shock rela-

tions to determine Dstd. The method eliminates the ambigu-

ities and inaccuracies in the computation of the lead shock

speed. Computation in the shock-attached frame gives us the

luxury of placing tremendously large number of points in the

reaction zone if we so desire. We do not have to a posteriori

place or filter the shock location, rather it is a boundary set at

the origin at all times.
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The study and testing of nonreflecting outflow boundary

conditions have been a subject of interest for computations

of compressible flows and turbulent flows. For a general dis-

cussion, the reader is referred to the papers by Thompson
13

and by Poinsot and Lele.
14

In this paper, we formulate a

nonreflecting boundary condition in terms of the method of

characteristics similar to the earlier works and give the

implementation details. We tested this boundary condition on

the problem of an acoustic pulse that is propagating in a

uniformly shocked region behind a shock. We demonstrate

that our boundary condition reduces the acoustic reflections

by an order of magnitude compared to the “soft” boundary

condition. We also demonstrate that reflecting the outflow

boundary condition can noticeably affect the detonation dy-

namics.

For the purpose of validation and comparison, we have

tested our method with an example of a shock overtaking

another shock in an inert medium and have computed several

cases of detonation that have also been previously

published.
2,5,6

Our calculations agree with predictions of lin-

ear stability analysis and with known results for detonations

that are known to have a converged solution namely for low-

frequency pulsating detonations. But we found that for one,

still controversial, case of a detonation wave that undergoes

initial decay with subsequent reignition, the spurious errors

that are always present near the shock at the start of compu-

tations in traditional shock-capturing methods, play a signifi-

cant role in the initial evolution of the wave. Namely, the

shock-based errors are responsible for the formation of

strong high-frequency pulsations before the reaction front

starts to decouple from the lead shock. Such oscillations

have been shown in Ref. 4 to be responsible for the appear-

ance of unburnt pockets of fuel and an irregular grid-

dependent reignition process. For exactly the same problem,

we show that the initial errors are significantly reduced in

magnitude, more so with higher resolutions, and we do not

observe the growth of high-frequency oscillations. The result

is that the dynamics is governed by the nonlinear instability

and dominated by the low-frequency mode, quite similar to

that of the original work of He and Lee;
6

therefore, the sub-

sequent reignition process is also much more regular that is

localized explosions due to the unburnt pockets are absent,

as opposed to the results of Refs. 4 and 5, where such explo-

sions were observed. We observe the high-frequency oscilla-

tions only if an artificial initial perturbation is introduced

behind the shock. Even extremely high resolution simula-

tions that used 533 grid points per half-reaction length led to

the same regular dynamics with no high-frequency oscilla-

tions if no initial perturbations were present.

In order to clarify the physical role played by the un-

steady sonic locus (the acoustic information boundary for the

lead shock) in self-sustained detonations we carried out a

series of simulations of an initially steady CJ detonation with

a reaction zone of finite thickness. We used an Arrhenius rate

law with depletion factor of n=0.9 which makes the reaction

zone finite. The location of the sonic locus for the steady

detonation coincides with the end of the reaction zone. By

demonstration, we show that the information boundary exists

and can be given a precise meaning, namely that it is a sepa-

ratrix of the family of forward characteristic lines that delin-

eates the characteristics that reach the lead shock in finite

time and those that leave to infinity. We show that if the

postsonic state remains sufficiently smooth then the detona-

tion dynamics is not influenced by the processes behind the

separatrix and is determined entirely by the finite region be-

tween the lead shock and the separatrix. The general version

of this argument is simply based on a domain of influence

considerations for hyperbolic partial differential equations.

The present study considers a mixture with an ideal

equation of state, that undergoes single-step irreversible

chemical reaction. With straightforward modifications this

work can be generalized for one-dimensional detonations

with multiple-step chemistry and/or nonideal equation of

state.

II. GOVERNING EQUATIONS IN THE
SHOCK-ATTACHED FRAME

The reactive Euler equations are rewritten in the shock-

attached frame, sx , td, where

x = xl − E
0

tl

Ddt, t = tl, s1d

and superscript l denotes the laboratory frame. We consider

the wave moving from left to right, hence x,0 is the region

behind the lead shock. The governing equations in conserva-

tive form are as follows:

] y

] t
+

]

] x
sF − Dyd = S , s2d

where

y =1
r

ru

rET

rg
2, S =1

0

0

0

rv
2 ,

F =1
ru

r + ru2

rusET + pvd

rul
2 . s3d

Note that u=U+Dstd here is the particle velocity in the labo-

ratory frame, U,0 is the particle velocity in the shock-

attached frame, D is the shock speed, ET=e+u2 /2 is the total

specific energy, Q is the heat release, e= pv / sg−1d−lQ is

the specific internal energy of the ideal explosive mixture,

v=ks1−ldn exps−E /RTd is the Arrhenius reaction rate with

activation energy E, reaction order n, and pre-exponent k , R

is the universal gas constant, and T is temperature.

