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Abstract

Thesis Title: On the Effectiveness of Removing Location Information from Trajectory

Data for Preserving Location Privacy

Advisors: Prof. Lars Kulik, Assoc. Prof. Egemen Tanin

The ubiquity of GPS enabled smartphones with Internet connectivity has resulted in

the widespread development of location-based services (LBSs). People use these services

to obtain useful advises for their daily activities. For example, a user can open a naviga-

tion app to find a route that results in the shortest driving time from the current location

to a destination. Nevertheless, people have to reveal location information to the LBS

providers to leverage such services. Location information is sensitive since it can reveal

habits about an individual. LBS providers are aware of this and take measures to protect

user privacy. One well established and simple approach is to remove GPS data from user

data working with the assumption that it will lead to a high degree of privacy. In this

thesis, we challenge this notion of removing location information while retaining other

features would lead to a high degree of location privacy. We find that it is possible to

reconstruct the original routes by analyzing just the turn instructions provided to a user

by a navigation service. We evaluated our approach using both synthetic and real road

network data and demonstrate the effectiveness of this new attack in a range of realistic

scenarios.
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Chapter 1

Introduction

1.1 Overview

Smartphones are capable of providing accurate positioning estimates. Combined with

the ability to connect to the Internet at high speeds, this has led to the widespread

development of location-based services (LBSs). LBSs make use of the location infor-

mation and consider finding a service that is more applicable to location. Examples of

LBSs include local business search (e.g., searching for restaurants within a user specified

range distance from a user), social networking (e.g., a group of friends sharing their geo-

tagged messages), automotive traffic monitoring (e.g., inferring traffic congestion from

the position and speed information periodically reported from probe vehicles), and route

finder applications (e.g., searching a route with the shortest driving time between two

locations). In particular, LBSs provide important way-finding services for users to assist

them in navigation while people are travelling. However, at the same time the location of

the user being sent to LBSs opens up the possibility of exposing them to greater privacy

risks. Such frequent and continuous access to these services further exposes and exacer-

bates privacy risks for the location of the user. The LSP can produce a complete profile

of the user’s movement with a high degree of spatial and temporal precision, possibly over

an extended period of time. From this profile, the LSP may infer private and sensitive

information about the user. For example, if a user is at drug rehab center then the LSP

might infer that the user has had a drug addiction or if the user’s location is at a stadium

during office hours, the LSP could predict the user’s level of sincerity for his work.

Location privacy has been defined as a spatial type of information privacy that con-

1



Chapter 1. Introduction

cerns with the claim of individuals to determine for themselves when, how and to what

extent location information about them is communicated to others [24]. This definition

clearly pinpoints the pivotal role of individuals in controlling the way their location data

is being utilized. Therefore, with the popularity of LBSs, user privacy protection becomes

an important research issue for future generation communication and networking. The

privacy threat is exacerbated if the available information from the access of LBS is linked

with other data sources; in the former example, if the LSP collaborates with the health

service provider then more specific information about the user’s addiction to a drug could

be revealed. Knowing about a user’s drug addiction can cause difficulties in a user’s life.

Presently, an extensive survey [1] has been done by Microsoft for assessing the state of

the art of LBSs. The study showed that more than 50% users are concerned about privacy

risks that could arise from accessing LBSs though 92% users think LBSs as valuable

services. The main concern of the users comes from sharing location with unspecified

organizations or people. The advent of Google’s Android operating system and Apple’s

iPhone OS allow third parties to run their applications and become LSPs for the users

of mobile devices. LSPs provide APIs so small developers can act as a proxy LBS. The

development of Android and iOS is not the main reason, although more people accessed

these services once smartphones proliferated. Thus, the LSPs are not only limited to

large corporations such as Google or Microsoft but include small developers, companies

or the employers. For example, an organization may provide LBSs for its employees, that

indirectly reveals that one employee is at a different company for a job interview, a fact

an employee wish to not disclose at that time. In this thesis, we highlight methods that

enable a user to enjoy a high quality of service without revealing private user information

to an LSP.

Numerous studies have been conducted for preserving location privacy of individual.

A popular privacy model to hide a user’s location from LSP is to send a cloaked area

[10, 18, 38, 91], which is typically a rectangle containing the user’s location, instead of

the user’s location. The higher the spatial imprecision is, the more private is the user’s

location; the probability is higher that a larger rectangle area contains a diverse range

of locations. Another popular way to preserve user location privacy is to hide a user’s

identity instead of her location and considers that the LSP might have knowledge about

the user’s location and then the rectangle is computed based onK−anonymity [34, 40]. It

2



Chapter 1. Introduction

ensures that the rectangle includes the locations of at least K − 1 other users in addition

to the user’s location so that the user becomes K -anonymous.

A trajectory is the location variation of an object over time. A trajectory is repre-

sented as a time-ordered sequence of points, each point referring to a geographic location

[87]. Geographic location refers to a specific physical point on Earth. This is more precise

than “area” or “place”, often defined by a set of latitude and longitude coordinates. Fun-

damentally, a trajectory data consists of the user’s highly sensitive location information.

The sensitiveness of handling trajectory data has been clearly stated in [31]. Trajectory

privacy refers to preventing unauthorized parties from learning user’s current or past trip

or parts of it.

Large quantities of trajectory data are generated every day by smartphone users

during their travels. This data could be considered as very private due to having location

information of an individual user. For example, when users request location based queries

while they are travelling on the road they must reveal their identities, location point or

trajectory (sequence of location points) and the queries describing the required service,

from which an LSP might be able to derive sensitive and private information about a

user’s health, habits, and preferences. Let us assume, if a user requests a query for the

nearest heart centre then the user’s health condition could be revealed to the LSP. The

straightforward solution is to protect the user’s privacy by hiding the user’s identity which

is inferred from the IP address or the mobile phone number. However, hiding only the

identity cannot always protect a user’s privacy because an LSP can have knowledge about

a user’s location and the user’s identity could be inferred from the revealed location. If the

user requests the query from her home or office then the revealed location that is the home

or office address can act as an identifier of the user. The other source of knowledge for a

user’s location can be physical observation or mobile phone triangulation. Furthermore,

there are cases where a user might request a personalized service which means the user’s

identity is revealed to the LSP while accessing a service. As an example, when a user’s

identity is revealed while requesting a query for the nearest gas station, the LSP can only

return those gas stations which provide a higher discount for the user’s credit card. In

this scenario, the LSP might not have knowledge about the user’s location; instead the

location might disclose sensitive and private information about the user. In summary,

the user’s location can sometimes reveal the user’s identity and sometimes act as a source

3



Chapter 1. Introduction

of the user’s private and sensitive data. Thus, hiding the user’s location while requesting

a location-based query is essential to protect the user’s privacy.

Techniques demonstrating how to preserve the trajectory privacy of LBS users has

been proposed in [4, 10, 22, 34, 35, 36, 40]. Most of the trajectory privacy preserving

techniques are based on the Spatial cloaking method that relies onK−anonymity concept

and cloaking granularity, which obfuscates a user’s location into a cloaked spatial area that

satisfies the user’s specified privacy requirements. Commonly used the trajectory privacy

preserving methods including Path confusion technique, Dummy trajectories technique.

The overall concept of these existing works is to preserve users’ trajectory privacy by

removing location information at different levels from the trajectory data that users

reveal while they are using LBSs. However, in this thesis we show that even removing all

the location information from the trajectory data is insufficient to protect users’ privacy

in a range of scenarios.

Trajectory data sets consist of not only user trajectory information but also relevant

navigational advice given to users. Navigational advice refers to the set of route in-

structions for getting the individual’s position and planning and following a trajectory.

For example, people could find shortest route [20] or even simplest route [21] to their

destination with the help of navigational advices from the navigation services of LBSs.

This advice can include turn instructions supplied to a user for navigation purposes. We

are particularly interested in the turn instructions in this thesis. Turn instructions are

a primary means to guide a user in order for them to reach to their destination. In

[19, 79, 84], turn instructions are defined as instructions on how to follow a route by

providing task-oriented specifications of the actions to be followed to reach a destination.

