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ABSTRACT: A comparative study of geometrical parameters is performed on
the complexes HF–HF, H2O–H2O, and HF–H2O using 12 different basis sets at
the RHF, MP2, and DFT (BLYP and B3LYP) levels of theory. The equilibrium
geometries were obtained from uncorrected, a posteriori (counterpoise, CP) and
a priori (Chemical Hamiltonian Approach, CHA) BSSE-corrected potential energy
surfaces. The calculation of equilibrium geometries using the CP and CHA
schemes is described in details. The effect of the BSSE on various intermolecular
parameters is discussed and the performance of the applied theoretical models is
critically evaluated from the BSSE point of view. c© 2001 John Wiley &
Sons, Inc. J Comput Chem 22: 765–786, 2001
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Introduction

C alculations of the structure of molecular com-
plexes are a challenge for a computational

chemist. Beside the usual questions of quantum
chemistry (e.g., which basis set to be used at which
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level of theory), one has to face the problem of
the Basis Set Superposition Error (BSSE). The BSSE
is a mathematical artifact, and is due to the fact
that practical quantum chemical calculations are re-
stricted to the use of finite basis sets. In such a
situation, the whole basis set corresponding to the
supermolecule is used to describe “internal” prop-
erties of the monomers. Because the BSSE is strongly
geometry dependent, the corresponding potential
energy surfaces can substantially differ from the
BSSE-free ones.
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The usual way to correct for BSSE is based on
the a posteriori Boys–Bernardi1 (counterpoise, CP)
scheme. Using the CP scheme one has to recalculate
the monomers in the basis of the whole super-
molecule for every geometrical arrangement. For
example, in the case of two interacting monomers,
the uncorrected interaction energy (1E) can be cal-
culated as

1E = EAB(AB)− EA(A)− EB(B), (1)

where EAB(AB) is the total energy of the com-
plex, and EA(A) and EB(B) are the energies of the
monomers calculated in the respective monomer ba-
sis sets. (In the following we will use subscripts to
denote the molecular species in energy formulas,
the patterns in parentheses refer to which basis was
used in the calculation. For example, EA(A) is the
energy of monomer A calculated by using its own
basis set only.) The CP-corrected interaction energy
can be defined as

1ECP = EAB(AB)− EA(AB)− EB(AB), (2)

where EA(AB) and EB(AB) are the energies of the
monomers calculated in the whole supermolecule
basis. Using eqs. (1) and (2), one can define the BSSE
content of the interaction energy as

δBSSE = 1E−1ECP

= EA(AB)− EA(A)+ EB(AB)− EB(B). (3)

Using eq. (3) one can define the CP corrected po-
tential energy surface (PES) of a dimer as

ECP = EAB(AB)− δBSSE

= EAB(AB)+ EA(A)− EA(AB)
+ EB(B)− EB(AB). (4)

Note that, whereas the definition of the CP-
corrected interaction energy involve only the so-
called dimer-centered basis set (DCBS), to obtain the
respective CP-corrected supermolecule description,
terms involving both the monomer-centered basis
set (MCBS) and DCBS are necessary. This is due to
the fact that, when the goal is to obtain a correct
description of the supermolecule, their fragments
can not be frozen at their isolated geometries. Thus,
according to eq. (4), one has to calculate five differ-
ent total energies2 at every geometrical arrangement
of the system to determine a CP-corrected PES. Of
course, eq. (4) can be generalized to the case of an
arbitrary number of subsystems, but the number of
energy calculations necessary to determine the PES
increases with the number of monomers in an enor-
mous manner.3 As Simon, Duran, and Dannenberg4

have showed recently, various derivatives of eq. (4)

can easily be calculated. For example, the gradient
on the CP-corrected surface can be calculated as

∂ECP

∂x
= ∂EAB(AB)

∂x
+ ∂EA(A)

∂x
− ∂EA(AB)

∂x

+ ∂EB(B)
∂x

− ∂EB(AB)
∂x

, (5)

where x is a geometry parameter. Simon, Duran,
and Dannenberg4 have implemented UNIX scripts
and small FORTRAN programs to organize the cal-
culation of such derivatives (gradients, Hessians).
Using their program system they were able to de-
termine CP-corrected structures of small hydrogen-
bonded complexes and to evaluate the effect of the
BSSE on various inter- and intramolecular prop-
erties like geometries, vibrational frequencies, and
X–H frequency shifts.

A conceptually different way to handle BSSE
is to apply the “Chemical Hamiltonian Approach”
(CHA)5 for the case of intermolecular complexes.
(For an excellent recent review on CHA, see ref. 6.)
CHA eliminates the nonphysical terms of the
Hamiltonian that are due to BSSE. By using the a pri-
ori CHA method one can predict various BSSE-free
quantities like one-electron properties derived from
BSSE-free wave functions, geometries, etc. There-
fore, the main difference between the CHA and
the CP approaches is that while CP is a correction
method to the energy and its derivatives, CHA is
a BSSE-free model of the supermolecule. Because a
recent review6 on CHA is available, here we discuss
only those aspects of CHA that are important from
the CHA PES point of view. In the CHA framework,
the Hamiltonian (Ĥ) can be decomposed by means
of a mixed fomulation of the second quantization
for nonorthogonal orbitals as

Ĥ = ĤPhys + ĤBSSE, (6)

where ĤPhys and ĤBSSE refer to the physical and
BSSE terms of the Hamiltonian, respectively. The
ĤPhys contains the pure intermolecular interaction
terms as well as the sum of the effective monomer
Hamiltonians.6 The BSSE-type terms collected in
ĤBSSE arise from the difference between the conven-
tional and effective monomer Hamiltonians.

At various levels of CHA, ĤPhys is used to define
theoretical models in conjunction with the applied
wave function. For example, one can derive SCF-
type CHA equations based on ĤPhys and an one-
determinantal wave function.

One of the typical aspects of CHA is that
the total energy is calculated as an expectation
value of the full Hamiltonian over the CHA wave
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function6 (9CHA):

ECHA = 〈9
CHA|Ĥ|9CHA〉
〈9CHA|9CHA〉 . (7)

Equation (7) defines the BSSE-free CHA potential
energy surface for the supermolecule. One of the
advantages of CHA over the CP scheme is that
in the former case the BSSE-free PES can be de-
termined by a single energy calculation for every
geometrical arrangement of the system. However,
derivatives of eq. (7) involve the solution of the
CHA version7 of the coupled-perturbed Hartree–
Fock (CPHF) equations.8 One has to determine the
gradient of the SCF coefficients (Ci) with respect
to the geometry parameters (x). Once the partial
derivatives ∂Ci/∂x are known, calculation of the
CHA–SCF gradient is straightforward.9 However,
the calculation of the derivatives of the SCF para-
meters is a rather time-consuming procedure. First,
the CHA CPHF equations have to be solved for
all the geometrical parameters. Second, the solu-
tion of the CHA CPHF equations does involve a
full SCF-type procedure making the practical cal-
culation of the CHA gradient insufficient from the
computational point of view. Because the CHA
models are not based on variational methods, it is
obvious to apply techniques that make the calcula-
tion of gradients of nonvariational correlation meth-
ods (Mpn, Coupled Cluster) efficient. These tech-
niques are based on the so-called Z-vector method10

or algorithms that use fully variational correlation
functionals instead of the traditional nonvariational
ones.11 The application of such techniques is pos-
sible in the CHA framework, but the CHA–SCF
gradient formulas based on the Z-vector or on fully
variational methods are still too complicate for prac-
tical computations at the SCF level of theory.9 One
has to mention that this fact does not hold for the
recently developed CHA–MP2 method.12 Here, the
cost of the gradient calculation seems to be compa-
rable to that of the energy determination. The work
on developing gradient techniques at various CHA
levels is in progress in our laboratory.

In this study, we have used the so-called CHA/F
version of the Chemical Hamiltonian Approach.
Within this formulation the correction of BSSE is
performed to the Fockian matrix, instead to the
Hamiltonian, which allows to apply in a straightfor-
ward way the CHA at the Density Functional (DFT)
level of theory.