The exact Rankine–Hugoniot conditions applied at the

lead shock are

r0D = rsUs, s4d

r0 + r0D2 = ps + rsU
2, s5d
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g

g − 1

p0

r0

+
D2

2
=

g

g − 1

ps

rs

+
Us

2

2
. s6d

The lead shock speed, D, enters the governing equations

explicitly in contrast to the traditional formulations that used

shock-capturing methods in which D is determined by the

solution generated by the conservative, shock-capturing nu-

merical scheme. In the shock-attached formulation, D must

be calculated explicitly by some other means.

From now on we use the tilde to denote a dimensional

quantity. The governing equations are rescaled as follows.

Pressure and density are scaled with respect to their initial

values, p̃0 and r̃0 in the fresh mixture, the velocity is scaled

as ũ=Îp̃0 / r̃0, the length scale is that of the half-reaction

length, l̃1/2, and the time scale is t̃1/2= l̃1/2 / ũ. In these scales

the governing equations retain their form.

III. CALCULATION OF THE SHOCK SPEED

In order to integrate the governing system of equations,

Eq. (2), one needs to be able to calculate the shock speed, D,

at each time step. While the flow variables can be advanced

in time by any finite-difference scheme, the front speed cal-

culation must be based on an independent algorithm. We

update the speed by integrating the governing equation on

the C+ characteristic near the shock from its location at t

= t j to the location of the shock, Fig. 1, over the time interval

Dt, given by the Courant condition. The exact Rankine–

Hugoniot conditions (4)–(6) are imposed at the shock located

at the right boundary of the computational domain, x=0. All

the state variables at the shock are extended into the ghost

points ahead of the shock, x.0. This procedure is somewhat

similar to what is traditionally done in shock-tracking meth-

ods (see, e.g., Ref. 10), but in our approach we do not track

the shock as a moving boundary, but rather it is always fixed

at x=0.

The governing equations written in characteristic form

on the C+ characteristics are

dp

dt
+ rc

du

dt
− sg − 1dQrv = 0, s7d

and

dx

dt
= c + u − D . s8d

In discretized form with first order differencing of the deriva-

tives and semi-implicit treatment of rc and implicit treatment

of the reaction term, we obtain the following equations:

p j+1 − p* + 0.5fsrcd* + srcd j+1gsu j+1 − u*d

− sg − 1dQr j+1v j+1Dt = 0, s9d

− x* = sc* + u* − D*dDt . s10d

The state at time t j is considered known. The unknowns here

are the point x=x* of the origin of the C+ characteristic from

time t j to time t j+1, and the front speed D j+1 at t= t j+1. All the

state variables at t j+1 that appear in Eq. (9), are explicit func-

tions of D j+1 by means of the Rankine–Hugoniot conditions

(4)–(6). The variables at x=x* can be calculated in terms of

the known grid values at xN,xN−1, etc., by interpolation (N is

the number of grid points). We use a linear interpolation in

all calculations below. For example,

p* = pN −
x*

Dx
spN−1 − pNd , s11d

where Dx is a fixed grid size.

The Rankine–Hugoniot relations (4)–(6) can be recast in

terms of the detonation Mach number, M j+1=D j+1 /c0, to

eliminate all variables at t j+1 in favor of M j+1 as follows:

p j+1

p0

=
2g

g + 1
M j+1

2 −
g − 1

g + 1
, s12d

r j+1

r0

=
sg + 1dM j+1

2

2 + sg − 1dM j+1
2

, s13d

u j+1

c0

=
U j+1 + D

c0

=
2

g + 1

M j+1
2 − 1

M j+1

. s14d

Substitution of these relations together with the linear inter-

polations such as Eq. (11) into Eqs. (10) and (9) results in a

system of two nonlinear algebraic equations for x* and M j+1.

The latter can be solved with any standard root solver.

Once we find D j+1 by the above procedure, we can then

integrate the governing Eq. (2) to determine the entire flow

behind the shock at the next time level, t j+1. We use the

UNO2 (Uniformly Non-Oscillatory) scheme,
11

of second-

order spatial accuracy and third-order Runge–Kutta method

for temporal integration, based on a numerical code devel-

oped in Ref. 12. We have tested a variety of ENO-type

schemes and found that the most accurate solution a pro-

vided with a fifth-order WENO, but UNO2 was only slightly

less accurate while faster than WENO by about 25%.

For this reason we used UNO2 in all of the following

calculations.

