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ABSTRACT 

A general methodology for describing the dynamics of transport near marginal 

stability is formulated. Marginal stability is a special case of the more general phenomenon 

of self-organized criticality. Simple, one field models of the dynamics of tokamak plasma 

self-organized criticality have been constructed, and include relevant features such as 

sheared mean flow and transport bifurcations. In such models, slow mode (i.e. large 

scale, low frequency transport events) correlation times determine the behavior of transport 

dynamics near marginal stability. To illustrate this, impulse response scaling exponents (z) 

and turbulent diffisivities (0) have been calculated for the minimal (Burgers) and sheared 

flow models. For the minimal model, z = 1 (indicating ballastic propagation) and 

D - (S6)113, where S6 is the noise strength. With an identically structured noise spectrum 

and flow with shearing rate exceeding the ambient decorrelation rate for the largest scale 

transport events, diffusion is recovered with z = 2 and D - (Si)”’. This indicates a 

qualitative change in the dynamics, as well as a reduction in losses. These results are 

consistent with recent findings from p* scaling scans. Several tokamak transport 

experiments are suggested. 

+Also: ’General Atomics, San Diego, CA 
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Motivation and Introduction 

The concept of marginal stability['] is an oft-used paradieom in tokamak confinement 

physics. The marginal stability hypothesis is simply the notion that when a local gradient 

exceeds the critical value set by a stability criterion, the fluctuation-driven flux increases 

rapidly and thus drives the gradient back to marginality. As a consequence, energy content 

(and thus confinement time) is determined by the marginal stability criterion alone, and is 

not sensitive to the detailed nonlinear evolution of the instability process. Possible 

applications of the marginal stability construct include: 

i.) the instance of transport near the &limit, where marginally stable MHD modes 

(Le. ballooning modes) and microturbulence jointly regulate confinement. This 

scenario has been invoked to explain general L-mode confinement scaling, as 

weU,[2] 

ii.) the hypothesis that tokamak core transport is determined by the marginal stability 

threshold for ion temperature gradient instabilities in the presence of a background 

of electron drift waves,[3~4~~ 

iii.) edge transport in H-mode, where residual turbulence (reduced, perhaps to 

marginality, by electric field shear) and neoclassical ion thermal conduction 

combine to control the edge transport bmier. 

All of these specific realizations have certain basic constituents in common. These include: 

i.) a marginally stable profile, which is defined by the threshold criterion (usually 

line&) for some instability, 
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ii.) an "ambient" or "background" transport mechanism, which is unrelated to any 

exceedance of the threshold condition. In addition, the ambient transport must be 

weak in cornpalison to any which results when marginal stability is strongly 

violated, 

iii.) a noise source, which accounts for fluctuations in heating and fueling about the 

levels (of external drive) necessary for marginality, 

iv.) some assumptions concerning profde boundary conditions. 

Taken together, these common constituents effectively define the marginal stability 

paradigm. The goal of this paper is to characterize the dynamics of transport near 

marginality and develop the theoretical foundations for predictive modelling of tokamak 

plasmas near marginal stability. To do so, it is useful to observe that the d y n e c a l  models 

which govern marginal stability phenomena (Le. the basic fluid or kinetic equations, field 

theories, etc.) are sometimes scale invariant, or, more frequently, support ranges of 

"approximate" spatio-temporal scale invariance. ,A marginally stable system described by a 

scale invariant dynamical model is an example of a self-organized criticality (SOC).[6.7,81 

A self organized criticality is a general phenomenon where instability dynamics tend to 

select a state or class of states which exhibit features akin to those observed near critical 

points (i.e. long correlation lengths, soft fluctuation modes, etc.). It is important to stress 

that in the context of turbulent transport, the self-organized critical state is not necessarilv 

_. the Jinearly marginally stable state. Indeed, the deviation of the SOC state from the linearly 

marginal state is a measure of the "tightness" of the marginal stability which is determined 

by the ratio of turbulent transport to drive (i.e. heating, etc:). It may be said, then, that 

realizations of the SOC paradigm involve some sort of "marginal stability," but not all 

examples of "marginal stability" qualify as a self-organized criticality. The motivation for 
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this distinction is that the key elements in the dynamics of an SOC are stable, large scale 

transport events, referred to as "modes."[8] Here a "mode" consists of many (evolved) 

instabilities. Such modes are excited by noise and weakly damped by ambient transport. 