Beside the special BSSE problems in the inter-
molecular framework, there are some other ques-
tions to be addressed. The final goal is to set up
models (computational strategies) that can predict

various parameters that are close to the experimen-
tal values when the later is available. One way to
achieve this task is to calculate intermolecular com-
plexes in a very accurate manner. This involves
the use of correlation methods (MPn, CC) in con-
junction with large basis sets. Because it is nearly
impossible to reach the basis set limit in these calcu-
lations, the determination of various properties on
the BSSE-corrected PES seems to be mandatory. Fur-
thermore, to calculate accurate energy differences
correction for zero-point energy (ZPE) is rather im-
portant. Calculation of thermal energy corrections
is also based on frequency calculations. To achieve
accurate thermochemical data the frequency calcu-
lations should be corrected for anharmonicity. From
the previous list of problems to be solved it is clear
that this way of hunting for chemical accuracy in
the intermolecular framework is not a trivial task.
Another possibility to obtain reasonable results is
to apply a model (strategy) that is simpler than
the one described above but its accuracy is still
close to that required in chemical applications. Of
course, this situation can occur only if the errors
arising from the neglected features of the sophisti-
cated approach mentioned above cancel each other.
A very promising theoretical model from this point
of view is the MP2/6-31+G(d,p) method widely
used by Del Bene and coworkers.13 These authors
calculated various properties (geometry, interac-
tion energy, frequencies, and X–H frequency shifts)
of intermolecular complexes ranging from hydro-
gen bonded to Van der Waals systems, and found
that the MP2/6-31+G(d,p) results are quite rea-
sonable. Good agreement with experimental results
was achieved despite the fact that only a moderate
basis set was used in the calculations, the corre-
lation expansion was truncated at the MP2 level,
the geometries were obtained from a PES contain-
ing BSSE, and anharmonicity was not considered
in the frequency calculations. In our opinion, the
MP2/6-31+G(d,p) theoretical model is a fortunate
choice for such calculations, because the various er-
rors present in the model reasonably cancel each
other. Of course, application of such an error bal-
anced method is not the safest choice, but the range
of molecular systems that can be reached in this
way is wider than that of the error-free approach
described above.

In the present article we address the problems
of intermolecular structure determination described
above. One of the most important questions is how
the BSSE distort the calculated PES and how the
a posteriori and a priori BSSE correction schemes
perform compared to each other. To evaluate these
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problems we carried out gradient optimizations for
the HF–HF, H2O–H2O, and H2O–HF complexes at
the SCF, DFT, and MP2 levels of theory in con-
junction with 12 different basis sets of increasing
size. Analogous calculations were performed us-
ing both the counterpoise (CP–SCF, CP–DFT and
CP–MP2) and the CHA (CHA/F–SCF and CHA/F–
DFT) BSSE correction schemes. Geometry parame-
ters and interaction energies were determined for
the by using all the possible theoretical models that
can be derived from the sets of methods and basis
functions listed above. We chose these complexes
because accurate experimental results are available
and it is well known that DFT methods predict
quite reasonable results for these particular cases.14

From the analysis of the data calculated as described
above we expect that some of the questions listed in
the first part of this chapter can be answered.

Computational Details

All the ab initio calculations were carried out
using the Gaussian-9218 and Gaussian-9419 pro-
gram systems. For the CHA/F computations we
used our modified version of Gaussian-92.20 For
the CHA/F geometry optimizations the gradients
were determined by the finite difference method.
For the CP geometry optimizations we used the
program system described in ref. 4 with some
small modifications in both the scripts and various
Gaussian links. For the calculations Pople’s 6-31G,
6-31G(d), 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p),
6-311++G(d,p), 6-311++G(2df,2p), and 6-311++
G(3df,2pd) and Dunning’s TZV(d,p), TZV(d,p)++,
aug-cc-pVDZ, and aug-cc-pVTZ basis sets were
used. In the DFT calculations the BLYP (Becke
exchange21 and Lee, Yang, Parr correlation22) and
B3LYP (Becke’s three parameter exchange23 and
Lee, Yang, Parr correlation22) potentials were ap-
plied.

Results

HF DIMER

The HF dimer has a linear structure that is
known from both experiment24, 28 and high-level
calculations.25, 26 However, it is also well known13, 27

that DFT methods in conjunction with small basis
sets tend to predict the cyclic structure to be the only
stable one on the PES. In the following, both these
pathological and the linear cases will be examined

from the point of view of BSSE. Tables I and II sum-
marize selected geometrical parameters of the HF
dimer (Fig. 1) calculated at the uncorrected and cor-
rected SCF, BLYP, B3LYP, and MP2 levels of theory
using the Pople and the TZP∗∗ and TZP++∗∗ ba-
sis sets. The corresponding interaction energies are
shown graphically in Figure 2. The dependence of
the distance between the fluorine atoms on the ap-
plied theoretical model is also shown graphically in
Figure 3.

Concerning the effect of the BSSE on the ener-
getics and geometry of the HF dimer, the following
conclusions can be drawn. In all cases part of the
binding is due to the BSSE, the uncorrected inter-
action energies are always larger than the corrected
ones. The corrected intermolecular distances (rff ,
the distance between the fluorine atoms) are al-
ways longer than the corresponding uncorrected
values. This finding is in line with literature data.4, 6

The difference between the uncorrected and cor-
rected rff distances is rather large in the case of
small basis sets but gets smaller by using larger ba-
sis sets. Analyzing the data presented in Tables I
and II it can be seen that even in the case of the
6-311++G(3df,2pd) basis set the corrected and un-
corrected rff distances differ from each other by
0.015–0.025, 0.005–0.015, and 0.044–0.055 Å at the
SCF, DFT, and MP2 levels, respectively. Except for
a few cases when the optimization leads to dis-
torted structures, the uncorrected SCF rff distances
are longer than the corresponding experimental24

value of 2.72 Å. Correction for BSSE even lengthens
these distances; the corrected parameters are farther
from the experimental value than the uncorrected
ones. Disregarding the pathological cases discussed
below in detail, DFT methods predict reasonable
rff distances especially in the case of the B3LYP
fuctional. The BSSE has an enormous effect on the
rff distances determined from MP2 calculations.
The uncorrected rff values are close to the exper-
imental data. The CP corrected MP2 rff distances
are always larger than the experimental value; the
difference between the corrected and uncorrected
MP2/6-311++G(3df,2pd) distances is still 0.044 Å.
These results show that BSSE effects are significant
in the MP2 calculations even using the largest Pople
basis sets.

Furthermore, the BSSE can have smaller or larger
effect on the intermolecular bond angles. This effect
is quite large using the SCF method in conjunction
with small basis sets, and results highly distorted
uncorrected structures. In these cases correction for
the BSSE leads to reasonable geometrical parame-
ters. By the appearance of diffuse functions the
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TABLE I.
Geometrical Parameters for the HF–HF Dimer Calculated in 10 Different Basis Sets as the SCF, CHA/F-SCF,
CP-SCF, MP2, and CP-MP2 Levels of Theory.

Basis Set Method rff (≈) α β Method rff (≈) α β

6-31G SCF 2.706 8.3 126.0 MP2 2.719 12.5 109.0
(22) CHA/F-SCF 2.713 5.1 135.6 CP-MP2 2.789 4.5 133.8

CP-SCF 2.741 3.7 143.1

6-31G∗ SCF 2.709 17.1 96.6 MP2 2.535 45.3 51.8
(34) CHA/F-SCF 2.756 7.6 114.8 CP-MP2 2.790 6.5 113.7

CP-SCF 2.798 6.9 117.7

6-31G∗∗ SCF 2.725 14.4 101.7 MP2 2.541 47.8 48.9
(40) CHA/F-SCF 2.760 8.3 116.7 CP-MP2 2.799 6.6 115.2

CP-SCF 2.811 6.7 120.1

6-31++G∗∗ SCF 2.812 8.0 120.0 MP2 2.776 7.6 115.3
(50) CHA/F-SCF 2.831 7.4 120.8 CP-MP2 2.836 7.7 114.9

CP-SCF 2.842 7.5 120.8

6-311G∗∗ SCF 2.773 11.6 112.6 MP2 2.710 17.8 94.7
(50) CHA/F-SCF 2.822 7.7 122.8 CP-MP2 2.850 6.0 121.9

CP-SCF 2.850 6.3 126.3

6-311++G∗∗ SCF 2.825 6.4 126.7 MP2 2.791 6.6 120.9
(60) CHA/F-SCF 2.868 6.8 126.3 CP-MP2 2.880 7.3 120.6

CP-SCF 2.871 7.0 126.4

TZV∗∗ SCF 2.796 5.9 128.1 MP2 2.756 5.6 122.8
(52) CHA/F-SCF 2.824 5.7 129.4 CP-MP2 2.842 5.5 124.9

CP-SCF 2.827 5.7 129.9

TZV++∗∗ SCF 2.809 5.9 129.5 MP2 2.782 5.6 125.1
(62) CHA/F-SCF 2.829 6.6 127.9 CP-MP2 2.851 7.4 121.8

CP-SCF 2.833 6.8 128.0

6-311++G(2df,2p) SCF 2.837 7.6 120.4 MP2 2.762 7.7 111.0
(98) CHA/F-SCF 2.851 7.9 120.5 CP-MP2 2.817 7.7 113.5

CP-SCF 2.860 7.8 120.8

6-311++G(3df,2pd) SCF 2.821 7.0 118.7 MP2 2.749 6.5 112.2
(122) CHA/F-SCF 2.840 7.2 119.9 CP-MP2 2.793 7.1 112.2

CP-SCF 2.846 7.1 119.9

The number of basis functions is given in parentheses. The experimental24 values of rff(re), α, and β are ≈2.72, 10±6◦ , and 117±6◦ ,
respectively. For notation, see Figure 1.

corrected and uncorrected bond angles get very
close to each other. In the case of the correlation
methods, the differences between the corrected and
uncorrected bond angles are larger than the corre-
sponding SCF values even if we do not consider
the totally pathological cases that will be discussed
later in detail. In the case of the largest Pople basis
sets the corrected bond angles can still differ from
the uncorrected ones by a few degrees. It is to be
noted in this respect that one cannot find any ten-
dency even in the case of the CP or CHA surfaces
regarding the anisotropy of the PES. Basis set ef-
fects are rather important as well; however, it is not
easy to justify which theoretical model is preferable

in this respect because of the large uncertainties of
the experimental results. Because the intramolecu-
lar parameters (F–H distances) are not affected by
the BSSE, their actual values are not reported so as
to save space.