FIG. 1. Integration on the C+ characteristic from x=x* near the shock to the

location of the shock.
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IV. FAR-FIELD NONREFLECTING BOUNDARY
CONDITION

At the far-left end of the computational domain, x=−L,

we apply the nonreflecting boundary condition. For a sub-

sonic outflow, the forward characteristics C+ carries informa-

tion from the outside region into the interior domain. There-

fore, one boundary condition must be provided that specifies

the details of the flow in the exterior. If no waves are as-

sumed to enter the domain from outside, the boundary con-

dition must reflect this fact. The appropriate condition is then

the nonreflecting boundary condition (NRBC).

We formulate the nonreflecting condition in terms of the

values at the ghost points, that is we have to update the ghost

points at each time step so that the incoming wave is sup-

pressed. The latter is accomplished by the method of charac-

teristics as follows. The state variables in the ghost points

will change in time due to the waves carried along the C−

and C0 characteristics from the interior and the wave along

the C+ characteristic from outside, Fig. 2. But if the latter is

assumed not to propagate into the interior domain, the C+

characteristics cannot have a positive slope. And since the

flow is assumed to be subsonic (or sonic), the direction must

be vertical as shown in Fig. 2. The basic physics behind

NRBC is that there should be no incoming wave. It means

that the amplitude of any incoming wave does not change in

space, that is the wave does not propagate. It can be shown

(see, e.g., Ref. 14), that the equation for the C+ characteris-

tics is an amplitude equation for the incoming wave. Con-

stancy of the amplitude means that the origin of the C+ char-

acteristics can be placed at any spatial position at the

previous time level. All such characteristics will carry a wave

of the same amplitude. The choice we have made is the

simplest one, that is, we place the origin exactly at the

boundary of the computational domain.

Thus we write the governing equations in characteristic

form and generate the following discretized set of equations

that are used to calculate the updated state at the ghost point

i=−1:

J0: p+ − p0 − c0
2sr+ − r0d = 0, s15d

C0: x+ − x0 = Dtsu0 − Dd , s16d

J−: p+ − p− − r−c−su+ − u−d = 0, s17d

C−: x+ − x− = Dtsu− − D − c−d , s18d

J+: p+ − p+
0 + r+

0c+
0su+ − u+

0d = 0, s19d

C+: x+ = − L − Dx . s20d

Here x+ , x− , x0 are the values of the intersections of the

characteristic lines with x-axis at the current time level t.

Except for p+ , r+, and u+, which are evaluated at t= t+Dt, all

other variables are evaluated at time t at corresponding val-

ues of x. The unknowns in the above system are x0 ,x− and

p+ ,r+ ,u+. The superscript 0 indicates the state at x+ at time t.

Linear interpolation is used to calculate the interior states in

terms of the known grid values. Once we find p+ ,r+ ,u+ at

i=−1, we extend them into the remaining ghost points. If the

outflow is supersonic, then the extrapolation can be used to

find the ghost point values (which we have done below) or

the above system can be integrated on all three characteris-

tics, which now carry information from the interior only.

It is interesting to note the close relationship between the

non-reflecting boundary condition, which is expressed by Eq.

(19) in the above system, and the radiation condition used in

the linear stability theory.
8

In fact, the two are exactly the

same as they both express the condition that there is no ra-

diation from the outflow boundary. Linearization of Eq. (19)

does indeed yield the one-dimensional radiation condition of

the linear stability theory of detonation.

We tested the boundary condition on a problem of an

acoustic pulse propagating downstream behind a steady

shock. At time t=0, we have a uniform state of length L

=10 behind a shock of Mach number M =6 and a superim-

posed acoustic perturbation of density r8=« expf−2sx
+0.5Ld2g, pressure p8=c0

2r8, and velocity u8=−p8 /r0c0; here

«=10−4, the base-state density r0=10.33, pressure p0

=39.18, sound speed c0=2.13, specific heat ratio g=1.2. The

perturbation propagates downstream and partially reflects off

the left boundary. Figure 3 shows the results for two resolu-

tions, N=100 and N=200 points in the computational do-

main at time t=3.07. For N=100 and with the outflow

boundary condition (RBC, which is the soft boundary condi-

tion that extrapolates values from the interior to the ghost

points), the reflected wave is a step-like decrease of pressure

of amplitude of about dp=6·10−7 which remains at this level

as long as no other perturbation changes it. The new bound-

ary condition produces a smaller reflection of amplitude of

about dp=7·10−8 or less which dissipates as it propagates to

the right and there is no sustained pressure increase or de-

crease behind the reflected wave. For a higher resolution of

N=200 the RBC produces a reflection of a smaller ampli-

tude, but now it is a step-like increase in pressure. The re-

flection produced by the nonreflecting boundary condition

(NRBC) is similar to the N=100 case, but is of smaller

amplitude.