These instructions can easily be argued as belonging to the LSP and could be retained

for a long period of time or traded.

Plenty of studies [17, 21, 32, 33, 44, 64, 65, 66, 88] have been conducted on generating

route instructions. Shortest path algorithms (will discuss in Chapter 3) are widely used

to generate route instructions and it addresses the issue of finding the shortest route for

the user. However, the shortest route may involve a number of intersections that are

difficult to navigate, because they offer more than one alternative to turn left or right.

Some researches [21, 44, 66] have focused on the issue of finding simple path in terms of

navigation advice complexity. Generating route instructions has also been studied from
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a natural language processing point of view in [17, 64, 65]. The authors in [17] utilize

hierarchical Markov Decision Processes (MDP) [5, 72] to adaptively derive instructions

and [64, 65] use machine learning to derive natural language route instructions from a

previously learned corpus of instruction expressions. A range of works [32, 33] have also

exploited turning angles and distances to accurately predict the actual route a user has

traveled along. The use of path shapes was proposed in [32] where authors create a shape

represented by angles and distances and find similar shapes as derived from the road

network to map match the trajectory a user travelled along. This work was extended in

[33] to use only angle information to perform successful map matching. The use of turn

instructions has been studied in [88] to determine the probability of a user reaching their

destination. Coarse turn instructions such as (left, right, straight) can be ambiguous

given the road network context. The authors suggest to use instructions such as sharp

left or slightly right. In our work, we use very coarse turn instructions to demonstrate

that even sharing this information can present a privacy issue as the users’ actual route

can be identified.

We present a new approach that uses turn instructions to find the actual route of a

user. The reason for utilising the concept of turn instructions in our work is twofold:

firstly, turn instructions are commonly correlated with the road network environment.

Secondly, these instructions may be exchanged by the LBS with third parties without

significant legal implications [25]. In this thesis, we show that by removing location

information and retaining just the meta-data including turn instructions does not always

preserve privacy in different realistic scenarios.

1.2 Research Question

Trajectory data is highly impressionable due to having a direct association with user

location information. Therefore, many studies [2, 4, 10, 22, 34, 35, 36, 40, 50, 68]

have aimed to remove the user’s location information from trajectory data to obfuscate

the user’s identity from the LBS service provider or third party. However, trajectory

data is a combination of individual location information with relevant features of that

trajectory, such as turn directions that describe how to navigate the trajectory. Our goal

was to develop an approach for removing location information from trajectory data and
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retaking directional information so that we can reverse engineer the trajectory information

from directions. Most existing trajectory privacy preserving methods work with GPS

coordinates of the trajectory data, and Map-matching algorithms (for example [59, 60])

are used to convert GPS coordinates into a sequence of edges in the graph. We use

the sequence of edges in a graph that represent the road network and then compute the

turn instructions for every pair of edges in a graph by using turn instruction generation

algorithm. We then investigate the following question:

• What is a method for finding out trajectory data from the road network using driv-

ing instructions? To answer this question, we investigate the factors involved in

reconstructing routes based on turn instructions without using the location infor-

mation of users.

1.3 Contributions

Currently, most navigation apps are integrated with turn instructions for providing as-

sistance to road users during their journey. Privacy preserving techniques assist only in

removing location information i.e., GPS coordinates of a user from the users’ trajectory

data sets while they seek advice from LBS services, in a manner that preserves users’ loca-

tion privacy. Nevertheless, these trajectory data sets also contain information associated

with the user location trajectory, such as driving distance, speed limit, and navigation

instructions for example left, straight, right turn instructions for following the trajectory.

We explore associative information of trajectory data sets of a user that can be utilised

by a third party to reconstruct the path. To the best of our knowledge, our work is the

first to address this important issue. In this thesis, we show that our proposed method,

based on turn instructions of the trajectory, can efficiently reconstruct the path from the

map without any positional knowledge of the user.

This thesis offers the following major contributions:

• We show that it is possible for a trajectory data set that does not have GPS or

other specific location information, to access these details from turn instructions.

The proposed method exploits existing trajectory data from the fine-grained GPS

coordinates of the digital map and represents these data into road segments or cor-

responding edges of the graph. We generate turn instructions for every pair of road
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segments by using a turn instructions generation algorithm. Existing approaches

rely on computing turn instructions to improve the level of accuracy. We address

the user location privacy infringement that is generated from retaining the infor-

mation of the trajectory data so that we use coarse turn instructions, i.e., straight,

left and right, in our work. In the final step, we introduce a method for interpret-

ing turn instructions from the trajectory data to find appropriate paths without

the users’ positional information and demonstrate the robustness of our proposed

method.

• We show that companies and researchers should not solely rely on removing location

information, as turning directions can be used to find out location information.

Figure 1.1: A scenario of revealing a user’s actual trajectory by following turn instructions

given by the user

1.4 Proposed Methodology

The main idea of our methodology is to create a setting where people go from one location

to another, get that data into a form that there is no direct location information, and

test whether without that information we reverse engineer a user’s actual travelled path.

Consider the road network in Figure 1.1. A user, Bob, wishes to go to a Hospital from his

current position, S. He may ask the LBS to provide him with a route to the Hospital and

follows the straight, straight, left and left turn directions, sequentially (red dashed line).

Even when removing the location tracks, just by using the city map and turn instructions,

we can reveal that Bob started from S and ended up at the nominated destination because

this sequence is unique for this city. This simple scenario is an intuitive example of a
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situation where it is feasible to get high-quality location information without the use of

positional information.

In this context, we consider some real road network scenarios in the Melbourne CBD

(collected from the OpenStreetMap [43]): our observation is that when there are more

turn instructions, the route is more likely to be unique. Let us assume we remove the

location information in Figure 1.2 and we keep the turn instruction information. A user,

Alice, wishes to go to a Burger Shop from the corner of Elizabeth Street and Lonsdale

Street. She may ask the LBS to give her the route that can follow straight, right, straight

and right directions sequentially and she receives one route (red line).

Figure 1.2: Choosing turn instructions in a real road network

Alternately, let us consider the scenario in Figure 1.3. Alice decides to go to a Burger

Shop by using fewer turn instructions from the corner of Elizabeth Street and Lonsdale

Street. For this, she may ask the LBS to give her the route that can follow straight,

right and straight directions consecutively and she receives two alternative routes (red

and yellow lines). As we can see, if we utilise the longer turning instructions (straight,

right, straight and right), we find that there is only one possible path that follows the

given instructions by Alice. Looking at the shorter turning instructions, there are several

possible destinations. Thus, the shorter turn instructions resultin more privacy for the

user than the longer turn instructions. In this thesis, our main focus is to point out the

extent to which exchanging users’ trajectory information preserves privacy. We have a

plan to examine how to protect the user’s location privacy from the above scenario in

8



Chapter 1. Introduction

near future.

Figure 1.3: A scenario of obtaining multiple trajectories with the same turning instruc-

tions provided by Alice

We compute route instructions based on three basic turn instructions, i.e., “Left”,

“Straight” and “Right” for given paths. Then we check for each possible source node in

a road network if the sequence of turn instructions can be traversed and leads to a final

destination. Our method tries to apply consecutively each turn instruction and stops

when a turn instruction cannot be applied. If all instructions be executed, the algorithm

terminates, and a route is stored as a candidate trip. The number of resulting equivalent

candidate routes indicates the privacy level of a user’s travelled route as the user could

have travelled on any one of them.

Then we evaluate the efficacy of our proposed approach by considering for a given

route i.e., a set of turn instructions, how unique this route is. We assume that the larger

of number of trajectories that can be mapped to an instruction sequence, the more private

this instruction sequence is. This enables us to determine those instruction sequences that

can be released for a given privacy level and those that cannot be revealed to third parties.

