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On the Effective Stiffness of Plates

made of Hyperelastic Materials with Initial

Stresses

H. Altenbach a,∗, V.A. Eremeyev b

aMartin-Luther-Universität Halle-Wittenberg, D - 06099 Halle (Saale), Germany
bSouth Scientific Center of RASci & South Federal University,

Milchakova str. 8a, 344090 Rostov on Don, Russia

Abstract

Within the framework of the direct approach to the plate theory we consider the
infinitesimal deformations of a plate made of hyperelastic materials taking into
account the non-homogeneously distributed initial stresses. Here we consider the
plate as a material surface with 5 degrees of freedom (3 translations and 2 rota-
tions). Starting from the equations of the non-linear elastic body and describing
the small deformations superposed on the finite deformation we present the two-
dimensional constitutive equations for a plate. The influence of initial stresses in
the bulk material on the plate behavior is considered.

Key words: Nonlinear elasticity, Prestressed material, Plate theory, Initial
stresses, Foam

Introduction

Thin-walled engineering structures made of hyperelastic porous materials,
such as polymer foams, have different applications in the last decades [1–
4]. A polymer foam is a cellular structure consisting of a solid polymer, for
example polyurethane, etc., containing a large volume fraction of gas-filled
pores. There are two types of foams. One is the closed-cell foam, while the
second one is the open-cell foam. The defining characteristics of foams is the

∗ Corresponding author.
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eremeyev.victor@gmail.com (V.A. Eremeyev).
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very high porosity: typically well over 80%, 90% and even 98% of the volume
consists of void spaces. The porosity and the topology of a foam determine
the other properties, such as for example, Young’s modulus, etc.

Polymer foams may demonstrate very large elastic strains. Hence such foams
may be considered as a non-linear hyperelastic material. Different models al-
lowing the description of large hyperelastic deformations of foams are proposed
in the literature [3,4]. The existing models of foams may be classified as fol-
lows. The first type of models bases on the detailed considerations of the foam
cell deformation taking into account the cell structure, the properties of cell
walls and struts, the pressure change in the closed cells, etc., see [3–9] among
others. The famous Kelvin model of foam belongs to this type. On the other
hand the computational efforts may be significant and there is hard to es-
tablish experimentally the real material properties of cells. The second class
of models use the description of a foam as the continuum media. Within the
framework of this type models, one takes into account the structure of foam
cells, the solid material and gas properties and other parameters in the con-
stitutive equations at whole. The Ogden’s material model is applied for the
finite deformations of hyperelastic foams, see [4] and [10–17]. Both types of
models of hyperelastic foams have advantages and disadvantages. Further we
apply the second approach using the Ogden’s material model of hyperelastic
material for the moderate large strain and for the low level of stress field.

There are many plate-like engineering structures made of foams, for example
sandwich plates with a core made of foam, laminates, etc., see [3,4] for details.
Within the framework of the theory of plates and shells [18–23] the theory of
elastic plates with nonhomogeneous distribution of the porosity (functionally
graded plates) is developed in [24] while the theory of viscoelastic plates is
presented in [25,26], see also [27].

For the structures under consideration the initial stresses may influence on
the plate behavior. The mechanics of the prestressed three-dimensional solids
is developed in numerous papers and books, see [13,28–32] among others. The
aim of this paper is to extend the results of [24] to plates made of material
with internal stresses using the theory of small deformations superposed on
finite deformation presented in the mentioned works. Let us note that the
Kirchhoff–Love linear theory of shells made of prestressed material was earlier
developed in a number of papers, see for example [30,33–36]. Here we consider
the theory of plates taking into account the transverse shear deformations like
in the theories proposed by Reissner [37,38] and Mindlin [39], see also the
review [40].

The paper is organized as follows. In Sect. 1 we recall the basic equation
of the three-dimensional theory of nonlinear elasticity. We present here the
governing equations describing the infinitesimal deformations of a prestressed
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body. Further in Sect. 2 we consider the linearized equilibrium equations of
a three-dimensional plate-like body with the initial stresses depending on the
thickness coordinate. In Sect. 3 we give the statement of the two-dimensional
boundary-value problems for the linear plate theory.