Comparing the behavior of the a priori and a pos-
teriori correction schemes, one can find larger differ-
ences when small or moderate basis sets are used in
the computations. By comparing CP and CHA re-
sults one can explore the adequacy of the basis sets
in a given computational situation.

Except for a few cases when the CP and CHA
values are very close to each other, the CP intermole-
cular distances (rff ) are longer than the correspond-
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TABLE II.
Geometrical Parameters for the HF–HF Dimer Calculated in 10 Different Basis Sets as the BLYP, CHA/F-BLYP,
CP-BLYP, B3LYP, CHA/F-B3LYP, and CP-B3LYP Levels of Theory.

Basis Set Method rff (≈) α β Method rff (≈) α β

6-31G BLYP 2.480 46.7 47.2 B3LYP 2.478 48.5 49.8
(22) CHA/F-BLYP 2.662 5.6 114.9 CHA/F-B3LYP 2.647 5.2 120.0

CP-BLYP 2.735 5.4 120.1 CP-B3LYP 2.701 4.7 125.2

6-31G∗ BLYP 2.485 44.9 45.2 B3LYP 2.485 46.0 47.0
(34) CHA/F-BLYP 2.652 5.2 105.9 CHA/F-B3LYP 2.647 5.7 107.5

CP-BLYP 2.762 7.1 107.0 CP-B3LYP 2.732 6.8 109.5

6-31G∗∗ BLYP 2.494 44.9 44.9 B3LYP 2.493 46.0 46.9
(40) CHA/F-BLYP 2.626 7.6 105.2 CHA/F-B3LYP 2.627 7.8 107.5

CP-BLYP 2.781 7.2 108.7 CP-B3LYP 2.749 7.0 111.3

6-31++G∗∗ BLYP 2.760 7.5 111.6 B3LYP 2.732 7.6 113.1
(50) CHA/F-BLYP 2.782 7.4 110.6 CHA/F-B3LYP 2.752 7.4 112.5

CP-BLYP 2.786 7.8 109.9 CP-B3LYP 2.758 7.7 112.0

6-311G∗∗ BLYP 2.572 46.9 48.3 B3LYP 2.567 47.2 51.2
(50) CHA/F-BLYP 2.730 8.8 107.9 CHA/F-B3LYP 2.725 7.0 113.9

CP-BLYP 2.809 7.2 113.6 CP-B3LYP 2.777 6.9 116.3

6-311++G∗∗ BLYP 2.778 6.9 116.2 B3LYP 2.747 7.3 117.5
(60) CHA/F-BLYP 2.822 6.3 115.6 CHA/F-B3LYP 2.790 7.0 116.9

CP-BLYP 2.816 8.0 113.1 CP-B3LYP 2.785 7.9 115.5

TZV∗∗ BLYP 2.740 6.6 115.4 B3LYP 2.716 6.5 117.8
(52) CHA/F-BLYP 2.783 6.1 116.5 CHA/F-B3LYP 2.751 6.2 118.8

CP-BLYP 2.786 6.5 116.5 CP-B3LYP 2.756 6.4 119.0

TZV++∗∗ BLYP 2.764 7.2 117.1 B3LYP 2.734 7.2 119.1
(62) CHA/F-BLYP 2.787 6.4 116.0 CHA/F-B3LYP 2.755 6.7 117.9

CP-BLYP 2.786 7.8 114.1 CP-B3LYP 2.755 7.7 116.7

6-311++G(2df,2p) BLYP 2.775 9.0 107.0 B3LYP 2.750 8.1 111.0
(98) CHA/F-BLYP 2.784 8.4 107.5 CHA/F-B3LYP 2.756 6.0 113.7

CP-BLYP 2.790 7.7 108.9 CP-B3LYP 2.760 7.8 110.9

6-311++G(3df,2pd) BLYP 2.768 5.3 112.0 B3LYP 2.734 5.8 112.5
(122) CHA/F-BLYP 2.778 4.8 113.0 CHA/F-B3LYP 2.747 5.4 113.9

CP-BLYP 2.780 6.9 109.1 CP-B3LYP 2.750 7.0 110.9

The number of basis functions is given in parentheses. The experimental24 values of rff(re), α, and β are ≈2.72, 10±6◦ , and 117±6◦ ,
respectively. For notation, see Figure 1.

FIGURE 1. Geometrical parameters of the (HF)2,
(H2O)2, and HF–H2O complexes.

ing CHA values. In the case of small basis sets, the
difference between the CP and CHA values can be
rather large (e.g., 0.105 Å at the B3LYP/6-31G(d)
level of theory), but the difference gets smaller as
the applied basis set is improved. From this point
of view the role of diffuse functions is rather im-
portant, by their appearance the difference between
the CP and CHA corrected rff values gets close to
0.005 Å. The largest deviations between the CP and
CHA corrected rff values can be found in those
cases when the uncorrected model fails to describe
even qualitatively the PES of the HF dimer.

As we mentioned above, the DFT methods in
conjunction with small basis sets tend to predict the
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cyclic structure to be the only stable one on the PES
of the HF dimer. These pitfalls of the DFT methods
can be seen also in our results in the case of the
6-31G, 6-31G(d), 6-31G(d,p), and even 6-311G(d,p)
basis sets. Here, the α and β bond angles are close
to 45◦, and the rff distance is shorter than the cor-
responding experimental value of 2.72 Å. On the
other hand, both the CHA and the CP optimization
lead to the bent structure, in these cases correcting
the pitfall of the underlying uncorrected models.
One has to note in this respect that this behavior
described above is believed in the literature as a
problem of DFT methods. However, optimizations
at the MP2/6-31G(d) and MP2/6-31G(d,p), levels
also lead to the cyclic structure, while the MP2/6-
31G and MP2/6-311G(d,p) models predict distorted
bent structures. Optimizations on the correspond-
ing CP-corrected potential energy surfaces lead to
the bent structure, and predict [except for MP2/6-
31G(d)] reasonable bond angles.

One can calculate the interaction energy of an in-
termolecular complex considering both BSSE and
geometry effects in a few ways. First, the interac-
tion energy can be calculated after geometry opti-
mization of the complex without any correction for
BSSE. Second, one can calculate the BSSE-corrected
interaction energy at the optimized geometry. Fur-
thermore, one can correct (CP or CHA) for the
BSSE during the geometry optimization also, and
determine BSSE-corrected interaction energies us-
ing geometries obtained from BSSE-free potential
energy surfaces. In Figure 2 we show our results
for the interaction energy of the HF dimer obtained
by using the four procedures described above. The
behavior of the first two procedures is not satisfac-
tory. Calculations without any BSSE correction can
lead to high interaction energies while single point
CP corrections at the final (uncorrected) geometries
can predict too weak interaction for small basis
sets. Of course this behavior is due to the tendency
that some of the uncorrected DFT and MP2 opti-
mizations lead to the cyclic structure. On the other
hand, corrected interaction energies computed at
the BSSE-corrected geometries converge fast, inde-
pendent of whether the CP or CHA method is used
in the calculations. It is to be noted that the differ-
ence between the CHA and CP interaction energies
is always smaller than the difference between the
uncorrected and corrected values. Using basis sets
with diffuse functions the single point CP-corrected
energies get closer to the fully corrected ones. The
energy data suggest that it is easier to reach con-
vergence in the interaction energy by improving the
quality of the applied basis set than getting close to

the limit regarding the surfaces are much flatter than
the intramolecular ones. Correction for BSSE seems
to be important for both the energy and geometry.

H2O DIMER

The water dimer (Fig. 1) has a linear structure
that is known from both experiment29 and theoreti-
cal calculations.30 Our geometry results are summa-
rized in Tables III and IV, while the energetics of the
water dimer and the dependence of the roo distance
on the applied theoretical model are shown graphi-
cally in Figures 3 and 4, respectively.

Because many of the conclusions drawn in the
preceding section are also valid for the water dimer,
we do not discuss them in details. Because part of
the binding is due to the BSSE, all the corrected
intermolecular distances (roo) are longer than the
corresponding uncorrected ones. The difference be-
tween the corrected and uncorrected roo distances
is similar to those values found in the case of the
HF dimer. The SCF roo distances are nearly always
longer than the corresponding experimental29 value
(2.946 Å), and correction for the BSSE further length-
ens this parameter. DFT methods usually under-
estimate the roo distance, the corresponding BSSE-
corrected values are closer to experiment (Fig. 5,
Table IV). The uncorrected MP2 intermolecular dis-
tances are also too short, while the CP-corrected
values are usually too large. It is very promising,
however, that by improving the quality of the basis
both the corrected and uncorrected roo distances get
close to the experimental value.

Both the BSSE and the quality of the basis set
have a large effect on the optimized bond angles.
For example, nearly all the optimizations at the SCF
level fail to describe the anisotropy of the interac-
tion, in terms of the β angle. The corresponding CP
and CHA optimizations do not improve these re-
sults. In the case of the DFT methods, the predicted
β bond angles are close to the experimental value
when one uses the largest basis sets. However, this
is not the case for the small and moderate basis
sets, but both CP and CHA are able to correct these
pitfalls. For example, optimization at the B3LYP/6-
31G(d,p) level led to 94.5 degrees, the correspond-
ing CP and CHA values are 114.3 and 119.1 degrees,
respectively. The MP2 results also vary on a wide
range, one has to use at least moderate size basis sets
and corrected models to get reasonable bond angles.

Comparing the behavior of the a priori and a pos-
teriori correction schemes one can draw similar
conclusions as those obtained for the HF dimer. Ex-
cept for a very few cases the CHA intermolecular
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TABLE III.
Geometrical Parameters for the (H2O)2 Dimer Calculated in 10 Different Basis Sets as the SCF, CHA/F-SCF,
CP-SCF, MP2, and CP-MP2 Levels of Theory.

Basis Set Method roo (≈) α β Method roo (≈) α β

6-31G SCF 2.843 −0.3 152.0 MP2 2.867 2.6 136.8
(26) CHA/F-SCF 2.866 0.0 155.9 CP-MP2 2.901 0.8 153.2

CP-SCF 2.862 0.0 157.5

6-31G∗ SCF 2.973 4.6 118.4 MP2 2.916 9.2 101.5
(38) CHA/F-SCF 2.985 2.6 128.4 CP-MP2 2.978 3.0 126.5

CP-SCF 3.002 1.4 134.1

6-31G∗∗ SCF 2.983 5.2 117.3 MP2 2.910 9.8 99.3
(50) CHA/F-SCF 2.999 2.2 133.1 CP-MP2 2.990 2.8 129.9

CP-SCF 3.017 1.2 137.2

6-31++G∗∗ SCF 2.987 2.6 136.2 MP2 2.921 3.5 133.4
(62) CHA/F-SCF 3.030 1.5 140.6 CP-MP2 3.007 4.6 129.9

CP-SCF 3.046 1.7 140.2

6-311G∗∗ SCF 2.975 2.2 129.5 MP2 2.907 4.3 117.0
(62) CHA/F-SCF 3.036 −0.1 142.8 CP-MP2 3.038 −0.1 140.2

CP-SCF 3.052 −0.7 146.8

6-311++G∗∗ SCF 3.000 0.9 142.9 MP2 2.922 2.2 135.7
(74) CHA/F-SCF 3.048 0.7 146.0 CP-MP2 3.019 3.1 135.7

CP-SCF 3.049 0.8 146.0

TZV∗∗ SCF 2.970 2.4 138.2 MP2 2.886 0.0 142.1
(64) CHA/F-SCF 3.006 0.4 148.9 CP-MP2 2.987 1.6 144.5

CP-SCF 3.007 0.2 150.3

TZV++∗∗ SCF 2.976 0.4 147.2 MP2 2.900 1.6 140.2
(76) CHA/F-SCF 2.996 0.9 148.0 CP-MP2 2.984 3.3 139.5

CP-SCF 3.006 0.9 148.0

6-311++G(2df,2p) SCF 3.039 2.7 134.1 MP2 2.919 4.5 126.2
(118) CHA/F-SCF 3.056 2.7 137.0 CP-MP2 2.966 5.2 125.7

CP-SCF 3.060 2.9 136.5

6-311++G(3df,2pd) SCF 3.036 2.9 134.2 MP2 2.911 4.8 125.4
(154) CHA/F-SCF 3.048 2.7 137.3 CP-MP2 2.950 5.3 125.0

CP-SCF 3.049 3.0 136.4

The number of basis functions is given in parentheses. The experimental29 values of roo(re), α, and β are ≈2.946, 123 ± 10◦, and
2± 10◦, respectively. For notation, see Figure 1.

distances lie between the uncorrected and the CP-
corrected ones. Usually, the differences between the
CP and CHA intermolecular parameters are smaller
than the differences between the corrected and un-
corrected values. Larger differences between the
a priori and a posteriori corrected roo distances can
be found in those cases when the corresponding un-
corrected model predicts distorted structures.

Previous studies showed27 that the linear struc-
tures determined at the DFT level with BLYP and
B3LYP functionals in conjunction with the 6-31G∗
and 6-31G∗∗ basis sets actually correspond to saddle

points. Table IV presents the geometry data calcu-
lated at the DFT level with both functionals. It can
be seen that both BSSE-free methods correct the
rather distorted uncorrected structures, the angular
features of these structures are closer to the large ba-
sis results than those of the uncorrected ones. We
carried out frequency calculations at the corrected
and uncorrected BLYP/6-31G(d,p) levels to explore
the curvature of the PES from the BSSE point of
view. Similarly to the literature data, the Hessian
calculated at the uncorrected BLYP/6-31G(d,p) level
has a negative eigenvalue. The CHA/DFT(BLYP)
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TABLE IV.
Geometrical Parameters for the (H2O)2 Dimer Calculated in 10 Different Basis Sets as the BLYP, CHA/F-BLYP,
CP-BLYP, B3LYP, CHA/F-B3LYP, and CP-B3LYP Levels of Theory.

Basis Set Method roo (≈) α β Method roo (≈) α β

6-31G BLYP 2.814 6.1 116.0 B3LYP 2.776 3.7 130.2
(26) CHA/F-BLYP 2.823 4.0 132.1 CHA/F-B3LYP 2.795 3.2 140.5

CP-BLYP 2.836 2.0 142.2 CP-B3LYP 2.797 1.9 147.7

6-31G∗ BLYP 2.868 16.3 82.1 B3LYP 2.861 12.1 93.1
(38) CHA/F-BLYP 2.896 4.6 111.7 CHA/F-B3LYP 2.878 4.9 114.3

CP-BLYP 2.941 4.6 115.4 CP-B3LYF 2.911 4.4 119.1

6-31G∗∗ BLYP 2.884 15.2 83.3 B3LYP 2.876 10.9 94.5
(50) CHA/F-BLYP 2.901 5.5 114.0 CHA/F-B3LYP 2.883 5.6 116.5

CP-BLYP 2.970 4.5 118.0 CP-B3LYP 2.936 3.9 122.4

6-31++G∗∗ BLYP 2.912 4.2 127.3 B3LYP 2.887 4.2 128.8
(62) CHA/F-BLYP 2.955 3.5 127.1 CHA/F-B3LYP 2.924 3.7 128.9

CP-BLYP 2.961 6.2 119.8 CP-B3LYP 2.931 5.7 123.4

6-311G∗∗ BLYP 2.915 7.6 100.5 B3LYP 2.887 8.3 105.1
(62) CHA/F-BLYP 2.960 2.9 123.2 CHA/F-B3LYP 2.941 2.8 127.3

CP-BLYP 3.021 1.5 131.1 CP-B3LYP 2.979 1.1 135.3

6-311++G∗∗ BLYP 2.927 3.9 129.5 B3LYP 2.900 3.8 131.3
(74) CHA/F-BLYP 2.975 3.5 128.3 CHA/F-B3LYP 2.944 3.5 131.1

CP-BLYP 2.971 5.3 124.8 CP-B3LYP 2.941 4.6 129.5

TZV∗∗ BLYP 2.900 1.7 130.4 B3LYP 2.877 1.0 136.5
(64) CHA/F-BLYP 2.955 3.7 129.7 CHA/F-B3LYP 2.920 3.7 133.1

CP-BLYP 2.959 3.6 132.8 CP-B3LYP 2.925 2.9 137.6

TZV++∗∗ BLYP 2.910 3.4 131.2 B3LYP 2.883 2.5 136.1
(76) CHA/F-BLYP 2.935 3.8 129.7 CHA/F-B3LYP 2.905 3.7 132.4

CP-BLYP 2.942 5.3 127.2 CP-B3LYP 2.911 4.8 131.3

6-311++G(2df,2p) BLYP 2.949 5.3 120.4 B3LYP 2.922 4.1 125.9
(118) CHA/F-BLYP 2.960 5.8 118.4 CHA/F-B3LYP 2.931 4.2 125.6

CP-BLYP 2.966 6.0 118.7 CP-B3LYP 2.937 5.5 122.3

6-311++G(3df,2pd) BLYP 2.949 5.7 119.0 B3LYP 2.919 5.1 122.3
(154) CHA/F-BLYP 2.957 5.7 119.5 CHA/F-B3LYP 2.928 4.0 126.7

CP-BLYP 2.960 5.7 119.7 CP-B3LYP 2.931 5.2 123.2

The number of basis functions is given in parentheses. The experimental29 values of roo(re), α, and β are ≈2.946, 123 ± 10◦, and
2± 10◦, respectively. For notation, see Figure 1.

optimized structure was characterized as a mini-
mum by calculating the Hessian using numerical
derivatives. The adequacy of the numerical differ-
entiation was checked by comparing the accuracy
of full numerical and full analytical methods for the
case of the uncorrected BLYP/6-31G(d,p) level. Fur-
thermore, analytical CP corrected derivatives were
also used to carry out frequency calculation at the
CP-corrected structure at the same level.

The CP calculations also result a minimum, so
the CP method can also correct the deficiency of
the BLYP/6-31G(d,p) model discussed above. Sim-

ilar calculations were performed for other patho-
logical cases listed above, resulting in the same
tendency obtained for the BLYP/6-31G(d,p) model.
In the previous chapter we discussed that some
of the uncorrected DFT and MP2 models resulted
in the cyclic structure of the HF dimer. To check
the performance of the MP2 method in the case of
the water dimer, we carried out frequency calcula-
tions using the 6-31G(d) and 6-31G(d,p) basis sets.
Both the MP2/6-31G(d) and MP2/6-31G(d,p) calcu-
lations lead to a minimum, indicating that the small
basis MP2 models perform better than the corre-
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sponding DFT ones from the PES curvature point
of view.

HF–H2O COMPLEX

The HF–H2O complex is a rather special sys-
tem, the determination of its structure is a challenge
for both experimentalists and theoretians. Theoret-
ical studies showed32 that one can find stationary
points on the HF–H2O PES with both Cs and C2v

symmetries. [In the case of the C2v structure, the
α and β angles (Fig. 1) are 0 and 180 degrees, re-
spectively.] The Cs structure is more stable than the
C2v one; the energy difference between them is 0.1
and 0.5 kcal/mol at the SCF and MP2 levels, respec-
tively. The experimental33 estimate of the barrier is
0.4 kcal/mol. Based on these data one can under-
stand that the experimental determination of the
angular features of the HF–H2O complex is not a
trivial task. The barrier is very close to the first vi-
brational level, most probably the two Cs structures
rapidly interconvert to each other and the underly-
ing double well potential can not be measured.

Our main reason for investigating the Cs struc-
ture of the HF–H2O complex was to present a sys-
tem, which, up to our knowledge, is free from DFT
or MP2 pitfalls described in the previous chapters
for the cases of the HF and H2O dimers, respectively.
In our opinion, this pitfall-free status of the HF–H2O
complex can be connected with the strength of the
interaction in this system. As we go farther from
the HF dimer to the H2O dimer and to the HF–H2O
complex the interaction energies become larger. In
the case of the HF dimer the DFT and MP2 methods
using small basis sets can totally fail to describe the
PES. In the case of the water dimer we found some
problems with respect to the curvature of the PES.
For the HF–H2O complex, disregarding the small-
est 6-31G basis set, the Cs structure is predicted
(Figs 6, 7, Tables V, VI) to be the more stable by
all the DFT and MP2 models. In most of the cases
when the underlying uncorrected DFT and MP2
methods fail to describe properly the anisotropy of
the interaction, the BSSE-corrected α and β angular
parameters are close to the large basis results. Con-
cerning the SCF results, one has to mention that in
some cases we could find only the C2v structure on
the PES. Correction for the BSSE does not change
this situation.

Turning to the rof geometry parameter, one can
draw the following conclusions. Because part of the
binding is due to the BSSE, the corrected rof dis-
tances are always longer than the uncorrected ones.
The SCF rof distances are nearly always longer than

the experimental34 value of 2.66 Å. Correction for
the BSSE further lengthens this parameter. The un-
corrected DFT rof distances are surprisingly close to
the experimental value. In the case of small basis
sets, the corrected rof distances are farther from the
experimental value than the uncorrected ones, but
for the largest basis sets they get close to each other.
The largest BSSE effects can be found again in the
case of the MP2 geometries. The uncorrected rof dis-
tances usually closer to the experimental value than
that of predicted by the CP corrected MP2 model.
However, the convergence of the rof distance on the
corrected PESs is smoother than for the uncorrected
PESs.

Comparing the behavior of the CHA and CP cor-
rection methods one can find again that differences
between both methods are larger in the case of small
basis sets. However, if balanced basis sets are used
for the calculations both the CP and CHA models
perform equally well.

Structures Optimized Using Dunning’s
aug-cc-pVDZ and aug-cc-pVTZ
Basis Sets

The energetical and structural data obtained at
the SCF, BLYP, B3LYP, and MP2 levels in conjunction
with the Dunning’s correlation consistent aug-cc-
pVDZ and aug-cc-pVTZ basis sets35 – 37, 39 on the
uncorrected and BSSE-corrected PES, are listed in
Tables VII–X.

The correlation consistent [(aug)-cc-p(C)VXZ,
X = 2(D), 3(T), 4(Q), . . .] basis sets systematically
extend the atomic radial and angular spaces as a
function of the cardinal numbe X. These basis sets
were designed to be applied in conjunction with
traditional correlation methods where the electron–
electron cusp is explicitly described. Because of this
feature one expects that the BSSE content of vari-
ous properties are small using the aug-cc-pVDZ and
aug-cc-pVTZ basis sets at the HF and DFT levels.
Going further to largest cardinal numbers, the effect
of the BSSE on structural and energetical parameters
calculated at the HF and DFT levels should decrease
enormously. This is not the case, however, for tradi-
tional correlation methods like MP2 where the BSSE
content of the investigated properties decreases as
the cardinal number of the applied basis set is en-
larged but it is practically impossible to reach that
status when the effect of BSSE becomes negligible.
[See, e.g, our recent study38 on the effect of BSSE on
the PESs of small hydrogen-bonded systems stud-
ied at the MP2/aug-cc-pVXZ (X = 2, 3, 4, 5) levels.]
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TABLE V.
Geometrical Parameters for the HF–H2O Dimer Calculated in 10 Different Basis Sets as the SCF, CHA/F-SCF,
CP-SCF, MP2, and CP-MP2 Levels of Theory.