FIG. 2. Characteristics at the subsonic outflow at the left boundary for

nonreflecting boundary condition: C_ : dx /dt=u–c, Co : dx /dt

=u , C+ : dx /dt=u+c.
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V. RESULTS

The main purpose of the study is to gain an understand-

ing of the dynamics of self-sustained detonations and the

nature of their rear confinement, as discussed in Sec. V C.

But first we demonstrate that the numerical approach in the

shock-attached frame described in the last section produces

highly accurate results by computing: (a) the interaction of

two shock waves, one overtaking the other, and (b) the low-

frequency pulsating detonation. The problem (a) of shock

interaction has an analytic solution first obtained by von

Neumann,
15

which is used to validate the code. In the case

(b) of a pulsating detonation with simple-depletion Arrhenius

kinetics, we perform several calculations near the stability

boundary, predicted by the linear stability theory,
8

in order to

capture the stability threshold and periods of pulsations. In

addition, we also perform several calculations far from the

stability boundary in order to gain insight into the behavior

of detonation when the reaction front detaches significantly

from the lead shock.

A. A shock overtaking another shock

The details of von Neumann’s analytical solution can

also be found in Ref. 16. For the sake of completeness, we

reproduce here the basic idea of the solution. The schematics

of the interaction in the x− t plane is shown in Fig. 4, while

Fig. 5 shows the initial pressure profiles (not to scale) and

the speeds of the two shocks. The trailing shock S2, propa-

gating with speed D2=12 in the lab frame overtakes the lead-

ing shock S1 of speed D1=6 with the new shock S3 of speed

D3, a rarefaction wave R, and a contact discontinuity C form-

ing as a result of the interaction. The computational domain

is fixed at the leading shock front at all times.

The analytical solution of this problem is conveniently

obtained with the help of the p−u diagram shown in Fig.

4(b). The initial state is denoted by s0d, the state behind the

first shock is (1), that behind the second shock is (2), and the

state behind the transmitted shock is (3). The goal is to find

the state (3). As we can see from the figure, it is found as the

intersection point of the shock curve S1 and the rarefaction

curve R. The latter originates at point (2), the state behind the

second shock, since it is the state into which the rarefaction

wave propagates.

The equations of S1 and R are as follows:

S1: u = su − p0dÎ 2/r0

sg − 1dp0 + sg + 1dp
,

FIG. 3. Propagation of an acoustic pulse behind a shock: initial pressure

perturbation profile (thin dashed line, only bottom part of the profile is

shown since the maximum of the initial profile is 4.5·10−4) and spurious

reflections after the pulse leaves the domain, for nonreflecting (NRBC) and

soft reflecting (RBC) boundary conditions at resolutions of N=100 and N

=200.

FIG. 4. Schematic of a shock-overtaking-a-shock interaction: (a) x– t dia-

gram of the interaction and (b) p–u diagram of the interaction.

FIG. 5. Schematic of a shock-overtaking-a-shock interaction with initial

condition as used in the calculations below.
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R: p = p2S1 −
g − 1

2

u − u2

c2

D2g/sg−1d

.

The solution of these equations gives the pressure at state (3)

and hence the shock speed D3. The point (2) in these equa-

tions is found by application of the Rankine–Hugoniot con-

ditions first for state (1) in front of the shock S2, and then for

the state (2) behind it.

Figure 6 shows the numerically calculated shock speed

as a function of time for three levels of resolution, N

=20,100, and 500 grid points in the domain of length L

=10. We can see that the shock speed after the interaction is

calculated with very high accuracy even for the lowest reso-

lution of 20 points. For N=500 points, the numerically found

shock speed after the interaction is Dnum=13.727 which, to

this accuracy, is the same as the theoretical value. The main

difference between the curves is in the width of the transition

region, which in theory must be zero, but is smeared in the

calculations due to the smearing of the impinging shock S2

by the spatial discretization scheme.

Figure 6(b) shows the density profiles after the interac-

tion has occurred. One can see the rarefaction wave and a

smeared contact discontinuity propagating to the left away

from the lead shock. The effect of the resolution that is more

pronounced in this figure can be seen in smearing the contact

discontinuity and the rarefaction wave by the spatial discreti-

zation scheme.

B. Pulsating detonation with simple-depletion
kinetics

In this section, we present several calculations for the

development of a detonation wave from an initially pre-

scribed steady Chapman–Jouguet solution. We obtain high-

resolution solutions for a stable detonation, weakly unstable

detonation with periodic limit cycle, detonation with irregu-

lar oscillations, and highly unstable detonation with reigni-

tion. We fix the specific heat ratio at g=1.2 and the heat

release at Q=50, and vary the activation energy E similar to

that done in, e.g., Refs. 5 and 6. The steady CJ speed for this

detonation is DCJ=6.809. The linear stability theory predicts

that detonation with these parameters is unstable for E.Ec

=25.26.

