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On the effect of the molecular diffusivity in 
turbulent diffusion 

By P. G. SAFFMAN 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge 

(Received 3 October 1959) 

It is shown that the dispersion of a substance, with molecular diffusivity K, in a 
stationary, homogeneous, turbulent velocity field can be formulated in terms of 
a ‘substance auto-correlation function ’, this being a generalization of the well- 
known Lagrangian correlation between the velocity of a fluid particle at  different 
times. It is found that the interaction between the molecular diffusion and the 
turbulent motion reduces the dispersion from the value it would have if the 
processes of molecular and turbulent diffusion were independent and additive. 
The conflict, between the results obtained in this paper and previous results which 
implied that the interaction increases the dispersion, is resolved. The ratio, of the 
contributions to the dispersion from the interaction term and the turbulent 
diffusion term, is obtained for comparatively large times by the use of intuitive 
arguments, and is found to be inversely proportional to the Prandtl number and 
a Reynolds number of the turbulence. 

1. Introduction 
Taylor (1921) showed that the mean-square displacement or dispersion, in a 

given direction, of infinitesimal fluid particles from their original position in a 
turbulent velocity field is 

Y2(t) = 2 [ dt’ [ v(t’) v(t”) dt”, 

where v( t )  is the velocity of a fluid element or particle in the given direction. The 
integrand 

v(t‘) v(t”) = B&’, t ” ) ,  say, 

is the covariance of the velocity of a fluid element at  time t“ and later time t ‘ ,  and 
is a Lagrangian auto-correlation function. When the velocity of a fluid element is 
statistically stationary in time, 

RP(t” t ” )  = vaAS,(t’ - t ” )  (1.3) 

and 

(see the review article by Batchelor & Townsend (1956); this is referred to here- 
after as I). 
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274 P. G. Suffman 

When the quantity or substance being dispersed is subject to molecular 
diffusion (e.g. mass or heat) with a diffusivity K ,  it can be shown (see I) that, 
provided t - to is sufficiently small that 

t - t o  < (2)-&, - K ( t  - t o )  < (,a)-&, 
V 

the effects of turbulent and molecular diffusion are linearly additive in the first 
approximation, giving a total dispersion 

D2 = F + 2K(t - to), (1.6) 

where o is the vorticity of the turbulent motion and v is the kinematic viscosity. 
(Henceforth, for brevity, we shall write w = (c2)&.) For larger values of t - to,  
there is an interaction between the turbulent and molecular diffusion. Arguments 
are presented in I (due originally to Townsend 1954) which give the improved 
approximation 

to O(t for times such that (1.5) is satisfied. That is, the effect of the inter- 
action is initially, and by implication for later times, to increase the dispersion 
over and above that due to the turbulent and molecular diffusions acting 
independently. 

It is the purpose of the present note to show that there is a fallacious step in the 
deduction of (1.7) ,and that in fact for stationary homogeneous turbulence 

(1.8) 

to O(t - when (1.5) is satisfied. Intuitive arguments are also given to show 
that, for larger values of t - to, A is a decreasing function of t - to and inversely 
proportional to the Prandtl number V / K .  This is in qualitative agreement with 
measurements by Mickelsen (1960) of the width of the diffusion wake behind a 
source emitting helium (K  = 0.725 cm2/s) and carbon dioxide ( K  = 0.167 cm2/s) in 
the turbulent air stream downstream of a grid in a wind tunnel. He found for 
values of t - to comparable with a time characteristic of the energy containing 
eddies that the values of D2 - 2 ~ ( t  - to) were 5 yo or more smaller for helium than 
for carbon dioxide. 

- 
(1.7) A = D2 - Y 2  - 2 ~ ( t  - to)  = S.KW~(~ - 

A = - & K W ~ ( ~  - t J 3  

2. The substance auto-correlation coefficient 
The reason why the dispersion of a substance differs from that of infinitesimal 

fluid particles is because the molecules of the substance do not move with the 
velocity of the fluid continuum (which can be regarded as a continuous function 
of position and time), but have relative to this velocity il random thermal or 
Brownian velocity, whereas the infinitesimal fluid particles are points which by 
definition move with the local fluid velocity. When the fluid velocity is zero, this 
Brownian velocity manifests itself as the molecular diffusivity. 