We have tested our algorithm on both synthetic and real data. We have used synthetic

data to test the algorithm behavior and accuracy for various trajectory parameters. We

consider node degree, trip length, trip types and grid area size as parameters in our

experiments. We observe that paths with a small number of route instructions are more

private than paths with a higher number of route instructions. The reason is that paths
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with less route instructions are more frequent in the network.

We use real data to observe the applicability of our algorithm for real road network

environment. We consider different areas in Melbourne City for the evaluation of our

algorithm. We evaluate the performance of the algorithm by comparing the path’s length

with the number of occurrences of that path can be found in the refine network. We show

that our proposed approach can effectively reconstruct routes for given turn instructions

and the paths with longer turn instructions are likely unique in the network. That means

there is always a possibility to disclose a user’s location information if the user’s route

instructions are exchanged with any one.

1.5 Thesis Organization

The reminder of this thesis is organized as follows:

• Chapter 2: We discuss details on navigation services and present an extensive

literature review regarding route instruction generation in the road network con-

text. Then we discuss the overall existing methods for preserving the privacy of

users’ location trajectory in location based services (LBSs) related to this thesis.

The discussion includes different privacy models, techniques to compute the user’s

cloaked area and approaches to predict destination during the travelling period. We

break down the importance of preserving users’ privacy in LBSs into three main

areas: data privacy, location privacy and trajectory privacy, and survey the existing

privacy preserving techniques in relation to these areas.

• Chapter 3: We present a background on computing the shortest trajectory or

path while people are travelling on a road. The shortest paths problem is one of

the most important problems in road networks. The problem is especially inevitable

for drive guidance systems that include navigation directions. Our work is highly

related to the road network as well as navigation directions. In this chapter, we

discuss existing state of the art solutions for solving shortest paths problem.

• Chapter 4: We propose our method in this chapter. We use the concept of turn

instructions. Turn instructions refer to the actions of people as they travel. We use

a turn instructions generation algorithm to compute turn instructions to reconstruct
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the actual path of a user to reverse engineer location information. We introduce

a turn instructions interpreting method to translate the turn instructions given by

the user.

• Chapter 5: We describe the data we used and our experimental setup. We evaluate

our proposed approach performance both for synthetic and real data sets. We

experimentally show that our proposed approach achieves a higher number of paths

for a given set of navigation instructions of a user while the length of navigation

instructions is relatively small.

• Chapter 6: We conclude the thesis that user trajectory location privacy can be

infringed by exchanging navigation instructions, even though the location informa-

tion of the user is removed from the user’s trajectory information data set. We also

discuss possible future research directions.

1.6 Publication that Resulted from This Thesis

• Hossain A., Quattrone A., Tanin E. and Kulik L. (2016). On the Effectiveness of

Removing Location Information from Trajectory Data for Preserving Location Pri-

vacy. In ACM SIGSPATIAL IWCTS 2016, 9th ACM SIGSPATIAL International

Workshop on Computational Transportation Science, San Francisco Bay Area, Cal-

ifornia, USA, pages 49-54.
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Literature Review

Location based services (LBSs) provide great benefits for users. The navigation services

assist the user to determine individual’s current position, determine the location points

of destinations and provide directions on how to reach the destination. Navigation route

descriptions include turn-by-turn instructions to reach the destination allowing people to

reach their desired destination. However, these types of assistance from these navigation

services could lead privacy issue of individuals’ location. For example, navigation ser-

vices provider could collect and collate precise details of the user’s travel history for a

long period of time that include location information, turn-by-turn instructions, travel

distances and so forth. From the observation, the navigation service provider may de-

termine private and sensitive information about the user. For example, if a user is at

a cancer hospital then the provider might infer that the user has some form of cancer.

The range of studies [2, 4, 10, 22, 34, 35, 36, 40, 50, 68] have been discussed about the

problem to share the location information of individual with the service provider or a

third party. The main objective of these research [2, 4, 10, 22, 34, 35, 36, 40, 50, 68] is to

hide the location information of a user from a service provider or a third party as privacy

preserving manner. However, the rest of the information of travel history for individual

including turn instructions still remain. From this prospective, we have motivated to

review the existing navigation services with route instructions and privacy preserving

techniques for protecting users’ location trajectory privacy in this chapter.

The remainder of this chapter is organized is as follows, we first discuss the basic

concept of LBSs in Section 2.1 and then in Section 2.2, we present the importance of

navigation services with route instructions for the road user of the LBSs and survey the
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existing literature related this topic. Although LBSs provide valuable services for mobile

users, revealing private locations to potentially untrusted LBS providers pose privacy

concerns and our work is directly related with the users location privacy. We review an

extensive survey of user location trajectory privacy in Section 2.3.

2.1 Location Based Services

Location-based services (LBSs) provide information and data to the user based on ge-

ographical position (i.e. spatial coordinates). LBS can be also defined as service that

integrates the position of a mobile device with other information in order to provide added

value to a user. A result of the convergence of information systems, communication mech-

anisms and positioning technologies (Figure 2.1), LBS offer a personalized approach to

data access [81]. The key to LBSs is to know the location of the user, so that an ap-

propriate service can be delivered. However, that location might not necessarily have

to be related to the current position but could also be some future location of the user.

The most common example of such applications include car navigation systems. These

applications represent a new way of interaction between people and the virtual world.

LBSs can be used in combination with messaging, for example in mobile advertising.

Figure 2.1: The convergence of technologies enables location based services [81]

In general, The LBSs are based on a cellular communication network and one or

more positioning technologies which, combined with a geographic information system

(GIS), allow the management of the collected information and its presentation to the

end user. The main features of these applications are: the user positioning system, a

communication network and some information. Furthermore, they are characterized by
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a two-way provider-user communication, where users can interact with the provider to

supply both their position and preferences regarding the requested information. The

provider can thus express the most suitable answer to the users’ requests.

Important classes of LBSs are those that are taking user’s trajectories into account,

these in composes navigation services which we will discuss in Section 2.2 but also services

that depend on user real time position such as continuous nearest neighbor queries or

detour queries. According to [13], there are mainly two types of LBS, namely, snapshot

and continuous LBS. For snapshot LBS, a mobile user only needs to report its current

location to a service provider once to get its desired information. On the other hand, a

mobile user has to report its location to a service provider in a periodic or on-demand

manner to obtain its desired continuous LBS.

Nevertheless, LBSs provide important services to the user, publishing personal loca-

tion information to an unreliable service provider could pose potential privacy concerns.

Two surveys’ results regarding the concern of using LBS have been pointed out in [13]

that describe 55% LBSs users show concern about their loss of location privacy and 50%

of U.S. residents who have a profile on a social networking site are concerned about

their privacy. Based on these results, location privacy of a user is the most significant

issue for the location-dependent services. Preserving privacy in continuous LBSs is more

challenging than snapshot LBSs because perpetrators could utilize the spatial and tem-

poral correlations in the user’s location samples to determine the user’s actual location

information. Many real life applications such as business analysis, urban planning are

based on the analysis of the user location trajectories. However, publishing such location

trajectories to the public or a third party for data analysis could pose serious privacy

concerns. We will give an overview of the existing privacy preserving techniques in this

problem in Section 2.3.

2.2 Navigation Services

Navigation service is one of the most popular service of LBSs and it must allow the user

to effortlessly determine his/her own position, locate a destination, and receive guidance

on how to get there [74]. The services to be developed will provide the user with guidance

on the use of different transport modes and the routes reserved for them, and will also
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meet user needs in areas related to travel, tourism and recreational pursuits. Based on

[74], the navigation services will answer the following questions:

• Where is the user him/herself located?

• Where is the desired site or service located?

• What different modes of transport can take the user to his/her desired destination?

People are mostly dependent on the navigation applications such as car navigation is

inevitable while they are on the road. The primary reason of these services popularity

due to the fact that they make the essential and everyday task of travelling much easier

and safer by simply providing user’s current location as well as routes to the selected des-

tinations. Navigation services would not be possible without advancements in positioning

and mobile computing devices. Furthermore, technology trends today are advancing into

many new and exciting areas providing opportunities that would not have been possible

just a short time ago.