Figure 7 shows the calculated shock speed for detonation

below the stability boundary. We used N=4000 points on the

computational domain of length L=20; this gives N1/2

=200 grid points per half-reaction length. The oscillations

are seen to damp out with time as expected. The weakly

unstable case of Fig. 8(a) corresponds to E=26. The period

of the limit cycle solution is T=12.11, while the linear sta-

bility theory,
8

predicts TLS=11.99. The present resolution

predicts the amplitude within a fraction of a percent of that

with N=8000. The case of an irregular dynamics is shown in

Fig. 8(b). For this detonation wave, we have used a higher

resolution of N1/2=400 due to the stronger dependence of its

FIG. 6. Numerically calculated speed of the lead-shock as a function of time

for three levels of resolution: (b) Density profiles at various resolutions at

time t=2.5.

FIG. 7. Stable detonation with E=25; N=4000 points on the domain of

length L=20, N1/2=200.
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dynamics on the grid size. This is a possible case of a chaotic

dynamics understanding of which requires further investiga-

tions both numerically and theoretically.

We have also computed the dynamics of a strongly un-

stable detonation which results in a decay and subsequent

reignition of the detonation similar to what has been pub-

lished in earlier studies.
2,4–6

Figure 9 shows the time-

snapshots of the distribution of pressure and reaction rate.

The reaction front is seen to detach from the lead shock to a

large distance approaching the left end of the computational

domain. Eventually, it reverses its direction and starts propa-

gating back toward the shock. In the process, a strong com-

pression wave is generated that develops into a detonation

wave overtaking the lead shock front. Figure 10 shows the

corresponding speed of the lead shock, the large jump in it

corresponding to the moment of overtaking of the lead shock

by the internal detonation wave. A similar sequence of events

was also found to occur for strongly unstable detonations

with chain-branching kinetics in Ref. 17. The reader is re-

ferred to Ref. 17 for a more detailed discussion of the under-

lying mechanisms of such detonations. The computed details

of the reignition process are very sensitive to the grid reso-

lution in agreement with previous findings. For example,

with low resolution of N=2000 sN1/2=33d grid points with

other parameters the same as in Fig. 9, a series of internal

shock waves can be seen to emerge which overtake one an-

other to form a single detonation front in the interior.

With the parameters of Fig. 10, the underlying steady

detonation wave is linearly unstable and has two unstable

oscillatory modes. The low frequency first mode has a

smaller growth rate than the higher-frequency second mode,

thus one might expect the high-frequency oscillations to ap-

pear first. The phenomenon has in fact been reported by

Sharpe and Falle in Ref. 4 which they claim contradicted the

original calculations by He and Lee, in that He and Lee’s

results did not show any early oscillations. Sharpe and Falle

attributed the difference to inadequate resolutions used in He

and Lee, although both of these works used about 50 grid

FIG. 8. Weakly unstable detonation with E=26, N=4000, domain length

L=20, N1/2=200. (b) Irregular detonation with E=28, N=8000, domain

length L=20, N1/2=400.

FIG. 9. The sequence of pressure (a) and reaction rate (b) profiles during the

reignition E=35, N=16000, domain length L=60, N1/2=266. The numbers

near the curves indicate corresponding times.
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points per half-reaction length. Our calculations, shown in

Fig. 10, do not have high-frequency oscillations in agree-

ment with He and Lee, and are computed with higher reso-

lution of 266 points per half-reaction length. We have also

carried out calculations using as many as 533 grid points per

half-reaction zone and found no early high-frequency oscil-

lations.

