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Abstract

Point contact models for the effective thermal conductivity of porous media with uniform
spherical inclusions have been briefly reviewed. The model of Zehner and Schlunder (1970) has
been further validated with recent experimental data over a broad range of conductivity ratio
from 8 to 1200 and over a range of solids fraction up to about 0.8. The comparisons further
confirm the validity of Zehner-Schlunder model, known to be applicable for conductivity ratios
less than about 2000, above which area contact between the particles becomes significant. This
validation of the Zehner-Schlunder model has implications for its use in the prediction of the
effective thermal conductivity of water frost (with conductivity ratio around 100) which arises in
many important areas of technology.
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Nomenclature

B = particle shape factor

k = thermal conductivity

ke = effective thermal conductivity of porous medium

Greek Symbols

0 = solids fraction

yr = porosity (void fraction)

A = solid-to-fluid thermal conductivity ratio, k2 /kl

p = density



^ = fluid-to-solid thermal conductivity ratio, kl / k2

Subscripts

e = effective medium

1 = continuous medium (solid or fluid)

2 = solid particle (dispersed)

1. Introduction

Heat transport through porous media is of great interest in chemical, mechanical, geological,
environmental and petroleum applications (Kaviany, 1995). Packed beds are widely used in
various industrial equipment including heat exchangers, dryers, absorbers, distillation and
extraction columns, chemical reactors, calcinators, and incinerators. Porous media applications
arise also in the design of cryocoolers, heat pipes, enhanced oil recovery, and geothermal and
petroleum applications (involving porous rocks and soil). Recent applications of porous media
arise in microelectronics for electronic packaging (device encapsulation) as thermal interface
materials (TIM) for efficient disposal of the generated heat. Composites in the form of porous
media tend to manifest in greatly improved physical properties. The determination of the
effective thermal conductivity of various porous media such as granular materials (randomly
packed) , fibrous composites, and packed beds is of great practical interest in the eefcient
design of industrial equipment.

The structure of a porous medium is very complex, consisting of different grain (pore) sizes
and geometries (Cheng and Hsu, 1999). A detailed prediction of the effective thermal
conductivity of heterogeneous media requires a knowledge of the shape, size, location
(distribution) and conductivity of each particle in the system together with interaction between
particles (Crane & Vachon, 1977). For randomly packed systems, such information is difficult to
represent. On account of the various possible packing arrangements, for given phases the
effective thermal conductivity is not a unique function of solids fraction, but a band of effective
thermal conductivity for the packed beds (of microspheres and fibrous insulation media) is
shown to exist with the aid of statistical considerations (Tien and Vafai, 1979).

Many models are based on simple geometries with periodic structure. Broadly speaking,
there are two basic approaches considered with simplifying assumptions. In the Fourier's law
models, simplified geometry is considered with solution of the Laplace equation. In Ohm's law
(electrical network) models, a one-dimensional heat flow assumption is considered. A
comprehensive review of empirical correlations for thermal conductivity of porous media was
given by Kaviany (1995), see Feng (2004).
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Numerous models for the effective thermal conductivity of a medium made up from
inclusions (spheres, cylinders, irregular particles) of one substance embedded in a matrix of a
different material has been investigated since the classical work of Maxwell (1865). Maxwell's
model, applicable to very dilute suspensions, has been extended by Lord Rayleigh (1892) and
many others for spherical as well as cylindrical particles with point contact between the particles.
These models were limited to solids fraction 0 less than 0.5236 for spherical inclusions with
simple cubic packing (and less than 0.7854 for cylindrical inclusions). Note that The maximum
value of solid fraction that is possible in a packed bed of uniform spherical particles is 0.524 for
simple cubic packing, 0.68 for body-centered cubic, and 0.74 for face-centered packing (Tien
and Vafai 1979).

Among the point contact models, Zehner and Schlunder's model (1970), applicable to
spheres , cylinders and irregular (rough) particles over the entire range of solid fractions, has
been tested against the data of Nozad et al. (1985) for 0 z, 0.6 shown to be satisfactory over a

wide range of solid-to-fluid conductivity ratio k 2 / kl less than 2000 (Kaviany 1995; Cheng and

Hsu, 1999). For k2 / kl > 2000,  the data considerably exceed the prediction of Zhner-Schlunder
model. It has been shown that (Hsu et al., 1994) the area contact becomes important in that
range, and accordingly modified the Zehner-Schlunder model by accounting for area contact heat
transfer. In this reference, comparisons of the Zehner-Schlunder model with data was considered
at a single value of 0 ^ 0.6.

One important application of Zehner and Schlunder model (1970) is in the determination of
the effective thermal conductivity of frost, with a solid-to-fluid conductivity ratio about 100.
Frost is generally undesirable in industrial applications (except in freeze-drying of food), and
arises in cryocoolers, refrigeration and air conditioning equipment, heat exchangers, and liquid
propellant storage and transportation (aerospace). It is the purpose of this work to validate
Zehner-Schlunder model over a broad range of k 2 / kl below 2000 and a range of solids fraction
by comparing the model to more recent experimental data, so that the model's usefulness for
frost and related applications can be considered.

2. Physical Models

2.1 Limiting Models

Two limiting cases are provided by the series distribution (where the two phases are
thermally in series with respect to the direction of heat flow), and the parallel distribution (in
which the two phases are thermally in parallel with respect to the direction of heat flow), see
Meredith and Tobias (1960). The effective medium thermal conductivity k, under these

circumstances is expressed by

ke _	 k2 / kl	 _	 k2 / kl
minimum (series)	 (la)

k1 (1— V)+ V42 /kt)	 + (1— OXk2 /kl)
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ke = yr + (1— V/) L2 = (1— 0)+ O k2 maximum(parallel) 	 (lb)
kl	kl	 kl

where the porosity yr is related to the solids fraction by the relation

	

V=1 -0
	

(2a)

The solids fraction can be expressed in terms of the densities of the constituent phases 1),,o2P2
as

0 = (P — PI XP2 — P1)	 (2b)

so that	 yr = (P2 — P) l(P2 — P1)	 (2c)

where Pl refers to the continuous phase, and P2 refers to the dispersed (solid) phase.

2.2 Maxwell's Model

For a sufficiently dilute dispersion (suspension) of spheres and taking into account only the
induced dipole moments of the spherical particles in a temperature field, Maxwell (1865)
obtained the following expression for the stagnant thermal conductivity of a packed-sphere bed:

ke _ 2yr + (k2 / kl X3 — 2y/)

kl	 3 -,yr + (k2 / kl )yr

3(k2 /kl —1)	 _ A+2-20(1—A)	 (3)
=1+	 3(k2

 A+2+0(1—A)

where	 A = k2 / kl	(4)

is the solid-to-fluid thermal conductivity ratio.

Maxwell's equation is valid for 0 —). 0, since it was derived on the assumption that the solid
spheres are sufficiently apart that they do not mutually interact. It provides a lower bound for the
stagnant thermal conductivity of a packed-sphere bed. This formula can also be used to calculate
the dielectric constant, electrical conductivity, and magnetic susceptibility of composite
materials.

Eucken (1932) generalized Maxwell's equation to the case of n dispersed phases embedded
in one continuous phase. Burger (1915) extended Maxwell's equation to ellipsoidal particles.

2.2 Rayleigh's Model
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Lord Rayleigh (1892) extended Maxwell 's model to higher order in the particle concentration
0, by taking into account the concentration of induced octupole moments. The case of a cubic
array of uniform size spheres (simple cubic packing) was considered, and the effect on the
potential in the neighborhood of a sphere by 248 of its closest neighbors (lying within the first 15
shells around a central sphere) was investigated (Meredith & Tobias, 1960). Rayleigh solved the
Laplace equation for the potential inside and about a sphere invoking the principle of
superposition to take into account the effect of surrounding spheres on the field in the
neighborhood of the central sphere. The following expression is obtained for the effective
thermal conductivity of the packed bed:

ke = [(2+A)/(1—A)] -20- 0.525[(3-3A)/(4+3A)] 10/3

k1	 [(2+A)/(1—A)]+0-0.525[(3-3A)/(4+3 10/3	
(Sa)

4)]^ 

Le	 1+2A _ 4.95(1—^,) 10/3	 14/3 1or	
e 

=1-3^ 1—^. +^	 +A, ^	
+O(^	 )	 (Sb)

k1	 4 3(	 )

This expression approaches Maxwell's result by neglecting higher order terms in 0 in Eq.
(5a). In Rayleigh's result, Eq. (5a), a numerical correction was introduced by Runge (1925). The
coefficient 0.525 replaces 1.65 in the denominator, correcting for the omission of a factor of 1/ ir
in Rayleigh 's derivation (Meredith & Tobias 1960).

2.3 Extensions of Rayleigh 's Model

Several investigators extended Rayleigh 's model to higher order. A review of these early
non-touching models is given by Churchill ( 1986).

With increasing 0, the discrepancy between Maxwell 's result and Rayleigh's result become
increasingly significant. At 0 = 0.5236 , the spherical particles in the cubic lattice are in point
contact, and for A —+ oo the effective conductivity should approach oo at 0 = 0.5236. These
qualitative conditions are not satisfied by Rayleigh 's expression (Meredith and Tobias, 1960).

By using a different function for the potential, and by considering higher order terms in the
series expansion for the potential in the continuous phase, Meredith and Tobias (1960) modified
Rayleigh 's result, providing an analytical expression that agrees more satisfactorily with the data
in the critical range near 0 = 0.5236. This expression is as follows:

2+A	 6+3A 07/3 	 3-30

	

—2^+0.409 	 —2.133	 010/3
ke _ 1—A	 4+3A	 4 +30	 (6)
k 1 	 2+A	 6+3A 7/3	 3-3A 1013

	

+0+0.409  	 ^ — 0.906	 ^
1—A	 4+3A	 4+3A
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As A —> oo , the data are in satisfactory agreement with the modified expression, except for

0 = 0.5161 where the data considerably exceed the theory (Meredith and Tobias, 1960).

2.4 Model of Woodside

Woodside (1961) considered a unit cube containing one-eighth of a sphere of radius R. The
general case is considered in that the uniform spherical particles are not in contact. The final
expression for the effective medium conductivity is shown to be

ke =1— 

(Lo )113 

1— 
a 2 

—1 
In

a+1	
(7a)

k	 ;ra	 ( a-1)]

1/2

where	 a=1+ 	 4	 (7b)
 —1X60/;r)2/3

In deriving the above equation, it was assumed that 1) the gas spaces are small enough that
heat transfer by convection may be neglected, 2) the isotherms are planes perpendicular to the
direction of heat flow. The second assumption is valid only when k2 / k1 =1. The errors will be

greater the larger the value of k2 / k1.

As with Rayleigh's model, it is limited to 0 = 0.5236. It appears that the accuracy of the
model has not been sufficiently tested against measurements.

2.5 Model of Zehner and Schlunder

Zehner and Schlunder (1970) arrived at an analytical expression for the effective stagnant
thermal conductivity of a packed bed . They considered for the unit cell one-eighth of a cylinder
(inner cylinder of unit radius and outer cylinder of radius R ). Fluid is filled between the inner
and outer cylinders while the inner cylinder consists of both the solid and the fluid phases with
its interface A fs described by (Cheng and Hsu, 1999)

r 2 

+	

2	
1

z	
(8)

[B—(B-1)zf 

where B is the shape factor characterizing the geometrical effect of the solid particle. For B —+ 0
, the boundary becomes the z axis with no solid volume; for B =1 the solid becomes a sphere,
and for B —^ oo the solid occupies the entire inner cylinder.

The effective thermal conductivity of a packed bed is expressed by
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ke —1— 
1—yr+2 1 yr (1—)B 

In 
1 )_(B+I)_  B-1	

(9a)
kr 	1—^ (1 ^^_	 0 	 2 	 1—^B

2

where	
1— B 3-4B+B2 +2lnB	

9b
(B —1)3

and	 ^ = kl / k2 =11A	 (9c)

It was suggested that Eq. (1 Ob) can be approximated by

m

B=C 1—^
	

(10)
 )

with m =10 / 9. The constant C depends on the shape of the particle. Zehner and Schlunder
(1970) suggest that C =1.25,1.40 and 2.5 for spheres, broken (irregular particles) and cylinders
respectively.

A comparison of Zehner-Schlunder model with the data of Nozad et al. (1985), as mentioned
in Cheng and Hsu (1999), suggests that the model with yr = 0.4 agrees well with the

experimental data for k2 /k, < 103 (Fig. 1). For k2 /k, > 103 , the Zehner-Schlunder model
underpredicts the effective stagnant thermal conductivity substantially.

Hsu et al. (1995) postulated that the reason for this underprediction of data at large values of
k2 I k, (high solid-to-fluid thermal conductivity ratio) is the assumption of point contacts
between spheres. By considering the finite contact area between particles (arising from
flattening of spheres due to external loads or the weight of the bed itself) in accordance with the
Hertz relationship for elastic contacts (Hertz 1881; Timoshenko and Goodier 1970) , they were
able to obtain good agreement with data for k2 / k, up to about 104 . In addition to these so-called
area contact models, Cheng (1999) discusses phase-symmetry models and lumped parameter
models in this context.

3. Comparisons

Figure 2 shows a comparison of the model of Zehner and Schlunder (1970) with those of
Maxwell (1865) along with the limiting models for a typical value of k2 I kl =100. It is seen that
the Zehner and Schlunder model always predicts higher effective conductivity than that of
Maxwell for the entire range of the solid fractions (0 < 0 < 1), while the Maxwell model exceed
the minimum limit.

A comparison of Zehner-Schlunder model (1970) with other models (Maxwell, 1865;
Rayleigh, 1892; Meredith and Tobias, 1915; Woodside, 1958) with the measurements of
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Kanuparthi et al. (2008) at k2 / k1 = 125 is indicated in Fig. 3. The data corresponds to aluminum

particles in a silicone matrix (kl = 0.2 W/m.K). Note that the latter three models are constrained
to the sphere limit of 0 = 0.527. It is remarkable to notice that the Zehner and Schlunder model
(1970) begins to depart from Maxwell and Rayleigh model as early as 0 = 0. 1, even though the
latter models are known to be accurate up to about 0 ,& 0.25. It is seen that the modified
Rayleigh model due to Meredith and Tobias (1915) is an improvement over Rayleigh and
Maxwell models for 0 > 0.3. The discrepancy between Zehner and Schlunder model and those
of Rayleigh and Maxwell increases with an increase in 0. The Woodside model exceeds that of
Zehner and Schlunder (1970). Good agreement is obtained between the Zehner-Schlunder model
and the data covering a range up to 0 = 0.6. The results clearly establish the improvement of
Zehner-Schlunder model in representing the data.

Figs. 4a-d describe a comparison of the predictions of Zehner-Schlunder (1970) with the test
data for various values of k 2 / kl as obtained by various investigators. Fig. 4a compares the

theory with the data of Wong and Bollampally (1999) for k2 /k1 =7.7 up to 0 ^ 0.5. The data are

obtained for spherical silica phenolic inclusions embedded in epoxy resin (k, = 0.195 W/m.K).
Excellent agreement is noted between the theory and the data.

A comparison of the theory with the data of Wong and Bollampally (1999) for k 2 / k1 = 184.6
is sketched in Fig. 4b. The data correspond to spherical aluminum particles in an epoxy resin (
k, = 0.195 W/m.K). The data span up to 0 = 0.5 , and satisfactory agreement is seen between the
theory and the data.

Figure 4c indicates a comparison of the theory with the data of Woodside and Mesmer
(1961) for k2 / k1 = 325.8. The data are obtained up to 0 = 0.8 , and correspond to quartz sand
particles in air. Excellent agreement between the prediction and the measurements is noticed
over the entire range of solid fraction.

In Fig. 4d a comparison of the prediction with the data of Lin et al. (1993) for k 2 / k1=

1067.9 and the data of Wong and Bollampally (1999) for k2 / k1 = 1128.2. The data for k2 / k1=

1128.2 correspond to SCAN particles in epoxy resin, while the data of k 2 /ki =1067.9

correspond to cupric oxide in epoxy resin. The value of k2 / kl differs by 5.3 percent in these two
sets of measurements. It is observed that the data for the effective conductivity are consistent
with each other considering the closeness of the parameter k 2 / kl . Here again the theory
satisfactorily describes the data.

The results of Figs. 3 and 4 for the effective thermal conductivity are represented in Fig. 5 as
a function of k2 l k, with 0 as a parameter. While Fig. 1 shows comparisons restricted to a narrow
range of solids fraction near 0 = 0.6 (yr = 0.4 ), Fig. 3 demonstrates a comparison for a wider
range of solids fraction. The satisfactory performance of Zehner-Schlunder model is thus
evident.
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4. Discussion

All the theoretical models referred to in this work are point contact models. In all the
measurements considered here for comparison purposes, there is unfortunately no information
reported as to how the effect of weight or other forces that could increase the contact area are
taken into account.

The preceding comparisons suggest that the Zehner-Schlunder model appears to be
promising for estimating the effective thermal conductivity of water frost for which the thermal
conductivity ratio (ice to air) is about 100. However in frost growth and densification in addition
to thermal conduction (stagnant), additional physical processes such as mass diffusion (of vapor)
and perhaps eddy convection become important. A detailed investigation of the frost thermal
conductivity prediction building on the Zehner-Schlunder model and validation with
measurements is currently undertaken by the author, and is beyond the scope of the present
work.

5. Conclusions

Comparisons of the Zehner-Schlunder model for the effective thermal conductivity of porous
media containing spherical particles with the experimental data suggest that the model is
satisfactory over a broad range of solid-to-fluid thermal conductivity ratio as high as 1200. The
validity of the model is also confirmed over a broad range of solids fraction as high as 0.8 in
certain case where data are available. It is remarkable that the one-dimensional representation of
this model is able to describe the effective conductivity of porous media over such an extended
range of parameters. Considering these comparisons, the model appears to be promising in the
description of the effective conductivity of water frost, for which the solid-to-fluid (ice-to-air)
thermal conductivity ratio is about 100 and is well within the acceptable range of the model.
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