-- As a consequence of scale invariance, the large scale modes exhibit long correlation times, 

which diverge at large scale (i.e. 7;' = k2 D). They thus make a significant contribution to 

the fluctuation driven flux, even when they are only weakly excited. For example, 

consider the generic case where 

It is easily seen that if 7ck,-,, diverges at low-k, rT can be large even if 

modest. Indeed, should zck diverge sufficiently rapidly at low k, rT can develop an 

infrared divergence. Such infrared divergences of the turbulent transport coefficient due to 

low-k modes with long correlation times ("slow modes") are a distinguishing characteristic 

of an SOC. Obviously, the dynamics of transport in an SOC is quite different from the 

conventional wisdom of linearly unstable modes and quasi-linear diffusion, as linear 

jnstability of the slow modes is not reauired. We remark here that the observation of Bohm 

scaling, for which the system (machine) size apparently controls transport, suggests the 

approach of infrared catastrophe. Hence, slow modes are likely quite important to 

transport in tokamaks, where Bohm transport is frequently observed. 

Transport in the "confinement zone" of a tokamak is a naturally scale-invariant 

process, since by definition the "confinement zone" is distinguishable from regions of 

strong heat and particle deposition, because in the confinement zone, turbulent transport 

dominates all other local processes (Le. collisional transport, anomalous heat transfer, 

etc.). Thus, confinement zone transport dynamics near marginal stability is a realization of 

a self-organized criticality. The more detailed characteristics of an SOC are displayed as 

well, since: 
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i.) 

ii.) 

"noise" is present, i.e. BES fluctuation measurements[9] clearly suggest the 

presence of large scale fluctuations, 

small scale fluctuations have long been[l01 observed. These drive the backgound 

or "ambient" transport process, 

iii.) the inverse transfer of cascade of energy to large scales typical of strongly 

magnetized plasmas naturally couples the noise to the large scale modes of the 

system. 

Taken in together, these arguments suggest that a broad class of problems pertaining to 

tokamak transport near marginal stability may be amenable to analysis using methods from 

the theory of self-organized criticality. 
3 

At this point, it is useful to briefly review the SOC theory paradigm. The 

prototypical realization of SOC is the running sandpile, which supports avalanches when 

the local slope exceeds the angle of repose. Localized avalanches occur, but net balance 

with noise excitation (i.e. associated with randomly sprinkling sand on the pile) occurs 

when the avalanches overlap and discharge sand from the pile, thereby maintaining a 

globally quasi-steady state close to the critical- profile (given by the angle of repose). An 

avalanche should be thought of as analogous to a transport "event," not a (linear) instability 

(i.e. a drift wave, etc.). The avalanche power spectrum is consistent with lrf, so that the 

biggest avalanches occur most infrequently and smaller avalanches most often,[8] in accord 

with our expectations for a driven system which is "bubbling" near marginal stability. In 

addition, large scale global discharges of the sandpile (termed great events) occur 

infrequently (Le. at intervals which exceed a confinement time). The frequency and 

wavenumber of the.avalanches are related by the "critical exponent"[ll] z, i.e. such that 

w = ck* , where c is some constant. Indeed, the principal output of the SOC theory is the 

5 



exponent z, which also characterizes the dynamics of the impulse response of the system. 

Obviously, z = 2 indicates a diffusive response, z = 1 suggests a ballistic response, etc. 

The theory also predidts an effective turbulent transport coefficient (Le. renormalized 

diffusivity) which exhibits a (previously mentioned) infrared divergence.[W Such a 

divergence effectively renders the renormalized diffusivity scale dependent, i.e. if 

h2 - D T ~ ,  D = D~(6ir).  Such scale dependency underlies the anomalous value of the 

critical exponent (i.e. z c 2, indicating superdiffusive behavior), and represents a 

significant departure from the quasi-linear diffusion paradi,om[l3] of transport. 

In this paper, the dynamics of tokamak plasma transport events near marginal 

stability are studied, and a simple model derived from the SOC paradigm is advanced. The 

form of the basic nonlinear evolution equation for the local deviation of the profile from 

criticality is derived using simple symmetry concepts.[8] In its simplest incarnation, this 

equation reduces to Burgers' Equation. However, we also show that it is possible to 

formulate alternative model equations, including ones appropriate for describing systems 

with sheared flow (i.e. due to NBI-driven sheared toroidal rotation)[l4] or systems which 

exhibit a transport bifurcation,[15*16] which are consistent with the fundamental symmetry 

constraints. The basic model is then analyzed, with the goal of determining: 

the critical exponent z, which characterizes the dynamics of the nonlinear response 

of the plasma transport SOC, 

the (scale dependent) effective turbulent transport coefficient. The analysis is 

implemented in two different ways, via a one-loop renormalization group[17] 

(RNG) calculation and using the Direct Interaction Approximation.[l8] Not too 

surprisingly, the results agree. This agreement is a consequence of the random 

Galilean invariance of the basic equation and the focus on hydrodynamic (low k, 

a) phenomena. These together eliminate coupling coefficient and field amplitude 
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renormalization, leaving only propagator renormalization, an effect which is 

captured by both the DIA and the one-loop RNG. To elucidate the effect of slow 

modes on transport, the analysis was then repeated for the relevant case when a 

sheared flow is present. The sheared flow accelerates the rate of decorrelation of 

,long wavelength, slow modes,[14] thus greatly reducing the severity of the infrared 

divergence in the turbulent diffusivity and eliminating its dependence on kxmin 

altogether. As a consequence, the critical exponent increases from z = 1 to z = 2. 