The explanation of the absence of oscillations has to do

with the initial disturbances to the detonation wave. It is well

known that when starting detonation simulations with a

steady solution with a discontinuous shock front, one always

sees strong overshoots/undershoots in the shock pressure

within a few time steps before the discretization scheme

smears the shock out. These spurious initial errors are ampli-

fied if the underlying detonation structure is unstable. But in

our method the shock is always at the origin, therefore there

are no significant initial overshoots due to shock-capturing

errors. The amplitude of the initial disturbance is so small

that the high-frequency instability does not develop before

the reaction front decoupling starts. To verify the statement,

we computed a case with an artificial initial disturbance in-

troduced by increasing the pressure within five cells adjacent

to the shock by Dp=1, which is about 2.4% of the initial

post-shock pressure. Indeed, the growth of this disturbance

can be clearly seen in Fig. 11, which corresponds to the same

settings as Fig. 10. The period of the oscillations agrees

closely with linear stability theory, which predicts that the

faster growing second mode of the two unstable modes has a

period of T=1.455. The oscillations can be seen with initial

perturbation of magnitude smaller or larger than the present

one. In agreement with previous simulations, higher resolu-

tions tend to make the pulsations persist over longer times, in

particular even after the decoupling of the lead shock and

reaction front takes place. The oscillations were shown in

Ref. 4 to be responsible for the formation of unburnt pockets

of gas. Thus we conclude that the absence of the early high-

frequency oscillations in Fig. 10 is explained by the absence

of the spurious start-up errors near the shock and by domi-

nant low-frequency evolution of the wave. This conclusion is

confirmed by Fig. 11(b) which shows very early dynamics of

the shock corresponding to Fig. 11(a). It is likely that all

shock-capturing schemes suffer from the spurious errors near

the shock, which can dramatically affect the flow in the re-

action zone and in turn the lead-shock dynamics, especially

at large activation energies typical of real mixtures. For ex-

ample, if the postshock temperature error is at the level of,

e.g., 0.1%, and the activation energy scaled with respect to

the postshock temperature, Ts, is E /RTs=10, the error in the

reaction rate will be 1%. It is the reaction rate, not tempera-

ture, that enters the governing equations as a source term,

and this large error will dramatically reduce the accuracy of

simulations. Shock-tracking methods, on the other hand, can

reduce the shock errors significantly and are thus better

suited for detonation simulations.

As to the role of the outflow boundary condition in the

cases computed above, it was found to be of minor signifi-

cance compared to that of a spatial resolution. For the reig-

nition case, the nonreflecting boundary caused a slight delay

of the reignition time and a small increase of the maximum

FIG. 10. The shock speed vs time for the strongly unstable case. E=35,

N=16000, domain length L=60, N1/2=266.

FIG. 11. The early-stage evolution of the strongly unstable detonation: (a)

(solid line) and without (dashed line) initial perturbation of the lead shock;

(b) zoom into the very early dynamics for the two cases showing no over-

shoots by the present algorithm (dashed line) and an initial artificial pertur-

bation placed at the shock (solid line).

3574 Phys. Fluids, Vol. 16, No. 10, October 2004 A. R. Kasimov and D. S. Stewart



shock speed, after the internal detonation wave caught up

with the lead shock. The reasons for such a small difference

are high resolutions used which tend to reduce the spurious

reflections off the boundary and near-sonic character of the

flow at the boundary. In simulations of overdriven detona-

tions, in which the subsonic character of the flow behind the

shock front allows the reflected waves to catch the front, the

nonreflecting boundary condition can play a significant role.

As an examp1e, Fig. 12 shows the dynamics of an over-

driven detonation with Q=E=50, g=1.2, and the degree of

overdrive f =1.25. The computational domain of size L=40

has N=4000 grid points, which places N1/2=100 points

within the half-reaction length. The two curves in the figure

differ only by the type of the outflow boundary condition

used. That the latter has a significant effect on the solution,

especially over long times, can be clearly seen.

C. Self-sustained detonation with a finite reaction
zone

All calculations above have been carried out for detona-

tion with simple-depletion reaction for which a steady deto-

nation has an infinite length and therefore the sonic locus is

located at infinity. One implication of such kinetics for nu-

merical calculations is that no matter how long a computa-

tional domain is, the finite size of the domain can eventually

influence the computation of the detonation dynamics.

Next we consider an evolution of a detonation wave that

starts from a steady CJ solution with a finite reaction zone. In

such detonations the domain of influence of the detonation

shock is the finite region between the shock and the sonic

locus. For unsteady detonations, the Mach number defined in

terms of the particle velocity relative to the lead shock does

not have the same significance as in steady detonations. In-

stead, the present interpretation of the sonic locus as an in-

formation boundary is something that retains its significance,

in which case the unsteady sonic locus must be defined in

terms of characteristics. Specifically, we define the sonic lo-

cus as a separatrix of forward characteristic lines that re-

mains at a finite nonvanishing distance from the shock at all

times. All forward characteristics ahead of the separatrix be-

tween the shock and the separatrix will reach the front in

finite time, while those characteristics downstream the sepa-

ratrix will never reach the shock.

