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Abstract The effectiveness of projection methods for solving systems of linear in-

equalities is investigated. It is shown that they have a computational advantage over

some alternatives and that this makes them successful in real-world applications. This

is supported by experimental evidence provided in this paper on problems of various

sizes (up to tens of thousands of unknowns satisfying up to hundreds of thousands of

constraints) and by a discussion of the demonstrated efficacy of projection methods in

numerous scientific publications and commercial patents (dealing with problems that

can have over a billion unknowns and a similar number of constraints).

Keywords Projection methods · Convex feasibility problems · Numerical evaluation

· Optimization · Linear inequalities · Sparse matrices

1 Introduction

Projection methods were first used to solve systems of linear equations in Euclidean

spaces in the 1930s [31,55] and were subsequently extended to systems of linear in-

equalities in [1,62,63]. The basic step in these early algorithms consists of a projection

onto an affine subspace or a half-space. Modern projection methods are much more so-

phisticated [7,8,9,10,17,26,34,35,36,42,43,57] and they can solve the general convex

feasibility problem of finding a point in the intersection of a family of closed convex

sets in a Hilbert space. In such formulations, each set can be specified in various forms,

e.g., as the fixed point set of a nonexpansive operator, the set of zeros of a maximal

monotone operator, the set of solutions to a convex inequality, or the set of solutions to

an equilibrium problem. Projection methods can have various algorithmic structures

(some of which are particularly suitable for parallel computing) and they also pos-

sess desirable convergence properties and good initial behavior patterns [8,26,33,34,
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35,51,67]. The main advantage of projection methods, which makes them successful in

real-world applications, is computational. They commonly have the ability to handle

huge-size problems of dimensions beyond which more sophisticated methods cease to

be efficient or even applicable due to memory requirements. This is so because the

building bricks of a projection algorithm are the projections onto the given individual

sets, which are assumed to be easy to perform, and because the algorithmic structure

is either sequential or simultaneous, or in-between, as in the block-iterative projection

methods or in the more recently invented string-averaging projection methods. The

number of sets used simultaneously in each iteration in block-iterative methods and

the number and lengths of strings used in each iteration in string-averaging methods

are variable, which provides great flexibility in matching the implementation of the

algorithm with the parallel architecture at hand; for block-iterative methods see, e.g.,

[2,10,16,23,35,40,44,46,57,64] and for string-averaging methods see, e.g., [12,18,22,

24,25,39,65,68].

The convex feasibility formalism is at the core of the modeling of many problems

in various areas of mathematics and the physical sciences; see [32,33] and references

therein. Over the past four decades, it has been used to model significant real-world

problems in sensor networks [14], in radiation therapy treatment planning [21,52], in

resolution enhancement [27], in wavelet-based denoising [30], in antenna design [49],

in computerized tomography [51], in materials science [56], in watermarking [58], in

data compression [60], in demosaicking [61], in magnetic resonance imaging [69], in

holography [70], in color imaging [71], in optics and neural networks [72], in graph

matching [73] and in adaptive filtering [75], to name but a few. In these – and numerous

other – problems, projection methods have been used to solve the underlying convex

feasibility problems.

We focus on the important subclass of convex feasibility problems in which finitely

many sets are given and each of them is specified by a linear equality or inequality in the

Euclidean space R
N . For such problems, which arise in many important applications

[32,51,52], alternatives to projection methods are available (see, e.g., [3,48] and the

references therein), and it is therefore legitimate to ask whether projection methods

are competitive.

In this paper we address this question and show that projection methods are indeed

very competitive in the environment of linear inequality constraints. In Section 2 we

discuss their comparative performance for four different kinds of problems. In Section

3 we give some examples of their use in real-world applications from the research and

the patent literature. Finally, we present our conclusions.

2 Comparisons

2.1 Examples of 2-set feasibility problems

In a recent paper [48], the author asks in the title: “How good are projection methods

for convex feasibility problems?” and immediately (in the Abstract) states that:

“Unfortunately, particularly given the large literature which might make one

think otherwise, numerical tests indicate that in general none of the variants

[of projection methods for solving convex feasibility problems] considered are

especially effective or competitive with more sophisticated alternatives.”
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As indicated in the Introduction, projection methods have been used to solve highly

nonlinear complex problems involving a very large number of sets. Therefore, results

based on the geometrically simple 2-set problems of [48] are vastly insufficient to draw

general conclusions. In addition, we show in this subsection that the experiments re-

ported in [48] use suboptimal versions of projection methods, which further questions

the justification of the above-quoted general conclusion as to their effectiveness.