Basis Set Method rfo (≈) α β Method rfo (≈) α β

6-31G SCF 2.616 0.0 180.0 MP2 2.646 0.0 180.0
(24) CHA/F-SCF 2.657 0.0 180.0 CP-MP2 2.686 0.0 180.0

CP-SCF 2.641 0.0 180.0

6-31G∗ SCF 2.719 4.7 132.3 MP2 2.689 7.1 116.9
(36) CHA/F-SCF 2.749 2.7 140.8 CP-MP2 2.748 2.5 135.8

CP-SCF 2.753 2.1 146.3

6-31G∗∗ SCF 2.718 4.0 135.8 MP2 2.675 6.3 117.6
(45) CHA/F-SCF 2.745 2.2 147.4 CP-MP2 2.750 2.2 135.8

CP-SCF 2.761 1.7 152.6

6-31++G∗∗ SCF 2.713 1.6 151.7 MP2 2.659 1.7 138.4
(56) CHA/F-SCF 2.741 1.1 158.1 CP-MP2 2.727 1.7 140.6

CP-SCF 2.753 1.1 159.0

6-311G∗∗ SCF 2.700 2.7 145.4 MP2 2.645 4.1 128.7
(56) CHA/F-SCF 2.752 0.5 170.9 CP-MP2 2.762 1.0 152.5

CP-SCF 2.759 0.0 180.0

6-311++G∗∗ SCF 2.720 0.9 162.5 MP2 2.664 1.4 138.9
(67) CHA/F-SCF 2.751 0.0 180.0 CP-MP2 2.739 1.4 149.1

CP-SCF 2.750 0.0 180.0

TZV∗∗ SCF 2.695 0.0 180.0 MP2 2.637 1.4 146.3
(58) CHA/F-SCF 2.712 0.0 180.0 CP-MP2 2.727 0.3 172.0

CP-SCF 2.725 0.0 180.0

TZV++∗∗ SCF 2.690 0.0 180.0 MP2 2.648 0.9 145.0
(69) CHA/F-SCF 2.717 0.0 180.0 CP-MP2 2.716 0.8 163.9

CP-SCF 2.718 0.0 180.0

6-311++G(2df,2p) SCF 2.725 1.3 147.0 MP2 2.661 1.3 133.6
(108) CHA/F-SCF 2.733 1.1 150.6 CP-MP2 2.693 1.4 134.9

CP-SCF 2.737 1.0 153.7

6-311++G(3df,2pd) SCF 2.709 1.2 146.1 MP2 2.635 1.1 134.2
(138) CHA/F-SCF 2.724 1.1 149.8 CP-MP2 2.671 1.4 133.2

CP-SCF 2.725 1.1 150.0

The number of basis functions is given in parentheses. The experimental34 value of rfo(r0) is ≈2.66. For notation, see Figure 1.

In the light of these facts one can easily ratio-
nalize most of our data obtained using these basis
sets. All the BSSE-free intermolecular distances are
longer than the corresponding uncorrected ones us-
ing the aug-cc-pVDZ basis set. However, contrary
to the tendency observed for the other basis sets,
the CHA distances are slightly longer than the CP
ones. The HF and DFT intermolecular distances cor-
rected using the CP method are usually very close to
the corresponding uncorrected values (see, e.g., the
actual rfo values, 2.643 and 2.647 Å (HF–H2O com-
plex, Table IX) obtained at the B3LYP/aug-cc-pVDZ

level on the plain and CP-corrected PESs, respec-
tively. This behavior is a little bit surprising, because
the aug-cc-pVDZ basis set is the first and smallest
member of the aug-cc-pVXZ family with weaker
performance compared to that of the larger (aug-cc-
pVTZ, aug-cc-pVQZ, etc.) Dunning basis sets. The
CHA distances obtained at the DFT and HF levels
seems to be more reasonable in this respect, and are
in accordance with the size of the actual basis set.

Our HF and especially the DFT calculations using
the aug-cc-pVTZ basis set led to some unexpected
results. The difference between the CP-corrected
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TABLE VI.
Geometrical Parameters for the HF–H2O Dimer Calculated in 10 Different Basis Sets as the BLYP, CHA/F-BLYP,
CP-BLYP, B3LYP, CHA/F-B3LYP, and CP-B3LYP Levels of Theory.

Basis Set Method rfo (≈) α β Method rfo (≈) α β

6-31G BLYP 2.610 2.8 149.4 B3LYP 2.576 0.0 180.0
(24) CHA/F-BLYP 2.642 0.0 180.0 CHA/F-B3LYP 2.619 0.0 180.0

CP-BLYP 2.638 0.0 180.0 CP-B3LYP 2.608 0.0 180.0

6-31G∗ BLYP 2.652 15.2 92.2 B3LYP 2.650 10.4 106.0
(36) CHA/F-BLYP 2.701 3.3 119.2 CHA/F-B3LYP 2.682 3.2 123.9

CP-BLYP 2.730 3.2 124.2 CP-B3LYP 2.701 3.0 128.5

6-31G∗∗ BLYP 2.663 13.1 96.2 B3LYP 2.652 8.7 109.5
(45) CHA/F-BLYP 2.678 3.1 122.1 CHA/F-B3LYP 2.660 3.3 126.1

CP-BLYP 2.733 2.9 127.3 CP-B3LYP 2.700 2.7 132.4

6-31++G∗∗ BLYP 2.642 2.6 129.4 B3LYP 2.623 2.4 133.8
(56) CHA/F-BLYP 2.672 2.6 128.9 CHA/F-B3LYP 2.650 2.0 135.4

CP-BLYP 2.665 2.3 129.3 CP-B3LYP 2.645 2.2 133.9

6-311G∗∗ BLYP 2.657 7.3 113.2 B3LYP 2.636 6.4 119.5
(56) CHA/F-BLYP 2.716 3.2 126.9 CHA/F-B3LYP 2.690 2.4 135.3

CP-BLYP 2.744 2.4 135.8 CP-B3LYP 2.708 1.5 145.2

6-311++G∗∗ BLYP 2.668 2.3 132.4 B3LYP 2.645 2.0 137.6
(67) CHA/F-BLYP 2.689 1.8 133.0 CHA/F-B3LYP 2.663 1.6 139.4

CP-BLYP 2.691 2.5 131.6 CP-B3LYP 2.667 1.8 141.0

TZV∗∗ BLYP 2.648 2.3 135.3 B3LYP 2.631 1.2 146.4
(58) CHA/F-BLYP 2.682 1.0 145.8 CHA/F-B3LYP 2.654 1.3 149.1

CP-BLYP 2.694 1.3 144.4 CP-B3LYP 2.666 1.3 150.8

TZV++∗∗ BLYP 2.654 1.5 138.2 B3LYP 2.625 1.2 146.7
(69) CHA/F-BLYP 2.662 0.8 143.8 CHA/F-B3LYP 2.640 1.2 148.1

CP-BLYP 2.675 2.7 136.7 CP-B3LYP 2.652 1.7 146.4

6-311++G(2df,2p) BLYP 2.664 2.1 127.0 B3LYP 2.640 1.9 131.1
(108) CHA/F-BLYP 2.675 2.0 126.7 CHA/F-B3LYP 2.650 1.7 131.4

CP-BLYP 2.672 1.8 127.4 CP-B3LYP 2.650 1.9 131.3

6-311++G(3df,2pd) BLYP 2.655 1.9 126.5 B3LYP 2.632 1.8 130.9
(138) CHA/F-BLYP 2.667 1.9 126.8 CHA/F-B3LYP 2.644 1.7 131.4

CP-BLYP 2.666 1.8 127.5 CP-B3LYP 2.642 1.8 131.1

The number of basis functions is given in parentheses. The experimental34 value of rfo(r0) is ≈2.66. For notation, see Figure 1.

and the corresponding uncorrected parameters is
even smaller (less than 0.006 Å), whereas for three
cases (water dimer at the B3LYP/aug-cc-pVTZ and
the HF–H2O complex at the BLYP/aug-cc-pVTZ
and B3LYP/aug-cc-pVTZ levels), we could not op-
timize the geometry of the investigated complexes
at the CHA levels. Besides improving our imple-
mentation of CHA (application of better conver-
gence accelerators) we tried many numerical tricks
to obtain self-consistency of the applied CHA mod-
els. For example, the geometry optimizations were
started at large intermolecular distances, allowing

the optimizer to get slowly close to the particu-
lar minimum. At large intermolecular distances the
CHA wave functions were easily obtained, but we
found serious convergence problems getting close
to the desired minima again. In the next step we
removed that component of the applied aug-cc-
pVTZ basis set that bears the smallest exponent. In
this case, our convergence problems disappeared,
we could easily obtain optimized geometries using
the modified basis set. Somewhat similar problems
have been met at small distances by Valiron and
Mayer42 also.
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TABLE VII.
Geometrical Parameters for the HF–HF Dimer Calculated Using the aug-cc-pVDZ and aug-cc-pVTZ Basis Sets at
the SCF, CHA/F-SCF, CP-SCF, MP2, CP-MP2, BLYP, CHA/F-BLYP, CP-BLYP, B3LYP, CHA/F-B3LYP, and CP-B3LYP
Levels of Theory.

Basis Set Method rff α β Method rff α β

aug-cc-pVDZ SCF 2.826 6.7 118.7 MP2 2.751 6.2 110.6
(68) CHA/F-SCF 2.854 7.2 119.0 CP-MP2 2.812 6.9 111.6

CP-SCF 2.846 7.1 118.6

aug-cc-pVDZ BLYP 2.761 5.9 109.1 B3LYP 2.734 6.1 110.6
(68) CHA/F-BLYP 2.805 8.9 107.0 CHA/F-B3LYP 2.774 8.1 109.7

CP-BLYP 2.772 6.2 109.2 CP-B3LYP 2.745 6.5 110.8

aug-cc-pVTZ SCF 2.825 6.2 121.0 MP2 2.739 5.5 112.8
(160) CHA/F-SCF 2.831 6.7 120.2 CP-MP2 2.764 6.6 111.8

CP-SCF 2.828 6.5 120.4

aug-cc-pVTZ BLYP 2.755 5.8 109.9 B3LYP 2.727 6.1 111.4
(160) CHA/F-BLYP 2.773 4.4 112.7 CHA/F-B3LYP 2.740 5.0 113.6

CP-BLYP 2.759 6.6 108.7 CP-B3LYP 2.730 6.5 110.8

The number of basis functions is given in parentheses.