Such a definition can be given precisely mathematically

as a boundary condition since the separatrix belongs to the

family of forward characteristics. Two conditions must be

satisfied at the sonic locus:

dx*

dt
= c* + U* s21d

and

dp*

dt
+ r*c*SdU*

dt
+

dD

dt
D = sg − 1dQr*v*, s22d

where subscript * denotes the sonic state and time derivative

is taken along the separatrix in sx , td plane. Equations (21)

and (22) are, of course, the governing equations for forward

characteristics and therefore hold for any such characteris-

tics. In fact, any forward characteristic can be considered an

information boundary, but the separatrix is the only one that

can be such a boundary for all time and always at a finite

distance from the shock. If for example, one takes a charac-

teristic which is ahead of the separatrix, one would be able to

use it as a boundary condition only for a finite time, before

the characteristic hits the shock. If on the other hand, one

takes a characteristic behind the separatrix, one would have

to deal with increasingly larger computational domain. The

special initial condition, namely c*s0d+U*s0d=0 at x=x*0,

defines the separatrix.

The existence of an information boundary (i.e., a trailing

sonic locus) identifies that detonation wave is self-sustained

because the locus is a boundary such that all of the informa-

tion needed to determine the subsequent motion of the lead

shock originates between the lead shock and that boundary.

The reaction zone powering the shock is acoustically isolated

from the flow trailing this locus. The following calculations

were carried out for a detonation wave that has an embedded

sonic locus. The same ideal-gas equation of state with g
=1.2 and Q=50 is used, but now the reaction order is taken

to be n=0.9. Since the reaction zone is now finite, the initial

state behind the reaction zone can be chosen essentially ar-

bitrarily. In order to understand the role played by the flow

behind the steady sonic locus, we compute the unsteady dy-

namics for two different initial profiles. In the first case, the

state behind the sonic point is uniform and the same as the

sonic state. For the second case, we put a strong rarefaction

wave behind the sonic point. We compute the evolution of

the wave at activation energy of E=26.2. At these parameters

the detonation dynamics is that of a low-frequency pulsation.

In order to illustrate the character of the sonic locus we

track the paths of a range of forward characteristic lines that

emanate from the neighborhood of the initial sonic locus,

which is located at x*s0d=−7.92. Some of the characteristics

have their origin in between the steady sonic locus and the

shock and, as Fig. 13 shows, they reach the front in finite

time. As for the remainder of the characteristic lines, they

FIG. 12. The shock speed vs time for an overdriven detonation with Q=E

=50, g=1.2, overdrive f =1.25: solid line is computed with NRBC, dashed

line uses “soft” outflow condition.
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tend to infinity, which means that, on average all forward

waves that propagate along these characteristics retreat from

the reaction zone. But there exists a separatrix of the char-

acteristic lines, which itself is a characteristic, that remains at

a finite nonzero distance from the front at all times.

Figure 13 shows that although the flow behind the sepa-

ratrix is quite different in cases (a) and (b), the flow ahead of

it is unchanged. This is consistent with the fact that the do-

main of influence of the region ahead of the separatrix is

between the shock and the initial sonic locus. Consequently,

as the front evolves, the domain of influence of the shock

front is bounded by the shock and the separatrix. The flow

behind the separatrix has no influence on the continuous dy-

namics of the flow ahead of the separatrix and on the motion

of the shock front. Thus, the detonation wave can be looked

at as a two-front phenomenon with two free boundaries,

namely the shock and the sonic locus.

It must be pointed out, that the Mach number, M

=−U /c, defined in terms of the particle speed relative to the

shock, U, and the local sound speed, c [the locus of M =1,

corresponding to Fig. 13(a), is shown by the dashed line in

Fig. 14(a)] has no special significance in unsteady detona-

tion. Of course, in the limit of a steady detonation, the sonic

locus defined in terms of the characteristics coincides with

the locus of M =1. Figure 14(a) also shows the shock speed

and the location of the sonic locus as functions of time. An

important point to make is that Dt and x*std in Fig. 14 are

exactly the same for both cases shown in Fig. 13, which are

solutions with different postsonic initial states. This serves to

illustrate the fact that the postsonic flow has no influence on

neither the shock dynamics nor the motion of the sonic locus.

Thus the shock dynamics is determined entirely by the finite

region between the shock and the sonic locus as well as an

information supplied by the Rankine–Hugoniot conditions.

Figure 15 illustrates that the sonic locus enters and leaves the

reaction zone during pulsations. In particular, during the

shock acceleration phase, the sonic locus is within the reac-

tion zone, hence 1−l*Þ0, while during the shock decelera-

tion phase, the sonic locus is within the burnt products so

that 1−l*=0.

The above discussion implicitly assumes that a sonic lo-

cus that was present in the initial steady solution remains in

the flow during subsequent evolution of the detonation. In

fact, it may not always be true that an initially present sonic

FIG. 13. Characteristic lines emanating from the neighborhood of the steady

sonic locus with: (a) uniform initial postsonic state and (b) with a rarefaction

wave initially present behind the sonic locus, for detonation with g=1.2,

Q=50, E=26.2, and n=0.9. Thick line in each figure is the separatrix of the

characteristics.