The numerical experiments provided in [48] focus exclusively on the problem of

solving a linear system of equations under a box constraint, namely

find x ∈ R
N , such that

8

>

<

>

:

Ax = b,

x ∈
N

×
i=1

[ci, di],
(1)

where A ∈ R
M×N (M ≤ N) has full rank, b ∈ R

M , and the problem is assumed to be

feasible. We show that, even in this basic setting, projection algorithms implemented

with standard relaxation strategies perform much better than indicated by the results

in [48].

Let us denote by P1 and P2 the projection operators onto the closed affine subspace

S1 =
˘

x ∈ R
N
˛

˛ Ax = b
¯

and the closed convex set S2 = ×
N
i=1 [ci, di], respectively.

The first operator is defined by

P1 : x 7→ x − A⊤
“

AA⊤
”

−1(Ax − b), (2)

where A⊤ denotes the transpose of A. This transformation can be implemented in

various fashions. For instance, in many signal and image processing problems, the

matrix A is block-circulant and hence diagonalized by the discrete Fourier transform

operator, which leads to a very efficient implementation of P1 [4]. Here, we adopt a

QR decomposition approach. Let

A⊤ =
ˆ

Q11 Q12

˜

»

R11

0

–

(3)

be the QR decomposition of A⊤, where R11 is an M × M invertible upper triangular

matrix [45]. Then (2) yields

P1 : x 7→ x − Q11

“

R⊤
11

”−1
(Ax − b). (4)

On the other hand, the projection P2x = (πi)1≤i≤N of a vector x = (xi)1≤i≤N onto S2

is obtained through a simple clipping of its components, i.e., for every i ∈ {1, . . . , N},

πi = min{max{xi, ci}, di}.

Two standard projection methods to solve (1) are the alternating projection method

x(0) ∈ R
N and (∀n ∈ N) x(n+1) = x(n) + λn(P1P2x(n) − x(n)) (5)

and the parallel projection method

x(0) ∈ R
N and (∀n ∈ N) x(n+1) = x(n) + λn

„

P1x(n) + P2x(n)

2
− x(n)

«

, (6)
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where (λn)n∈N is a sequence of strictly positive relaxation parameters. If λn ≡ 1 in

(5), we obtain the popular Projection Onto Convex Sets (POCS) algorithm [32,74]:

x(0) ∈ R
N and (∀n ∈ N) x(n+1) = P1P2x(n). (7)

The convergence of any sequence (x(n))n∈N thus constructed to a point in S1 ∩ S2

was established in [15]. On the other hand, if λn ≡ 1 in (6), we obtain the Parallel

Projection Method (PPM):

x(0) ∈ R
N and (∀n ∈ N) x(n+1) =

P1x(n) + P2x(n)

2
. (8)

The convergence of any sequence (x(n))n∈N thus constructed to a point in S1 ∩ S2

was established in [5], see also [6]. In [48], (5) and (6) are used, together with variants

featuring a construction of λn at iteration n resulting from a line search procedure and

without closed-form expression. However, as the numerical results of [48] show, these

relaxation schemes do not lead to significantly better convergence profiles than those

obtained with the unrelaxed algorithms POCS (7) and PPM (8). In addition, nothing

is said regarding the convergence of (5) and (6) with such relaxation schemes.