The dispersion of a mass-like substance released from a source in a turbulent 
flow (e.g. a gas in a turbulent air stream) is the ensemble or stochastic average of 
the displacement (squared) of a marked molecule of the substance, where the 
average is over the ensemble of all Brownian motions and the ensemble of all 
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On the effect of the molecular diffwivity in turbulent diffwion 275 

realizations of the turbulent velocity field. The velocity of the molecule in a given 
direction is V(t )  + q(t), where V ( t )  is the velocity of the fluid at the point occupied 
by the molecule and q(t) is the Brownian velocity. Hence, by analogy with (1.1), 

where 

t’ 

P ( t )  = 2 c‘ dt’ [ %(t’, t”)dt”, (2.1) 

the angle brackets denoting an average over the Brownian ensemble and the 
overbar an average over the turbulent ensemble, and V(t)+q(t)  is the total 
(component of) velocity at time t of a marked molecule released from the source, 
at xo say, at time to. 

In  the absence of fluid velocity, in a homogeneous medium, q(t) is a stationary 
random function o f t  with zero mean, so that 

(q(t’) q( t”))  = Q(t’ - t”), (2.3) 
and since in this case D2 = 2K(t - to), it  follows (see (1.3) and (1.4)) that 

s,” = K, (2.4) 

where K is the molecular diffusivity. Moreover, it is known that Q(7) is negligible 
when 7 B T,, where 7, is the mean time between molecular collisions, so that (2.4) 
holds when the upper limit of integration is any time large compared with 7,. 

We now suppose that the ambient fluid is in turbulent motion, and in particular 
we shall assume that the turbulence is statistically stationary and homogeneous*. 
In  this case, q(t) + V ( t )  is a stationary random function of t  with zero mean, and 
% is a function oft‘ - t” ,  i.e. 

W’, t”) = (0 + a@)} { V(t  + 7) + d t  + 7))) (2.5) 

= W), say, 

where 7 = t‘ - t”. Then D2 is given by (1.4) with V”S, replaced by 6. 
Now the statistical distribution of q(t) is determined by the molecular collisions 

with a time scale 7,) whereas the time scale of the macroscopic motion is at least 
of order w - ~ .  Now WT, < 1, since otherwise it is not meaningful to regard the fluid 
as a continuum, and since the two time scales are so different, the Brownian 
motion and the macroscopic motion will be statistically uncorrelated (for a fuller 
discussion of this point see the Appendix). Hence, with error of order WT,., 

- 

= V 2 5 d ( 7 )  + Q(7),  say, (2 .6 )  

where Q(7) has the value it would have in the absence of  fluid motion, a n d 2  is the 
mean square of  a component of the turbulent velocity. It now follows that 

(2.7) 

* It can be shown that the analysis given below is valid if the turbulence is homo- 
geneous in the direction of the dispersion only (e.g. longitudinal dispersion in a pipe). 
However, for the sake of simplicity of exposition, we restrict the discussion to completely 
homogeneous turbulence. 
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276 P. G. Saffman 

and it can be shown (see the Appendix) that the error in (2.7) is of order 
KwT,(t - to). Sd(7) may be called the 'substance auto-correlation coefficient '. 

Note that &(T) + X P ( 7 ) ,  since the former is the correlation coefficient of the 
fluid velocity at two points which lie on the trajectory of a molecule, and the 
latter is the correlation a t  two points on the trajectory of an infinitesimal fluid 
particle. 

An expression for Sd(7) can be obtained as follows. Let B(x, t 1 xo, to) denote the 
solution of ae -+u.ve at = 

(It is assumed throughout that the substance is dynamically passive so that the 
distribution of B has no effect on the turbulent velocity field u(x, t).) Then Bdx is 
the probability, for one realization of the turbulence, that a marked molecule is 
in the element of volume dx at time t ,  given that it was a t  xo at time to. Let 
u,(x,t) be the turbulent velocity component in the same direction as V .  Then 
V(t0) = %$%J,tO), and 

( V ( t ) )  = /a2(.' t )  @(x, t I xo, to)dx, (2-9) 
- 

so that V 2 8 d ( 7 )  = W(t) V(t0))  

(2.10) 

where t = tO+7. In  the next section, we shall calculate Sd(7) for small 7, and in 
5 5 obtained an estimate of its value for large 7.  

Incidentally, to put K = 0 is equivalent to saying that q = 0 and that a molecule 
and an infinitesimal fluid particle always coincide. In  this case, V(t)  = v(t), where 
v(t) refers to the velocity of a fluid particle (in contrast to V( t )  which is the velocity 
of the fluid following a molecule), and Sd(7) = SP(7). 

The expression (2.7) for Da involves only the fluid velocity and the molecular 
diffusivity K ,  and should presumably describe the dispersion of a non mass-like 
quantity like heat, whose diffusion is not readily identifiable with the dispersion 
of a marked molecule. This could be verified if it were possible to derive (2.7) and 
(2.10) from formal manipulation of the diffusion equation (2.8) and the expression 

02 = x;oax, s 
but an argument given in the Appendix implies that this may not be possible. 

3. Calculation of &(7) for small 7 
When the second of the conditions (1.5) is satisfied, the size of an element of 

substance released at x,, to is small compared with the length scale of the rotational 
and straining motions of the turbulence. The diffusion equation (2.1) for 
B(x, t I xo, to) can then be written approximately as 
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O n  the eJfect of the molecular diffwivity in turbulent diffusion 277 

where x’ is the position vector relative to the fluid particle with which the element 
of substance originally coincided, and the suffix p denotes that quantities are 
evaluated at the fluid particle (and are therefore functions oft  only). It is easily 
verified that a solution of (3.1) exists of the form 

B = B,(t) exp { - +air 2; xi} 

(see Townsend 1951), and that 

To evaluate S,, we note that 

u2(x, t )  = v(t) +x’. 3 (”) -2 ax* , + &x’.x’ 3 ( &*axk a 2 u 2 )  , +o(r’33),  (3.4) 

where w(t) is the (component of) velocity of the fluid particle which was at xo at 
time to. Substituting into (2.9) and making use of (3.2), (3.3) and (3.4), we obtain 

(v(t)) = v(t)+K(t--o) (V2U2),[1 +O{w(t-to)}] .  

V28d(t, to) = i%,(t, to)  + K ( t  - to) V(to) (V2u2), [1 + o{w(t - to)} ] .  

(3.5) 

(3.6) 

Hence, from (2.10) and the fact that V(to)  = * ( to) ,  
- 

The second term in (3.6) arises from the interaction, but it involves what is 
essentially a Lagrangian-Eulerian correlation. However, if t - to is small com- 
pared with w-l ,  then 

v(t0) (V2U,), + u,v2u,, (3.7) 

since V2u, is determined by the small-scale components of the turbulence which 
have a time scale w-l, and the time scale of v(t) will be that of the energy con- 
taining eddies. Moreover, 

u2 v2u, = v . (U2VUZ) - (Vu2)2; 

where the first term is zero when the small-scale motion is homogeneous, and 

(VU2)2 = QwZ 
if it  is also isotropic. 

It now follows from (3.6) that, 
1 KW2 

Xd(7) = S,(T) - - -7 + O(T2), (3.8) 

0’ = Y 2 f 2 K ( t - t o ) - ~ K W 2 ( t - t o ) 3 ,  (3.9) 

v2 
and substitution in (2.7) then gives 

- 

correct to order (t  - The initial effect of the interaction between the turbu- 
lence and the molecular diffusion is thus to reduce the dispersion relative to  the 
origin. * 

In  view of the fact that this conclusion differs from that reached previously, it  
is perhaps worthwhile repeating qualitatively the present argument. An element 

* Since we are concerned here with the initial stages of the diffusion, it would in fact 
suffice for the present argument if only the small-scale components of the turbulence were 
stationary and isotropic. 
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of substance spreads initially due to molecular diffusion like S = {.(t - to)}&. The 
order of magnitude of the difference between the velocities with which different 
parts of the element are convected is &(&,/ax) + +32(a2u2/ax2) +smaller terms. For 
homogeneous turbulence, the covariance of u2 and au2/ax is zero, but that of u2 
and a2u,/ax2 is negative. Thus on average, the speed at  which the substance is 
convected away from the source is less than that of the (originally coincident) 
fluid particle, and the dispersion is thereby reduced. 

Another way of phrasing the argument is to note that from (3.8) IS’~(T) < SP(7), 
at least initially. That is, the effect of molecular diffusion is, so to speak, to make 
the molecules of the diffusing substance forget more quickly than infinitesimal 
fluid elements what their original velocity of convection was. Since we should 
intuitively expect this effect to become more marked as T increases, we conclude 
that SJS, is a decreasing function of T ,  and that A continues to decrease as t - to 
increases.* We shall return to this point in $ 5. 

It remains to discuss why the results given here differ from those obtained in I 
by a somewhat different analysis. Light is thrown on this by consideration of 
the dispersion of a small amount of the substance released instantaneously, i.e. 
a spot. 

4. Dispersion of a spot 
A corollary of the present argument is that the centroid of the spot will lag 

behind, on average, the fluid particle released at the same instant. To calculate 
by how much, we multiply (2.8) by y and integrate over all space, obtaining 

where yp and v are the displacement and velocity of the fluid particle. To the same 
order of approximation as in $3,  the right-hand side of (4.1) can be evaluated to 
give 

(u2 - v) Bdx = K ( t  - to) (V2U2),. (4.2) s 
The left-hand side of (4.1) is the rate of change of the distance (in the y-direction) 
between the centroid of the heat spot and the fluid particle. The displacement of 
the centroid relative to the origin is therefore Y + &c(t - to)2 (V2u2),, correct to 
order (t  - to)2. Since Y = v(to) (t - to) for small values of t - to, it follows that the 
dispersion of the centroid is, relative to the point of release, 

F - QKW2(t - t0)3, (4.3) 

where F2 is the dispersion of the fluid particle. 
Moreover, it is easy to calculate the shape of the spot for small values of t  - to 

(see Townsend 1951), and it follows from his results that the dispersion in a given 
direction of the heat spot relative to its centroid is 

2K(t - to) f$K( t  - (2 +p” f F), (4.4) 

* A very similar argument was put forward independently by Dr T. H. Ellison in a 
private communication in 1956. 
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On the effect of the molecular diffwivity in turbulent diffusion 279 

where a, B and y are the principal rates of strain, and a2 +p2 + y2 = +w2. Notice 
that the interaction term in (4.4) is positive, so that the interaction increases the 
dispersion of the spot relative to its centroid and, as a consequence, increases the 
rate at which the maximum concentration in the spot deoreases, as was verified 
experimentally by Townsend (1951). However, combining (4.4) and (4.3), we find 
that the dispersionof the spot relative to the point of release is given by (3.9). That 
is to say, although the dispersion of the spot relative to its centroid is increased by 
the interaction, the dispersion of the centroid of the spot is reduced by a greater 
amount so that the total dispersion relative to the point of release is reduced. 

We can now account for the difference between the present result and that given 
previously in I. In that work, the width of the contorted diffusing wake behind 
a continuous source moving (rapidly) through a turbulent velocity field was 
calculated, and it was shown that the effect of the interaction is to make this 
greater than 2 ~ ( t  - to). The present work in no way contradicts this result. How- 
ever, it was tacitly assumed in the previous work that the instantaneous axis of 
the diffusing wake coincides with the locus of the fluid particles coming from the 
source. The present work shows that this assumption is unjustified, and that on 
average the displacement of the instantaneous axis is less than that of the fluid 
particles by an amount which more than compensates for the increase in the 
instantaneous wake width due to the interaction. 

_ - -  

5. The interaction for large times 
All the available evidence indicates strongly that Pcc (t - to) when t - to is 

comparable with t,, a time characteristic of the energy containing eddies, and 
that we can write - 

(5.1) 

where C is a constant of order unity. (For definiteness, we may suppose t, is given 
by vw2t,/v2 = 3; then for the decaying homogeneous turbulence downstream of a 
grid t, = to, where to is the time from a vertical origin at which the energy of the 
turbulence is infinite.) The expression (3.9) can be written 

Y2 N CPt,(t - to), 

- 

and is therefore clearly of limited value since it becomes negative as t - &increases. 
In  fact, (5.2) is unlikely to hold far outside its theoretical range of validity as 
given by (1.5). This is in practice so small (see I) that it is desirable to make an 
estimate of D2 for larger values of t  - to. The following discussion is intuitive and 
somewhat speculative, but seems worth giving in the absence of anything better, 
and the conclusions should be amenable to experimental investigation. 

We still consider stationary, homogeneous turbulence, although later we shall 
apply the conclusions to cover decaying homogeneous turbulence behind a grid. 
The general argument presented at the end of $3 shows that X,(r) > Sd(r), and 
moreover the argument implies that XJS, is an increasing function of r. Now this 
ratio is determined primarily by an interaction between the molecular diffusion 
and the small-scale straining motions, so that when r 9 w1 the interaction will 
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cease to have any further effect and S,/S, should tend to a value independent ofr. 
We can express this argument formally as follows. 

It follows from (2.10) that 

3&) - X P ( 7 )  = (v")-l O{u2 - v( t )}  v(to) ax, (5.3) s 
where 7 = t -to. Now the value of O{u, - w ( t ) }  is determined mainly by the small- 
scale motion, whereas v( t )  is determined by the energy containing eddies, which 
suggests that 

when the Reynolds number of the turbulence is sufficiently large, where the term 
with the overbar is determined mainly by the molecular diffusivity, the rate of 
strain, and 7.  Hence, from dimensional considerations, 

(5.4) 

where f (w7)  is a positive increasing function of 7 to express the idea that the inter- 
action continues to grow with 7.  When 7 9 w-l , f (w7)  either tends to a constant or 
infinity; the latter is impossible since it would make D2 negative, so we come to 

(5.5) 

Sd(7) - sp(7) = - (.")-'3,(7) K#f(W7), 

the conclusion that sd(7) - #,(7) = - a K w ( 3 ) - 1  3,(7) 

when w7 + 1, where a is a (positive) constant, of order unity, depending on the 
structure of the turbulence. 

The relation (5.5) suggests that an appropriate expression valid for ail 7 is 
- 

Sd(7) - S,(7) = - aKw(w2)-l S,(7) (1 - e--bm7} ( 5 - 6 )  

which agrees with (3.8) for wr 4 1 if ab = a, and reduces to (5 .5)  when w7 9 1. 
The derivation of (5 .5)  or (5.6) is intuitive and far from watertight, but the 

argument is supported by the fact that these expressions have the properties 
which we should intuitively associate with S, - S,; e.g. the contribution to the 
interaction from the energy containing eddies is independent of the contribution 
from the small-scale motion, and the greater K and w ,  the greater the interaction. 
(Moreover, multiplying (5.5) or (5.6) by any function with a time scale comparable 
with t,, to take account of any possible effect of the energy containing eddies on 
the interaction in addition to that represented by S,(r), can be shown to have 
insignificant effect .) 

It now follows from substitution into (2.7) that, for w(t  - to) 1, 

Y2 K -  
A = -am= = --a J15- RylYz, (5.7) 

V 2  V 

where RA is the Reynolds number based on (<)* and the dissipation length para- 
meter h = ,/( 15v"/w2). Thus A / F  is inversely proportional to the Prandtl number 
and RA. The ratio of I A I and the direct effect of molecular diffusion is 

where we have used (5.1) for F. Thus if the Reynolds number of the turbulence is 
sufficiently large, the direct effect of molecular diffusion is small compared with 
the interaction term. 
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For decaying homogeneous turbulence downstream of a grid, it is known that 
R, is constant during the initial period of decay, and that 

10 U M  
Rz”=;?.-j-, (5.9) 

where U is the mean velocity, M is the spacing length of the grid, and A is a 
constant depending on the grid shape ( A  = 135 for the grids employed by 
Mickelsen 1960). We can therefore obtain an estimate of a from the data presented 
in figure 2 of his paper. Taking a rough mean of his measurements for 

(t  - to)/to > 0.6, 

we obtain (neglecting one pair of points which appear inconsistent and which may 
be due to experimental error) 

for R, = 20 

= 0.07 for R, = 40, 

whereas (5.7)predictsthat thisratio should be 13*5a/R,. Theexperimentalmeasure- 
ments are therefore in rough quantitative agreement if a = 0.23. Incidentally, 
for these comparatively low values of R,, the interaction and the direct effect of 
molecular diffusion are of the same order of magnitude. 

.__.___ 
Appendix 

We shall now discuss the covariances (q(t) V ( t  + 7)) and (q(t + 7) V( t ) ) ,  which 
are functions of r .  Let p(x, q,  t I xo, to) denote the probability, for t - to % r, and for 
one realization of the turbulence, that a marked molecule of the substance is in 
the element of phase space dxdq,  given that it was at xo at time to with Brownian 
velocity go, where the function p is a random variable over the ensemble of the 
possible turbulent motions. The assumption of the independence of the Brownian 
and macroscopic velocities is here made use of explicitly by saying that p is 
independent of qo when t - to 9 7,. We have 

m, t I xo, to) = 24% q, t 1 xo, to> dq ,  (A 1) 1 
where 19 is the solution of the diffusion equation (2.8), and moreover 

where the suffix i denotes the component in the i-direction. 
Iff is any function of the marked molecule, 

and 

since the turbulence is homogeneous and an average over the turbulent ensemble 
is equivalent to integrating with respect to xo over a large region of space. 
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282 P. G. flnflrnan 

It now follows that 

(q&)) = - K jg dx = 0, 

~ __ 
and that (4i(t)) = -(W) = 0- 

The covariances are given by (no summation implied and writing t’ = t + 7 )  

= -KSSUi(X’,t’)B(x’,t‘/ x,t)-@(x,t a IX0,tO)dXdX’, 
axi 

and 

(A 5) 
= - r j / ~ B ( x ‘ , t ’ ~ x , t ) ~ ~ ( x , t ) B ( x , t  a Ixo,to)dxdx’, 

where we have made use of (AI)  and (A2). We note that (A5) is zero, since the 
integral with respect to x’ vanishes, but that (A4) is not in general zero for one 
particular realization of the turbulence. (The physical interpretation of this 
result is that, by (AZ), the value of qi at a point x is correlated with x if the mole- 
cule has come from xo, and the continuum velocity at x’ is also correlated with x.) 
However, the average of (A4) over the turbulent ensemble vanishes since 

Hence (dropping the suffix i) 

(d t )  Y( t  + 7 ) )  = ( d t  + 7 )  V( t ) )  = 0, 

provided, of course, 7 2- 7c. 

If this last condition is not satisfied, the covariances will not in general vanish. 
We can obtain an estimate of this effect as follows. The covariance does not vanish 
in a time of order 7, because the molecule still remembers, so to speak, that it has 
come from a region where the fluid velocity differed by an amount of order ho, 
where h is the mean free path. (It is only differences in the fluid velocity that 
matter.) Thus, 

where ?j is the root-mean-square Brownian velocity and f is dimensionless, and 
similarly for the other covariance. A contribution of this type to G(7) gives a 
contribution to D2 of amount 

( V ( t )  P(t + 7 ) )  = hW?jf(7/7,), 

2h@7~*(t - jomf(t) dc, 

when t - to % 7,. Remembering that hi j /~  = O( I) ,  we see that this is negligible 
compared with 2 ~ ( t  - to) ,  the direct effect of molecular diffusion. Similarly, the 
difference between (q( t )  q(t + 7 ) )  and the value it would have in a fluid at rest gives 
rise to an effect of the same order of magnitude. 
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On the effect of the molecular diffmivity in turbulent diffwsion 283 

Finally, a comment seems appropriate on the difficulty of deriving the expres- 
sion (2.7) from formal manipulation of the diffusion equation. The point seems to 
be that theein (2.10)isreallyaprobability, whereastheein thediffusionequation 
is a concentration. The two are the same only if WT, < 1, and so it appears that 
formal manipulation of the diffusion equation, without explicit use in some way 
(not yet clear) of the condition w7, < 1, will not give (2.7). 

I wish to thank Dr T. H. Ellison for the benefit of a lengthy correspondence, in 
which a fallacy in earlier arguments, in particular the non-vanishing of the 
covariance (q( t )  V( t  + T ) ) ,  was made clear to me. 
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