Moreover, DT - (S;) (Si is the noise strength) without shear flow, while 

DT - (S$'5 with shear flow. The first case exhibits "strong turbulence" scaling, 

1/3 

while the latter seems more akin to weak turbulence. 

A lengthy discussion of SOC modelling of tokamak transport phenomena follows. This 

discussion focuses on: 

possible experiments (especially transients) to identify and elucidate characteristics 

of core transport event dynamics which follow from the SOC hypothesis and the 

implications of this hypothesis for interpreting results, 

b.) . ways to exploit the SOC paradigm in transport theory and modelling. 

The remainder of this paper is organized in the following manner. In Section II, the 

basic models are derived and discussed. Section III contains the analysis, for both the 

cases with and without sheared flow. Section IV consists of a summary and a detailed 

discussion. 

7 



11.) Basic Dynamical Model 

In this section, "constraints on the form of a '!generic" model for scale invariant 

dynamics of transport near marginal stability are formulated' and discussed. A number of 

simple models which capture various pieces .of the essential underlying physics at large 

scales are presented. Symmetry properties of the model equations are identified. 

The simplest aspect of transport dynamics near marginal stability is the behavior of 

long wavelength (large scale) transport events about a marginally stable profile in one 

dimension, which corresponds to the radial dimension of a tokamak. For concreteness, 

consider the dynamics of pressure P(r,t) near some marginally stable profile Po(r).  This 

might correspond to the instance transport near the E l h i t ,  for example. Then &(r,t), the 

deviation of P(r,t)  from Po(r),  evolves according to 

It is important to again stress that SP should be thought of as a deviation from the mean 

(Le. SOC or marginal) profile due to a transport event, and not as a pressure fluctuation 

associated with a linear instability. More precisely, a "transport event" will be generated by 

the interaction of several quasi-linear instabilities. Here I'[SP] is the flux of pressure, 

which is in general a nonlinear functional of m). Do is the ambient or background 

transport (Le. as due to drift waves, etc.) so k2Do e lX/&l, and S is the noise source. 

Equation (1) states that 6P is conserved, up to noise input (S) and small scale dissipation 

(k2 DO). The nonlinearity of I'[6.] follows from the dependence of the turbulent transport 

on deviation from marginality. Since o >> k2&, Eqn. (1) is approximately scale 

invariant. The conservative structure of Eqn. (1) is crucial for scale invariance. Also note 

that SP(x,t) = P(x, t ) -  Po(x)  implicitly contains information about the mean pressure 

gradient, too. 
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The non-trivial content of Eqn. (1) is,'of course, buried in the form of r[SP], 

which is, in turn constrained by the presence of a mean gradient Po(r)' and by the fact that 

the flux must be down the gradient, locally. Thus, bumps (i.e. localized perturbations 

with SP > 0) must travel down the mean gradient, while voids (i.e. localized-perturbations 

with SP c 0) must travel a the mean gradient. These conditions are equivalent to the 

requirement that I'[SP] be invariant under the dual transformations x+-x  and 

SP+-SP. This constraint, first identified by Hwa and Kardar,[*] is termed joint 

reflection symmetry. The underpinnings of the joint reflection symmetry constraint are best 

illustrated pictorially. Figure (2) defines bump and void, respectively. Figures (3 a,b) 

show the evolution of a bump in the absence of a mean gradient (Le. P'o = 0). 

Consideration of reflection symmetry reveals that bump will spread out due to the action of 

transport. However, the barycenter of the bump remains fNed. Now, consider a bump on 

a profile with mean P'o e 0 (Fig. 4). Here, reflection symmetry about the center of the 

bump is broken, as P'o e 0. Thus, the piece of the bump enclosed by BCD will propagate 

- down the mean gradient (here down the total gradient, as well), while the piece enclosed by 

BAD will move w the mean gradient (but locally down the gradient of total p!) .  Since the 

area enclosed by BCD exceeds the area enclosed by BAD, the net motion of the bump is 

down the mean gradient. A similar pictorial argument ~ v e a l s  that a void must propagate 

the mean gradient. These simple considerations clearly establish the principle of joint 

reflection symmetry. 

The form of r[SP] must be invariant under x + -x and @ + -@. Thus, if 
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then, for odd n, all An = 0. All m are allowed. However, C4,r = 0 for q odd, as well. 

Noting that m = 1 simply redefines Do, it follows that in the hydrodynamic limit, the 

simplest Dossible form of T [ p ]  is -P2, so that 6P evolves according to 
A. 