The potentially slow convergence of projections methods has long been recognized

[38,50,62] and remedies have been proposed to address this problem in the form of

adapted relaxation strategies that guarantee convergence. In the case of (5), it was

shown in [10] that any sequence generated by the Extrapolated Alternating Projection

Method (EAPM)

x(0) ∈ S1 and (∀n ∈ N) x(n+1) = x(n) + ρKn(P1P2x(n) − x(n)),

where 0 < ρ < 2 and Kn =

8

>

<

>

:

‖P2x(n) − x(n)‖2

‖P1P2x(n) − x(n)‖2
, if x(n) /∈ S2,

1, if x(n) ∈ S2,

(9)

produces a fast algorithm that converges to a solution to (1). This type of extrapolation

scheme, which exploits the fact that S1 is an affine subspace, actually goes back to the

classical work of [50]. It has been further investigated in [11,35] and has been extended

recently to a general block-iterative scheme in [10]. Acceleration methods have also

been devised for the parallel algorithm (6). Thus, the convergence of the sequence

produced by the Extrapolated Parallel Projection Method (EPPM)

x(0) ∈ R
N and (∀n ∈ N) x(n+1) = x(n) + χLn

„

P1x(n) + P2x(n)

2
− x(n)

«

,

where 0 < χ < 2 and

Ln =

8

>

<

>

:

2
‖P1x(n) − x(n)‖2 + ‖P2x(n) − x(n)‖2

‖P1x(n) + P2x(n) − 2x(n)‖2
, if x(n) /∈ S1 ∩ S2,

1, if x(n) ∈ S1 ∩ S2,

(10)

to a solution of (1) was established in [34]. This type of parallel extrapolated method

goes back to[62] and [66] , and it has been refined or generalized in several places [35,57,

64]. In particular, it has been shown in numerical experiments to be much faster than

unrelaxed projection algorithms in various types of problems ranging from numerical

PDEs to image processing [35,46,66,67].
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Fig. 1: Average performance of the algorithms when M ×N = 600 × 1000.
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Fig. 2: Average performance of the algorithms when M × N = 600 × 1000 and condition
numbers are around 3× 10

4.

In Figure 1, we compare the numerical performance of POCS (7), PPM (8), EAPM

(9), and EPPM (10) for problems of size M × N = 600 × 1000. As in [10,35,33], the

performance of the algorithms is measured by the decibel (dB) values of the normalized
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proximity function, which is evaluated at the nth iterate x(n) by

10 log10

 

‖P1x(n) − x(n)‖2 + ‖P2x(n) − x(n)‖2

‖P1x(0) − x(0)‖2 + ‖P2x(0) − x(0)‖2

!

. (11)

This comparison is relevant because the computational load of each iteration resides

essentially in the computation of the projection onto S1 and it is therefore roughly the

same for all four algorithms. The results are averaged over 20 runs of the algorithms

initialized with x(0) = P10 and ρ = χ = 1.9. In each run a matrix A ∈ [−0.5, 0.5]M×N

and a vector x ∈ [0, 1]N are randomly generated. The vector b = Ax is then constructed

so as to obtain a feasible problem using ci ≡ 0 and di ≡ 1 in (1). As in [48] and many

other studies, we observe that POCS is faster than PPM. However, EPPM is faster

than POCS and EAPM is clearly the best method: on the average, it is about 60 times

faster than PPM, 30 times faster than POCS, and it achieves full convergence in just

7 iterations. In addition, convergence to a feasible solution is guaranteed by the theory

and the expression of the extrapolation parameter Kn in (9) is explicit and it requires

no additional computation. It is argued in Section 5 of [48] that “there is a significant

difference between random and real-life problems (similar observations have been made

for linear equations, where random problems tend to be well-conditioned [Reference],

and thus often easier to solve than those from applications).” Let us observe that

random matrices do show up in many real-life problems, see [37,76] and the references

therein. In addition, as shown in Figure 2, the qualitative behavior of the algorithms in

the presence of poor conditioning is quite comparable to that observed in Figure 1 (for

the experiments of Figure 2, the condition numbers vary from 3 × 104 to 3.5 × 104).

We have consistently observed this type of performance for problems of various

sizes. For instance, we report in Figure 3 on the same experiment as above on problems

of size M ×N = 3000×7000. Here EAPM is about 45 times faster than PPM, 22 times

faster than POCS, and full convergence is achieved in just 5 iterations.
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These experiments indicate that the results in [48] on the speed of convergence of

POCS and PPM (and the variants proposed there featuring modest speed-up factors

and lacking a formal convergence analysis) correspond to a suboptimal implementation

of projection methods and are not representative of their performance, since drastic

improvements can be achieved by appropriate relaxations.