Navigation is often referred to the activity of accurately find out one’s position and

planning and following a route and it is one of the most significant aspect when users

move in the road network. Human navigation research investigates the processes that

take place when people orient themselves and navigate through a space [39]. Travelling

through an unfamiliar road network, people may seek navigational advice from other

road user as well as automated navigation systems and use various spatial, cognitive and

behavioral abilities to find their paths. Current navigation services are mainly based on

geometric data of the road network [75] and compute the shortest or fastest path given an

origin and destination, providing a sequence of routing instructions for this path. Route

instructions refer to the instructions on how to follow a route; they are task-oriented

specifications of the actions to be carried out to reach a destination in [19, 79, 84]. Each

single instruction is meant to guide the user from one decision point to the next. In the

course of route following, a decision point is an intersection in a road network. Based on

the discussion of [57], the general structure of a decision point (the physical structure),

i.e., the number of brunches, angles between branches. Some examples of different general

structures of a decision point are described in [57] and they are circles, T-intersections,

different number of branches and highway exits.
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Plenty of studies [9, 17, 21, 44, 62, 64, 65, 66, 80, 88] have been conducted on gener-

ating suitable route instructions for a road users. Shortest path algorithms (will discuss

in details in Chapter 3) are widely used to generate route instructions and it addresses

the issue of finding the shortest route for the individual. However, a shortest route may

involve a number of intersections that are difficult to navigate, because they offer more

turn left or right. For example, consider the network in Figure 2.2 (derived from [21]).

This network might represent, for instance, the block structure of a road network in a

city. Assuming the network is embedded in the Euclidean plane, there exist six equivalent

optimal shortest routes from intersection i1 (upper left) to intersection i9 (lower right)

i.e., (i1, i2, i3, i6, i9), (i1, i2, i5, i6, i9), (i1, i2, i5, i8, i9), (i1, i4, i5, i6, i9), (i1, i4, i5, i8, i9) and

(i1, i4, i7, i8, i9), respectively. Four of these six routes i.e., (i1, i2, i5, i6, i9), (i1, i2, i5, i8, i9),

(i1, i4, i5, i6, i9), (i1, i4, i5, i8, i9) seem to be required a longer instruction sequence to de-

scribe. For example, if we consider the route (i1, i2, i5, i8, i9), we might describe the route

with the instruction sequence “orient yourself, go straight ahead, turn right at the first

intersection and then turn left at the second intersection.”

Figure 2.2: Example network with six shortest and two simplest paths [21]

A range of researches [9, 21, 44, 66, 80] have been focused on the issue of finding

simple path in terms of navigation advices complexity. Take the Figure 2.2 [21] again

as an example of simple path in a road network, only two of six routes ((i1, i2, i3, i6, i9),

(i1, i2, i5, i6, i9), (i1, i2, i5, i8, i9), (i1, i4, i5, i6, i9), (i1, i4, i5, i8, i9) and (i1, i4, i7, i8, i9)) from

intersection i1 (upper left) to intersection i9 (lower right) seem to be optimal simple

routes. Because, (i1, i2, i3, i6, i9) and (i1, i4, i7, i8, i9) avoid the more complex 4-way in-

tersection i5, and only these two routes require just one turn. We might describe the
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route (i1, i2, i3, i6, i9) with the intersection sequence “orient yourself, go straight ahead,

and turn right at the end of of the road.” In contrast, the route (i1, i4, i5, i6, i9), we might

describe the route with the instruction sequence “orient yourself, turn left at the first

intersection, go straight ahead, and then turn right at the second intersection.”

The approach in [80] can be utilized to take advantage of the type of roads (major

roads versus minor roads), generating a path that prefers major routes. The time to find

a route in the graph is considerable reduced, since the algorithm essentially restricts the

search to major roads. The approach in [66] is a modification of the A∗ shortest path

algorithm [45] by considering both the total length of the route and “easy of description”

of the route. Two types of intersections have used in [66]. The first category intersections

according to the complexity of instructions used to describe them and accordingly adjusts

the weights used in the shortest path computation to select routes through intersections

that could be described utilize less complex instructions. The simplest path algorithm

described in [21] aims to minimize the complexity of a route description, based on amount

of information required to negotiate each decision point. Here, a shortest-path search is

used in combination with a cost metric that assigns a cost value to each turn description at

an intersection taking into account the number of outgoing arcs. It utilizes the notion of

classification of instructions into frames with each frame having several slots for different

elements of an instruction from [66], and improves on the weights used in it.

The shortest most reliable path algorithm presented in [44] attempts to minimize not

the instruction complexity but the unreliability present on a path, in terms of structural

complexity. It models the weights according to how many outgoing arcs are considered

“instruction equivalent”. This leads to their measure of unreliability as the number of

instruction equivalent options minus one. The unreliability value of an entire route is

then simply the sum of individual unreliability values at all intersections along the route.

The unreliability value is thus zero if the instruction has no ambiguous turn instruction.

Further, the authors suggest to break ties with the metric path length. Finally, their work

considers a weighted sum of metric distance and unreliability value to balance reliability

and route length. The landmark spider algorithm developed in [9] aims to generate a

clearest path in terms of spatial references and landmarks used to describe the route. It

exploits the same algorithm in [21] with the only difference being the weighting function

for an intersection, which in this case depends on the distance and orientation of a traveller

17



Chapter 2. Literature Review

with respect to any landmark present near the intersection.

Figure 2.3: Two different approaches used to define qualitative turn descriptions for road

intersections [88]

Generating route instructions has also been studied from a natural language pro-

cessing point of view in [17, 64, 65]. The authors in [17] utilize hierarchical Markov

Decision Processes (MDP) [5, 72] to adaptively derive instructions and [64, 65] use ma-

chine learning to derive natural language route instructions from a previously learned

corpus of instruction expressions. Some works [32, 33] have also exploited turning angles

and distances to accurately predict the actual route a user has travelled along. The use

of path shapes was proposed in [32] where authors create a shape represented by angles

and distances and find similar shapes as derived from the road network to map match

the trajectory a user travelled along. This work was extended in [33] to use only angle

information to perform successful map matching.

The use of turn instructions has been studied in [88] to determine the probability of a

user reaching their destination. It tries to tackle the problem of efficient routing by using
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cost functions that trade-off between minimizing the length of a provided path while also

minimizing the number of turns on the provided path. It uses the incoming street of

an intersection as the reference direction to describe the relation between this segment

and the outgoing segments, and adapts the turn descriptions proposed in [55]. Näıve

representation to define qualitative turn descriptions for road intersections that divides

the plane into four sectors of equal size “left”, “straight”, “right” and “back”. On the

other hand, [88] uses the same as in näıve approach (such as left, right, straight) plus

“slightly right”, “sharp right” etc (idea derived from [55]) for defining turn instructions

for road intersections. Figure 2.3 shows two types of qualitative representation of turn

descriptions for road intersection. Näıve turn instructions can be ambiguous given the

road network context. The authors suggest to use instructions such as sharp left or slightly

right. In our work, we use näıve turn instructions to demonstrate that even sharing this

information can present a privacy issue as the users actual route can be identified.