2 

(3) 

Observe that a similar result would follow from the familiar r=-Ddp/& (recall 

6P = p(x , t )  - Po(x , f ) )  with D - 6P, as typical of fluctuations near marginal stability. 

However, other forms are possible, as well. In particular, a class of forms of T [ p ]  which 

allow the possibility of a transport bifur~ation[~5.16] above a critical noise level is 

with m an integer. Here, r[@] is manifestly invariant under 6P + -6P, x + -x ,  

increases as Sp2 for small 6P (Le. as in Eqn. (3)), but decreases or remains constant (for 

m = 1) with increasing 6P (i.e. above a critical noise level) for a6p2m > 1. This highly 

nonlinear choice of r[@] is motivated by the familiar transport bifurcation ansatz 

D + Do/(l+ a E? ) , and the form of the radial force balance equation. Note also that 

mean shear flow[l4] effects may be introduced into the propagation in two dimensions, via 

--sp+v,x ' -- D o [ ~ + d z ~ + - ( ~ 6 p 2 ) ~ ~ .  a n  a 
t3t ?Y dX2 Jy2 d x 2  

Here x is analogous to the radial direction (with mean symmetry about x = 0) while y is 

analogous to 8 As Vox is invariant under x + -x,  it is clear that Eqn. (5) is consistent 

with joint reflection symmetry. An equation of the form of Eqn. (5) may be interpreted as 

# 
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describing marginal stability in a tokamak with sheared toroidal flow or in a long, thin 

sandpile with a strong sheared wind blowing along its face. 

The prototypical model for the long wavelength transport event dynamics of a 

system near marginality is that of Eqn. (3). This equation is recognized as Burgers' 

equation for 1D hydrodynamics with a random source (i.e. take 6P + v). Thus, it is 

invariant under a random Galilean transformation, as is Burgers' equation.[171 

Specifically, the substitution 6P(x,t)  + 6Po + 6P(x - AaPot,t),with 6po a constant, 

leaves Eqn. (3) unchanged. This invariance is a consequence of the "convective" character 

of the nonlinearity. Thus, the addition of a sheared flow (in 2D), as in Eqn. (5), yields a 

model which is also Galilean invariant. However, the form of r[SP] given in Eqn. (4), 

which supports a transport bifurcation, is not Galilean invariant. This suggests that the 

nonlinear dynamics of a model system with transport bifurcations are likely to be 

fundamentally different from those of the simplest (Burgers) system. This point will be 

discussed further in the following section. 

111.) Analysis 

In this section, we analyze the basic models presented in Section II. The goal is to 

determine the critical exponents for the system which characterize the functional form of the 

(nonlinear) impulse response. The nontrivial exponents and form of response are a 

consequence of infrared divergence of the turbulent flux (caused by slow modes), which is 

calculated as well. Such features are not described by the familiar quasilinear paradigm. 

To elucidate these aspects of the physics and to illustrate the underpinnings of certain 

technical methods we first discuss the simple systemf81 (Le. the minimal Burgers model of 

Eqn. (3)) of Section 3 (ma.) and proceed to the sheared flow model in Section (mb.). 
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a.) MinimalModel 

Here, we analyze Eqn. (3), the simplest model of an SOC or marginal stability. We 

seek the critical exponents or, equivalently, the nonlinear “dispersion relation.” We 

compare three approaches, namely those of simple scaling and symmetry considerations, 

the familiar direct interaction approximation. (DIA), and the dynamic renormalization 

group (RNG) approach. 

Simple scaling yields most of the pertinent and significant results. In particular, if 

one rescales Eqn. (3)  according to x + bx,t + bzt and 6P -+ bX6P one obtains 

A critical issue emerges immediately, namely that random Galilean invariance implies that A 

is unrenormalized by nonlinear interaction. This is a consequence of the fact that il enters 

the position dependence of 6P for the boosted frame (i.e. SP(x,t) -+ 6 P ( x -  ilbpot,?)), 

which must also be a solution of Eqn. (3), which is scale invariant. Hence, the only way 

to reconcile Galilean invariance and scale invariance is to impose the condition that 1 be 

unrenormalized. Thus, z + x - l = O .  As we are concerned with large scale, 

hydrodynamic (i.e.k + 0,w -+ 0) behavior, we require that the noise be unchanged by 

rescaling, i.e. .tim ( 1 2 ) ~ , ~  must remain invariant after rescaling . n u s  (noting 
k,o+O 

dimensions!) z - x - 1 = 0. It follows directly that z = 1 and x = 0. This establishes that 

the correlation function (6P2(6;,r)) has the form (@*(SX:/T)),  with z = 1. 