1 Basic equations of 3D non-linear elasticity

Following [13,29–32] in this section we present the general equations governing
small (incremental) deformations superimposed on a finite homogeneous defor-
mation in an compressible elastic material. The Eulerian equilibrium equations
of the non-linear body are given by the relations

div 𝝉 + 𝜌𝒇 = 0, 𝝉 = 𝐽−1F ⋅ S, S =
∂𝑊

∂F
, (1)

where div is the divergence operator in the actual configuration 𝜒, 𝝉 the
Cauchy stress tensor, S the 1st Piola-Kirchhoff stress tensor, 𝜌 the material
density in the actual configuration, 𝒇 the body force vector per unit mass,
𝑊 the strain-energy function (per unit volume), 𝐽 = detF, and F is the
deformation gradient defined as in [13]. Note that here we use the notation
A ⋅𝒂 and A ⋅B for the second-order tensors A and B, and a vector 𝒂 instead of
the alternative way A𝒂, and AB, respectively. Further we assume the isotropic
behavior of the material, so we use the constitutive equation in the following
form:

𝑊 = 𝑊 (𝐼1, 𝐼2, 𝐼3), (2)

where 𝐼1, 𝐼2, 𝐼3 are the principal invariants of the left Cauchy-Green deforma-
tion tensor b = F⋅FT or the right Cauchy-Green deformation tensor c = FT⋅F,
defined by

𝐼1 = trb = tr c = 𝜆21 + 𝜆22 + 𝜆23,

𝐼2 =
1

2
[tr 2b− trb2] =

1

2
[tr 2c− tr c2] = 𝜆21𝜆

2
2 + 𝜆22𝜆

2
3 + 𝜆21𝜆

2
3,

𝐼3 = detb = det c = 𝜆21𝜆
2
2𝜆

2
3.

Here 𝜆1, 𝜆2, 𝜆3 are the principal stretches, tr denotes the trace of a second-
order tensor, and (. . .)T denotes transposed. 𝜆1, 𝜆2, 𝜆3 may be also considered
as the arguments of the strain function 𝑊 :

𝑊 = 𝑊 (𝜆1, 𝜆2, 𝜆3).

3
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For the isotropic material S and 𝝉 are given by the relations

S = 2
∂𝑊

∂c
⋅ FT = (𝑓0c

−1 + 𝑓1I + 𝑓2c) ⋅ FT,

𝝉 = 𝐽−1F ⋅ S = 𝑓0I + 𝑓1b + 𝑓2b
2,

(3)

where I is the unit second-order tensor, 𝑓0, 𝑓1, 𝑓2 are functions which may be
expressed as combinations of the partial derivatives of 𝑊 with respect to 𝐼𝑖
or 𝜆𝑖, see [13,29,30] for details.

For the description of the non-linear behavior of polymeric foams the following
constitutive equation is widely used [4]

𝑊 =
𝑁
∑

𝑖=1

2𝜇𝑖
𝛼2
𝑖

[

trb𝛼𝑖/2 − 3 +
1

𝛽𝑖

(

detF−𝛼𝑖𝛽𝑖 − 1
)

]

=
𝑁
∑

𝑖=1

2𝜇𝑖
𝛼2
𝑖

[

𝜆𝛼𝑖

1 + 𝜆𝛼𝑖

2 + 𝜆𝛼𝑖

3 − 3 +
1

𝛽𝑖

(

𝐽−𝛼𝑖𝛽𝑖 − 1
)

]

,

(4)

where 𝜇𝑖, 𝛼𝑖, 𝛽𝑖 are the elastic moduli (𝑖 = 1 . . . 𝑁). Here

𝜇 =
𝑁
∑

𝑖=1

𝜇𝑖

𝜇 denotes the initial shear modulus, while the initial bulk modulus 𝑘 is given
by

𝑘 =
𝑁
∑

𝑖=1

2𝜇𝑖

(

𝛽𝑖 +
1

3

)

.

The model (4) was originally proposed by Ogden [11,12], see also [4,16,10,17,15]
among others, where Ogden’s model is used. For some special choice of the val-
ues 𝜇𝑖, 𝛼𝑖, 𝛽𝑖 and 𝑁 , Ogden’s strain function𝑊 reduces to various others mod-
els applied in the nonlinear elasticity (neo-Hookean, Varga, Mooney–Rivlin,
Blatz–Ko constitutive equations, etc.).