2.3 Privacy-preserving Techniques

LBSs provide answers to the queries based on user locations. For example, a traveller may

want to know nearby points of interests such as a restaurant, a supermarket, an ATM

machine or a foreign exchange. Though LBSs provide assistance to users, this assistance

comes along with privacy threat. Since, a LBS provider knows the location of its users, a

user’s continuous access of LBSs enables the LBS provider to create a complete sketch of

the user’s movement with a high degree of spatial and temporal precision, possibly over

an extended period of time. The LBS provider may infer private and sensitive information

from this sketch. For example, if the user’s location at a drug rehab centre then the LBS

provider might infer that the user has had a drug addiction. Thus, preserving location

privacy of a user is an important issue. Our work is highly related with the user location

trajectory privacy. For this instance, we survey existing privacy preserving approaches

for the user location trajectory privacy in this section. We at first discuss general data

privacy principles in Section 2.3.1 and location privacy of a user in Section 2.3.2 because

the idea of a user’s location trajectory privacy derived from data privacy and location

privacy. Finally, in Section 2.3.3, we review the existing principles of trajectory privacy

of a user.
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Figure 2.4: Using quasi-identifiers to join two micro-data sets [14]

2.3.1 Data Privacy

Data privacy, also called information privacy, is the aspect of information technology

that deals with the ability an organization or individual has to determine what data in

a computer system can be shared with third parties. Many organizations and agencies

need to disclose individuals’ personal data (e.g., gender, date of birth, zip code) for many

practical purposes such as public health research, voter registration etc. Basically, these

data or micro-data are stored in tables where each row corresponds to one individual

and the identifiers (the identification of records in micro-data, i.e., name and social se-

curity number) must be removed for preserving the data privacy. However, combining

such “de-identified micro-data with other released micro-data may still pose data privacy

issues for individuals [78]. Thus, privacy protection of data is necessary. To illustrate the

problem, data could have been de-identified by suppressing names and Social Security

Numbers (SSNs) in order not to disclose the identities of the individuals to whom the

data refer. However, values of other released attributes, such as zip code, gender and date

of birth can also appear in some external table jointly with the individual identity, that

can therefore allow them to be tracked. As stated in [14], a study estimated that 87% of

the population of the United States can be uniquely identified by using the collection of

non-identity attributes, i.e., gender, date of birth and 5-digit zip code [83]. In fact, those

three attributes were used to link Massachusetts, USA voter registration records includ-

ing name, gender, zip code and date of birth to de-identified medical data from Group

Insurance Company including gender, zip code, date of birth and diagnosis to identify

medical records of the governor of Massachusetts in the medical data [83], as illustrated

in Figure 2.4. Quasi-identifiers and equivalence class refer to the attributes whose values

taken together can potentially identify an individual record and a set of records that have
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the same values for the quasi-identifiers in a released micro-data, respectively defined in

[14]. In the following, we review a range of cognitive studies on protecting data privacy

for an individual.

Overview of Data Privacy-preserving Approaches

Data privacy-preserving approaches have been designed to anonymize micro-data. Several

privacy-preserving properties are proposed to limit disclosure of anonymized micro-data.

For example, K -anonymity, (X, Y )-anonymity, MultiRelational K -anonymity, l -diversity,

t-closeness, differential privacy etc. In this section, we discuss the most common data

privacy preserving techniques, i.e., K -anonymity, l -diversity, t-closeness and differential

privacy briefly. For the details of these and other data privacy principles, we refer the

reader to the recent survey paper [31].

• K -anonymity: A release of data is said to have the K -anonymity property if

the information for each person contained in the release cannot be distinguished

from at least K − 1 individuals whose information also appear in the release. To

prevent record linkage through quasi-identifier, [82] at first proposed the notion of

K -anonymity. In the attack of record linkage, some value qid on quasi-identifier

identifies a small number of records in the released table, called a group. If the

victim’s quasi-identifier matches the value qid, the victim is vulnerable to being

linked to the small number of records in the group. In this case, the attacker faces

only a small number of possibilities for the victim’s record, and with the help of

additional knowledge, there is a chance that the attacker could uniquely identify

the victim’s record from the group.

K -anonymity requires each record to be indistinguishable with at least other K1

records with respect to the quasi-identifier, i.e., each equivalence class contains at

least K records [58, 78, 82]. However, this method has two main limitations: firstly,

a K -anonymized equivalence class suffers from a homogeneity attack if all records in

the class have less than K values for the sensitive attribute (e.g., disease and salary).

Secondly, it does not protect against attacks based on background knowledge.

• l-diversity: l -diversity property is proposed to ensure that an equivalence class

must have at least l values for the sensitive attributes [63, 89]. l -diversity has the

21



Chapter 2. Literature Review

limitation of implicitly assuming that each sensitive attribute takes values uniformly

over its domain, that is, the frequencies of the various values of a confidential

attribute are similar. When this is not the case, achieving l -diversity may cause a

large data utility loss.

• t-closeness: t-closeness is defined that an equivalence class is said to have t-

closeness if the distance between the distribution of a sensitive attribute in this

class and the distribution of the attribute in the entire data set is no more than

a threshold parameter t [61]. t-closeness uses the Earth Mover Distance (EMD)

function to measure the closeness between two distributions of sensitive values,

and requires the closeness to be within t. t-closeness has several limitations and

weaknesses. First, it lacks the flexibility of specifying different protection levels for

different sensitive values. Second, the EMD function is not suitable for prevent-

ing attribute linkage on numerical sensitive attributes. Third, enforcing t-closeness

would greatly degrade the data utility because it requires the distribution of sen-

sitive values to be the same in all quasi-identifier groups. This would significantly

damage the correlation between quasi-identifiers and sensitive attributes.

• Differential privacy: Differential privacy, which allows a trusted LBS server to

decide which answers, should be disclosed and how to add noise to answers to

aggregation queries to avoid leaking information about any specific record in the

database. It is a privacy definition that can be motivated in several ways [26]. If

an adversary knows complete information about all individuals in the data except

one, the output of the anonymization algorithm should not give the adversary too

much additional information about the remaining individual. Alternatively, if one

individual is considering lying about their data to a data collector (such as the

Australian Census Bureau), the result of the anonymization algorithm will not

be very different if the individual lied or not. Based on known definition in [27],

formally we define it as follows:

Definition 1. Let RA be a randomized algorithm, let SO be the set of possible out-

puts of the algorithm, let PO be a prior probability for the attributes of the remaining

individual, and let ∈> 1. The algorithm RA satisfies ∈-differential privacy if for all

pairs of data sets (d1, d2) that differ in exactly one row,
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Differential privacy has the benefits that we do not have to assume that tuples are

independent or that an adversary has a prior belief encapsulated by a probability

distribution.

We distinguish two distinct types of attribute in privacy preserving mechanisms for

protecting user location data; they are location data hiding based method and differential

privacy based method. The former focuses on data removing of an individual location

from the user data sets, for example, K -anonymity, l -diversity etc., for preserving user

location data privacy; the latter focuses on adding different data such as hashing, sub-

sampling and noise injection with user data sets to keep the data of individual users

completely private. Differential privacy focuses on an aggregate results but our goal is to

publish an individual record of location information. Thus, directional privacy does not

directly apply into our work.

2.3.2 Location Privacy

Though LBSs provide many new opportunities, the ability to locate mobile users also

presents new threats the intrusion of location privacy. Location privacy is defined as the

ability to prevent unauthorized parties from learning one’s current or past location [7].

Location privacy threats refer to the risk that an adversary can obtain unauthorized access

to raw location data derived or computed location information by locating a transmitting

device, hijacking the location transmission channel and identifying the subject using the

device [41]. For example, location information can be used to spam users with unwanted

advertisements or to learn about users’ medical conditions, unpopular political or religious

views. Inferences can be drawn from visits to clinics, doctor’s offices, entertainment clubs

or political events. Public location information can lead to physical harm, such as stalking

or domestic abuse. So, the main concern is how to protect location privacy while accessing

LBS system. Recently, considerable research [4, 7, 15, 22, 23, 34, 36, 37, 40, 48, 49, 52, 53,

54, 67, 85] interest has focused on preventing identity inference in location-based services.

The main concern is to allow the mobile user to request services without compromising
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his/her privacy. We classify these techniques into four main groups: cloaking, Pseudonym,

cryptography and dummy.