2.2 An example from image representation

The problem with the largest number of unknowns in the Netlib/CUTEr LP problem

set used in [48] has M ×N = 6, 330× 22, 275 and (according to the on-line attachment

to [48]), for that problem, all methods discussed in [48] need 42 seconds or more to

reach the stopping tolerance on a 3.06 GHz Dell Precision 650 workstation. We found

among the problems from applications that we have been investigating one that is over

an order of magnitude larger and for which the projection algorithm recommended in

[28] required only 25 seconds on the average on an Intel Xeon 1.7 GHz processor, 1

Gbyte memory 32 bit workstation using the SNARK09 programming system [41]. We

now give a brief description of this problem.

A J×J digitized image is one that is subdivided into J2 square-shaped pixels within

each of which the image value is uniform. Sometimes alternative representations of an

image are superior. For example, in computerized tomography [51], we use the blob

basis functions advocated by Lewitt [59] in some series expansion methods to reduce

artifacts in the reconstruction. Such a reduction is due to the fact that blob basis

functions are smoother than pixel basis functions.

The contribution to the image value at the center of any of the M = J2 pixels by any

of the N blob basis functions is known from the geometry of the representations. If we

are given a pixel image to start with and would like to find a good blob representation

for it, the task is to find the weights x to be given to the blobs so that their combined

contributions approximate the pixel values. In mathematical terms, this problem can

be formulated as

find x ∈ R
N such that c ≤ Ax ≤ d, (12)

where the bounds c and d have to be tight to ensure a good approximation of the pixel

image by the blob image. (The entries in the matrix A are the values of the various

blobs at the centers of the various pixels.)

In the experiments reported in [28] M × N = 59,049 × 51,152. The algorithm

that was found most efficacious among those tried is the projection method called

CART3++: the average (over 40 instances of the problem) time required by CART3++

to find a solution to (12) was less than 25 seconds.

The algorithm CART3++ belongs to a large family of projection methods that

are usually referred to as algebraic reconstruction techniques (ART). These were first

introduced to the tomographic image reconstruction literature in [47]; for a recent dis-

cussion, see [51, Chapter 11]. CART3++, just like the closely related ART3+ that is

used to solve the problem discussed in the next subsection, has an interesting mathe-

matical property: provided that the set of feasible vectors satisfying the inequalities in

(12) has a nonempty interior, both CART3++and ART3+ will find a feasible solution

in a finite number of iterations [28]. This is achieved by appropriately controlling the

sequence of relaxation parameters associated with the individual projections.
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2.3 An example from intensity-modulated radiation therapy planning

The goal of intensity-modulated radiation therapy is to deliver sufficient doses to tu-

mors to kill them, but without causing irreparable damage to critical organs. This re-

quirement can be formulated as a linear feasibility problem of the kind shown in (12).

The interpretation in this application is that each component of x is a to-be-determined

strength of radiation to be delivered to the patient in N separate beamlets, the com-

ponents of Ax are the resulting doses at M points in the patient’s body, and c and d

are provided by the radiation oncologist as the desired limits on these doses. Two of

the authors of the present paper (W. Chen and G.T. Herman) have been working in

this area with D. Craft, T.M. Madden, K. Zhang and H.M. Kooy of the Department

of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School,

and what follows in this subsection is an outcome of this collaboration.

In the clinical case that we use as an example we have M ×N = 302,491 × 13,734.

The number of nonzero elements in A is 62,226,127, which is less than 1.5% of the

total number of entries of A, an important consideration for the efficacy of projection

methods for solving the problem. There is an additional technical consideration: since it

is impossible to deliver negative radiation, each component of x has to be nonnegative,

which results in an additional 13,734 inequality constraints. As mentioned at the end

of the last subsection, we use ART3+ [52] to solve this feasibility problem.

In clinical applications, it is considered desirable to find multiple feasible points,

each of which is optimal according to its own criterion. A typical optimization task

is “find a feasible point that results in the smallest total dose delivered to the liver.”

The associated functional is a linear one: it is the sum of those components of Ax that

are associated with points in the liver. Recognizing the speed by which ART3+ finds

a feasible point, we propose to apply it repeatedly, to solve the linear optimization

problem

find x ∈ R
N that minimizes a⊤x subject to c ≤ Ax ≤ d. (13)

Our method solves this problem by turning the objective function into an additional

constraint and solving

find x ∈ R
N such that c ≤ Ax ≤ d and a⊤x ≤ ρ (14)

using ART3+. By reducing ρ using a bisection search until we obtain (within a pre-

specified tolerance) the lowest value possible for it, we get a good approximation to a

solution of (13). This whole process is called ART3+O.