Alternatively o - y k z  (with z = 1) is revealed to be an effective nonlinear “dispersion 

relation” for the system. Both position and wavenumber space representations suggest 

ballistic propagation of perturbations. This is significant, as ordinary quasilinear theory 

would suggest diffusive propagation (i.e. o = k2D,(6P2) = (8P2(6x2/r)) at a rate set 

by an anomalous diffusivity. The effective “pulse speed, namely the proportionality factor 
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between w and k, must be obtained using approximation methods, such as dimensional 

analysis, the DIA, or the RNG. 
- ,  

We now seek to identify the cause of the departure from diffusive dynamics and to 

determine the critical exponents and pulse speed proportionality factor using the familiar 

direct interaction approximation. Observe that in this example, symmetry arguments 

preclude renormalization of Aor 6P (analogous to vertex function and wave function 

renormalization respectively.) Hence, the DIA; which involves only viscosity 

renormalization (analogous to mass renormalization), contains the features of a general 

renormalized perturbation theory essential to this application. Specifically, we calculate the 

renormalized response function. Following standard procedures, the nonlinearity of Eqn. 

(3) is given by 

where: 

[-i(w+o’)+(k+k’)2Do]6Gy& =-U(k+k’)6Pk, 6% . 
w’ 0 

w+o’ 

The contribution from the second term on the RHS of Eqn. ,(7b) will vanish upon 

substitution into Eqn. (7a) and integration in the hydrodynamic limit. Thus, 

where, for k, w + 0 
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Now, the essence of the DIA is to derive a recursion equation for D, the renormalized 

diffusivity, by: 

i.) taking Do + D in Eqn. (8b), i.e. the propagator used to solve for 6 must be 
O'+O 

treated self-consistently. 

ii.) using the renormalized diffusivity to relate GPkt,wp to the noise spectrum in Eqn. 

(8b). 

Thus, 

so 

Integrating over o', assuming white noise, then yields 

Here 

dimensionless 6.) and C1= 

is the mean square noise strength (with dimensions of lengthhime for 

M/(1+x2)2 = n/2, from the o-integral. It follows 
190 

--m 

directly that 

or, equivalently 
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Note that D diverges as k;\n, on account of slow modes. Put another way, the infrared 

divergence - k:in obscures the distinction between microscales (characteristic of the 

scatterers) and macroscales implicit to gy concept of a transport coefficient. As a 

consequence, D exhibits an implicit scale dependence D = D(6ic). Hence, if one considers 

the microscopic propagation of a pulse according to 8 x 2 = D r ,  it follows that 

Thus, the critical exponent is revealed to be z = 1, indicating ballistic resDonse at the 

velocity (C1A2S6/3)"3. Observe that the infrared divergence of D due to slow modes 

underlies the departure from quasilinear intuition. 

An alternative approach for calculating z is to use the dynamical RNG. This 

method utilizes scale transformation recursion equations, constructed using perturbation 

theory, to calculate renormalized transport coefficients. Here lowest order (i.e. 3 3  order) 

perturbation theory yields a "turbulent diffusivity" in the form of one summation over the 

"background" mode spectrum. This is, of course, equivalent to a summation over 

Feynman graphs containing one closed loop (computed by one integration over an internal 

momentum).[~9~ From Eqn. (8% b) it follows that, to one loop 

or, upon integrating (assuming white noise) 

At this point it is convenient to define the (bare) interaction parameter Ui0) = Cl A2 S2,/03,, 

so DT= D O ( I + U $ ~ ) / ~ ~ & ~ ) .  Observe that U$o)/k&i, is analogous to a "Reynolds 
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number" for this system. Then, noting from the scaling of Eqn. (6) that Do - bz-2, it 

follows that the rescaling recursion equation for DT is (for b!o = k,-' so that b is the 

dimensionless scale parameter): 

or, to lowest order in Vio), 

Similarly, a recursion equation for Ur , the renormalized interaction parameter (as distinct 

from @, the bare parameter) may be derived, noting U I  = Ur. ( DT.A.S~). As A and 

are unrenormalized, it follows directly that, in the one loop approximation 

Here ba/ab=a/dt, where 1 is dimensionless (unlike t o ) .  Now, noting that for 

( b t ~ ) ~ U i O )  -+ U I  and z = 1, Eqn. (13b) becomes equivalent to 

a 
at 
-D* = (-1 + U l )  D*. 

Thus, it is now possible to eliminate DT from Eqn. (14) for uf and obtain 
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Equation (16), a nonlinear recursion equation for UI , is the principal result of the RNG 

analysis. It is straightforward to solve, and working to lowest order in Ur gives 

3 3 
Finally, recalling that UI = Ui0)(ttec) = C1 A2S$(!‘ee) /D+ (Le. note that Ur is defined 

with the renormalized diffusivity), we find the result 

Here 1 is the normalized scale ratio. As we expect a result with the generic scaling form 

DT = Do(l+n[h21”~)Y, it follows that 

i.e. a= C I A  2 2  So/Do,y=1/3,/3:3. 3 Note that for Ui0)>1 (the regime of interest), 

&E (ClA2S8/3)”3[6x2]”2, in agreement with the DIA result of Eqn. (1 1). The scaling 

DT - (S;yj3 is suggestive of “strong” turbulence. Of course, having deduced that z = 1 

via symmetry arguments, one could obtain the value of a directly fiom simple dimensional . 

