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We introduce a model for analog computation with discrete time in the
presence of analog noise that is flexible enough to cover the most im-
portant concrete cases, such as noisy analog neural nets and networks
of spiking neurons. This model subsumes the classical model for digi-
tal computation in the presence of noise. We show that the presence of
arbitrarily small amounts of analog noise reduces the power of analog
computational models to that of finite automata, and we also prove a new
type of upper bound for the VC-dimension of computational models with
analog noise.

1 Introduction

Analog noise is a serious issue in practical analog computation. However,
there exists no formal model for reliable computations by noisy analog
systems that allows this issue to be addressed in an adequate manner. We
propose and investigate such model in this article.

The investigation of noise-tolerant digital computations in the presence
of stochastic failures of gates or wires was initiated by von Neumann (1956).
We refer to Cowan (1966), Pippenger (1989), and Gál (1991) for a small
sample of the numerous results that have been achieved in this direction. In
all these articles, one considers computations that produce a correct output
not with perfect reliability but with probability≥ 1

2+ρ (for some parameter
ρ ∈ (0, 1

2 ]). The same framework (with stochastic failures of gates or wires)
has been applied to analog neural nets in Siegelmann (1994).

The approaches noted are insufficient for the investigation of noise in ana-
log computations, because one has to be concerned not only with occasional
total failures of gates or wires, but also with imprecision—omnipresent
smaller (and occasionally larger) perturbations of analog outputs of inter-
nal computational units. These perturbations may, for example, be given by
gaussian distributions. Therefore, we introduce and investigate in this arti-
cle a notion of noise-robust computation by noisy analog systems where we
assume that the values of intermediate analog values are moved according
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to some quite arbitrary probability distribution. We consider, as in the tra-
ditional framework for noisy digital computations, arbitrary computations
whose output is correct with some given probability≥ 1

2 +ρ (for ρ ∈ (0, 1
2 ]).

We restrict our attention to analog computations with digital output. Since
we impose no restriction (such as continuity) on the type of operations that
can be performed by computational units in an analog computational sys-
tem, an output unit of such a system can convert an analog value into a
binary output via thresholding.

We show in theorem 1 that any language recognized by such noisy analog
computational system is regular. Our model and the theorems are somewhat
related to the analysis of probabilistic finite automata in Rabin (1963), al-
though in Rabin’s case the finiteness of the state-space simplifies the setup
considerably. Continuous-space noise models similar to ours have been
used in general studies of the stability of dynamical systems affected by
random perturbations (e.g., Kifer, 1988), but our work is to our knowledge
the first to consider the computational aspects of systems of this type. More
specific hardware-oriented models for analog noise in analog neural nets
have been discussed in Phatak and Koren (1995).

Another related work is Casey (1996), which addresses the special case
of analog computations on recurrent neural nets, where the analog noise
can move an internal state at most over some bounded distance η, and the
digital output is required to be perfectly reliable (ρ = 1/2 in the present
notation). Casey’s corollary 3.1 states a special case of our theorem 1 for the
model considered in that article. Casey’s proof of corollary 3.1 is incorrect.1

A correct proof is contained as a special case in the proof of Theorem 1 in
section 3 of this article.2 Apart from corollary 3.1 there is no further overlap
between Casey (1996) and this article.

There are relatively few examples of nontrivial computations on common
digital or analog computational models that can achieve perfect reliability
of the output in spite of noisy internal components. Most constructions of
noise-robust computational models rely on the replication of noisy com-
putational units (see von Neumann, 1956; Cowan, 1966). The idea of this
method is that the average of the outputs of k identical noisy networks (with
stochastically independent noise processes) is more reliable than the output

1 Corollary 3.1 is derived as a corollary of theorem 1 in Casey (1996), whose proof relies
on the assumption that the recognized language is regular. The proof given for corollary 3.1
is the following: “The proof of a corollary is simply to notice that by the compactness
of the phase space it can contain only a finite number of disjoint sets with nonempty
interior.” The following counterexample shows that this argument is wrong: The intervals
[1/(2i + 1), 1/2i] for i = 1, 2, . . . are infinitely many disjoint sets with nonempty interior,
which are all contained in the compact set [0, 1].

2 Actually, since there is no need to analyze probability distributions for this special
case. One can prove corollary 3.1 of Casey (1996) more directly by considering the equiv-
alence relation defined at the beginning of section 3, and by deriving a lower bound for
the volume of the set of states that correspond to an equivalence class.
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of a single network. However, there exists in general a small but nonzero
probability that this average deviates strongly from its expected value. In
addition, if one assumes that the computational unit that produces the out-
put of the computation is also noisy, one cannot expect the reliability of the
output of the computation to be larger than the reliability of this last com-
putational unit. Consequently, there exist many methods for reducing the
error probability of the output to a small value, but these methods cannot
achieve error probability 0 at the output. In addition, if one wants to in-
vestigate computations with common noise distributions such as gaussian
noise, which may in principle move a state to any other state, it is necessary
to move to a computational model with less than perfect reliability of the
output bit, since otherwise the model would not be able to carry out any
nontrivial computations. Therefore, we focus our attention in this article on
the general case where the reliability of the network output is just required
to be ≥ 1/2+ ρ for some ρ ∈ (0, 1

2 ].
Unfortunately an investigation of computations with less than perfect

reliability requires a more complex mathematical analysis. In a computa-
tional model with perfect reliability of the output, it cannot happen that
an intermediate state q occurs at some step t in both a computation for an
input x that leads to output 0 and at step t in a computation for the same
input x that leads to output 1. Hence an analysis of perfectly reliable com-
putations can focus on partitions of intermediate states q according to the
computations and the computation steps where they may occur. In contrast,
in a computational model with less than perfect reliability of the output bit,
the same internal state q may occur at an intermediate step in computation
paths that yield different output bits. Hence for such a model, one has to
analyze probability distributions over intermediate states q.

Consider, for example, the special case of a sigmoidal neural net (with
thresholding at the output), where for each input the output of an internal
noisy sigmoidal gate is distributed according to some gaussian distribution
(perhaps restricted to the range of all possible output values this sigmoidal
gate can actually produce). In this case, an intermediate state q of the com-
putational system is a vector of values produced by these gaussian distribu-
tions for different sigmoidal gates. Obviously each such intermediate state
q can occur at any fixed step t in any computation (in particular in compu-
tations with different network output for the same network input). Hence
perfect reliability of the network output is unattainable in this case. For an
investigation of the actual computational power of a sigmoidal neural net
with gaussian noise, one has to drop the requirement of perfect reliabil-
ity of the output and instead analyze how probable it is that a particular
network output is given and that a certain intermediate state is assumed.
Hence, one has to analyze for each network input and each step t the differ-
ent probability distributions over intermediate states q that are induced by
computations of the noisy analog computational system. In fact, one may
view the set of these probability distributions over intermediate states q
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as a generalized set of states of a noisy analog computational system. In
general the mathematical structure of this generalized set of states is sub-
stantially more complex than that of the original set of intermediate states q.
In section 2, we define a rigorous mathematical model for this type of noisy
analog computation and introduce some basic methods for analyzing this
generalized set of states.

The preceding remarks may illustrate that if one drops the assumption
of perfect reliability, then a more complex variety of computations becomes
possible, and the computational power of a system may potentially increase.
In fact, in theoretical computer science, a substantial number of construc-
tions rely on the premise that the computational power of a digital com-
putational system does in fact increase if it gets access to random bits and
less than perfect reliability of the output bit is tolerated. This is relevant for
the discussions of this article, since internal noise of a noisy computational
system may also be viewed as something positive: as a free source of ran-
dom numbers, which may actually be helpful for certain computations. In
section 3 we prove an upper bound for the computational power of noisy
analog computational systems that limits the potential impact of such effects
in analog computation.

We show that under mild constraints on the noise characteristics, noisy
analog systems with bounded finite-dimensional state-spaces have at most
the computational power of finite automata. This upper bound is quite
general, and it also covers practically relevant special cases such as systems
with dependencies among different sources of stochasticity, as well as noisy
computations in hybrid analog-digital computational models, such as a
neural net combined with a binary register, or a network of noisy spiking
neurons where a neuron may temporarily assume the discrete state not
firing.

One goal of our investigation of the effects of analog noise is to find out
which features of the noise process have the most detrimental effect on the
computational power of an analog computational system. This turns out to
be a nontrivial question. For example, one might think that analog noise
that is likely to move an internal state over a large distance is more harmful
than another type of analog noise that keeps an internal state within its
neighborhood. However, this intuition is deceptive. Consider the extreme
case of analog noise in a sigmoidal neural net that moves a gate output
x ∈ [−1, 1] to a value in some ε-neighborhood of −x, and compare it with
noise that moves x to an arbitrary value in the 10ε-neighborhood of x. The
first type of noise moves some values x over large distances but is likely
to be less harmful for noise-robust computing than the second type, as the
large jump from x to −x represents just a recoding of the output value.

As a first step toward characterizing those aspects and parameters of
analog noise that have a strong impact on the computational power of a
noisy analog system, the proof of theorem 1 provides an explicit bound on
the number of states of any finite automaton that can be implemented by an
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analog computational system with a given type of analog noise. It is quite
surprising to see on which specific parameters of the analog noise the bound
depends (c.f. the remark at the end of section 3).

In section 4 we prove a partial converse to the upper bound result in
section 3 by showing that if one only considers bounded noise processes
(where the analog noise can move an internal state at most over a distance
η, for a sufficiently small value of η), then any finite automaton can be simu-
lated with perfect (ρ = 1/2) reliability by a recurrent analog neural net of the
type discussed in Anderson, Silverstein, Ritz, and Jones (1988) and Siegel-
mann and Sontag (1991). Other embeddings of finite automata in recurrent
sigmoidal networks include Frasconi, Gori, Maggini, and Soda (1996) and
Omlin and Giles (1996), which discuss, respectively, implementations of
automata in noise-free radial basis function networks and in second-order
networks with synaptic noise.

In section 5 we establish a new type of upper bound for the VC-dimension
of computational models with analog noise. We show that in the presence
of arbitrarily small amounts of analog noise, there exists an upper bound
for the VC-dimension of, for example, neural nets that is independent of the
total number of units in the case of a feedforward architecture, and inde-
pendent of the computation time in the case of a recurrent neural net. This
contrasts with the anomaly that in the noise-free setting, the classes of finite
recurrent analog neural nets (Siegelmann & Sontag, 1991) and finite recur-
rent networks of spiking neurons (Maass, 1996) have infinite VC-dimension,
and are thus strongly unlearnable from the point of view of learning the-
ory. Again, the proofs of the theorem 3, and its corollaries 3 and 4, provide
explicit (although very large) upper bounds for the VC-dimension of noisy
analog neural nets with batch input, which depend on specific parameters
of the analog noise.

2 Preliminaries: Computational Systems and Noise Processes

We shall define our computational model first in the noise-free setting and
then consider the effect of noise on computations separately.

An analog discrete-time computational system (briefly: computational
system) M is defined in a general way as a five-tuple 〈Ä, p0,F, 6, s〉, where
Ä, the set of states, is a bounded subset of Rd, p0 ∈ Ä is a distinguished
initial state, F ⊆ Ä is the set of accepting states, 6 is the input domain, and
s : Ä×6→ Ä is the transition function. To avoid unnecessary pathologies,
we impose the conditions thatÄ and F are Borel subsets of Rd, and for each
a ∈ 6, s(p, a) is a measurable function of p. We also assume that 6 contains
a distinguished null value t, which may be used to pad the actual input to
arbitrary length. The nonnull input domain is denoted by 60 = 6 − {t}.

The intended noise-free dynamics of such a system M is as follows. The
system starts its computation in state p0, and on each single computation
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step on input, element a ∈ 60 moves from its current state p to its next
state s(p, a). After the actual input sequence has been exhausted, M may
still continue to make pure computation steps, which lead it from a state
p to the state s(p,t). The system accepts its input if it enters a state in the
class F at some point after the input has finished. (We give a more precise
definition of the dynamics, including the effects of noise, later.)

For instance, the recurrent analog neural net model of Siegelmann and
Sontag (1991) (also known as the “brain state in a box” model of Anderson et
al., 1988) is obtained from this general framework as follows. For a network
N with d neurons and activation values between −1 and 1, the state-space
is Ä = [−1, 1]d. The input domain may be chosen as either 6 = R or
6 = {−1, 0, 1} (for online input) or 6 = Rn (for batch input). In each case
the value zero (or the zero vector) serves conveniently as the null value
t. For simplicity, we treat here formally only the cases where 6 ⊆ R; the
extensions to the case 6 = Rn are straightforward. The transition function
s : Ä × 6 → Ä is in this model given in terms of a d × d weight matrix
W = (wij), a d-component bias vector h = (hi), a d-component input weight
vector c = (ci), and a neuron activation function σ : R → [−1, 1]. For any
p ∈ Ä and a ∈ 6, we define s(p, a) = p+, where for each i = 1, . . . , d,

p+i = σ
 d∑

j=1

wijpj + hi + cia

 .
Both Anderson et al. (1988) and Siegelmann and Sontag (1991) use the
saturated-linear sigmoid activation function

σ(u) =

−1, if u < −1,

u, if − 1 ≤ u ≤ 1,
1, if u > 1,

but one may obviously also define the model with respect to other activation
functions, notably the standard sigmoid σ(u) = tanh u, or the discontinuous
signum function

sgn(u) =
{ −1, if u < 0,

1, if u ≥ 0,

the latter choice yielding the model of recurrent threshold logic networks.
The initial state in each of these models may be chosen as p0 = (−1, . . . ,−1),
and the set of accepting states is determined by the activity of some specific
output unit, say unit 1, so that F = {p ∈ Ä | p1 > θ}, for some threshold
value θ > 0.

In the sequel, we shall use σ to denote the componentwise extension of
the chosen activation function to state vectors, so that for any p ∈ Ä, σ(p) :=
(σ (p1), . . . , σ (pd)). This convention lets us write the transition function s
defined above compactly as s(p, a) = σ(Wp+ h+ ac).
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Feedforward analog neural nets may also be modeled in the same man-
ner, except that in this case, one may wish to select as the state set Ä :=
([−1, 1]∪{dormant})d, where dormant is a distinguished value not in [−1, 1].
This special value is used to indicate the state of a unit whose inputs have
not all yet been available at the beginning of a given computation step (e.g.,
for units on the lth layer of a net at computation steps t < l).

The completely different model of a network of m stochastic spiking
neurons (see, e.g., Gerstner & van Hemmen, 1994, or Maass, 1997) is also a
special case of our general framework. In this case one wants to set Äsp :=
(
⋃l

j=1[0,T)j ∪ {not-firing})m, where T > 0 is a sufficiently large constant so
that it suffices to consider only the firing history of the network during a
preceding time interval of length T in order to determine whether a neuron
fires (e.g., T = 30 ms for a biological neural system). If one partitions the
time axis into discrete time windows [0,T), [T, 2T), . . . , then in the noise-free
case, the firing events during each time window are completely determined
by those in the preceding one. A component pi ∈ [0,T)j of a state in this
set Äsp indicates that the corresponding neuron i has fired exactly j times
during the considered time interval, and it also specifies the j firing times
of this neuron during this interval. Due to refractory effects, one can choose
l <∞ for biological neural systems, for example, l = 15 for T = 30 ms. With
some straightforward formal operations, one can also write this state setÄsp

as a bounded subset of Rd for d := l ·m.
Let us then consider the effect of noise on computations. Let Z(p,B) be

a function that for each state p ∈ Ä and Borel set B ⊆ Ä indicates the
probability of noise corrupting state p into some state in B. The function
Z is called the noise process affecting M, and it should satisfy the mild
conditions of being a stochastic kernel (Feller, 1971, p. 205), that is, for each
p ∈ Ä, Z(p, ·) should be a probability distribution, and for each Borel set B,
Z(·,B) should be a measurable function.

We assume that there is some measureµoverÄ so that Z(p, ·) is absolutely
continuous with respect to µ for each p ∈ Ä; that is, µ(B) = 0 implies
Z(p,B) = 0 for every measurable B ⊆ Ä . By the Radon–Nikodym theorem
(Feller, 1971, p. 140), Z then possesses a density kernel with respect to µ;
that is, there exists a function z(·, ·) such that for any state p ∈ Ä and Borel
set B ⊆ Ä,

Z(p,B) =
∫

q∈B
z(p, q) dµ.

We assume that this function z(·, ·) has values in [0,∞) and is measurable.
(Actually, in view of our other conditions, this can be assumed without loss
of generality.)

The dynamics of a computational system M affected by a noise process
Z is now defined as follows. If the system starts in a state p, the distribution
of states q obtained after a single computation step on input a ∈ 6 is given
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by the density kernel πa(p, q) = z(s(p, a), q). (Note that as a composition of
two measurable functions,πa is again a measurable function.) The long-term
dynamics of the system is given by a Markov process, where the distribution
πxa(p, q) of states after |xa| computation steps with input xa ∈ 6∗ starting in
state p is defined recursively by

πxa(p, q) =
∫

r∈Ä
πx(p, r) · πa(r, q) dµ.

One easily can verify by induction on |u| that

πxu(p, q) =
∫

r∈Ä
πx(p, r) · πu(r, q) dµ

for all x,u ∈ 6∗ of length ≥ 1 .
Let us denote byπx(q) the distributionπx(p0, q)—the distribution of states

of M after it has processed string x, starting from the initial state p0. Let
ρ > 0 be the required reliability level. In the most basic version, the system
M accepts (rejects) some input x ∈ 6∗0 if

∫
F πx(q) dµ ≥ 1

2 + ρ (respectively
≤ 1

2−ρ). In less trivial cases, the system may also perform pure computation
steps after it has read all of the input. Thus, we define more generally that
the system M recognizes a set L ⊆ 6∗0 with reliability ρ if for any x ∈ 6∗0 :

x ∈ L ⇔
∫

F
πxu(q) dµ ≥ 1

2
+ ρ for some u ∈ {t}∗

x /∈ L ⇔
∫

F
πxu(q) dµ ≤ 1

2
− ρ for all u ∈ {t}∗.

This also covers the case of batch input, where |x| = 1 and 60 is typically
quite large (e.g., 60 = Rn).

One gets a reasonably realistic model for noise in an analog neural net
with state-space Ä = [−1, 1]d by defining the noise process Z so that it
reflects a clipped gaussian distribution. Without more specific knowledge
about the noise source, this appears to be the most appropriate model for
analog noise in an analog neural net. One assumes in this model that for any
computation step, the intended output pi ∈ [−1, 1] of the ith unit of the net
is replaced by a clipped gaussian distribution of values qi ∈ [−1, 1], where
values < −1 (> 1) are rounded to −1 (respectively, 1). If one assumes that
this rounding occurs independently for each of the d units i in the network
and, for simplicity, that all the underlying gaussians have the same variance,
then one arrives in our general framework for a noisy computational system
M at a noise process Z where Z(p, ·) is defined for each p ∈ Ä = [−1, 1]d

by a symmetric gaussian distribution with density z(p, q) = ν(‖ q − p ‖)
around p, but with all values qi < −1 (qi > 1) of the occurring states
〈q1, . . . , qd〉 rounded to−1 (respectively 1). (Here ‖ v ‖denotes the Euclidean
norm of a vector v, and ν is the density function of some symmetric d-
variate gaussian distribution.) Since such a rounding process will assign
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probability > 0 to the lower-dimensional bounding hyperrectangles of Ä,
we cannot simply define µ as the Lebesgue measure over Ä in order to
subsume this type of analog noise under our general noise model. Rather one
has to decompose Ä into components Ä1, . . . , Äk (representing the interior
Ä1 and lower-dimensional bounding hyperrectangles Ä2, . . . , Äk of Ä =
[−1, 1]d), and define µ as a sum of measures µ1 + · · · + µk , where µ1 is the
Lebesgue measure over Ä1 and µ2, . . . , µk are Lebesgue measures for the
lower-dimensional spaces Ä2, . . . , Äk .

In the case of a network of spiking neurons, the noise model has to take
into account that not only the firing time of a neuron is subject to some jitter
(which can be modeled by a gaussian distribution), but also neurons may
randomly fail to fire, or they may fire “spontaneously” (even when they
would not fire in the corresponding deterministic model). All these effects
can be modeled by a suitable noise process Z defined on the state-spaceÄsp
discussed earlier, with a measure µ over Ä defined by a decomposition of
Ä similarly as in the case of analog neural nets.

3 An Upper Bound for the Computational Power of Systems with
Analog Noise

It has been shown for various concrete models of analog computation with-
out noise, such as generalized shift maps (Moore, 1990), recurrent neural
nets (Siegelmann & Sontag, 1991), and networks of spiking neurons (Maass,
1996), that they can simulate a universal Turing machine, and hence have
immense computational power. It has long been conjectured that their com-
putational power collapses to that of a finite automaton as soon as one
assumes that they are subject to even small amounts of analog noise. We
provide in this section a proof of this conjecture. Furthermore we make ex-
plicit on which parameters of the analog noise the required number of states
of a simulating finite automaton depends.