In our opinion, the above-described unexpected
behavior of the CP and CHA methods, in terms of
rather small BSSE and convergence problems, re-
spectively, is related to some fundamental aspects
these BSSE-correction models. In both cases one has
to specify subsystems of the investigated molecu-
lar complexes. This partition is straightforward in
the investigated hydrogen bonded complexes, but

is clearly not unambiguous when one explores, for
example, the effect of BSSE on proton transfer re-
actions. Another difficulty arises when the applied
basis set does consist of basis functions with very
small exponents. These functions represent very
nonlocal objects, being their assignation to a specific
subsystem at least questionable. Indeed, this basis
functions could eventually be considered as bond

TABLE VIII.
Geometrical Parameters for the H2O–H2O Dimer Calculated Using the aug-cc-pVDZ and aug-cc-pVTZ Basis Sets
at the SCF, CHA/F-SCF, CP-SCF, MP2, CP-MP2, BLYP, CHA/F-BLYP, CP-BLYP, B3LYP, CHA/F-B3LYP, and CP-B3LYP
Levels of Theory.

Basis Set Method roo α β Method roo α β

aug-cc-pVDZ SCF 3.037 4.0 130.9 MP2 2.921 6.4 119.6
(86) CHA/F-SCF 3.062 3.3 132.8 CP-MP2 2.978 5.7 122.5

CP-SCF 3.053 3.3 133.0

aug-cc-pVDZ BLYP 2.950 6.0 118.0 B3LYP 2.920 5.8 120.7
(86) CHA/F-BLYP 2.995 3.5 126.1 CHA/F-B3LYP 2.961 3.7 127.8

CP-BLYP 2.958 5.7 119.0 CP-B3LYP 2.929 5.3 122.1

aug-cc-pVTZ SCF 3.038 2.8 137.7 MP2 2.902 4.7 125.6
(210) CHA/F-SCF 3.044 3.0 138.0 CP-MP2 2.930 5.4 125.1

CP-SCF 3.041 2.9 137.9

aug-cc-pVTZ BLYP 2.945 5.0 121.0 B3LYP 2.916 4.9 123.8
(210) CHA/F-BLYP 2.992 8.0 118.0 CHA/F-B3LYP — — —

CP-BLYP 2.951 5.0 120.3 CP-B3LYP 2.920 5.3 123.5

The number of basis functions is given in parentheses.
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TABLE IX.
Geometrical Parameters for the HF–H2O Dimer Calculated Using the aug-cc-pVDZ and aug-cc-pVTZ Basis Sets at
the SCF, CHA/F-SCF, CP-SCF, MP2, CP-MP2, BLYP, CHA/F-BLYP, CP-BLYP, B3LYP, CHA/F-B3LYP, and CP-B3LYP
Levels of Theory.

Basis Set Method rfo α β Method rfo α β

aug-cc-pVDZ SCF 2.725 1.5 142.8 MP2 2.660 1.6 127.7
(77) CHA/F-SCF 2.760 1.2 149.2 CP-MP2 2.702 1.5 130.3

CP-SCF 2.734 1.4 144.0

aug-cc-pVDZ BLYP 2.664 1.6 126.3 B3LYP 2.643 1.6 130.1
(77) CHA/F-BLYP 2.684 2.5 128.6 CHA/F-B3LYP 2.664 1.6 135.1

CP-BLYP 2.668 1.7 126.0 CP-B3LYP 2.647 1.7 129.8

aug-cc-pVTZ SCF 2.716 1.1 149.5 MP2 2.640 1.3 131.1
(185) CHA/F-SCF 2.731 1.1 152.3 CP-MP2 2.662 1.4 132.3

CP-SCF 2.718 1.1 149.8

aug-cc-pVTZ BLYP 2.658 1.6 126.4 B3LYP 2.636 1.6 130.9
(185) CHA/F-BLYP — — — CHA/F-B3LYP — — —

CP-BLYP 2.662 1.6 127.1 CP-B3LYP 2.639 1.6 131.2

The number of basis functions is given in parentheses.

functions, therefore not being assigned to any frag-
ment.

The observed behavior of the CP and the CHA
methods can be explained on the above basis. The
CP approach predicts rather small BSSE content of
the investigated properties using the aug-cc-pVDZ
basis set. In this case the CHA performs significantly
better. However, the observed CHA convergence
problems are clearly due to the fact that the inves-

tigated minima are located on that region of the PES
where, due to the functions with very small expo-
nents present in the basis set, the partition of the
whole supermolecule basis set into subsystems is
not feasible. This explanation is well supported by
the fact that we had no convergence problems at
geometries with large intermolecular distances and
after removing that basis function of the basis set
that bears the smallest exponent. Furthermore, con-

TABLE X.
Uncorrected, CHA/F-Corrected and Counterpoise-Corrected Interaction Energies (kcal/mol) of the HF–HF,
H2O–H2O, and HF–H2O Dimers Calculated Using the aug-cc-pVDZ and aug-cc-pVTZ (in Parenthesis) Basis Sets.

HF–HF H2O–H2O HF–H2O

Interaction Interaction Interaction
Method Energy (kcal/mol) Method Energy (kcal/mol) Method Energy (kcal/mol)

SCF 3.82 (3.72) SCF 3.86 (3.74) SCF 7.31 (7.25)
CHA/F-SCF 3.68 (3.65) CHA/F-SCF 3.71 (3.68) CHA/F-SCF 6.98 (7.15)
CP-SCF 3.67 (3.65) CP-SCF 3.71 (3.69) CP-SCF 7.10 (7.18)

BLYP 4.23 (4.25) BLYP 4.24 (4.27) BLYP 8.49 (8.54)
CHA/F-BLYP 3.87 (4.06) CHA/F-BLYP 3.89 (4.10) CHA/F-BLYP 7.86 (—)
CP-BLYP 4.04 (4.13) CP-BLYP 4.06 (4.15) CP-BLYP 8.26 (8.37)

B3LYP 4.56 (4.56) B3LYP 4.64 (4.64) B3LYP 8.89 (8.91)
CHA/F-B3LYP 4.24 (4.41) CHA/F-B3LYP 4.34 (—) CHA/F-B3LYP 8.63 (—)
CP-B3LYP 4.38 (4.46) CP-B3LYP 4.48 (4.53) CP-B3LYP 8.67 (8.78)

MP2 4.69 (4.76) MP2 5.24 (5.24) MP2 8.97 (9.03)
CP-MP2 4.04 (4.27) CP-MP2 4.45 (4.74) CP-MP2 7.86 (8.36)
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vergence problems were not found in the case of
the CHA/F-SCF optimizations where the optimized
intermolecular distances are longer than the corre-
sponding CHA/F-DFT values. The same effect can
be seen in the case of the BLYP/aug-cc-pVTZ and
B3LYP/aug-cc-pVTZ optimizations on the water
dimer. The BLYP/aug-cc-pVTZ optimization con-
verged easily, while we had serious convergence
problems at the B3LYP/aug-cc-pVTZ level. Analyz-
ing our geometry data it is apparent that the B3LYP
intermolecular distances are always shorter than
the corresponding BLYP values. One has to note,
however, that the validity of the CHA-BLYP/aug-
cc-pVTZ geometry for the water is questionable
since the BSSE content of dimer distances, the un-
corrected roo distances (Table VIII) are very similar
at the BLYP/aug-cc-pVDZ and BLYP/aug-cc-pVTZ
levels predicted by the CHA method. These facts in-
dicate that there is a rather sharp change of behavior
of CHA with decreasing intermolecular distances.

Conclusions

In the present article we investigated the effect
of the BSSE on the PES and energetics of the (HF)2,
(H2O)2, and HF–H2O complexes by means of the
a priori CHA and a posteriori Boys–Bernardi BSSE
correction methods. One can state that in many of
the cases both the CHA/F and CP schemes pre-
dict more reliable geometries than those calculated
by the corresponding uncorrected methods. As the
interaction becomes weaker the BSSE has larger ef-
fects on the topology of the PES. In the case of the
HF dimer, BSSE contamination can induce drastic
changes in the PES resulting cyclic structures for
small basis sets. For the water dimer the BSSE can
distort the optimized geometry, and the curvature
of the surface can be abnormally changed. Finally,
for the HF–H2O complex quite large differences can
be observed between the corrected and uncorrected
parameters, but the characteristics of the global min-
imum are left unchanged.

Numerical results show that, in general, CHA/F
and CP corrected potential energy surfaces are very
similar, and tend to converge to each other as the ba-
sis set is improved. Except for a very few cases, the
CP method predicts larger interaction energies and
longer intermolecular distances than the CHA/F
method. However, the moderate and large basis set
results clearly show that the CP error compensation
scheme can be safely used for the study of inter-
molecular complexes. The adequacy of the applied
basis set can be easily checked by comparing CP and
CHA results for the particular problem.

Regarding basis set quality, we can recommend
the use of the 6-31++G(d,p), 6-311++G(d,p),
TZP(d,p)++, 6-311++G(2df,2p), and 6-311++
G(3df,2pd) basis sets in DFT calculations. The use
of the the 6-31++G(d,p), 6-311++G(d,p), 6-311++
G(2df,2p), and 6-311++G(3df,2pd) basis sets can
also be recommended for MP2 calculations. How-
ever, attention has always to be paid in the MP2
calculations for the effect of BSSE, because there is
no guarantee that whether the BSSE corrected or
the underlying uncorrected model behave better
compared to experimental results. From this point
of view it is worth noting the performance of the
MP2/6-31++G(d,p) model. The 6-31++G(d,p)
basis set differs only slightly from the 6-31+G(d,p)
one, the effect of the diffuse functions on the
H atoms cannot be large for the energetics and
geometry of the investigated complexes. (On the
other hand, most probably, the diffuse functions
on the hydrogen atoms increase the BSSE content
of the model without representing any significant
physical interaction.) As we mentioned in the
Introduction, the MP2/6-31+G(d,p) method was
successfully applied by Del Bene and coworkers for
a wide range of problems despite the deficiences of
the model. Analyzing our data one can state that the
uncorrected MP2/6-31++G(d,p) model performs
well for both the energetics and geometry of the
investigated complexes. In many cases the per-
formance of the CP-corrected MP2/6-31++G(d,p)
model is worse compared to experiment that
that of the uncorrected one. These results suggest
again that the MP2/6-31+G(d,p) model could be
a good compromise for the study of hydrogen
bonded complexes if more sophisticated treatment
is prohibited by the size of the investigated system.

Based on our results obtained at the HF and DFT
levels in conjunction with the aug-cc-pVDZ and
aug-cc-pVTZ basis sets, one can clearly state that
the effect of the BSSE on energetical and structural
parameters calculated at the above level is not sig-
nificant. However, despite the fact that there is no
practical limitation for the CP method in these cases,
the convergence problems that eventually appear
with the CHA method indicate that the partition-
ing of the whole supermolecule basis set including
extremely diffuse basis functions, may be conceptu-
ally problematic.

As an overall conclusion on the behavior of the
CHA and CP correction schemes one can argue that
when correction for the BSSE is important both the
a priori and a posteriori methods do the same job at
least in a qualitative manner.

JOURNAL OF COMPUTATIONAL CHEMISTRY 785



SALVADOR ET AL.

Acknowledgments

The authors are indebted to Prof. I. Mayer for
valuable discussions on the CHA methods. M.D.
and P.S. express their gratitude to the Comission of
the European Union for a scholarship, which made
their visit to Heidelberg possible.

References

1. (a) Jansen, H. B.; Ross, P. Chem Phys Lett 1969, 3, 140;
(b) Boys, S. B.; Bernardi, F. J Mol Phys 1970, 19, 553.

2. Mayer, I.; Surján, P. R. Chem Phys Lett 1992, 191, 497.
3. Valiron, P.; Mayer, I. Chem Phys Lett 1997, 275, 46.
4. Simon, S.; Duran, M.; Dannenberg, J. J. J Chem Phys 1996,

105, 11024.
5. (a) Mayer, I. Int J Quantum Chem 1983, 23, 341; (b) Mayer, I.

In Modelling of Structure and Properties of Molecules; Mak-
sic, Z. B., Ed.; Ellis Horwood: Chichester, UK, 1987, p. 145.

6. Mayer, I. Int J Quantum Chem J Chem Phys 1998, 70, 41.
7. Paizs, B.; Mayer, I. Chem Phys Lett 1994, 220, 97.
8. Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int J

Quantum Chem Symp 1979, 13, 225.
9. Paizs, B. Ph. D. thesis, Eötvös Loránd University, Budapest

(1996).
10. Handy, N. C.; Schaefer, H. F., III J Chem Phys 1984, 81, 5031.
11. Helgaker, T.; Jorgensen, P. Theoret Chim Acta 1989, 75, 111.
12. Mayer, I.; Valiron, P. J Chem Phys 1998, 109, 3360.
13. Del Bene, J. E.; Person, W. B.; Szczepaniak, K. J Phys Chem

1995, 99, 10705, and references therein.
14. As the strength of the hydrogen bond decreases the role

of dispersion becomes more important in the interaction.
Because the present DFT functionals are not capable to
describe dispersion forces,15, 16 DFT methods fail to pre-
dict reasonable parameters for the case of weakly bonded
systems.17

15. Kristyán, S.; Pulay, P. Chem Phys Lett 1994, 229, 175.
16. Pérez-Jordá, J. M.; Becke, A. D. Chem Phys Lett 1995, 233,

134.
17. Paizs, B.; Suhai, S. J Comput Chem 1997, 19, 575.
18. Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.;

Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.;
Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.;
Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.;
Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A.
Gaussian Inc.: Pittsburgh, PA, 1992.

19. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.;
Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-
Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman,
J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challa-
combe, A.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.;
Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.;
Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian Inc.:
Pittsburgh, PA, 1995.

20. Paizs, B.; Suhai, S. J Comput Chem 1997, 18, 695.

21. Becke, A. D. Phys Rev A 1988, 38, 3098.

22. Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785.

23. Becke, A. D. J Chem Phys 1993, 98, 5640.

24. Howard, B. J.; Dyke, T. R.; Klemperer, W. J Chem Phys 1984,
81, 5417.

25. Mayer, I.; Túri, U. J Mol Struct (Theochem) 1991, 227, 43.

26. Maerker, C.; Schleyer, P. v. R.; Liedl, K. R.; Ha, T.-K.; Quack,
M.; Suhm, M. A. J Comput Chem 1997, 18, 1695, and refer-
ences therein.

27. Hobza, P.; Sponer, J.; Reschel, T. J Comput Chem 1995, 11,
1315.

28. Pine, A. S.; Howard, B. J. J Chem Phys 1983, 84, 590.

29. Odutola, J. A.; Dyke, T. R. J Chem Phys 1980, 72, 5062.

30. Halkier, A.; Koch, H.; Jorgensen, P.; Christianses, O.; Beck
Nielsen, I. M.; Helgaker, T. Theor Chem Acc 1997, 97, 150,
and references therein.

31. Reimers, J.; Watts, R.; Klein, M. J Chem Phys 1982, 64, 95.

32. Szczesniak, M. M.; Scheiner, S.; Bouteiler, Y. J Chem Phys
1984, 81, 5024.

33. Legon, A. C.; Millen, D. J. Faraday Discuss Chem Soc 1982,
73, 71.

34. Legon, A. C.; Millen, D. J.; North, J. M. Chem Phys Lett 1987,
135, 303.

35. Dunning, T. H., Jr. J Chem Phys 1989, 90, 1007.

36. Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J Chem
Phys 1992, 96, 6796.

37. Woon, D. E.; Dunning, T. H., Jr. J Chem Phys 1993, 98, 1358.

38. Paizs, B.; Salvador, P.; Császár, A. G.; Duran, M.; Suhai, S.,
submitted for publication.

39. Peterson, K. A.; Dunning, T. H., Jr. J Chem Phys 1995, 102,
2032.

40. Feller, D.; Glendening, E. D.; Kendall, R. A.; Peterson, K. A.
J Chem Phys 1994, 100, 4981.

41. Xantheas, S. S. J Chem Phys 1996, 104, 8821.

42. Mayer, I., private communication.

786 VOL. 22, NO. 7


	Introduction
	Computational Details
	Results
	TABLE I.
	TABLE II.
	FIGURE 1.
	FIGURE 2.
	FIGURE 3.
	TABLE III.
	TABLE IV.
	FIGURE 4.
	FIGURE 5.

	Structures Optimized Using Dunning's aug-cc-pVDZ and aug-cc-pVTZ Basis Sets
	FIGURE 6.
	FIGURE 7.
	TABLE V.
	TABLE VI.
	TABLE VII.
	TABLE VIII.
	TABLE IX.
	TABLE X.

	Conclusions
	Acknowledgments
	References