, 

analysis by observing that U$O)/k&, - (&/Do) 3 - RZ, where Re is an effective 

“Reynolds number” for the system. Hence, the principal benefit of an approach via RNG 

is the construction of a foundation for systematic application to more complex problems, 

such as those related to transport bifurcations, involving coupling coefficient and wave- 

function renormalization. 
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SOC in Sheared Mean Flow 

We now focus on the dynamics of an SOC in a sheared mean flow. One concrete 

realization of this parahgm is a long thin sandpile or sandbar, with a sheared wind blowing 

along its face, as shown in Fig. (5). Another is a tokamak plasma near the P-limit, 

executing differential toroidal rotation. The motivation for devoting such attention to this 

paradigm is that it highlights the importance of large scale, slow modes to SOC behavior. 

We emphasize at the outset that the impact of the sheared flow is not related to its effect on 

the marginality condition (i.e. the linear instability criterion), which is unchanged. As in 

Section (ma.), we calculate the critical exponent z and determine the fluctuation-driven 

flux. . .  

Equation (5) contains the basic description of sandbar dynamics in a sheared wind. 

Here, x is the distance across the pile, assumed to be symmetric about its center at x = 0, 

and y is the distance along the sandbar (see Fig. (6)). For simplicity, V,, = vix. We 

further assume radiallv extended noise. By this we mean that (S2(k,,k,.)) contains large 

radial scales, comparable in magnitude to that of the sandbar width. Such noise on large 

radial scales corresponds to "shaking" the sandbar. With k,  > kjmin, such "shaking" is 

. _  

equivalent to random displacement of span-wise uniform slices of the sandbar. Noise with 

this structure may altematively be thought of as shaking a loaf of thin-sliced bread, with 

slices displaced perpendicularly to the loafs axis (Fig. 7). Radially extended noise is 

clearly a "worst case" limit fiom the standpoint of confinement. This is because radially 

extended noise eliminates the need for avalanche (or eddy) overlap in order that sand be 

ejected from the sandbar. We also remark that radially extended perturbations, with 

k,  > kx ,  have.structure similar to twisted dicing modes[20] in confined plasmas. 
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For the case of radially extended noise, the nonlinear term in Eqn. (5 )  may be 

written as: 

Here k = (kx ,ky) ,  as the pe.fiurbations are 2D in structure. Proceeding as in standard 

renormalized perturbation theory (Le. the DIA), 

1 

which, in the hydrodynamic limit, reduces to 

Now, the crux of the issue is, of course, what, precisely, is the turbulent decorrelation rate 

cbntrolling the LHS of Eqn. (21b). There are three possibilities, namely the 'kouisional" 

. scattering rate k'2 Do, the turbulent radial scattering rate k'z&, and the turbulent shear 
.. 

decorrelation rate (k': G O  D T ) ~ / ~ ,  produced by the synergism of shearing and radially 

scattering.[l4]. As k\ - k; and D p D o ,  the collisional scattering 'rate may be 

immediately discarded. The relative importance of turbulent radial scattering and shear 

decorrelation is determined by comparing k; V i  / k ;  (from k; V b  a / a k ;  ) with 

k x  DT,  as in the BDT[14] criterion comparison. Here, anticipating that transport will be 
' 2  

, 

dominated by slow, large scales (Le. in the case of infrared divergence), the comparison at 
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the maximum scale is relevant. Hence, if k':-mjn DT>(k; Vb /k.")min the slow mode 

correlation time is given-by (i;min DT) as before. If (k;  Vh / k l  )min > k': min DT, 

then 1/2ck' - = (k';.min vb D.) . For the case where shear decorrelation is dominant, 

-1 

113 

where 

is the (Markovian) turbulent diffbsivity and Rk',w' - is the resonance function 

113 
with l / ? , k ' = ( i ;  - v; DT) . In deriving Eqn. (22), it is useful to note that 

6 P  , kfx6%, Rk' 0' + 0, by symmetry. Note that here, o ~ ~ ~ , ~ ~  is determined by - - 1  -k - 
- k',w' -2 0' 

shear decorrelation. Since Rk',@' - is treated self-consistenfly, DT (not Do) appears in the 

shear decorrelation rate. Assuming "white noise" in & yields (upon substitution for 

6 Pk',w'): - 
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Observe that the trivial k', integral has been absorbed into $$ as a normalization factor. 