Using the identity Div (𝐽−1F) = 0 we transform Eqs (1) to the Lagrangian
form

DivS + 𝜌0𝒇 = 0, (5)

where Div is the divergence operator in the reference configuration, and 𝜌0
the density in this configuration.

Let us consider the equilibrium equations of a prestressed body. In other words,
we introduce the small deformations superposed on the finite deformation. Let
𝒙 be the known position vector in the actual configuration 𝜒 while 𝒙 + 𝒘 is
the position vector in another actual configuration 𝜒★ which differs from 𝜒 by
the infinitesimal vector 𝒘.

4



A
cc

ep
te

d m
an

usc
rip

t 

The linearization of Eq. (5) results in [13,29–32]

DivS★ + 𝜌0𝒇
★ = 0, (6)

where

S★ =
∂2𝑊

∂F∂F
⋅ ⋅F★T, F★ = Grad𝒘,

and Grad is the gradient operators in the reference configuration, 𝒇 ★ is the
small additional body force acting in the actual configuration 𝜒★, and ⋅⋅ is the
double dot (inner) product.

The Lagrangian linearized equilibrium equation (6) may be transform to the
Eulerian form

divΘ + 𝜌𝒇 ★ = 0, (7)

where Θ is the linearized stress tensor given by formulas [29,31]

Θ = 𝐽−1F ⋅ S★.

For example, let us consider the derivation procedure of S★ and Θ for the
special case of (4) with 𝑁 = 1, 𝛼1 = 2, 𝜇1 = 𝜇, 𝛽1 = 𝛽. Here we have the
constitutive relations

𝑊 =
𝜇

2

[

tr c− 3 +
1

𝛽

(

𝐽−2𝛽 − 1
)

]

,

S = 𝜇F𝑇 − 𝜇𝐽−2𝛽F−1, 𝝉 = 𝜇𝐽−1b− 𝜇𝐽−2𝛽−1I.

(8)

Using the latter relations and the formula 𝐽★ = 𝐽div𝒘 we established the
following relations for S★ and Θ

S★ = 𝜇F★𝑇 + 𝜇𝐽−2𝛽F−1 ⋅ F★ ⋅ F−1 + 2𝜇𝛽𝐽−2𝛽(div𝒘)F−1,

Θ = 𝜇𝐽−1F ⋅ L𝑇 ⋅ F𝑇 + 𝜇𝐽−2𝛽−1L + 2𝜇𝛽𝐽−2𝛽−1(div𝒘)I,

L = F★ ⋅ F−1 ≡ grad𝒘.

(9)

Here grad is the gradient operators in the actual (𝜒) configuration. Note that
for the case F = I Eqs (9) reduce to the Hooke’s law

S★ = Θ = 2𝜇𝜺 + 2𝛽𝜇Itr𝜺, 𝜺 =
1

2
(L + L𝑇 ).

The equilibrium equations (7) or (6) describe the prestressed solid deformable
body as a result of infinitesimal deformations. From this point of view one
may consider the relations Θ = Θ(L) or S★ = S★(F★) as the constitutive
relations of the prestressed body. Of course, Θ and S★ depend also on the

5
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𝑧

𝒆1

𝒆2

𝒆3

𝑥

ℎ

𝑦

ℳ

Fig. 1. 3D plate-like body

initial deformation gradient F. Let us note that in the general case the tensors
Θ and S★ are non-symmetric. That means that these “constitutive equations”
differ from the Hooke’s law of the linear elasticity. On the other hand such
symmetry may be established for the special cases of initial strain or stress,
see [29]. This model of prestressed body includes also the induced anisotropy
effects because the tensor of instantaneous elastic moduli may corresponded
to an anisotropic body.

2 Equilibrium equations for prestressed plate-like body

Let us consider the prestressed plate-like body which occupies the volume
𝑉 = {(𝑥, 𝑦, 𝑧) : (𝑥, 𝑦) ∈ 𝑀 ⊂ ℝ

2, 𝑧 ∈ [−ℎ/2, ℎ/2]}, where ℎ is the plate-
like body thickness, Fig. 1. We assume that the body is nonhomogeneous in
𝑧-direction, i.e. 𝑊 depends on 𝑧

𝑊 = 𝑊 (𝐼1, 𝐼2, 𝐼3, 𝑧)

and the initial stretches depend only on 𝑧:

𝜆1 = 𝜆2 = 𝜆(𝑧), 𝜆3 = 𝜆3(𝑧).