Our proof requires a mild continuity assumption for the density functions
z(r, ·), which is satisfied in all concrete cases that we have considered. We do
not require any global continuity property over Ä for the density functions
z(r, ·) because of the previously discussed concrete cases, where the state-
spaceÄ is a disjoint union of subspacesÄ1, . . . , Äk with different measures
on each subspace. We only assume that for some arbitrary partition ofÄ into
Borel sets Ä1, . . . , Äk the density functions z(r, ·) are uniformly continuous
over each Äj , with moduli of continuity that can be bounded independent
of r. In other words, we require that z(·, ·) satisfies the following condition:

A function π(·, ·) fromÄ2 into R is called piecewise equicontinuous if for
every ε > 0 there is a δ > 0 such that for every r ∈ Ä, and for all p, q ∈ Äj,
j = 1, . . . , k:

‖ p− q ‖ ≤ δ implies
∣∣π(r, p)− π(r, q)

∣∣ ≤ ε. (3.1)
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Note that because the state-space Ä is bounded, any restriction π(r, ·) of a
piecewise equicontinuous function π(·, ·) to fixed r ∈ Ä has bounded range.
If z(·, ·) satisfies condition (3.1), we call also the resulting noise process
Z piecewise equicontinuous. Our preceding discussions suggest that all
practically relevant noise processes Z have this property.

To formulate our result, we need a notion of regular sets of sequences
over arbitrary domains60 , which we define as follows. Let L ⊆ 6∗0 be a set
of sequences over an input domain 60. Sequences x, y ∈ 6∗0 are equivalent
with respect to L if one has xw ∈ L ⇔ yw ∈ L for all w ∈ 6∗0 . The set L
is regular if this equivalence relation has only finitely many equivalence
classes. By the Myhill–Nerode theorem (Hopcroft & Ullman, 1979, pp. 65–
67), for finite alphabets60, this definition coincides with the usual definition
of regular sets via finite automata. From the point of view of computational
complexity theory, machine models that accept only regular sets belong to
the most “primitive” class of models. In contrast to Turing machines and
other universal computational models, the number of internal states of such
machine models is fixed, independent of the length of the input string.

Theorem 1. Let L ⊆ 6∗0 be a set of sequences over an arbitrary input domain60.
Assume that some computational system M, affected by a piecewise equicontinuous
noise process Z, recognizes L with reliability ρ, for some arbitrary ρ > 0. Then L
is regular.

Proof. Let M = 〈Ä, p0,F, 6, s〉, where 6 = 60 ∪ {t}, be the system in
question recognizing L. We shall show that there are only finitely many
equivalence classes of sequences with respect to L.

We begin by observing that if for two sequences x, y ∈ 6∗0 , the distribu-
tions πx(·) and πy(·) are sufficiently close, then x and y are equivalent. To
see this, assume that

∫
r∈Ä

∣∣πx(r)− πy(r)
∣∣ dµ ≤ ρ, and suppose for a contra-

diction that x and y are not equivalent. Then there exists some w ∈ 6∗0 with
xw ∈ L⇔ yw /∈ L. Without loss of generality, assume that xw ∈ L. Thus, there
exists some u ∈ {t}∗ with

∫
F πxwu(q) dµ ≥ 1

2 + ρ and
∫

F πywu(q) dµ ≤ 1
2 − ρ.

This yields the contradiction

2ρ ≤
∣∣∣∣∣
∫

q∈F
πxwu(q) dµ−

∫
q∈F

πywu(q) dµ

∣∣∣∣∣
=
∣∣∣∣∣
∫

q∈F

∫
r∈Ä
πx(r) · πwu(r, q) dµ dµ−

∫
q∈F

∫
r∈Ä
πy(r) · πwu(r, q) dµ dµ

∣∣∣∣∣
≤
∫

q∈F

∫
r∈Ä

∣∣πx(r)− πy(r)
∣∣ · πwu(r, q) dµ dµ

=
∫

r∈Ä

∣∣πx(r)− πy(r)
∣∣ · (∫

q∈F
πwu(r, q) dµ

)
dµ



Analog Noise 1081

≤ ρ.
Thus we have shown that

∫
r∈Ä

∣∣πx(r)− πy(r)
∣∣ dµ ≤ ρ implies that x, y ∈ 6∗0

are equivalent.
Next we observe that all the density functions πx(·) for x ∈ 6∗ are piece-

wise uniformly continuous, with the same bounds on their moduli of conti-
nuity as the noise density functions z(r, ·) have. This is verified by induction
on |x|. Given ε > 0, let δ > 0 be such that the density function z(·, ·) satisfies
condition (3.1) for all r ∈ Ä and j = 1, . . . , k. We then have for any x ∈ 6+,
a ∈ 6, and all p, q ∈ Äj such that ‖ p− q ‖ ≤ δ:∣∣πxa(p)− πxa(q)

∣∣ = ∫
r∈Ä

πx(r) ·
∣∣πa(r, p)− πa(r, q)

∣∣ dµ

=
∫

r∈Ä
πx(r) ·

∣∣z(s(r, a), p)− z(s(r, a), q)
∣∣ dµ

≤ ε ·
∫

r∈Ä
πx(r) dµ

= ε.
The preceding observation now implies that the space of all functions

πx(·) for x ∈ 6∗0 can be partitioned into finitely many classes C so that any two
functions πx(·), πy(·) in the same class C satisfy

∫
r∈Ä

∣∣πx(r)− πy(r)
∣∣ dµ ≤ ρ,

and hence correspond to sequences that are equivalent with respect to L.
Such a partition can for example be achieved in the following way. Using
the piecewise uniform continuity of the πx(·), choose from within each com-
ponentÄj ofÄ a finite set (or “grid”) Gj that is so dense that for each r ∈ Äj,
if tr ∈ Gj is the grid point closest to r, then |πx(r) − πx(tr)| ≤ ρ/4µ(Ä).
(To see that such a finite Gj always exists, note that given the value δ > 0
corresponding to ε = ρ/4µ(Ä) in condition 3.1, one can by the Bolzano-
Weierstrass theorem choose only a finite number of points t from within the
bounded set Äj so that any two distinct chosen points t, t′ are more than a
distance δ apart.) Take G =⋃k

j=1 Gj. Now partition the (bounded!) range of
all functions πx(·) into finitely many intervals I of length ρ/2µ(Ä), and place
two functions πx(·), πy(·) in the same class C if for every grid point t ∈ G
the values of πx(t) and πy(t) fall into the same interval I. Then for any two
functions πx(·), πy(·) in the same class C it is the case that for any r ∈ Äj ⊆ Ä,
j = 1, . . . , k,

|πx(r)− πy(r)| ≤ |πx(r)− πx(tr)| + |πx(tr)− πy(tr)| + |πy(tr)− πy(r)|
≤ ρ/µ(Ä),

and thus
∫

r∈Ä
∣∣πx(r)− πy(r)

∣∣ dµ ≤ (ρ/µ(Ä)) · ∫r∈Ä dµ = ρ.

Remark. In stark contrast to the results of Siegelmann and Sontag (1991)
and Maass (1996) for the noise-free case, the preceding theorem implies that
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both recurrent analog neural nets and recurrent networks of spiking neurons
with online input from 6∗0 can only recognize regular languages in the
presence of any reasonable type of analog noise, even if their computation
time is unlimited and if they employ arbitrary real-valued parameters.

Remark. The proof of theorem 1 relies on an analysis of the space of proba-
bility density functions over the state setÄ. An upper bound on the number
of states of a deterministic finite automaton that simulates M can be given
in terms of the number k of componentsÄj of the state setÄ, the dimension
and diameter of Ä, a bound on the values of the noise density function z,
and the value of δ corresponding to ε = ρ/4µ(Ä) in condition 3.1.

4 Noisy Analog Neural Nets Recognize Regular Languages

Let us say that a noise process Z defined on a set Ä ⊆ Rd is bounded by η
if it can move a state p only to other states q that have a distance ≤ η from
p in the L1-norm over Rd , that is, if its density kernel z has the property
that for any p = 〈p1, . . . , pd〉 and q = 〈q1, . . . , qd〉 ∈ Ä, z(p, q) > 0 implies
that |qi − pi| ≤ η for all i = 1, . . . , d. As a partial converse to the upper-
bound result of the previous section, we now prove that regular languages
over the alphabet {−1, 1} can be recognized with perfect reliability (ρ = 1

2 )
by recurrent analog neural nets, as long as the noise process affecting the
computation is bounded by a certain constant η > 0.

The basic idea of our proof is first to construct a threshold logic network
T recognizing the regular language under consideration, and then simulate
T with a noise-tolerant analog neural net. However, in order to obtain the
tolerance versus delay trade-off results in a uniform manner, we derive them
as corollaries from a general result on simulating threshold logic networks
by noisy recurrent analog neural nets.

Consider a d-unit threshold logic network T (cf. section 2) with transition
function s(p, a) = sgn(Wp + h + ac), where W ∈ Rd×d is the weight matrix
of T , h ∈ Rd is the bias vector, and c ∈ Rd is the input weight vector. Let
us say that T has separation θ , if at each unit, the argument to the signum
function is always at least θ away from zero; that is, if |wT

i p + hi + cia| ≥ θ
always holds, for every i = 1, . . . , d, p ∈ {−1, 1}d, and a ∈ {−1, 0, 1}. Any
threshold logic network operating on the input alphabet {−1, 0, 1} may be
modified to have some nonzero separation value by adjusting the bias values
appropriately. An important special case are networks with integer weights,
which may be adjusted to have separation 1. (On input values a ∈ {−1, 1}
this is straightforward; dealing with the value a = 0 may in some cases
require modifying the network structure.)

Theorem 2. Let a language L ⊆ {−1, 1}∗ be recognized by some d-unit threshold
logic network T with separation θ > 0, and let wmax be the maximum total input
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weight to any unit of T (wmax = maxi
∑

j |wij|). Let η be a constant satisfying
η < θ/wmax. Then L can also be recognized by a d-unit recurrent analog neural net
N that has perfect reliability (ρ = 1

2 ) when affected by any noise process Z bounded
by η. The activation function of N may be any function σ satisfying σ(u)→ −1
for u→−∞ and σ(u)→ 1 for u→∞.

Proof. The idea of the proof is simply to simulate the threshold logic net-
workT with an analog neural networkN by forcing the analog units always
to operate close to saturation (in states u such that σ(u) is within δ of ±1,
for some small constant δ), so that they in effect function as threshold logic
units. This is achieved by multiplying the weights in N by a sufficiently
large constant m.

Thus, let a language L be recognized by a d-unit threshold logic network
T with transition function p+ = s(p, a) = sgn(Wp+ h+ ac), and separation
θ .

Let δ and uδ be constants such that the noise bound is η < θ/wmax − δ,
and for all u ≥ uδ , |1− σ(u)| ≤ δ, and for all u ≤ −uδ , |(−1)− σ(u)| ≤ δ.

Now consider the analog network N obtained from T by multiplying
all the weights and thresholds by a constant,

m ≥ uδ
θ − wmax(η + δ) ,

and replacing the signum nonlinearities by the sigmoids. We claim that N
reproduces the behavior of T exactly, in the sense that the state ofN at each
time step, before noise is applied, is within δ of the corresponding state of
T .

Assume that the claim is true at some given time, when the state of T
is some p ∈ {−1, 1}d, and that of N correspondingly p̃ = p + r, for some
r ∈ [−δ, δ]d. Consider then the update ofN first with a noise vector e = q̃− p̃,
where q̃ is generated according to some componentwise η-bounded noise
density z(p̃, q̃), and then with the network transition function

p̃+ = σ(mWq̃+mh+mac)

= σ(mW(p+ r+ e)+mh+mac)

= σ(m(Wp+ h+ ac)+mW(r+ e)).

Considering the argument vector to the sigmoid componentwise, we obtain
for each i = 1, . . . , d the bound:

|m(wT
i p+ hi + cia)+mwT

i (r+ e)| ≥ mθ −mwmax(δ + η) ≥ uδ.

By our choice of the value uδ , we are thus again ensured that the components
of the new state vector p̃+ ofN are within δ of the corresponding components
of the state vector p+ of T . The claim follows by induction.
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One technicality concerning the choice of final states in the network N
still needs to be pointed out. Even though in the network T the final states
may be defined as, say, FT = {p ∈ {−1, 1}d | p1 = 1}, noise in the networkN
also affects the state of the output unit, and so the final states there should
be defined as FN = {p ∈ [−1, 1]d | p1 ≥ 1− η}, if the noise is bounded by η.

Corollary 1. For every regular language L ⊆ {−1, 1}∗ there is a constant η > 0
such that L can be recognized with perfect reliability (ρ = 1

2 ) by a recurrent analog
neural net in spite of any noise process Z bounded by η.

Proof. Let L be recognized by some finite automaton with m states. As
presented in Minsky (1972, pp. 55–57), one can easily construct from this
automaton a threshold logic network T with 2m + 1 units that recognizes
L. In Minsky’s construction, there is one threshold logic unit for each (state,
input symbol) pair of the simulated automaton, plus one unit that tests for the
acceptance condition. (Actually, our model mandates testing also for input
termination, which requires adding a few extra units.) A unit is activated
(goes to state 1) when it receives an excitatory signal from some preceding
(state, symbol) unit and its input line. All the nonzero weights in T have
absolute value 1, and the units have fan-in at most 2m+1. Since this network
satisfies the conditions of theorem 2 with θ = 1, wmax = 2m + 1, we may
choose any value of η < 1/(2m+ 1).

The next corollary shows that we can increase the noise tolerance of a
network by slowing the computation. Given an integer constant τ ≥ 1, let
us say that a network N recognizes a language L with delay τ , if for every
string x = a1, . . . , ak ∈ {−1, 1}∗, x ∈ L if and only if N accepts the string
aτ1, . . . , aτk (each input symbol ai is repeated τ times before the next one is
presented).

Corollary 2. For every regular language L ⊆ {−1, 1}∗ there is a constant delay
value τ such that for any η < 1

2 , L can be recognized with delay τ with perfect
reliability (ρ = 1

2 ) by a recurrent analog neural net that may be subject to any noise
process Z bounded by η.

Proof. Let again L be recognized by some finite automaton with m states.
The threshold logic units used in the simulation of corollary 1 simply test for
the simultaneous activity on any one of the lines coming from the preceding
(state, symbol) units and the appropriate input line. Thus, each such unit can
be replaced by a tree of fan-in 2 OR gates, and a concluding AND gate.
Considering that the maximum fan-in of the original units is 2m + 1, the
AND-OR trees may be constructed to have height τ = dlog2 me + 2. The
resulting network then has integer weights, with wmax = 2, and recognizes
the language L with delay τ.
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Remark. One can obtain different noise tolerance versus delay trade-offs
using the recent, more advanced simulations of finite automata by threshold
logic networks (Alon, Dewdney, & Ott, 1991; Horne & Hush, 1996; Indyk,
1995). For instance, Horne and Hush (1996) presents a simulation of m-
state finite automata by threshold logic networks with O(

√
m log m) units,

connection weights ±1, and delay 4. Thus, one can in corollary 2 achieve a
noise-tolerance bound of η = O(1/

√
m log m) with delay τ = 4.

Remark. The precise values of the η bounds obtained above are propor-
tional to the width of the interval used to encode unit states in the analog
neural net model. The results are here formulated using the interval [−1, 1],
and changes in this interval would have the proportional effects on the
η values. For instance, if the interval [0, 1] were used (as in Siegelmann
& Sontag, 1991), the η bound in corollary 2 would decrease from 1

2 to 1
4 .

5 A Novel Upper Bound for the VC-Dimension of Various Types of
Neural Nets with Analog Noise

In this section we provide an example for the effect of analog noise on dis-
crete time analog computations with batch input. We focus our attention on
the most common types of analog neural nets and show that in the presence
of arbitrarily small amounts of analog noise, there exists an upper bound
for the VC-dimension of such neural nets that is independent of the total
number of gates in the case of a feedforward architecture and independent
of the computation time in the case of a recurrent neural net. It depends on
only the structure of the first layer of the neural net (or alternatively of any
other fixed layer). This novel type of upper bound depends apart from the
analog noise on only those parameters of the net that are relevant for its first
computation step, and it holds for arbitrary real-valued batch inputs and
arbitrary real-valued “programmable parameters” (weights, etc.).

The resulting upper bounds for the required sample size of a noisy multi-
layer sigmoidal neural net extend a preceding result by Haussler (1992). He
had shown in corollary 3 that even in the noise-free case, an upper bound for
the VC-dimension can be given that depends on only the maximal absolute
value of weights for gates on layers ≥ 2 and on their maximal fan-in. In the
present result, all dependence on parameters that concern gates on layers
≥ 2 is removed.

It will become obvious from the proof of theorem 3 that our upper bound
is actually of a quite general nature, and it can also be applied to various
other models for discrete-time analog computation with analog noise that
are not related to neural nets.

The VC-dimension (abbreviated VC-dim(F)) of an arbitrary class F of
functions f : Rn → {0, 1} is defined as follows. One says that F shatters a
finite set S ⊆ Rn if for every subset A ⊆ S there exists a function f ∈ F with
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f (x) = 1 for x ∈ A and f (x) = 0 for x ∈ S − A. The VC-dimension of F is
defined as VC-dim(F) := sup {|S| : S ⊆ Rn is shattered by F}.

The VC-dimension ofFmay be viewed as a measure for the expressibility
(or degrees of freedom) of F . In particular, it provides for arbitrary finite
sets D ⊆ Rn an upper bound of the form |D|O(VC-dim(F)) for the number of
functions D→ {0, 1} that can be written as a restriction of a function inF to
this finite domain D. As a consequence, the VC-dimension of F is the key
parameter for estimating the number of randomly chosen examples that are
needed to “learn” arbitrary target functions g : Rn → {0, 1} from randomly
chosen examples 〈x, g(x)〉 for g by a learning algorithm that uses functions
from F as hypotheses (see Haussler, 1992; Vapnik & Chervonenkis, 1971;
Blumer, Ehrenfeucht, Haussler, & Warmuth, 1989; Maass, 1995). It should be
noted that this does not only hold for the “classical” probably approximately
correct (PAC) learning model where the target function g is required to
belong to the class F , but according to Haussler (1992), also in the general
case of agnostic PAC learning where g : Rn → {0, 1} can be any function.
Of course, the latter case is much more relevant for the theory of learning
with neural nets, where the class F of possible “hypotheses” is fixed by
the architecture of the neural net on which we run a learning algorithm,
whereas the examples 〈x, g(x)〉 may arise from some arbitrary real-world
classification problem for which we train the neural net.

It is obvious from the results of Siegelmann and Sontag (1991) and Maass
(1996) that there exist finite recurrent analog neural nets and finite recurrent
networks of spiking neurons with batch input and parameters from Q that
have infinite VC-dimension (consider networks that can simulate a univer-
sal Turing machine, with each input bit-string encoded into a rational num-
ber). From the point of view of learning theory, an infinite VC-dimension
is commonly interpreted as information-theoretic evidence that there exists
no “learning algorithm” for such networks (not even one with unlimited
computation time). We will show in this section that this “anomaly” dis-
appears as soon as one takes into account that the neural net is subject to
analog noise, even if the amount of such noise is arbitrarily small.

For technical reasons, we also discuss the pseudo-dimension P-dim(G)
of a class G of real-valued functions g : Rn → R. One can define P-dim(G)
as the VC-dimension of the following associated class,

F : = { f : Rn+1 → {0, 1}: ∃ g ∈ G( f (x, y) = 1

if g(x) ≥ y and f (x, y) = 0 if g(x) < y)},

of boolean-valued functions.
Consider now the computation of a system M = 〈Ä, p0,F,Rn, s〉 on a

batch input vector x ∈ Rn, affected by some piecewise equicontinuous noise
process Z whose density function z has values in some range [0,B]. The
distribution of states of M after k ≥ 1 computation steps is given by the
density function πxu(p), where |x| = 1 and u = tk−1. For k > 1, this density
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can be decomposed as
∫

q∈Ä πx(p0, q) · πu(q, p) dµ, and for k = 1 we have

simplyπxu(p) = πx(p0, q). This decomposition of the density function for the
state-distribution of M will be essential for our subsequent results. We show
in theorem 3 that there exists a finite upper bound for the VC-dimension
of the class F of functions computable by a class M of such systems M
(which receive arbitrary real-valued batch input) that does not depend on
the complexity of the class H of functions πz(·, ·) that describe the second
part of the computations of these systems M after their first computation
step.

LetMbe a class of such systems, affected by the same piecewise equicon-
tinuous noise process Z. For example,M can be the class of systems M that
result from different weight assignments to some feedforward or recurrent
analog neural net with some fixed architecture. Denote by G the class of all
density kernels of the form π(x, q) := πx(p0, q) for systems M ∈M, and by
H the class of density kernels of the form ω(q, p) := πu(q, p), for systems
M ∈ M and sequences u ∈ {t}∗. (As a special case, we include also the
constant function 1 in H.) Then all the boolean functions computed with
reliability ρ by the systems M ∈M are included in the class F of functions
f : Rn → {0, 1} that are composed of a function π ∈ G and a function ω ∈ H
so that for any x ∈ Rn the integral∫

p∈F

∫
q∈Ä π(x, q) · ω(q, p) dµ dµ has a value ≥ 1

2 + ρ if f (x) = 1,

and else a value ≤ 1
2 − ρ.

(5.1)

Actually, the class F contains somewhat more than just the functions
computed by systems fromM, because the two component functions π and
ω in equation 5.1 may come from two different systems inM (for example,
from two different weight assignments to a recurrent analog neural net).

In theorem 3 we consider an even more general setup where one has two
bounded state sets Ä ⊆ Rd and Ä′ ⊆ Rd′ , measures µ over Ä and µ′ over
Ä′, as well as a Borel set F ⊆ Ä′ of accepting final states. (In applications
Ä is typically the set of possible intermediates states after a fixed number l
(e.g., l = 1) of computation steps, and Ä′ is the set of possible output states
of a computation. One has d 6= d′ if, for example, the number d of units on
the first hidden layer of a feedforward sigmoidal neural net differs from the
number d′ of output nodes of the net; see corollary 3.)

We assume in theorem 3 that G is an arbitrary class of piecewise equicon-
tinuous density kernelsπ : Rn×Ä→ [0,B] with uniformly bounded moduli
of continuity (as in condition 3.1), thatH is an arbitrary class of density ker-
nelsω : Ä×Ä′ → R+, that ρ > 0 is an arbitrary given parameter, and thatF
is the class of functions f : Rn → {0, 1} for which there exist functions π ∈ G
and ω ∈ H so that for any x ∈ R the integral

∫
p∈F

∫
q∈Ä π(x, q) · ω(q, p) dµ dµ′

has a value ≥ 1
2 + ρ if f (x) = 1, and otherwise a value ≤ 1

2 − ρ.
Because of our assumption about the function class G, one can (as in the
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proof of theorem 1) superimpose on the space Ä a finite grid G, such that
for any π, π̃ ∈ G and x, x̃ ∈ Rn: |π(x, q) − π̃(x̃, q)| ≤ ρ/5µ(Ä) for all q ∈ G
implies that

∫
q∈Ä

∣∣π(x, q)− π̃(x̃, q)
∣∣ dµ < ρ/2.The size |G|of the grid (that is,

the number of grid points) depends in general on the reliability parameter
ρ, the common moduli of continuity of the functions in G, and the volume
and shape of the state-space Ä.

Theorem 3. Let G,H, and F be function classes as specified above and assume
in addition that the class G has finite pseudo-dimension 1. Then one can give a
finite upper bound for the VC-dimension of F in terms of ρ, B, |G|, 1, and µ(Ä).
Obviously this bound does not depend on the complexity of the function class H
(except via parameters related to the state set Ä) .

Proof. Let S ⊆ Rn be some arbitrary finite set shattered by F . For any
subset A ⊆ S we fix functions πA ∈ G and ωA ∈ H so that for any x ∈ S the
integral

∫
p∈F

∫
q∈Ä πA(x, q) · ωA(q, p) dµ dµ′ has a value ≥ 1

2 + ρ if x ∈ A, and

else a value≤ 1
2−ρ.We writeG∗S for the class of all functions πA ∈ G for A ⊆

S, and GS for the class of restrictions of these functions to the finite domain
S× G.

We also consider for γ := ρ/10µ(Ä) and any class A of functions with
range R+ the classAγ of all “γ -discretizations” gγ of functions g ∈ A, where

gγ (z) :=
⌊

g(z)
γ

⌋
for any z in the domain of g.

In particular for the classGS the functionsπγA ∈ GγS map S×G into {0, . . . , b−
1} for b := bB/γ c + 1. Note that by our assumptions on G, for any π, π̃ ∈ G
and any x, x̃ ∈ S the condition ∀q ∈ G (|πγ (x, q) − π̃γ (x̃, q)| ≤ 1) implies
that

∫
Ä
|π(x, q)− π̃(x̃, q)| dµ < ρ/2.

One can get an upper bound for the complexity of G∗S by applying
to GγS a generalization of Sauer’s lemma due to Alon, Cesa-Bianci, Ben-
David, and Haussler (1993). Given integers m, b, and1, define β(m, b,1) :=
log2

∑1
i=1
(m

i

)
bi. Lemma 15 of Alon et al. (1993) states that ifAγ is any class

of functions obtained as the discretizations of the functions in a class A of
pseudo-dimension1, such that the functions inAγ have a domain D of size
m and range {0, . . . , b− 1}, thenAγ must contain an “L∞ 2-cover” Bγ ⊆ Aγ
of size at most |Bγ | ≤ 2 · (mb2)β(m,b,1). That is, for every f ∈ Aγ there is
some f̃ ∈ Bγ such that | f (z) − f̃ (z)| < 2 (and hence ≤ 1) for every z ∈ D.
(The result holds for general values of γ , 1, m, and b.)

Applied to our context (withA := GS), this result implies that there exists
a set G∗ ⊆ G∗S whose cardinality can be bounded in terms of the pseudo-
dimension 1 of G as

|G∗| ≤ 2 · (|S| · |G| · b2)β(|S|·|G|,b,1), (5.2)
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such that for every π ∈ G∗S there exists some π̃ ∈ G∗ with |πγ (x, q) −
π̃ γ (x, q)| ≤ 1 for all x ∈ S and all q ∈ G.

With the help of the 2-cover of GγS induced by G∗, we can now show
that the cardinality |S| of the shattered set S can be bounded through the
inequality

2|S| ≤ 2 · (|S| · |G| · b2)β(|S|·|G|,b,1) · 2b|G| . (5.3)

It is obvious that this inequality yields an upper bound for |S| that does not
depend on the complexity of the function class H (except for parameters
related to Ä).

Let us consider for each ω ∈ H the discrete map ω̂ : {0, . . . , b − 1}G →
{0, 1} which is induced by ω through the following definition: ω̂(π̂) has
value 0 for π̂ ∈ {0, . . . , b − 1}G if there exist some π ∈ G and x ∈ S with
|π̂(q)−πγ (x, q)| ≤ 1 for all q ∈ G and

∫
p∈F

∫
q∈Ä π(x, q)·ω(q, p) dµ dµ′ ≤ 1

2−ρ.
Else we set ω̂(π̂) = 1.

Since we have the upper bound (see equation 5.2) on the size of the cover
G∗, and there exist at most 2b|G| different functions ω̂, it suffices for proving
equation 5.3 to show that the following claim holds.

Claim. Let A1,A2 ⊆ S. If some function π̃ ∈ G∗ covers both πA1 and πA2 ,
in the sense that |π̃ γ (x, q)− πγA1

(x, q)| ≤ 1 and |π̃γ (x, q)− πγA2
(x, q)| ≤ 1 for

all x ∈ S and all q ∈ G, and moreover ω̂A1 = ω̂A2 , then A1 = A2. In order
to prove this claim, let us assume that A1 6= A2, but both πA1 and πA2 are
covered by the same function π̃ ∈ G∗. We shall show that ω̂A1 6= ω̂A2 .

Fix some x0 ∈ S so that either x0 ∈ A1 −A2 or x0 ∈ A2 −A1. Without loss
of generality, we may assume that x0 ∈ A1−A2. Let π̂ : G→ {0, . . . , b−1} be
defined by π̂(q) = π̃ γ (x0, q). Then we have ω̂A2(π̂) = 0, since by assumption
|π̃ γ (x0, q)− πγA2

(x0, q)| ≤ 1 for all q ∈ G and∫
p∈F

∫
q∈Ä

πA2(x0, q) · ωA2(q, p) dµ dµ′ ≤ 1
2
− ρ.

Assume for a contradiction that also ω̂A1(π̂) = 0 for this function π̂ . This
implies that there exist some π ∈ G and some x1 ∈ S with∫

p∈F

∫
q∈Ä

π(x1, q) · ωA1(q, p) dµ dµ′ ≤ 1
2
− ρ and (5.4)

|π̂(q)− πγ (x1, q)| ≤ 1 for all q ∈ G.

The latter implies by our choice of G and γ and the definition of π̂ that∫
q∈Ä
|π̃(x0, q)− π(x1, q)| dµ < ρ/2. (5.5)
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On the other hand, the assumptions on π̃ ∈ G∗ imply that |π̃γ (x0, q) −
π
γ

A1
(x0, q)| ≤ 1 for all q ∈ G, hence∫

q∈Ä
|π̃(x0, q)− πA1(x0, q)| dµ < ρ/2 . (5.6)

Furthermore since x0 ∈ A1, we have by choice of ωA1 that∫
p∈F

∫
q∈Ä

πA1(x0, q) · ωA1(q, p) dµ dµ′ ≥ 1
2
+ ρ. (5.7)

The inequalities (equations 5.5 and 5.6) imply that∫
q∈Ä
|π(x1, q)− πA1(x0, q)| dµ < ρ.

This inequality yields in combination with equations 5.4 and 5.7 the contra-
diction

ρ ≤
∣∣∣∣∣
∫

p∈F

∫
q∈Ä

π(x1, q) · ωA1(q, p) dµ dµ′

−
∫

p∈F

∫
q∈Ä

πA1(x0, q) · ωA1(q, p) dµ dµ′
∣∣∣∣∣

≤
∫

p∈F

∫
q∈Ä

∣∣π(x1, q)− πA1(x0, q)
∣∣ · ωA1(q, p) dµ dµ′

=
∫

q∈Ä

∣∣π(x1, q)− πA1(x0, q)
∣∣ · (∫

p∈F
ωA1(q, p) dµ′

)
dµ

≤
∫

q∈Ä

∣∣π(x1, q)− πA1(x0, q)
∣∣ dµ

< ρ.

This contradiction implies that ω̂A1(π̂) = 1, hence ω̂A1 6= ω̂A2 . Thus we have
verified the preceding claim, and the proof of theorem 3 is now complete.

Remark. It follows from Alon et al. (1993) that instead of a finite upper
bound for the pseudo-dimension of G, it suffices for theorem 3 to assume a
finite upper bound for the γ -dimension Pγ -dim(G) of G for γ = ρ/20µ(Ä).

Corollary 3. There exists a finite upper bound for the VC-dimension of lay-
ered feedforward sigmoidal neural nets and feedforward networks of spiking neu-
rons with piecewise equicontinuous analog noise (for arbitrary real-valued inputs,
boolean output computed with some arbitrary reliability ρ > 0, and arbitrary real-
valued “programmable parameters”) that does not depend on the size or structure
of the network beyond its first hidden layer.
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Proof. We first consider for some arbitrary given parameters n, d, d′ ∈ N
the class N of all layered feedforward sigmoidal neural nets with n input
nodes, d units on their first hidden layer, and d′ output nodes. Thus, the
nets in N may have arbitrary numbers of layers and gates and arbitrary
real-valued weight assignments. We assume that the d gates on the first
layer are affected by some piecewise equicontinuous noise process with
density kernel z : Ä2 → R+ , where Ä := [−1, 1]d . Let F : Rn × Rm → Ä

be the function whose value F(x,w) is the vector of outputs of the d first
hidden-layer units (without noise), for arbitrary network inputs x ∈ Rn and
arbitrary assignments w ∈ Rm to the weights and biases of these units.

We take as the class G of functions π considered in the proof of Theo-
rem 3 all functions of the formπ(x, q) = z(F(x,w), q) for arbitrary parameters
w ∈ Rm. The results presented in Karpinski and Macintyre (1997) imply that
the pseudo-dimension of this class G of functions is bounded by a polyno-
mial in m, for all common choices of activation functions of the sigmoidal
units and all practically relevant density kernels z for the noise process
(even involving the exponential function). In the case where the activation
functions and density kernels are piecewise polynomial, one can apply the
results of Goldberg and Jerrum (1995) to get a slightly better finite upper
bound for the pseudo-dimension of G.

We define for Ä = [−1, 1]d and Ä′ = [−1, 1]d′ the class H as the class
of all density kernels ω : Ä × Ä′ → R+ that describe the computations of
the remaining layers of networks in N with arbitrary noise processes (and
arbitrary real-valued weights).

It follows from theorem 3 that the finite VC-dimension bound obtained
for the class F of functions computed with reliability ρ > 0 by networks
in the class N does not depend on the complexity of the function classH ,
and hence not on the number of layers, the number of units beyond the first
layer, or the noise process on later layers of these networks.

In the case of a network N of noisy spiking neurons, the programmable
parameters consist of the “weights” of synapses, time delays for postsynap-
tic potentials, and parameters that determine other aspects of the functional
form of response functions (i.e., postsynaptic potentials) and threshold func-
tions. The pseudo-dimension of the class G that arises when one applies (as
described in section 2) the framework considered here to the first layer of
a network N of noisy spiking neurons can be bounded with the help of the
same tools as for the case of sigmoidal neural nets.

Corollary 4. There exists a finite upper bound for the VC-dimension of recurrent
sigmoidal neural nets and networks of spiking neurons with analog noise (for arbi-
trary real valued inputs, boolean output computed with some arbitrary reliability
ρ > 0, and arbitrary real valued “programmable parameters”) that does not depend
on the computation time of the network, even if the computation time is allowed to
vary for different inputs.
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Proof. One proceeds in the same manner as for the proof of corollary 3,
except thatG now consists of the class of all state distributions that arise from
the first computation step of the total network, andH consists of all possible
state transformations that can arise from the rest of the computations of the
same network.

6 Conclusions

We have introduced a new framework for the analysis of analog noise in
discrete-time analog computations that is better suited for real-world ap-
plications and more flexible than previous models. In contrast to preceding
models, it also covers important concrete cases such as analog neural nets
with a gaussian distribution of noise on analog gate outputs, noisy compu-
tations with less than perfect reliability, and computations in networks of
noisy spiking neurons.

Furthermore, we have introduced adequate mathematical tools for ana-
lyzing the effect of analog noise in this new framework. These tools differ
quite strongly from those that have been used previously for the inves-
tigation of noisy computations. We show that they provide new bounds
for the computational power and VC-dimension of analog neural nets and
networks of spiking neurons in the presence of analog noise.

Finally, our model for noisy analog computations can also be applied to
completely different types of models for discrete-time analog computation
than neural nets, such as arithmetical circuits (Turán and Vatan, 1994), the
random access machine with analog inputs, the parallel random access ma-
chine with analog inputs, various computational discrete-time dynamical
systems (Moore, 1990; Koiran, Cosnard, & Garzon, 1994; Asarin & Maler,
1994; Orponen & Matamala, 1996) and (with some minor adjustments) also
the BSS model (Blum, Shub, & Smale, 1989; Koiran, 1993). Our framework
provides for each of these models an adequate definition of noise-robust
computation in the presence of analog noise, and our results provide up-
per bounds for their computational power and VC-dimension in terms of
characteristics of their analog noise.
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