Note also that the noise spectrum need only be white at large scales, as diffusive 

decorrelation ( i' D ) will surpass any contribution from small scales. The crucial point 

is, of course, that now ( L J V ~ D T )  determines the decorrelation rate for the slow 

modes. This decorrelation rate exhibits much weaker k scaling than the diffusive 

T 
113 

I 

decorrelation rate does. Performing the w' -integration gives: 

or 

where C; = 3C1/4. Thus, we finally find 

DT is infrared divergent, but much less severelv so then in the case Vb = 0 (i.e. compare 

Eqn. (20) with Eqn. (llb)). Note also that DT is independent ef - kxmjn! This is an 

abinitio consequence of the fact that shear decorrelation controls the slow mode dynamics, 

because of the weaker infrared divergence of the shear decorrelation time 

( zc - ( k s  20 DT) ) than the diffusive decorrelation time ( zc - ( k z D ~ ) - ' ) .  Shearing 

thus "speeds up" the decorrelation of slow modes, so they don't contribute as heavily to 

transport. Thus, Dr-kymin,  rather than D T -  kiAn, as in Eqn; (llb). Finally, we 

-1/3 

-115 
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caution the reader that taking the limit k;. vb /k' 
X)mjn  xmin 

> k 2  D, early in the calculation 

for simplicity precludes-a result which may be extropolated directly to vb = 0. 

To obtain the critical exponent, it is useful to note that LIT is independent of k, mi,,, 

so that DT - &-([6x2p). As a result, 6 x 2  - D T T ,  so that t = 2. Diffusive uropagation 

is thus restored when (k, .vb/ 
k )min 

> k x m i n & - .  2 Moreover, in this regime -- 

DT - (Sa)3'5, suggestive of a "weaker" turbulence scaling. Thus, we arrive at the central 

result of this section, which is the observation that a strongly sheared wind raises the 

critical exponent for an SOC sandbar from the ballistic limit value z = 1 to the diffusive 

value = 2. This represents a aualitative change in the transport dynamics, not just a 

decrease in the magnitude of the diffusivity. Note that the cross-stream noise structure is 

the same in both cases and that the sheared wind does not affect the marginality condition. 

Hence, the observed trend toward diffusive dynamics can only be ascribed to the 

acceleration of slow modes by shear decorrelation. It is important to recall that ky and k x  

are the wave numbers of "transport events" (as opposed to linear modes) and that the BDT 

criterion need apply only in the infrared limit (i.e. to slow modes), not throughout the 

spectrum. It suggests that shearing, via its effect on the infrared behavior of the correlation 

time, may alter the observable, qualitative macroscopic hydrodynamic response of SOC's, 

such as sandbars in a sheared wind or differentially rotating tokamak plasmas, to invariant 

noise spectra. Finally, note this argument does not rely on turbulence amplitude 

suppression!. 

IV.) Discussion and Conclusion 

In this paper we have formulated and presented a general methodology for 

describing the dynamics of transport near marginal stability. In particular, the scaling 

exponents of the impulse response have been identified as quantitative indicators of the 
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dynamical behavior of the marginal system. In turn, the relationship of the observable 

scaling exponents to the infrared structure of the turbulent transport theory has been 

established. The principal results of this paper are summarized below: 

Simple, one field, one dimensional models of marginal SOC's have been 

formulated. The structure of these models is constrained by the requirement of joint 

reflection symmetry. The minimal version of the SOC model reduces to the familiar 

Burgers equation form, and alternative, more complex, models incorporating 

sheared mean flow and transport bifurcations have been derived. 

The renormalized diffusivity and impulse response scaling exponents have been 

calculated. Galilean invariance and interest in hydrodynamic behavior eliminate 

coupling coefficient and wave function renormalization in the case of the minimal 

(Burgers) model. As a result, only difisivity renormalization survives, so the DIA 

and RNG methods yield identical results. However, coupling coefficient and wave 

function renormalization must be treated in the analyses of more complex models, 

such as those involving transport bifurcations. 

Scaling exponents for the minimal (i.e. Burgers) and sheared flow model have been 

calculated. For the minimal model z = 1 , indicating a ballistic response. Moreover 

DT--(,S#'~, .as in strong turbulence. For shear flow (with 

( k , . ~ ;  /kx)min > kzdn DT, z = 2, indicating diffusive response. The values of the 

scaling exponents are set by the degree of infrared divergence of the turbulent 

transport coefficient. Thus, since without shear flow, DT - k&,, z = 1. With 

shear flow (but for identical noise) D~-kpfiii5nk&,.,~,,, so z = 2. Here, 

DT -- (,S$", indicating "weaker" turbulence. Note that the dominance of 

shearing results in a qualitative change in transport dynamics, not just a reduction in 
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diffusion. This contrast suggests that the scaling of the slow mode correlation time 

determines the qualitative features of the macroscopic dynamics of transport in an 

SOC. It also suggest that the long wavelength correlation times of stable, large 

scale modes are crucial to predicting transport. 

These results -have interesting implications for experiment, interpretation and 

theory. First, they strongly suggest that impulse response scaling exponents be measured 

using ECH heat pulse propagation expenments.12 l ]  Previously, attention has focused on 

pulse propagation rate,[*21 rather than, on spatio-temporal evolution (i.e. sbar>e). The latter 

is obviously of much greater utility to the characterization marginal stability states in 

tokamaks. Moreover, certain pulse propagation comparisons naturally suggest themselves. 

These include: 

a.) comparing a neo-Alcator Ohmic discharge (likely below marginality) to a balanced 

injection L-mode discharge which is expected to be marginal to ITG instability and 

to a discharge near the plimit, where the marginality is tighter, 

b.) comparing an L-mode plasma to a VH-mode plasma,[23] where strong shearing 

should accelerate the decorielation of slow modes. In this case, one might expect a 

trend from z = 1 in the former to z = 2 in the latter, 

c.) comparing a case of balanced, on-axis NBI to a case combining on-axis co-injection 

with off-axis counter injection, to maximize the toroidal velocity shear. Here one 

could quantitatively test whether the predicted restoration of diffusive dynamics 

(i.e. z = 1 + z = 2) satisfied. 
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It would be most amusing to complement these pulse propagation studies by fluctuation 

measurements. This would yield insight into the relative importance of changes in 

decorrelation rate and fluctuation amplitude. In particular, the relative change in transport 

could easily exceed the relative change in fluctuation levels. Most importantly, the 

observation of anomalous exponents (Le. z e 2) would be a clear-cut indication of marginal 

stability controlling the dynamics. 

A second application of the results is to the realm of interpretation. Here, we note 

that recently, a great deal of attention has been focused on p*-scalig experiments,[24] with 

the aim of distinguishing gyro-Bohm transport from Bohm transport. Noting that Bohm 

transport implies that the system size significantly impacts the transport mechanism, it is 

apparent that Bohm scaling must be indicative of a trend toward infrared catastrophe. 

Moreover, the recent observation that p*-scaling changes from Bohm in L-mode to gyro- 

Bohm in H~mode[25l,suggest that infrared catastrophe in the former (z = 1) is healed in the 

latter (z = 2), presumably by the effect increased electric field shear on large scale transport 

events. Our findings concerning the effects of changing slow mode decorrelation rates are 

consistent with these results. Hence, it would be quite interesting to complement p*- 

scaling scans with measurements of the pulse-shape scaling exponent. 

A third realm of application is to transport theory. First, the SOC theory should be 

extended to three dimensions and to the model where transport bifurcations can occur. In 

this case, the SOC is expected to heal itself at sufficient noise levels, i.e. tX/d($) should 

change sign at a critical noise level. The evolution of scaling exponents through the 

bifurcation, as well as the sensitivity of the bifurcation to the structure of the noise are 

worthy of investigation, too. Note that the analytical theory of the transport bifurcation 

SOC is much more challenging than the simple noisy Burgers model,,since Galilean 

invariance is broken. Hence, coupling coefficient and wave function renormalization are 

required. This is not surprising, since one way of looking at a transport bifurcation in a 1D 
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SOC is as an amplitude-dependent coupling, where A 3 A . ( l  + a6 P2m). Here, for 

Sg > Sicrif, one should expect the Burgers shocks to smooth out and weaken. 

Another implication (for theory) of this work is that the nonlinear dynamics of 

slow, large scale modes in the presence of noise is critical to transport, even if such modes 

are, in fact, not unstable or even weakly damped. This suggests that trapped ion 

turbulence, with self-consistent evolution of Er , be studied in the presence of general, 
t 

short wavelength, noise excitation. The importance of this problem is supported by the 

ubiquitous finding of Bohm diffusion, in L-mode as well. 

The concept of a dynamic marginal stability has implications for transport 

modeling, as well. For example, 2, in fact, the tokamak core is ITG-mode marginal, 

transient experiments can be simulated using a simple model similar to the ones discussed 

here. The parameters &,A, etc. could be determined by scaling arguments or by 

empiricism. Enormous savings in analysis and computer time would result, and insight 

would be furthered. 
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4 

Figure CaDtions 

1.) Depiction of Pox and P(x,r);  Note @(x,t) contains information about P b x .  

2.) Depictions of Bump and Void. 

3 .) Time evolution of a symmetric bump. 

4.) Net motion of bump is down gradient. 

5.) Depiction of a sandbar. 

6.) Depiction of a sandbar in a sheared wind. 

7.) Sandbar with perturbations due to large scale noise. 
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