Figure 2.5: Cloaking based technique (based on K -anonymity) [46]

Cloaking Based Technique

In cloaking based technique, it generates blur area (circular or rectangular) that encloses

actual query issuer user with other user based on his/her privacy requirement (e.g., K -

anonymity, granularity metric etc). By this, the user can hide his/her location from ad-

versary or LBS server. For example, in Figure 2.5, a user requests LBS with 3-anonymity

through by trusted third party (Location cloaker) or group head (i.e., Distributed sys-

tem), then location cloaker (LC) or group head (GH) makes the cloaking area and sends

to the LBS for results set. A cloaking technique known as Interval Cloak introduced in

[40], it calculates the cloaking region based on a Quad-tree method. The main idea is

that it recursively partitions the space into four equally squared regions until a user fits in

a quadrant to satisfy K -anonymity. However, this work suffers from several drawbacks.

First, it assumes a system-wide static K value for all mobile users, which hinders the

service quality for those mobile nodes whose privacy requirements can be satisfied using

smaller K values. Furthermore, this assumption is unrealistic in practice as mobile users

tend to have varying privacy protection requirements under different contexts and on dif-

ferent subjects. Second, their approach fails to provide any quality of service guarantees

with respect to the sizes of the cloaking boxes produced. This is because, the Quad-tree
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based algorithm anonymizes the messages by dividing the Quad-tree cells until the num-

ber of messages in each cell falls below K and by returning the previous quadrant for

each cell as the spatial cloaking box of the messages under that cell.

To overcome the problems in [40], the CliqueCloak algorithm proposed in [34], it relies

on the ability to locate a clique in a graph to perform location cloaking. However, This

algorithm is expensive and performs poorly when K is large. In another approach, the

possible locations are restricted to be nodes in a graph (e.g., a road network), and the

cloaked region (or “obfuscation”) is represented by a set of nodes [22, 23]. The cloaked

region C
′

in Figure 2.6 is the set of blue nodes, one of them being q. The approaches

that represent C
′

as a set quantify the privacy of C
′

by its cardinality.

Figure 2.6: An example of obfuscation [92]

A novel location anonymization approach namely Casper proposed in [67], it addresses

location anonymization using a pyramid data structure, similar to a Quad-tree and allows

the system to quickly locate anonymized areas. Assume a user U asks a query and let

c be the lowest-level cell of the Quad-tree where U lies. If c contains enough users (i.e.,

| c |≥ K), c becomes the cloaking region. Otherwise, the horizontal ch and vertical cv

neighbors of c are retrieved. If | c ∪ ch |≥ K or | c ∪ cv |≥ K, the corresponding union

of cells becomes the cloaking region; otherwise, the anonymizer retrieves the parent of

c and repeats this process recursively. However, Casper produces a large cloaking area

and yields poor quality of services (QoS). Hilbert Cloak (HC) based cloaking method

introduced in [52] that satisfies a reciprocity condition in every K -anonymous region.

Reciprocity is an important property that is sufficient for spatial K -anonymity. For
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example, A user u issues a query associated with anonymized set AS. The AS satisfies

the reciprocity condition if there exists a set of users SU lying in the AS such that u ∈ SU

and every user u ∈ SU lies on the anonymous regions of all other users in SU . Consider

the Figure 2.7, where the user ids indicate their Hilbert order. For K -anonymity = 3, the

users are grouped into 3 buckets (the last one contains 4 users). When any of U1, U2 or

U3 issues a query, HC returns the first bucket (shown shaded) as the AS; the minimum

bounding rectangle (MBR) of that bucket becomes the 3 anonymizing set reciprocity

(3− ASR). HC guarantees privacy for any distribution of user locations.

A grid-based cloaking method presented in [4] introduces l -diversity concept. Location

l -diversity requires that every cloaked region containing K individuals contains at least

l different point of interests (POIs). The degree of diversity is measured by counting

the number of POI occurrences or types inside the cloaked region, while the different

degree of sensitivity of those places is ignored. In essence, an l -diverse region “blurs

in the crowd” the POIs where the person can stay, independently from the meaning of

those places. The result is an excessive loss of position accuracy. CLOAKP2P approach

proposed in [15], constructs a cloaking area by considering the neighbouring users of the

query. Given cloaking region, the LBS returns the probability that each candidate result

satisfies the query based on its location with respect to the cloaking region. On the other

hand, it eliminates the anonymizer by organizing users in a Peer-to-Peer system. The

querying user u searches his neighborhood until he finds K − 1 other peers, which are

used to construct the cloaking region. However, u tends to be close to the centre of the

cloaking region; therefore an attacker can identify u with high probability. It also fails to

provide privacy protection when there are many users in a system.

Another Peer-to-Peer system to support distributed anonymization called PRIVE

proposed in [36], where users form a cluster and maintain a hierarchical overlay network

resembling a distributed B+ tree. However, it may suffer from a slow response time

since the nodes in a root level constitute a potential bottleneck. X-Star based cloaking

algorithm presented in [85], it achieves the optimal query processing cost and high privacy

protection for the users. It groups neighbouring queries into a cloaking star structure

and adjusts the result cloaking stars to satisfy the privacy requirement of users. In

addition, it merges neighbouring stars into a super-star structure to meet the privacy

requirements of each individual user. However, X-star has a low successful anonymization
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Figure 2.7: Example of Hilbert Cloak [52]

rate. For increasing high successful anonymization rate, [49] proposed a result-aware

location cloaking approach called 2PASS, based on client-server model that minimizes

the number of requested objects directly. It is based on a notion of Voronoi cells and

each cell contains one object that is the nearest neighbour of any point in its cell. The

user can fixed the cloaked area to the Voronoi cells of the nearest neighbour object, if

he/she knows the Voronoi cells in advance. 2PASS is able to save the bandwidth usages

and processes a K-nearest neighbor query in two steps. In the first step, the user requests

the Voronoi cell information corresponding to the query. In the second step, it selects

objects to request. Although 2PASS optimizes the bandwidth usages, it suffers from

privacy attack.

Pseudonym Based Technique

Pseudonym combines the location and user identity called Mix-zones proposed in [7]. Mix-

zones are recognized as an alternative and complementary approach to spatial cloaking

based location privacy protection. The concept of “mix” has been applied to anonymous

communication in a network. Mix-zones enable users to change pseudonyms such that

the linking between the old and new pseudonyms is not revealed. The idea behind

using pseudonyms instead of the real identities is to disassociate the exposure of location

information from the actual one. The anonymity of a mix-zones enforcing that a set of

users enter, change pseudonyms and exit a mix-zone in a way such that the mapping

between their old and new pseudonyms is not revealed [7]. A mix-zone of K participants
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Figure 2.8: A Mix-zone with three users [70]

refers to a K -anonymization region in which users can change their pseudonyms such

that the mapping between their old and new pseudonyms is not revealed. In a mix-zone,

a set of K users enter in some order and change pseudonyms but none leave before all

users enter the mix-zone. Inside the mix-zone, the users do not report their locations and

they exit the mix-zone in an order different from their order of arrival, thus, providing

unlinkability between their entering and exiting events [70]. A set of users SU is said to

be K -anonymized in a mix-zone Z iff:

• The set SU consists K or more users, i.e., | SU |≥ K.

• All users in SU must enter the mix-zone Z before any user iǫSU exits. Thus, there

exists a point in time where all K users of SU are inside the zone.

• Each user iǫSU , entering the mix-zone Z through an entry point eiǫE and leaving

at an exit point oiǫO, spends a completely random duration of time inside.

• The probability of transition between any point of entry to any point of exit follows

a uniform distribution. i.e., a user entering through an entry point, eiǫE, is equally

likely to exit in any of the exit points, oiǫO.

Figure 2.8 depicts a mix-zone with three users entering with pseudonyms a, b and

c and exiting with new pseudonyms, x, y and z. Given any user exiting with a new
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pseudonym, the adversary has equal probability of associating it with each of the old

pseudonyms a, b and c and thus this example mix-zone provides an anonymity of K = 3.

Cryptography Based Technique

Cryptography based approaches [37, 53] allow users to access LBSs without revealing

their locations to the LBS provider (LSP). Although the architecture of both of these ap-

proaches eliminates an intermediary trusted server, these approaches incur cryptographic

overheads and cannot use existing spatial indexing techniques to store data on the server.

In [53], the data space is encrypted from two dimensions to one dimension space using

Hilbert curves by a trusted third party and the transformed space can be decrypted using

a key, which is not known to the LSP and the users. This approach assumes that the

user’s tamper-resistance device stores the key and encrypts the location before forwarding

a query to the LSP. The LSP evaluates the K-nearest neighbour query in the transformed

space and returns the encrypted data objects which are again decrypted to the original

space in the user device. Since the query for k nearest data objects is evaluated in an

encrypted space which might not always preserve the proximity relations of the original

space, the returned data objects may not be the actual answers. In this approach, the

privacy could be violated if any of these tamper-resistance devices gets compromised.

[37] uses private information retrieval (PIR) protocols to retrieve the approximate

and exact nearest data object without disclosing a user’s location. In this approach, the

space is divided into grid cells and the data objects associated each cell are stored in

a format required by PIR protocols. The user provide her encrypted cell, where she is

located, using PIR, and determines the nearest data object from the retrieved encrypted

data objects. Although this approach ensures privacy, it incurs a high pre-processing

overhead compared to spatial cloaking. Moreover, this approach only supports queries

for the nearest data object.

Dummy Based Technique

Dummy based cloaking technique presented in [7, 48, 54], it generates false user locations

called dummies and combine them with the actual user location into the request. The

purpose of these fake locations is to increase the uncertainty of the adversary about the

users’ real movements. For example, in Figure 2.9, d1, d2, d3, d4 are dummy locations, and
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the cloaked region is C
′

= {u, d1, d2, d3, d4}. However, the server may infer the actual user

location from dummies after monitoring long-term movement patterns of the user. [48]

proposes dummy based technique but it shows poor performance in a real environment.

[7] improves this technique by generating consistent movement patterns for dummies in

a long run. Scattered dummies generated around the user based on the user’s current

location and previous dummies locations in [54] for improving the performance of [7]. It

also consider dummies locations according to the real road information.

Figure 2.9: Dummy based technique [92]

2.3.3 Trajectory Privacy

Though, a plethora of work has been done on the hiding of location information of users,

little attention has been paid to the users who are accessing LBS system during traveling

time on the road. Furthermore, the condition of the road network, e.g., the network topol-

ogy has significant impact over the query evaluation and communication efficiency, which

should be a critical concern for developing location privatization solutions. For instance,

the complexity of computing the network distance of two points, a most fundamental

operation in location-based query processing, varies considerably with the underlying

network structure. In this section, we will discuss some of the related works which has

been done in order to preserve individual’s location privacy in a continuous scenario i.e.,

privacy in trajectory data.

A trajectory is a path reported by a moving object in the geographical space. A spatial

trajectory is represented by a set of n time-ordered points where each point consists of a

geo-spatial coordinate set (xi, yi) and time-stamp (ti). Trajectory data basically compact

forms of highly sensitive information of user (e.g., location points) and therefore, there

is a high probability to uncover the information due to publishing it carelessly or even

an incomplete part of it can cause serious privacy issues [31]. This types of spatial and
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temporal attributes of a location trajectory can be considered as powerful quasi-identifiers

that can be linked to various other kinds of physical data objects [31, 68]. Based on the

example in [14], a hospital releases a trajectory data set of its patients to a third-party

research institute for analysis, as shown in Table 2.1. The released trajectory data set

does not contain any explicit identifiers, such as patient name, but it contains a sensitive

attribute (i.e., disease). Each record with a unique random ID, RID, corresponds to an

individual,e.g., the record with RID = 1 means a patient visited locations (1, 2), (1, 5)

and (3, 6) at timestamps 1, 4 and 7, respectively. Suppose that an adversary knows

that a patient of the hospital, Adam, visited locations (1, 5) and (3, 6) at timestamps

4 and 7, respectively. Since only the trajectory record with RID = 1 satisfies such

spatial and temporal attributes, the adversary can infer that Adam has High pressure.

This example shows that publishing “de-identified” trajectory data can still cause serious

privacy threats.

Table 2.1: Patient Trajectory Records

RID Trajectory Affliction ...

1 (1, 2, 1)-(1, 5, 4)-(3, 6, 7) High pressure ...

2 (3, 2, 5)-(6, 5, 4)-(7, 6, 3) High pressure ...

3 (10, 2, 5)-(11, 5, 8)-(13, 6, 9) Chest pain ...

4 (7, 6, 3)-(6, 7, 4)-(6, 10, 6) HIV ...

In case of facing any privacy risk, the location information of that part of the trajec-

tory is suppressed in a way to render a secure, publishable database. Likewise, [2, 50, 68]

have been proposed anonymizing methods for preserving privacy in trajectories. In [68],

it employs the concept of K -anonymity in order to make a certain trajectory indistin-

guishable fromK−1 other trajectories via a generalization-based algorithm; thus, privacy

is ensured by releasing only a randomly generated set of representative trajectories. In

[2], the algorithm though, approaches K -anonymity from a different angle. It proposed

cluster-based algorithm utilizes an uncertainty threshold, which is inherent to trajectory

data, in order to group K co-localized trajectories within the same time period to form

a K -anonymized aggregate trajectory. All these works though, focus on changing the
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entire trajectory as a means of preserving privacy; this leads to a more-than-necessary

distorted database, which considerably decreases the quality of querying and ruins mining

opportunities.

On the other hand, some new studies have focused on destination points along a path

as the most sensitive parts of a trajectory and proposed some solutions to protect these

points. In [50], the authors tried to preserve sensitive destination points by generalizing

them into l -diverse zones, i.e., areas that contain at least l distinct place types such as

restaurant, hospital, park and etc. The problem is in [50], it treated all the stop points

equally and tried to generalize the trajectory accordingly, while in reality, some places like

hospitals should be prioritized in terms of sensitivity compared with, for instance, shop-

ping malls. In this section, we discuss four privacy-preserving techniques for trajectory

privacy, namely, spatial cloaking, vehicular mix-zones, path confusion and dummy.

Spatial Cloaking

Mobile users have to reveal their locations to the LBS service provider in a periodic

manner to obtain continuous LBS. By applying a snapshot spatial cloaking technique

(e.g., [4, 10, 22, 34, 35, 36, 40] to each user location independently cannot ensure k-

anonymity for a user location trajectory [14]. Thus, new spatial cloaking techniques based

on either real-time or historical user trajectories are designed to protect user location

trajectories. Similar to snapshot spatial cloaking techniques, a fully-trusted third party,

usually termed location anonymizer, is placed between mobile users and database servers.

The location anonymizer is responsible for collecting users’ locations and blurring their

locations into cloaked spatial regions that satisfy the user-specified k-anonymity level

and/or minimum spatial region area. Since spatial cloaking techniques do not change

user identities. In the following sections, we will discuss three main kinds of spatial

cloaking techniques over user trajectories, namely, group based, distortion based, and

prediction based approaches [14].

• Group based Approach: The group-based algorithm is proposed to use real time

location trajectory data to protect trajectory privacy for continuous location-based

queries in [12]. The main idea is that a querying user u forms a group with other

K − 1 nearby users. It blurs u’s location into a spatial area that contains all the

group members as a cloaked spatial area before the algorithm issues u’s location-
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Figure 2.10: Group based spatial cloaking approach [13]

based query or reports u’s location to the database server. For an example, let

consider the Figure 2.10, a user u2 issues a continuous location-based query at time

t0 requires its location to be K -anonymized, where K = 2. At time t0, a location

anonymizer forms a group of users u2, and u5, so that u2’s cloaked spatial region

contains all these group members, as represented by a rectangle in the left Figure

2.10. The location anonymizer sends u2’s query with its cloaked spatial region to a

database server. At later times t1 and t2, when u2 reports its new location to the

location anonymizer, a new cloaked spatial region that contains the group members

is formed, as shown in middle and right figures in the Figure 2.10 respectively. The

drawbacks of this approach are that users not issuing any query have to report their

locations to the location anonymizer and the cloaked spatial area would become

very large after a long time period. Such a large cloaked spatial area may incur

high computational overhead at the database server and results in many candidate

answer objects returned from the database server to the location anonymizer.

• Distortion based Approach: Distortion based cloaking approach proposed in

[71], it takes users’ moving speed and direction as affecting factors and a distortion

function is defined to measure the temporal query distortion of a cluster in contin-

uous queries. The main objective of the distortion based approach is to overcome

the drawbacks of the group-based approach. For an example, in Figure 2.11, three

users u1, u2 and u3 proceed their continuous location-based queries at time t0 form

a 3-Anonymous cloaked area C
′

1 and their queries expire at time tn. Their cloaked

spatial region C
′

1 at time t0 is a minimum bounding rectangle of the cloaking set,

as represented by a rectangle in the figure. Assume (xi, yi) and (x
′

i, y
′

i) be the left
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Figure 2.11: Cloaked spatial area C
′

1 at time t0 in distortion based spatial cloaking

approach [13]

bottom and right top nodes of C
′

i at time ti, respectively. The distortion for their

queries with C
′

i at time ti is defined as:

∆(C
′

i) =
(xi, yi) + (x

′

i, y
′

i)

Mh +Mw

Where Mh and Mw are the height and width of the minimum bounding rectangle

of the entire system, respectively.

• Prediction based Approach: Prediction based approach introduced in [90], it

ensures K -anonymity by utilizing individuals’ historical footprints, instead of their

real time locations. A footprint is defined as a user’s location collected at some point

of time. It considers a trusted location anonymizer is placed between users and LBS

service providers to collect users’ footprints. The location anonymizer cloaks the

user’s predicted trajectory i.e., a sequence of expected footprints with K1 historical

trajectories collected from other users. Consider a scenario in Figure 2.12, a user u1

wants to subscribe continuous LBS from a service provider. u1’s predicted trajectory

i.e., expected footprints are p1 to p6 represented by black circles. If u1’s desired

anonymity level is k = 2, the location anonymizer finds historical trajectories from

one other user, u2. Then, each u1’s expected footprint pi (1 ≤ i ≤ 5) is cloaked with

at least one unique footprint of u2’s trajectories to form a cloaked spatial region C′ .

The sequence of such cloaked spatial regions set the K -anonymized trajectory for u1.
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This approach provides better resolutions for K -anonymized trajectories. However,

it may suffer from an observation attack when a user stay alone in a cloaked area

or less than K users located in a cloaked area at its associated time-stamp.

Figure 2.12: An example of prediction based spatial cloaking approach [13]

Path Confusion

Path confusion technique has been introduced in [42], it aims to predict the position of a

target vehicle based on the last known speed and direction information and then decide

which next location sample (or the one with the highest probability if there are multiple

candidate location samples) to link to the same vehicle through Maximum Likelihood

Detection. It avoids linking consecutive location samples to individual vehicles through

target tracking algorithms with high certainty. In this method, The degree of privacy is

defined as the “time-to-confusion”, i.e., the tracking time between two location samples

where an adversary could not determine the next sample with sufficient tracking certainty.

However, path confusion technique only supported by the specific type of LBSs where

LBSs do not require any consistent user identity or even any user identity, such as “send

discount information for each menu to users within 2km from my restaurant”.

Dummy Trajectories

For preserving trajectory privacy of a user, [54] at first proposed dummy based trajectory

privacy preserving approach. It uses fake location trajectories, called dummies that are

generating by a user without relying on a trusted third party to perform anonymization.

In [93], for a given user real spatial trajectory Tr and a set of user generated dummies

Td, the degree of privacy protection for the real trajectory is measured by three pa-

rameters. They are snapshot disclosure (SD), trajectory disclosure (TD) and distance
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deviation (DD), respectively. SD refers the average probability of successfully inferring

each true location sample in Tr. TD defines as the probability of successfully identifying

the true trajectory among all possible trajectories. And DD defines as the average dis-

tance between the i -th location samples of Tr and each Td. Dummy based anonymization

algorithm takes a real trajectory Tr and the three user-specified parameters (i.i., SD,

TD, and DD in a privacy profile) as an input. It then incrementally uses DD to find a

set of candidate dummies and select one with the best matching to SD and TD until it

finds a set of trajectories (including Tr and selected dummies) that satisfies all the above

parameters.

Figure 2.13: A vehicular Mix-zone [70]

Vehicular Mix-zones

The idea of vehicular mix-zones is derived from mix-zones [7]. However, the anonymiza-

tion method of mix-zones could not be effective on vehicular mix-zones because mix-zones

designed for the Euclidean space are not secure enough to protect trajectory privacy in

road networks [30, 69]. Vehicle movements are restricted in a road network due to hav-

ing spatial and temporal factors such as physical roads, directions, speed limits etc. If

mix-zones construct in road network an adversary could able to utilize these road restric-

tion’s knowledge to identify users’ identity. Figure 2.13 depicts an example of vehicular

mix-zones, a mix-zone (i.e., rectangle) is placed on the intersection of four road segments
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S1, S2, S3 and S4. Users a and b enter the road intersection from S2 and turn on to

S4. Users c and d enter from S1 and leave on S2. When user a and b exit the mix-zone

on S4 with their new pseudonyms, let say α and β, the attacker tries to map their new

pseudonyms α and β to some of the old pseudonyms a, b, c, and d of the same users.

The new pseudonym α is more likely to be mapped to two of the old pseudonyms, a or

b, than the other pseudonyms because users a and b entered the mix-zone well ahead of

users c and d and it is thus less probable for c and d to leave the mix-zone before users a

and b given the speed and trajectory of travel. Here, the limited randomness on the time

spent inside a road network mix-zone introduces more challenges to construct efficient

mix-zones.

To overcome the problem, vehicular mix-zones has been proposed in [69] and it con-

siders the following properties for a K -anonymized location to a set of users SA:

• There are K or more users in the cloaked area C
′

.

• Given any two users (i, j) ∈ C
′

and assuming i existing at time t, the pairwise

entropy after timing attack1 should satisfy the condition: Hpair(i, j) ≥ α.

• For any two users (i, j) ∈ C
′

, the pairwise entropy after transition attack2 should

satisfy the condition: Hpair(i, j) ≥ β.

Consider the Figure 2.14, The length of each mix-zone on an outgoing segment is

determined based on the average speed of the road segment, the time window, and the

minimum pairwise entropy threshold. The shaded area in the mix-zone is to ensure that

an adversary cannot infer the vehicle movement direction (e.g., turn left or go straight

in this example). The pairwise entropy is computed for every pair of users a and b in an

anonymized set C
′

by considering a and b to be the only members in C
′

and determining

the linkability between their old and new pseudonyms.

In summary, the overall idea of the above existing works is to preserve users’ location

trajectory privacy by removing trajectory information from the raw trajectory data that

1Timing attack refers to the attack that happens due to the close observation of the attacker from

the time of entry and the time of exit for each user entering and exiting the mix-zone. For details we

refer to the reader in [69].
2Transition attack occurs when the attacker estimates the transition probability for each possible turn

in the intersection based on previous observations. For details see [69].
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Figure 2.14: Non-rectangular, adaptive vehicular Mix-zone [70]

users reveal while they are using LBSs. However, the raw trajectory data sets contain

some location information at the end.

2.4 Summary

In this chapter, we have discussed the importance of navigation services and the overall

existing methods for preserving user location privacy in location based services (LBSs).

The discussion includes problems with navigation instructions and relevant cognitive ap-

proaches, different privacy models and techniques to compute the user’s cloaked area.

We break down the importance of preserving users’ location privacy in LBSs into three

main areas: data privacy, location privacy, and trajectory privacy, and then survey ex-

isting privacy preserving techniques along these areas. Data privacy is the information

privacy of an individual that deals with the ability an organization or individual has to

determine what data in a computer system can be shared with third parties. