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SUMMARY 
All observed waves are of finite frequency and are sensitive to a finite volume of the 
medium through which they pass. Diffraction causes a loss of information about time 
contained in the initial front of a wavefield (often referred to as wavefront healing). 
This effect depends upon frequency and propagation distance and imposes a low-pass 
filter on the spatial resolution of time measurements. A sequence of canonical, numerical 
experiments that simulate the diffraction of a perturbed plane wave at a fixed distance 
is described. Traveltimes are measured using a variety of techniques on a range of 
waveforms. It is empirically verified that a single Fresnel zone describes the spatial 
filtering effect of the propagation of a broad-band wavefield, even in the regime where 
the initial time perturbation cannot be represented by a linear perturbation term. For 
narrow-band wavefields, more Fresnel zones come into play as the bandwidth is 
reduced. Measurements of time include a component of signal-generated noise coherent 
over a small scale which scales with the Fresnel zone. It is found that, for traveltimes 
measured by automated picking, the width of the Fresnel zone is described by a time 
delay of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(&I< T/4 (here T is one period). On the other hand, the width of the Fresnel 
zone for traveltimes measured by correlation is wider, characterized by a time delay of 
ldtl < T/4. 

Key words: diffraction, traveltime, wave propagation. 

INTRODUCTION 

Ray theory forms the basis for interpreting traveltime, or 
phase, observations in seismology. At the same time, the 
difficulties in interpreting traveltimes measured from finite- 
frequency seismograms have been known for some time 
(Claerbout 1976). With the advent of 3-D inversion (tom- 
ography) in seismology, based on traveltimes or surface-wave 
dispersion, the limitations of ray theory have become an 
increasing worry. Wielandt (1987), Petersen (1990) and other 
Soviet authors (see Petersen 1990) pointed out that diffraction 
and scattering can cause a systematic bias in velocity estimates. 
Energy that travels along a fast path is more likely to affect a 
traveltime reading than energy that propagates along a slow 
path because it arrives earlier. Therefore, the average wave 
speed appears higher than the volumetric mean of the intrinsic 
wave speed. Nolet & Moser (1993) and Roth, Muller & Snieder 
(1993) have shown that a modest level of heterogeneity in the 
Earth's mantle can render this effect significant for teleseismic 
body waves. This is a ray-theoretical effect caused by the 
neglect of the second-order time perturbation due to ray 
bending (Sambridge & Snieder 1993). A similar effect arises 
from diffraction associated with smoothing of time pertur- 
bations in the initial wavefront. The same holds for lateral 
variations in the wavefront of a surface wave. 

When a wavefront passes through a heterogeneous structure 
it acquires complexity. In particular, perturbations of time are 
introduced by local variations in wave speed. As the perturbed 
wavefront advances to a remote recorder, its complexity 
evolves. Advanced portions of the wavefront expand in space 
and to some degree mask the delayed portions by a process 
often referred to as wavefront healing (Claerbout 1985). 
Inherent in this process is a loss of time information that is 
frequency-dependent. Wavefront healing is a geometrical 
diffraction effect, and simple geometrical arguments, or math- 
ematical analysis, lead one to estimate its importance or to 
scale it by the Fresnel zone. 

This argument is demonstrated in Fig. 1. A plane wave 
(dashed) is perturbed in phase (solid curve). The wavefront 
proceeds to propagate a distance, L, to a receiver at point R 
through a homogeneous medium of velocity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv.  Energy at point 
P arrives at the receiver at R at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto having followed a 
straight path. Energy from adjacent parts of the wavefront 
arrives slightly later. All energy within the distance xF/2, 
measured on the wavefront from P, arrives within some time 
delay, 6t ,  of the minimum-time arrival. If we choose this time 
delay as a quarter of the period of the recorded wave, T/4, all 
this energy interferes constructively. We can then say that the 
wavefield recorded at R represents an integral of the wavefield 
around P and that variations in phase on the wavefront around 
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R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= t - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto =[  i m -  L]/v = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT/4 => zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xF =\I ~ v T L  + v2 T2/4' = 1- 

Figure 1. A demonstration of the geometrical construction of the 
Fresnel zone. 