The task of minimizing a linear functional subject to linear inequality constraints is

the well-known Linear Programming (LP) problem and several software packages are

available for solving it, see, e.g., [3]. To compare the efficiency of our proposed procedure

with currently popular standard approaches, we applied them to the problem (13) for

a patient with pancreatic cancer. We used all methods to find just a feasible point

(No Task) and also for eight different LP tasks representing various linear optimization

criteria. The three algorithms with which we compared ART3+O were the self-dual

interior point optimizer, the primal simplex optimizer and the dual simplex optimizer in

the commercial software package MOSEK version 5. The results are reported in Figure

4. Typically, for each task, ART3+O used about one to two minutes and the MOSEK

algorithms needed one to several hours on an Intel Xeon 2.66 GHz processor, 16 Gbyte
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memory, 64 bit workstation. It is also noteworthy that the memory requirements of

the MOSEK algorithms were at least twelve times as large as that of ART3+O.

2.4 Examples from computerized tomography

Computerized tomography is the problem of recovering an image from its measured

(and hence not strictly accurate) integrals along M lines [51]. If we assume that the

recovered image will be represented as a linear combination of N basis functions (see

Subsection 2.2), then the task is to find the vector x the components of which are the

weights to be given to the basis functions. Due to the linearity of integration and based

on the knowledge of the basis functions, we can produce an M ×N matrix A such that

Ax is approximately the vector b of measurements. Since it is not likely that there is

an x such that Ax = b, it is reasonable to aim instead at finding an x that minimizes

σ2 ‖b − Ax‖2 + ‖x‖2 , (15)

where σ ∈ R indicates our confidence in our measurements. As explained in Section

11.3 of [51], this sought-after x is in fact the x part of the minimum norm solution of

the consistent system of equations

[U σA]
hu

x

i

= σb, (16)

where U is the M × M identity matrix. In the same section there is a derivation of a

variant of ART that converges to the sought-after x, given by:
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u(0) is the M -dimensional zero vector,

x(0) is the N-dimensional zero vector,

u(n+1) = u(n) + γnejn
,

x(n+1) = x(n) + σγnajn
,

(17)

with

γn = λ
σ
“

bjn
− a⊤jn

x(n)
”

− u
(n)
jn

1 + σ2
‚

‚ajn

‚

‚

2
, (18)

where, for n ∈ N, jn = (n mod M)+1, for 1 ≤ j ≤ M , ej is the M -dimensional vector

whose jth component is 1 and whose other components are 0, a⊤j is the jth row of A

and bj is the jth component of b, and 0 < λ < 2. Recognizing that in one iterative

step only one row of the matrix is needed and that in computerized tomography most

entries of each row are zero, we see that an iterative step can be carried out very rapidly,

provided that we have access to the locations and the values of the nonzero entries. If

the memory of the computer is large enough, this can be accommodated by storing A in

a row-by-row sparse representation, otherwise the locations and values of the nonzero

entries can be generated within each iterative step by some rapid mechanism, such as

the digital difference analyzer explained, e.g., in Section 4.6 of [51].

In Section 5.8 of [51] there is an exact specification of the so-called standard projec-

tion data that are used to evaluate various reconstruction algorithms in that book, the

number of lines used in the standard projection data is M = 223,744. In the evaluations

based on the standard projection data that are reported in [51] for reconstruction algo-

rithms that use blob basis functions, the number of blobs used is N = 51,152. The first

experiment on which we report in this subsection used exactly the same arrangement.

(For the experiments in this subsection, the input data were created and outputs were

analyzed and illustrated using SNARK09 [41].)

In this experiment we applied the ART algorithm of (17) and (18) with σ = 5 and

λ = 0.05 to the standard projection data. In Figure 5(a) we show the behavior of the

objective function (15) as a function of iteration cycles (an iteration cycle is defined to

be M iterations). It can be observed that the initial decrease in the objective function

is very rapid.

This desirable initial behavior is even more noticeable when we evaluate the al-

gorithm not from the purely mathematical point of view of how well the objective

function is reduced, but rather from the application point of view of how good are the

reconstructed images. For this purpose, we report on the normalized mean absolute

picture distance measure, as defined in [51]. To define this measure we need a J × J

digitization of the test phantom for which the data used in the reconstruction were

collected; such a digitization for the phantom we used is shown in Figure 6(a). In our

definition of the measure we use tu,v and s
(n)
u,v to denote the densities of the vth pixel of

the uth row of the digitized test phantom and of the reconstruction (which is obtained

from the vector x(n) of blob coefficients), respectively. We define the distance measure

as

r(n) =

J
X

u=1

J
X

v=1

˛

˛

˛

tu,v − s
(n)
u,v

˛

˛

˛

J
X

u=1

J
X

v=1

|tu,v|

. (19)
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Fig. 5: Image reconstruction by ART when M ×N = 223,744 × 51,152.
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(a) (b)

Fig. 6: Displays of a 243 × 243 digitized phantom (a) and of an ART reconstruction when
M ×N = 223,744 × 51,152 (b).

In Figure 5(b) we plot r(n) for this experiment. It is seen that its minimum is reached

at the seventh iteration cycle, i.e., when n = 7M . This reflects the fact that the mini-

mization objective (15) does not (and, in fact, it cannot in real applications where the

phantom is not known to us) fully describe the application objective. For this reason

it is standard practice in tomography [51] to stop the iterative process after a few

iteration cycles and use the result at that time as the reconstruction. The digitization

obtained from x(7M) produced by this experiment is shown in Figure 6(b). The recon-

struction is not perfect (as indeed it cannot possibly be since the measured data are

only approximations of the line integrals assumed by the mathematics), but important

features of the phantom are identifiable in the reconstruction. This ART reconstruction

was carried out in 38.4 seconds on an Intel Core 1.6 GHz processor, 2 Gbyte memory,

32 bit laptop.

We wanted to compare the time needed by ART with the time needed to solve the

system (16) of consistent equations for the same data by the current implementation

of the interior point method of MOSEK version 5 [3]. Unfortunately this could not be

done, because the memory requirements of the MOSEK software were too large for our

laptop. So we attempted to use a much more powerful Intel Xeon 2.66 GHz processor,

16 Gbyte memory, 64 bit workstation, but even the 16 Gbyte memory was too small

to handle this problem using the MOSEK software. The importance of this memory

requirement issue for the subject matter of this paper cannot be overemphasized: prob-

lems that routinely arise in real applications can be handled by projection methods

using inexpensive laptops, while “more sophisticated alternatives” fail to produce any

results even on much more powerful workstations due to their much greater demands

on computer memory.

In order to be able to compare the efficiency of ART with that of the interior point

method in MOSEK we had to reduce M and N to about a ninth of their previously-used

sizes. Thus, in the second experiment on which we now report M ×N = 24,880×5,711.

For this smaller example we ran both ART and the interior point method in MOSEK
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Fig. 7: Image reconstruction by ART and the interior point method in MOSEK when M×N =

24,880 × 5,711.
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(a) (b)

Fig. 8: Displays of an 81 × 81 digitized phantom (a) and of an ART reconstruction when
M ×N = 24,880 × 5,711 (b).

(with its default parameters) on the Intel Xeon 2.66 GHz processor, 16 Gbyte memory,

64 bit workstation. In Figure 7 we plot both the objective function and the distance

measure for both algorithms as a function of time. From the point of view of the

objective function, MOSEK needed over 5000 seconds to reach a value as low as ART

reached in 10 seconds. The advantage of ART is more pronounced when considering the

picture distance measure: the optimal value is reached by ART at 1.7 seconds (when

n = 14M) while the interior point method never reaches a distance value that is as low

as that of ART and it needs approximately 5000 seconds to reach its lowest distance

measure.

Since both M and N are about a ninth of their previous sizes, we report in Figure

8 on the 81× 81 digitizations of the phantom and of the reconstruction x(14M). These

are clearly inferior to the images in Figure 6, demonstrating the medical necessity for

the larger system of equations.