FIG. 14. (a) Shock speed, D, position of the sonic locus, x*, and the locus of

M =−U /c=1 as functions of time. (b) The phase plane sD ,x*d. All param-

eters and the initial condition are the same as in Fig. 13(a).
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locus will exist for all time. This is true if the flow in the

neighborhood of the sonic locus is continuous. But if a shock

wave is generated by some mechanism (on either side of the

separatrix) that interacts with the sonic locus, then the sepa-

ratrix will be destroyed. The information carried along the

characteristic lines will now be cut by the shock wave and

the premise underlying the previous scenario will no longer

be true. A smoothly evolving reaction zone is necessary for

the information boundary to exist.

The phase plane of D vs x* is shown Fig. 14(b), in which

one can see the characteristic limit cycle behavior with the

attractor of a triangular shape. As the strong pulsations of the

detonation wave set on, the dynamics of the sonic locus

tends to be coupled to that of the shock front as follows.

Within one cycle, we see that as the detonation wave decel-

erates from its steady state speed, the sonic locus starts to

move toward the shock from its farthest position of about x

=−9. As the sonic locus approaches the shock, the shock

starts to accelerate which causes the sonic locus to reverse its

direction at about x=−5.5. As the shock speed reaches the

maximum, the sonic locus passes its steady position, x

=−7.92. After that the shock decelerates and the sonic

locus reaches its minimum at x=−9. The cycle is repeated.

As we can see, the shock deceleration causes the sonic

locus approach the shock, where the approach is fastest at

the lowest shock speed. Subsequently the shock starts to

accelerate with fastest acceleration when the sonic locus is

near the shock and then causes the sonic locus to retreat.

That the sonic locus in unsteady detonations defined by

Eqs. (21) and (22) have important implications for theories

of detonation stability and nonlinear dynamics can be seen

by comparing the equations to conditions of linear stability

theory, e.g., Ref. 8, and sonic conditions of detonation dy-

namics, e.g., Ref. 9. The fact that a linearized version of Eq.

(22) reduces exactly to the radiation of Lee and Stewart,
8

has

its roots in the basic physics of the condition. Both condi-

tions express the same notion of acoustic isolation of the

reaction zone from the following flow. Equation (22) holds

under much more general conditions, of course, but ex-

presses the same physics as the radiation condition. In fact

we note that he radiation condition of Lee and Stewart is

actually more general than a derivation of it given Ref. 8

would imply, because it can be obtained directly from the

compatibility condition, which is exact, by simple lineariza-

tion. Comparison to the sonic conditions of the detonation

shock dynamics shows that Eq. (22) reduces to what is called

a thermicity condition in an appropriate limit of slow evolu-

tion.

VI. CONCLUSIONS

In this work we have discussed a role played by the

far-field flow in self-sustained one-dimensional detonation

waves. If such detonations are steady, then a sonic locus is

present at the end of the reaction zone. For detonations that

have a finite reaction zone, the sonic locus will also be at a

finite location from the lead shock. One of the most impor-

tant properties of a sonic locus in steady detonations is that

the reaction zone is separated by the locus from the influence

of the flow behind it. We have generalized the concept of a

sonic locus to unsteady detonations and have shown that it is

also defined as a separatrix of forward characteristics but

which are now unsteady. By means of a new and highly

accurate numerical algorithm for the integration of the reac-

tive Euler equations in a frame of reference attached to the

lead shock front, we have shown that the separatrix exists

and serves as an information boundary that isolates the lead

shock from the influence of the far-field flow. We have de-

fined the sonic locus mathematically and have shown that it

is a generalization of the radiation conditions of linear sta-

bility theory and sonic conditions of detonation shock dy-

namics. That is, the definition that we have introduced holds

for essentially arbitrary detonations (nonlinear and not nec-

essarily slowly-evolving) with the only assumptions that the

sonic locus be present and the flow evolution be smooth.

Although in this work we restrict ourselves to one-

dimensional planar detonations with one-step Arrhenius ki-

netics and an ideal-gas equation of state, a quite general

theory of the sonic conditions can be formulated that holds

for three-dimensional detonations with arbitrary equation of

state and complex kinetics (details be found in Ref. 18).

The numerical method of calculating detonations in the

shock-attached frame can be conveniently used for the pur-

pose of comparison with analytical results which are often

done in a shock-attached frame. We have also introduced a

nonreflecting boundary condition that significantly reduces

the effects of the spurious reflections of waves off the far-

field numerical boundary. And finally, we emphasize that the

numerical method we propose can be implemented as an

extension to any existing numerical scheme. Such an exten-

sion makes computations of the shock dynamics much more

accurate and affordable and allows for a simple analysis of

the physical processes within the reaction zone.
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