P are averaged in the wavefield at R. This leads to the 
following definition of a Fresnel zone (for a plane wave): 

XF = (21L + i2/4)1'2, (1) 

where i is the wavelength and L the propagation distance. A 
phase lag of a quarter period represents the boundary between 
constructive and destructive interferences. However, it seems 
somewhat arbitrary to choose 6t = T/4 as defining the region 
over which perturbations in phase are averaged. That is likely 
to depend on the nature of the measure which is drawn from 
seismograms. It may depend on the nature of the perturbations 
and the shape of the waveform. 

The lack of sensitivity of waves of finite frequency to 
structural detail in the plane perpendicular to their path 
(wavefront) implies that we can think of their sampling of the 
medium as a volume integral within a ray tube. This tube is 
often assumed to take the width of the Fresnel zone (eerveny 
& Soares 1992). Nolet (1987) defines the Fresnel zone as above 
(eq. l), and a coherent arrival by 6t  < T/4. Yomogida (1992) 
suggests an efficient, approximate method of incorporating the 
finite volume of ray tubes into traveltime inversion. He defines 
the Fresnel-zone width in accordance with diffraction optics, 
i.e. 6t  < T/2. The Frechet derivative for phase presented by 
Yomogida (1992) for a fixed frequency has strong side lobes, 
which correspond to a multitude of Fresnel zones. However, 
when Vasco & Majer (1993) compute the analogous quantity 
for a pulse of finite bandwidth the side lobes are suppressed 
by destructive interference. For a sufficiently broad bandwidth 
there will only be one Fresnel zone. This effect is demonstrated 
by Woodward's (1992) calculations, and by Fig. 2, which shows 
how the intensity of the Fresnel zones decays upon integration 
over frequency. This is often the case for seismic observations. 
A body-wave arrival recorded on a short-period instrument is 
generally observed as a simple pulse, not as a ringing wave 
train. 

We have described in general terms the concepts of wavefront 

healing and a Fresnel zone, and pointed out the level of 
arbitraryness in defining the latter. The questions: (1) what is 
meant by 'Fresnel zone'? and (2) how should it be defined? do 
not have unique answers. For example, how do we choose our 
reference frequency when the observed wave has a significant 
bandwidth? In this study we set up a simple, canonical, 
numerical experiment to answer the latter. We use frequency- 
wavenumber modelling (Stolt 1978) to propagate a perturbed 
plane wave numerically, and estimate the effective width of the 
Fresnel zone for a variety of traveltime measures and wave- 
forms. Our objective is to describe the low-pass spatial filtering 
effect imposed on traveltime measurements by finite frequency. 
We define the filter in terms of the power-spectral ratio of 
measured to initial phase perturbations. We explore the way 
in which the width of this filter varies with propagation 
distance and frequency. 

THEORY 

The equations of frequency-wavenumber migration or model- 
ling can be found in texts on reflection seismology (e.g. Yilmaz 
1987). We include a brief review for the sake of completeness. 
We start with the acoustic wave equation in two dimensions: 

where @ represents the acoustic pressure, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv is velocity, and 6 
is the time derivative of Q. Fourier transforming eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  in y 
and t (i.e. in the plane of the wavefront and in time, for a wave 
propagating along the x-axis) we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a24 
ax2 

~ + (w2/v2 - k2)& = 0 (3) 

Here, k and w are the transform variables for y and t ,  
respectively. 6(x, k,  t )  is the transform in y of @(x, y, t )  and 
@(x, y, o) is the transform in t of @(x, y ,  t ) .  Defining the Fourier 
transform with a positive, complex exponent, eq. (3) has the 
solution 

6 = &n exp(ixJ-) (4) 

for waves propagating forwards in the x direction. If we know 
the initial condition, 6,, we can compute the wavefield, 6, at 
any propagation distance, x = L. We assume that the initial 
condition takes the form 

( 5 )  

( 6 )  

an = @(x = 0, y, t )  = a ( y ) f ( t  - 6t(y))  * 
4, = f(o) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 (a( y )  e - imdt(y)), 

where Fy(g(y) )  is the transform in y of g(y). Here, f ( t )  is a 
wavelet, 6 t ( y )  a time perturbation, and a(y) an amplitude 
modulation to what initially was a homogeneous plane wave. 
The wavefield at x = L is 

&(x = L, k, w) = f(w)~(a(y)e-'"d'(y))exp(it,JigZ/U2-kZ). 

(7) 

The last exponential term is a propagator which includes both 
translation of the field and its evolution. We can remove the 
translation of the field by multiplying by exp(- iLw/v): 

&(x = L, k, w )  = f(w)eiLo'"F~(a(y)e-'Od'(y)) 

x exp [iL( Jw2/v2 - k2 - w/v)] . (8) 
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( 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv =0.1 HZ 

real(E) 

imadE) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 4 5 6 7 8 9  . . . . . . . . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 
Y 

Y 
3 

Y 3 

3 Y 

1 2 3 4 5 6 7 8 9  _ _ . . . . . . .  

(b) v 10.01 - 0.19 HZ 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. The real part, imaginary part, amplitude and phase of the evolutor (see eq. 10 in text) in the spatial domain. (a) The oscillations of this 
complex operator define the Fresnel zones for a monochromatic wave which gradually decay in amplitude and decrease in width. (b) When this 
operator is integrated over frequency, the side lobes, or the higher-order Fresnel zones, interfere destructively and amplitude decays quickly. If the 
frequency bandwidth is wide enough, one is effectively left with a single Fresnel zone. 

This is the equation we solve, ignoring the translation of the 
wavefield. First a wavelet is specified, i.e. the function f ( t )  is 
chosen. Then random time perturbations, 6 t (y ) ,  are specified 
on the wavefront at x = 0, and corresponding amplitude pertur- 
bations computed according to the thin-lens approximation 
(Haddon & Husebye 1978), which relates amplitude pertur- 
bations to time perturbations according to 

(9) 

where R is the distance beyond the lens. We take R to be 
100 km. The first two terms of eq. (8) can then be constructed 
by the Fourier transform. They are multiplied by the evolutor 
(propagation less translation), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I= exp[iL( Jm - o / v ) ] ,  (10) 

for some choice of L and the result is transformed back into 
the space and time domain. 

The evolutor remains unchanged provided 

L( J & F Z  - w/u) = c = constant. 

L( J- - i / n )  = - 114 =, 

( 1 1 )  

We take C =  -7~12. If we rescale the wavenumber by substi- 
tution, CT = 2 4 k ,  and write i = 2nv/w for one wavelength, then 

(12) 

1/21L- 1/16L2 = 1/o2. (13) 

0 2  = 2iL + n2/4, (14) 

If we assume L>> 1, then 

which defines the Fresnel zone as in eq. (1 ) .  The inverse 
transform in k of the above evolutor (eq. lo), i.e. €, describes 
the phase and amplitude modulation of contributions from 

the initial planar wavefront around P to the wavefield at R 
(Fig. 1 )  at a fixed frequency. If we assume that a(y) = 1 + 6a(y), 
where 6a << a and w6t << 1, then 

&(k, w) = j’(w)6(k) + f (w )da (k )d -  i o f ( o ) d t ( k ) / ,  (15) 

where 6(k) is the delta function, and, if (D retains the original 
waveform with weak perturbations in time, 67, and amplitude, 
&A, we can write 

dA(k) = 6a(k)IR,,  + wdt (k )&, ,  (164 

1 -  .. 
&(k) = 8 t (k ) IRe  - -6a(k)g1;,. 

0 

The Frbchet derivative of the observed time perturbation with 
respect to the initial time perturbation is thus the real part of 
the evolutor. Defining 

the initial time perturbation maps onto the observed time 
perturbation via a spatial convolution with @ for a given 
harmonic in the time function. If the time function has a finite 
bandwidth between w1 and w2, the spatial filter that acts on 
the initial time perturbation is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. Note that the assumptions 
leading to eqs (17) and (18) are quite restrictive in that they 
assume no waveform distortion and no build-up of coda. 

The oscillations of @ define the Fresnel zones for a mono- 
chromatic wave precisely (see Fig. 2a). For a finite-frequency 
bandwidth (Fig. 2b), the side lobes are attenuated and the first 
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Fresnel zone narrows. For a sufficiently wide frequency band 
we are left with a single Fresnel zone. 

It is tempting to continue this analysis and insert eq. (9) 
into eq. (16b). Bear in mind that the assumptions made prior 
to eq. (16) are restrictive; they will generally not hold in the 
Earth or in feasible numerical experiments except at very long 
periods. But, if we do, we obtain 

The quantity 

is the spatial transfer function for the traveltime perturbation. 
We plot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 in Fig. 3 for a monochromatic wave, for a wave of 
narrow bandwidth, and for a wave of wide bandwidth. The 
bandwidths are chosen to be roughly equivalent to the numeri- 
cal examples presented later. The transfer function for the 
narrow-band wave has a few significant side lobes, while for 
the broadband wave it has none. The first side lobe occurs at 
a wavenumber which is roughly double the width of the central 
peak in the transfer function. Contributions to time pertur- 
bations from initial perturbations of amplitude are small for 
the parameters used here (compare solid and dashed lines 
in Fig. 3). 

METHOD 

We start with a simple plane wave. Complexity is introduced 
to the plane wave by the thin-lens approximation as it passes 
through a hypothetical lens of heterogeneity. We then follow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 
k' 

wavenumber 

Figure 3. The theoretical transfer function for phase according to 
eq. (20). The centre period is the same in all cases. (a) monochromatic; 
(b) with spectral bandwidth equal to half the centre frequency; (c) with 
spectral bandwidth equal to one-and-a-half times the centre frequency. 
The dashed curve ignores the second term of eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(20), which is due to 
initial perturbations in amplitude. It is indistinguishable from the solid 
curve in (b) and (c). 

the evolution of the introduced complexity as the perturbed 
wavefield advances through a homogeneous medium using 
frequency-wavenumber modelling (see Fig. 4). In reality, the 
Earth does not offer this situation. In the Earth, heterogeneity 
persists throughout a finite volume, and complexity is continu- 
ally inserted into a wavefield that traverses it. At the same 
time, the previously introduced complexity continues to evolve. 
In order to estimate diffraction effects on traveltime measure- 
ments at a given, fixed propagation distance we idealize the 
situation in this manner. Having propagated the wavefield a 
given distance we measure the traveltime from densely spaced 
seismograms and compare the detailed spatial variation of the 
measured traveltime with the initial phase perturbations. Of 
course, if we measured the full wavefield we could migrate it 
back to the initial condition and thus recover all of its detail. 
However, in earthquake seismology we generally have sparse 
recordings of the wavefield and extract only a very simple 
measure from the seismogram, traveltime or some norm of a 
misfit of a waveform to a synthetic waveform. Such sparse and 
simple measures do not allow us to recover all the detail of 
the initial condition. 

Calculations were done with 8192 time steps and a time 
resolution of 0.02 s. The wavefront was sampled 512 times at 
a space of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 km. The propagation velocity was 10 km s-'. The 
initial wavelet was chosen as a Gaussian, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (  t )  = exp(- t 2 ) ,  and 
shifted 50 s into the 164-s long time window. It has significant 
energy for frequencies up to l /n  Hz. The phase perturbation, 
at, is randomly generated with a Gaussian power spectrum of 
variable width of the order of tens of kilometres. At least 10 
spatial samples fall within one correlation length of the time 
perturbation and a wavelength is comparable in size or larger. 
The time perturbation is given a root-mean-square (rms) value 
of 1/2s. This choice of parameters ensures that time can be 
measured accurately enough and with sufficient spatial and 
spectral resolution. 

Fig. 4 shows an example where an initial condition has been 
propagated to progressively greater distances. Each frame 
shows a record section with time progressing downwards and 
distance along the wavefront going across the sheet. 
Alternatively, we can regard each frame as representing a 
snapshot of a wavefield propagating up the page. The dark, 
large-amplitude portion of the field is the wavefront. Initially 
it contains considerable complexity. As the wave propagates 
further the wavefront becomes smoother, the initial pulse 
becomes broader, the diffraction hyperbolae become wider, 
and the coda tail extends further behind the wavefront. At 
each propagation distance we can measure the arrival time 
from each spatial sample of the wavefield, i.e. the 512 seismo- 
grams. Thus, we sample an empirical function St(y) discretely. 
The power spectrum of this function, Par = I&(k)l' provides 
information on the smoothness of the function, and the ratio 
of the power, Pdr, to the power of the initial condition, Pst = 

l~%(k)1~, describes what effect propagation has had on the 
observed traveltime variations. We propagate a number of 
independently generated initial conditions to a set of fixed 
distances, measure time, 67, and construct the power-spectral 
ratio, S(k)  = PdJPst .  The ensemble average of 10-20 randomly 
realized spectral ratios then defines an empirical measure of 
the spatial filtering effect of propagation. 

Frequency is also expected to affect the degree of smoothing. 
In order to measure the effect of frequency we defined five 
narrow frequency bands within the bandwidth of the initial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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308 0. Gudmundsson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe evolution of complexity in a propagating plane wave. Each frame represents a record section. Time progresses downwards, distance 
along the wavefront goes across the page. The length of the time window is 20.48 s. The length of the section is 2560 km. Propagation distance 
progresses from L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 to 10 000 km. 

time function, f (  t) .  Since the observed field is linear in f (  t )  
we convolve the propagated field with a filter corresponding 
to each frequency band. Traveltime is measured and an ensem- 
ble average of a power-spectral ratio is constructed as before, 

for a fixed propagation distance, chosen as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL = 1000 km. The 
filters are Gaussian in shape, and either zero-phase (acausal) 
or minimum-phase (causal). 

A number of techniques are used in seismology to measure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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traveltime. Sometimes traveltime is measured by correlating 
an observed waveform and a synthetic waveform (e.g. Su zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Dziewonski 1992). The peak of that correlation defines the 
traveltime. Time is often measured off a graph by visual 
inspection. This involves visual pattern recognition based on 
experience, and incorporates changes in amplitude and fre- 
quency on a trace. This process cannot be defined analytically. 
We try as our measures of traveltime a range of methods: ( 1 )  

automated picking where the amplitude has reached 118 of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
peak amplitude; (2) automated picking at the first amplitude 
maximum; (3) picking by correlation over a time window 
which spans 3, 5, 7 periods, or the whole trace. 

RESULTS 

Our objective is to describe empirically the low-pass spatial 
filtering effect imposed on traveltime measurements, which we 
define in terms of the power-spectral ratio of measured to 
initial time perturbations. We seek to explore the way in which 
the width of this filter varies with propagation distance and 
frequency, and to calibrate it in absolute terms. We turn our 
focus first to the effect of propagation distance. Fig. 5 shows 
the ensemble-average of spectral ratios for seven propagation 
distances spanning three orders of magnitude. In this instance, 
the broad-band wavelet, f ( t )  = exp(- t’), was used unfiltered 
and the measurement was done by automated picking where 
1/8th of the peak amplitude was reached. The symbols rep- 
resent the empirically determined spectra (by the procedures 
described earlier) and are defined in the legend. The curves 

represent parametric fits to the empirical spectra given two 
degrees of freedom. 

1 

1 + (kxJ2n)” ’ S(k) = (21) 

where k is the wavenumber, x, is a free parameter which 
describes the width of each curve, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is a free parameter 
which describes the rate of decay of each curve. We have no 
theoretical justification for this particular choice of curve; 
however, this analytical form fits the data well. The spectra in 
Fig. 5 are simple, have no side lobes, and are similar in shape 
to those in Fig. 3(c). The spectral ratios narrow regularly as 
propagation distance increases. This is expected (the Fresnel 
zone widens with increasing distance). The critical scale, x,,  is 
defined by x,  = 2n/k,, where k, is the wavenumber where each 
curve has decayed to a value of l j2 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, is a measure of the 
width of the spectral peak. Note that the level of the spectral 
ratio tends stably to unity at small wavenumbers. This means 
that no amplification or attenuation of large-scale features 
occurs during propagation. The experiment was repeated using 
different measures of traveltime. Both cross-correlation of 
waveforms and picking at maximum amplitude were con- 
sidered and yielded indistinguishable spectral shapes. We 
expect the average time of the measured wavefront & to 
become slightly negative as propagation distance increases. 
Advanced portions of the wavefront spread and mask the 
delayed parts. We do observe this effect (see Table l), but do 
not focus on it further. The parametric fits of Fig. 5 and the 
average time of the front, 6z, are listed in Table 1. The exponent, 

wave length (km) 

1000 300 100 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I 

1 .oo 0 10,oookm 

A 1,oookm 

0 1ookm 
30km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 1okm 

A 3,000 km 

NOkm 
0.80 

0.60 

0.40 

0.20 

0.00 
0.00 0.02 0.04 0.06 0.08 0.10 

wavenumber (l/km) 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Power-spectral ratios of traveltime measurements and the initial traveltime perturbation for varied propagation distance. Measurements 
were made by picking from broad-band seismograms. This ratio is indictive of the width of the spatial filtering imposed by propagation effects. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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310 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGudmundsson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 1.  Results of parametric fits to data in 
Fig. 4. 

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(km) 

10 
30 

100 

300 

1 ,000 
3,000 

10,000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
XC n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(W (seconds) 

63.8 4.0 -0.003 

91.7 4.6 -0.008 

130.5 4.8 -0.02 1 
199.1 4.3 -0.047 

332.5 4.9 -0.083 

575.4 4.3 -0.111 

1029.9 4.0 -0.131 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n, varies little with propagation distance. Its average value is 
4.4. Thus the shape of the filter is approximately described by 
a second-order Butterworth function. The average time shift, 
6z, also increases regularly with increasing distance, L. This 
increase is much slower than linear in L. Consequently, the 
deviation of apparent velocity from true velocity tends to zero 
with increasing distance. This means that the velocity shift 
caused by diffraction, which is associated with wavefront 
healing, does not affect the asymptotic level of the apparent 
velocity shift due to ray-bending effects, which was described 
by Roth et al. (1993). The quantity in Table 1 that is of most 
interest is the critical scale, x, .  It increases regularly with 
distance and is determined with an uncertainty of the order of 
5 per cent based on the least-squares misfit. This relationship 
is plotted in Fig. 6(a). It is fit by the Fresnel-zone formula in 
eq. (1) with the wavelength chosen as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,I = 80 km, which corre- 
sponds to a period of T = 8 s. It is clear that the functional 
behaviour of x , ( L )  is matched by the Fresnel-zone formula. 
However, the choice of reference frequency or period is some- 
what arbitrary for this broad-band wavelet. 

The frequency bands used to map the frequency dependence 
of x,  are centred on periods of T, = 3.40, 5.24, 8.67, 15.71 and 
26.18 s. Their spectra are Gaussian. The bandwidth is pro- 
portional to the centre frequency, and the filters overlap at the 
point where the amplitude spectra take a value of l/e. The 
phase spectra of the filters were not found to affect relative 
time measurements. Occasional problems with cycle skipping 
were encountered in the highest frequency bands, where the 
period is comparable to the maximum time perturbation. The 
length of the time window over which correlation was com- 
puted had no effect. Correlations with the unperturbed time 
function convolved with the same filter as the propagated 
wavefield, and computed over time windows of length 3T,, 
5T , ,  7T,, or the whole trace, all peak at essentially the same 
time. However, we found a difference between traveltime 
measurements made by onset picking and by waveform corre- 
lation. The spectral ratios for the five frequency bands and 
automated picking are shown in Fig. 7. The equivalent results 
of correlation measurements of traveltime are also shown in 
Fig. 7. In both cases, stable estimates of the spectral ratio are 
achieved which tend to unity at small wavenumbers. The width 
of the spectral peak at low wavenumbers decreases regularly 
with increasing period. Here we observe a clear side lobe to 
the spectral peak at low wavenumbers. The centre wavenumber 
of this secondary spectral peak scales roughly with the width 
of the primary spectral peak. In this case, we fit a function of 

- 

1 

propagation distance (km) 

10000 

g 1000 
W 

M 
9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
td 
5: 

2 100 
M 
td 

c1 -1 
& 
V 

10 

o measured by correlation I 

100 1000 

wavelength (km) 

Figure 6. The empirically determined dependence of the scale of 
smoothing on propagation distance and wavelength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A). The curves 
correspond to Fresnel formulas such as eq. (1) .  

the form 

where k is the wavenumber as before, but there are now six 
free parameters, i.e. the scales x ,  and xb, the exponents n, rn 
and 1, and the amplitude of the secondary peak, A. Again we 
have no justification for this analytical form other than that 
data are reasonably well fit. Consequently, we cannot attach 
any significance to the above parameters other than the two 
scales. The results of the parameter fit are presented in Table 2.  

The exponents, n, rn, and 1, are now less uniform than before 
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Diflraction and traveltime measuremends zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) 

& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

Tc XC n A xb m 1 

(set) (km) (W 

3.4 239 13.5 3.0 170 6.6 12.7 

5.2 301 8.7 2.5 215 6.3 20.0 

8.7 412 7.7 1.9 279 7.0 18.0 
15.7 554 7.8 1.4 388 6.9 15.1 

26.2 723 4.3 0.9 520 4.1 14.9 

8.7 635 348 4.1 16.5 

15.7 837 4.3 1.6 468 4.0 12.9 

26.2 1024 4.0 1.3 618 3.7 15.9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1996 RAS, G J I  124, 304-314 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFig. 4, except here measurements were done at a fixed propagation distance of 1000 km but from narrow-band filtered seismograms 
of varied frequency, by onset picking (solid circles), and by waveform correlation (open circles). 
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312 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. Gudmundsson 

because they are not determined as well since more degrees of 
freedom are allowed in the fit. The scales, x, and x,,, increase 
regularly with increasing period. They are determined with an 
uncertainty of the order of 5 per cent on the least squares 
misfit of the curve fitting. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, in eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(22) corresponds to x, in 
eq. (21), and represents a scale which is the inverse width of 
the primary spectral peak at low wavenumbers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxb does not 
represent the position of the secondary peak. From the data 
in Fig. 7 for picked times we find that the secondary spectral 
peak occurs near zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2k,(k, = 27c/x,). From the data in Fig. 7 
for correlation measurements we find that the secondary peak 
occurs at about k = 1.5kC. Again, however, the parameter of 
most importance to us is xc, together with its relation to 
frequency or period. This relationship is plotted in Fig. 6( b) 
for both picked and correlated time measurements. For refer- 
ence we show two Fresnel-zone formulas, one defined by a 
time delay of a quarter period (solid), and another defined by 
a time delay of half a period (broken). The reference period is 
chosen as the centre period, T,, of each narrow-band filter. It 
is clear that the frequency dependence of the critical scale is 
well fit by a Fresnel-zone formula. It is also clear that the 
Fresnel zone for correlated traveltimes is wider than the Fresnel 
zone for picked traveltimes. The Fresnel zone for the former 
is calibrated as the Fresnel zone of diffraction optics, according 
to a time delay of half a period. For the latter the Fresnel zone 
is calibrated as defined by a time delay of a quarter of 
one period. 

DISCUSSION 

Some of the features of Figs 5-7 deserve further discussion. 
We concentrate first on the simple form of the spectral ratios 
in Fig. 5. Here the wavelet is broad band (v < 1/n) and the 
spectral ratios have no side lobes. We suggest that this may 
be explained by the simple effect demonstrated in Figs 2 and 
3. Because of the broad-band nature of the waveform, the 
higher-order Fresnel zones interfere destructively and we are 
left with only one Fresnel zone. The spectral ratios look very 
similar to the transfer function in Fig. 3(c). In Fig. 7 we observe 
clear side lobes in the spectra. Here, the relevant comparison 
is to Fig. 3(b), which has a few significant side lobes present. 
The relative position of the side lobes in Fig. 7 to the width of 
the central peak matches roughly the structure of the transfer 
function in Fig. 3 (it occurs at about k = 2k,). 

We have looked in further detail at contributions to meas- 
ured traveltimes from the secondary spectral peak. We filtered 
both the initial time perturbation and the measured time delay 
spatially, by filters corresponding to the spectral shapes under 
each of the primary and secondary spectral peaks. We found 
that the contributions from the primary spectral peak correlate 
at a level of 0.9 to 0.95. We can therefore claim that that 
component of spatial variability in the time measurements is 
a local average af the initial time perturbation. On the other 
hand, contributions from the secondary spectral peak have a 
correlation coefficient of 0.0 to -0.2. This component of the 
spatial variability of the time measurement therefore represents 
noise. It is not a local average of the initial time perturbation 
as one would expect if the arguments leading to eq. (20) were 
valid. It is evident from Fig. 8 that small-scale features of the 
time measurement (trace labelled ‘measured’) do not correlate 
with the small-scale features of the initial time perturbation 
(trace labelled ‘initial’). This noise is present in both picked 

times and times measured by correlation. We therefore suggest 
that it has to do with the structure of the wavefield adjacent 
to the wavefront. It is a non-linear effect, not described by the 
linearized eq. (20). We suggest that it is related to the complex 
interference patterns that occur in part in front of the main 
arrival where it is delayed. 

The difference in the Fresnel-zone scaling between picked 
traveltimes and traveltimes measured by correlation is in- 
triguing. It is clear that the former measurement concentrates 
on the onset of the waveform, while the latter incorporates the 
whole of the waveform. We can therefore argue that the latter 
includes effects that are further delayed in time behind the 
initial wavefront, such as diffraction hyperbolae due to features 
in the initial wavefront farther afield from the direct path. 
Thus we argue that we can explain qualitatively why picked 
traveltimes offer better spatial resolution than traveltimes 
measured by correlation, while we cannot quantitatively 
explain the differences we observe in Fig. 6(b). 

Neither the component of small-scale noise nor the depen- 
dence of the effective Fresnel-zone width on the type of measure 
of time are predicted by linearized theory, which does not 
incorporate the type of measure explicitly. We must thus ask 
if the non-linear effects present in the simulations are realistic. 
We take an example from teleseismic body waves. If the lower 
mantle contains velocity heterogeneity of the order of a fraction 
of a per cent on a scale of 1000 km, as Gudmundsson, Davies 
& Clayton (1990) suggest, then we expect time fluctuations 
originating in the lower mantle of the order of 0.1 s (rms). 
With recording at frequencies lower than 1 Hz, the condition 
oat<< 1 is not met like in the experiments presented here. We 
therefore argue that the design of the experiments is relevant 
to real problems. 

It is sometimes argued that if diffraction or scattering effects 
are significant in a wavefield then they can be recognized in 
the waveform of a single observation. The recognizable aspects 
of the waveform would be pulse broadening and an emergent 
onset of the waveform. We argue on the basis of the numerical 
experiments presented here that in a ringing, narrow-band 
seismogram this is not the case. Waveform distortion may be 
minor and undetectable in a single seismogram, while diffrac- 
tion effects on timing are significant. Fig. 8 shows an example 
of how waveforms are distorted due to interference of diffrac- 
tion effects. The top trace shows an unperturbed waveform, 
narrow-band filtered. The section below shows perturbed 
waveforms convolved with the same filter. Every fifth calculated 
trace is displayed. Individual seismograms do not differ much 
from the top trace, although we can recognize distortion in 
the section. Much healing has already taken place 
(L  = 1000 km). Note the small-scale features of the measured 
traveltimes which do not correlate with small-scale features of 
the initial condition. Despite a measurement of traveltime from 
noise-free seismograms, here by a correlation technique, con- 
siderable uncertainty is injected into the time measurement. 

CONCLUSIONS 

Seismic tomography uses time information contained in seis- 
mograms in order to map the internal structure of the Earth 
in terms of variable wave speed. When body waves are used, 
the data are traveltimes. When surface waves are used, the 
data are dispersion curves, or phase velocity as a function of 
frequency. In both cases a common assumption is that of ray zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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DifSraction and traveltime measurements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A/  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbroad band, peak period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.4 s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 \7 

shows an unperturbed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. Every fifth calculated 

Figure 8. 
waveform: 

Waveform distortion due to interference of diffraction effects or scattering. The top trace in each of three cases 
, narrow-band filtered. The section below shows oerturbed propagated waveforms convolved with the same filter 

trace is displayed. 

theory. Body-wave energy is assumed to travel along infini- 
tesimally thin rays. Surface waves are assumed to travel along 
great-circle paths. When the resolution of seismic tomography 
is appraised, the same assumptions are made. The resolution 
estimate is based on the ray approximation and incorporates 
only the density of paths as described by rays. However, in 
practice all observed waves sense a finite volume of the 
medium. Wavefront healing imposes a low-pass spatial filter 
on the resolution of phase measurements. The shape of this 
filter is empirically described by a second-order Butterworth 
function and therefore has a sharp cut-off in wavenumber or 
scale. The variation of the width of the spatial filter with 
propagation distance and frequency is described by the Fresnel 
zone. Note that these numerical results apply to a regime where 
the initial time perturbation cannot be written as a linearized 

perturbation term, a case often encountered in seismology. For 
traveltimes measured by onset picking, the Fresnel zone is 
defined by a time delay of 16tJ < T/4 (here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT is one period). 
The width of the Fresnel zone for traveltimes measured by 
correlation is wider, defined by a time delay of l6tl < T/2. For 
narrow-band waveforms, measured time includes small-scale 
contributions that are not local averages of the initial time 
perturbation and thus represent noise. 
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