3 Published and patented results

3.1 Scientific publications

Here we give a brief glimpse into some recently published results that show the efficacy

of projection methods for some large problems. In the problems discussed in [40], the

number of unknowns was 59,049. In the examples given in [52] (a paper devoted to radi-

ation therapy planning), problems of the form (12) were considered with the number N

of unknowns only 515 but the number of pairs of constraints M = 128,688. In four out

of the six cases reported there, the projection method ART3+ [52]found a feasible point

in less than three seconds, and in the remaining two cases a feasible point was found in

less than 34 seconds. These times are for a standard PC, using an Intel Xeon 1.7 GHz

processor and 1 Gbyte memory. The problems in [40,52] are small compared to some
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of the other applications for which projection methods have been successfully used. In

[19] (a paper devoted to reconstruction from electron micrographs), there are examples

in which 16,777,216 unknowns are to be recovered from 4,587,520 measurements (each

giving an approximate linear equality) and others in which 884,436 unknowns are to

be recovered from 92,160,000 measurements. Projection methods were used in [19] to

handle such large problems in a reasonable time.

In a recent paper [56] it is shown that a variant of ART can be used for crystal

lattice orientation distribution function estimation from diffraction data. One of the

problems discussed in [56] has 1,372,000,000 unknowns and the number of equations is

potentially infinite. They are randomly generated and a projection step can be carried

out as soon as a new equation is available (an ideal use of a sequential projection

method of the row-action type, see [20]). The result reported in the paper for that

problem is the one obtained after 1,000,000,000 such projection steps.

As for all methodologies, projection methods are not necessarily the approach of

choice in all applications. However, in important applications in biomedicine and im-

age processing, projection methods work well and have been used successfully for a

long time. For example, an important application of reconstruction from projections is

electron microscopy and some of the leading groups in that field consider the projec-

tion method “ART with blobs” to be the method of choice, see [13]. A mathematical

reason for this is that for such problems the angles between hyperplanes or half-spaces,

represented by linear equalities or linear inequalities as in (1) and (12), are in general

large (in the sense that the cosine of the angle between the normals of two randomly

chosen hyperplanes in the system to be solved is likely to be near zero) due to the high

sparsity in each of the rows of the system matrix.

3.2 Commercial patents

There is hardly better evidence for the value of projection methods than the many

patents for commercial purposes that include them. Projection methods are used in

commercial devices in many areas. Unfortunately, if a device is truly commercial, then

the algorithm that is actually used in it is proprietary and usually not published. Many

commercial emission tomography scanners use now some sort of iterative algorithms. A

prime example is provided by the commercially-successful Philips Allegro scanners (see

http://www.healthcare.philips.com/main/products/ and [29]). In x-ray computerized

tomography (CT), there are reports emanating from companies that sell such scanners

indicating that variants of ART are used in heart imaging; an example is presented in

[54].

The first EMI (Electric & Musical Industries Ltd., London, England, UK) CT

scanner, invented by G.N. Hounsfield [53], used a variant of ART. For this pioneering

invention, Hounsfield shared the Nobel Prize with A.M. Cormack in 1979. Thirty years

later (on September 29, 2009), a patent was issued to Philips (Koninklijke Philips Elec-

tronics N.V., Eindhoven, The Netherlands) for a “Method and device for the iterative

reconstruction of cardiac images” [77]. The role of projection methods is demonstrated

by the following quote from the “Summary of the Invention” included in the Patent

Description:

“The iterative reconstruction applied here may particularly be based on an Al-

gebraic Reconstruction Technique (ART) (cf. R. Gordon, R. Bender, and G.T.
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Herman: “Algebraic reconstruction techniques (ART) for three-dimensional elec-

tron microscopy and x-ray photography”, J. Theor. Biol., 29:471–481, 1970) or

on a Maximum Likelihood (ML) algorithm (K. Lange and J.A. Fessler: “Glob-

ally convergent algorithms for maximum a posteriori transmission tomography”,

IEEE Transactions on Image Processing, 4(10):1430–1450, 1995), wherein each

image update step uses the projections of a selected subset, i.e., projections

corresponding to a similar movement phase.”

4 Conclusion

In this paper we have shown that, whether or not alternative methods are applicable,

correctly implemented projection methods are very efficient for convex feasibility prob-

lems with linear inequality constraints, especially for those that are large, sparse, and

originate from real-life applications.
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