The principal Cauchy stresses 𝜏1, 𝜏2, 𝜏3 can be calculated according to the
formula [13,31]

𝜏𝑖 = 𝐽−1𝜆𝑖
∂𝑊

∂𝜆𝑖
(𝑖 = 1, 2, 3),

which also depend only on 𝑧. If the body forces and the surface loads are
consistent with these assumptions then the initial state describes the axial-
symmetric deformations of the nonhomogeneous plate-like body.

Let us consider the constitutive equation Θ = Θ(L) or S★ = S★(F★) for such
initial state of a plate-like body. The tensors b and c are given by

b = c = 𝜆2(𝑧)(𝒆1𝒆1 + 𝒆2𝒆2) + 𝜆23(𝑧)𝒆3𝒆3,

6
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where 𝒆1, 𝒆2, 𝒆3 are the Cartesian basis vectors. For the isotropic material
behavior from Eq. (3) it follows that 𝝉 is reduced to the relation

𝝉 = 𝜏(𝑧)(𝒆1𝒆1 + 𝒆2𝒆2) + 𝜏3(𝑧)𝒆3𝒆3,

where 𝜏 = 𝜏1 = 𝜏2.

Using the relation c★ = 2FT ⋅ 𝜺 ⋅ F with 2𝜺 = L + LT we obtain

S★ = 2

(

∂2𝑊

∂c2
⋅ ⋅c★𝑇

)

⋅ FT + 2
∂𝑊

∂c
⋅ F★T

= 4

[

∂2𝑊

∂c2
⋅ ⋅

(

FT ⋅ 𝜺 ⋅ F
)

]

⋅ FT + S ⋅ L,

Θ = 퓐 ⋅ ⋅𝜺 + 𝝉 ⋅ L,

(10)

where 퓐 is the 4th-order tensor of instantaneous elastic moduli defined in
Cartesian base as

퓐 ≡ 𝒜𝑖𝑚𝑠𝑡𝒆𝑖𝒆𝑚𝒆𝑠𝒆𝑡 = 𝐹𝑖𝑎𝐹𝑠𝑑𝐹𝑡𝑐𝐹𝑚𝑏
∂2𝑊

∂𝑐𝑎𝑏∂𝑐𝑐𝑑
𝒆𝑖𝒆𝑚𝒆𝑠𝒆𝑡.

It is easy to see that 퓐 has pair-wise symmetry properties such as

𝒜𝑖𝑚𝑠𝑡 = 𝒜𝑠𝑡𝑖𝑚 = 𝒜𝑚𝑖𝑠𝑡.

As an example let us consider the homogeneous initial hydrostatically stressed
state. Here we have the relations

F = 𝜆I, b = c = 𝜆2I, 𝝉 = −𝑝I, −𝑝 = 𝑓0 + 𝑓1𝜆
2 + 𝑓2𝜆

4, (11)

𝐼1 = 3𝜆2, 𝐼2 = 3𝜆4, 𝐽 = 𝜆3.

For the general constitutive equations it may be proved that the expression
of Θ reduces to the Hooke’s law with the Làme constant depending on 𝑝, see
[29]. For the special case (8) the pressure 𝑝 is given by the relation

𝑝 = 𝜇
(

1

𝜆6𝛽+3
−

1

𝜆

)

.

Substituting (11) into (9) we obtain

Θ = 𝜇
(

1

𝜆
+

1

𝜆6𝛽+3

)

𝜺 +
2𝜇𝛽

𝜆6𝛽+3
Itr 𝜺− 𝑝L. (12)

Let us assume that the initial stresses 𝝉 are small. Then we may neglect the
last term in Eq. (10)3. Thus, we obtain that

Θ = 퓐 ⋅ ⋅𝜺. (13)

7
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From the symmetry consideration one can conclude that 퓐 has the structure
of the elasticity tensor of the transversally isotropic solid with elastic constants
depending on 𝜆, 𝜆3 or 𝜏, 𝜏3 and that Θ = ΘT. Note that 퓐 depends on the
initial stressed state, i.e. 퓐 differs from the elastic tensor used in the linear
elasticity, in general. In the special case of (12) the assumption (13) means
that we neglected by the member 𝑝∥L∥ and keep the dependence on 𝜆 in
other terms. Further we assume that (13) is invertible, i.e. 𝜺 = 퓢 ⋅ ⋅Θ with
퓢 = 퓐

−1. Thus, we establish that under the used assumptions the constitutive
equations of the prestressed plate-like body are coincide with the Hooke’s law
for the transversally isotropic solids with elastic moduli depending on the
initial stresses or the initial stretches.

Equation (13) allows to deduce the theory of plates made of prestressed ma-
terial using the approach presented in [18–20,23,24]. Indeed, considering (13)
as an analog of the Hooke’s law one may obtain the effective stiffness ten-
sors constructed for the plates made of linear orthotropic and transversally
isotropic materials.

3 2D Plates equations

Let us assume the geometrically and physically linear plate theory based on
the so-called direct approach. In this case one states a two-dimensional de-
formable surface. On each part of this deformable surface forces and moments
are acting – they are the primary variables. The next step is the introduction
of the deformation measures. Finally, it is necessary to interlink the forces and
the moments with the deformation variables (constitutive equations). Such a
plate theory is formulated by a more natural way in comparison with the
other approaches because it is so strong and so exact as the three-dimensional
continuum mechanics formulation. But the identification of the stiffness and
other parameters is a non-trivial problem and must be realized for each class
of plates individually.

In the considered theory of plates we make two basic assumptions: 1) the plate
(homogeneous or inhomogeneous in transverse direction) can be represented
by a deformable surface ℳ, Fig. 2; 2) each material point is an infinitesimal
rigid body with 5 degrees of freedom (3 translations and 2 rotations).

In addition, the theory presented here is limited by small displacements and ro-
tations and the quadratic strain energy density assumptions. The equilibrium
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ℳ

𝝂

𝒏

𝒮 ≡ ∂ℳ

𝝉

Fig. 2. Plate

equations and the kinematic equations are given by the relations [18,21–24]

∇ ⋅T + 𝒒 = 0, ∇ ⋅M + T× + 𝒎 = 0,

𝝐 =
1

2

[

∇𝒗 + (∇𝒗)T
]

, 𝜸 = ∇𝑤 − 𝒏×𝝋, 𝜿 = ∇𝝋.
(14)

Here T, M are the tensors of forces and moments, 𝒒, 𝒎 are the surface loads
(forces and moments), T× is the vector invariant of the force tensor, ∇ is the
nabla operator, 𝒗 = 𝒖 ⋅ a, 𝑤 = 𝒖 ⋅ 𝒏, 𝒖, 𝝋 are the vectors of displacements
and rotations. a is the first metric tensor, 𝒏 is the unit normal vector, 𝝐, 𝜸
and 𝜿 are the tensor of in-plane strains, the vector of transverse shear strains
and the tensor of the out-of-plane strains, respectively.

The presented above plate kinematics is consistent with the following approx-
imation of the vector of displacements of a three-dimensional elastic plate-like
body

𝒘(𝑥, 𝑦, 𝑧) = 𝒖(𝑥, 𝑦) − 𝑧𝝋(𝑥, 𝑦) (15)

with kinematically independent fields of 𝒖 and 𝝋. The surface strain energy
density of a prestressed plate may be calculated from the relation

𝑈 =
1

2
⟨Θ ⋅ ⋅𝜺⟩ , (16)

where ⟨. . .⟩ is the integral over the plate thickness ℎ. The analogous approxi-
mation is used to construct the Reissner–Mindlin–type plate theory, see [37–
39]. The transition to the Kirchhoff–Love-type plate and shell theories may be
performed using the dependence 𝝋 on 𝒖, see [30,33] for details.

Within the direct approach in the case of an orthotropic material behavior
and a plane mid-surface we assume the following surface strain energy and
constitutive equations

𝑈(𝝐,𝜸,𝜿) =
1

2
𝝐⋅⋅A⋅⋅𝝐 + 𝝐⋅⋅B⋅⋅𝜿 +

1

2
𝜿⋅⋅C⋅⋅𝜿 +

1

2
𝜸 ⋅ Γ ⋅ 𝜸, (17)

N≡T ⋅ a =
∂𝑈

∂𝝐
, 𝑸 ≡ T ⋅ 𝑛 =

∂𝑈

∂𝜸
, MT =

∂𝑈

∂𝜿
. (18)

A,B,C are 4th-order tensors, Γ is a 2nd-order tensor expressing the effective
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stiffness properties. They depend on the material properties and the cross-
section geometry and are given by the relations [23]

A = 𝐴11a1a1 + 𝐴12(a1a2 + a2a1) + 𝐴22a2a2 + 𝐴44a4a4,

B = 𝐵13a1a3 + 𝐵14a1a4 + 𝐵23a2a3 + 𝐵24a2a4 + 𝐵42a4a2,

C = 𝐶22a2a2 + 𝐶33a3a3 + 𝐶34(a3a4 + a4a3) + 𝐶44a4a4,

Γ = Γ1a1 + Γ2a2,

where

a1 = a = 𝒆1𝒆1 + 𝒆2𝒆2, a2 = 𝒆1𝒆1 − 𝒆2𝒆2, a3 = 𝒆1𝒆2 − 𝒆2𝒆1, a4 = 𝒆1𝒆2 + 𝒆2𝒆1

and 𝒆1, 𝒆2 are unit basis vectors of an orthonormal coordinate system. In
addition, one obtains the orthogonality condition for a𝑖 (𝑖 = 1, 2, 3, 4)

1

2
a𝑖⋅⋅a𝑗 = 𝛿𝑖𝑗 .

The structure of 𝑈 in (17) may be deduced from the consideration of (16)
with the approximation (15).

The identification of the effective stiffness tensors A,B,C and Γ should be
performed on the base of the properties of the real material. Let us assume the
Hooke’s law with material properties which depend on the normal coordinate
𝑧. The identification of the effective properties can be performed with the help
of static boundary value problems (two-dimensional, three-dimensional) and
the comparison of the forces and moments (in the sense of averaged stresses
or stress resultants). Finally, we get the following expressions for the classical
stiffness tensor components [19,20,24]

(𝐴11;−𝐵13;𝐶33) =
1

4

〈

𝐸1 + 𝐸2 + 2𝐸1𝜈21
1 − 𝜈12𝜈21

(1; 𝑧; 𝑧2)
〉

,

(𝐴22;𝐵24;𝐶44) =
1

4

〈

𝐸1 + 𝐸2 − 2𝐸1𝜈21
1 − 𝜈12𝜈21

(1; 𝑧; 𝑧2)
〉

,

(𝐴12;−𝐵23 = 𝐵14;−𝐶34) =
1

4

〈

𝐸1 − 𝐸2

1 − 𝜈12𝜈21
𝑧(1; 𝑧; 𝑧2)

〉

,

(𝐴44;−𝐵42;𝐶22) = < 𝐺12(1; 𝑧; 𝑧2) >,

(19)

where 𝐸1, 𝐸2, 𝜈12, 𝜈21, 𝐺12 are the elastic moduli of the orthotropic bulk
material. In addition, two non-classical stiffness terms are obtained

Γ1 =
1

2
(𝜆2 + 𝜂2)

𝐴44𝐶22 −𝐵
2
42

𝐴44

, Γ2 =
1

2
(𝜂2 − 𝜆2)

𝐴44𝐶22 − 𝐵
2
42

𝐴44

. (20)
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Here 𝜂2 and 𝜆2 are the smallest non-zero eigen-values of Sturm–Liouville prob-
lems

d

d𝑧

(

𝐺1𝑛
d𝑍

d𝑧

)

+ 𝜂2𝐺12𝑍 = 0,
d

d𝑧

(

𝐺2𝑛
d𝑍

d𝑧

)

+ 𝜆2𝐺12𝑍 = 0

with the boundary conditions

d𝑍

d𝑧

∣

∣

∣

∣

∣

∣

∣𝑧∣=ℎ

2

= 0.

Let us remind that here the role of Hooke’s law plays Eq. (13) with the tensor
elasticity 퓐. If the bulk material is transversally isotropic then the stiffness
tensors reduce to [18]

A = 𝐴11a1a1 + 𝐴22(a2a2 + a4a4),

B = 𝐵13a1a3 + 𝐵24(a2a4 − a4a2),

C = 𝐶22(a2a2 + a4a4) + 𝐶33a3a3,

Γ = Γ1a.

Here the 𝐴11, 𝐴22, 𝐵13, 𝐵24, 𝐶22, 𝐶33 and Γ1 are given by the relations (19),
(20) together with relations 𝐸1 = 𝐸2, 𝜈12 = 𝜈21, 𝜈23 = 𝜈32, 𝐺1𝑛 = 𝐺2𝑛, etc.
Note that here these engineering constants are the components of the elasticity
tensor 퓐 and depend on the initial stresses, in general.

The boundary conditions are given by

𝝂 ⋅T = 𝒇 , 𝝂 ⋅M = 𝒍, (𝒍 ⋅ 𝒏 = 0) along 𝒮𝑓 , (21)

and

𝒖 = 𝒖0, 𝝋 = 𝝋0 along 𝒮𝑢. (22)

Here 𝒇 and 𝒍 are external force and couple vectors acting along the part 𝑆𝑓

of the boundary of the plate 𝒮 = 𝒮𝑓 ∪ 𝒮𝑢 ≡ ∂ℳ, while 𝒖0 and 𝝋0 are given
functions describing the displacements and rotation of the plate boundary 𝒮𝑢,
respectively. 𝝂 is the unit normal vector to 𝒮 (𝝂 ⋅ 𝒏 = 0). The relations (21)
and (22) are the static and kinematic boundary conditions, respectively. Other
mixed types of boundary conditions are possible. For example, the simple
support boundary conditions corresponding to a hinge are given by

𝝂 ⋅M ⋅ 𝒕 = 0, 𝒖 = 0, 𝝋 ⋅ 𝒕 = 0.

Here 𝒕 is the unit tangent vector to 𝒮 (𝒕 ⋅ 𝒏 = 𝒕 ⋅ 𝝂 = 0).

11



A
cc

ep
te

d m
an

usc
rip

t 

Conclusions

Here we discussed the identification procedure of the components of the ef-
fective stiffness tensors in the linear theory of prestressed plates. The iden-
tification procedure bases on the comparison of solutions of few test prob-
lems for three-dimensional elastic solids and two-dimensional elastic plates.
For the linear elastic behavior it was developed in [19,20,24]. Here we extend
this approach to the case of an elastic material with initial stresses. Using
some assumptions on the initial stress distribution we reduced the linearized
equilibrium equations for the prestressed plate-like body to equations of a
non-homogeneous transversally isotropic solid with elastic moduli depending
on the initial stresses or stretches. Further we applied this approach and ob-
tained the expressions for the components of the effective stiffness tensors.
Within the described above approach the in-plane stiffness components, the
bending stiffness components and the shear stiffness depend on the initial
stresses.

Let us note there is at least one alternative way of deducing the theory of plates
made of prestressed material which is free on the assumption of smallness of 𝝉 .
One may use the linear in 𝑧 approximation 𝒘(𝑥, 𝑦, 𝑧) = 𝒖(𝑥, 𝑦) − 𝑧𝝋(𝑥, 𝑦) to
obtain the two-dimensional governing equations of a plate taking into account
the initial stresses as well as the transverse shear deformations. Within this
approach one obtains the presented here constitutive equations but for the
determination of the shear stiffness some additional considerations may be
needed.

The effective stiffness tensors are given in the general form for orthotropic
material. All stiffness values are the result of averaging over the thickness
of the plate-like body ℎ. Only the last two transverse shear stiffness values
should be estimated by solving a Sturm-Liouville problem. Assuming special
three-dimensional material laws the values can be computed for any usual
elastic or a prestressed body. In addition, since the material properties are
assumed to be a function of the coordinate 𝑧 in the thickness direction the
introduced formulaes can be applied even in the case of inhomogeneous in
the thickness direction materials. Examples of such materials are laminated
structures, sandwiches, but also foams and functionally graded materials.
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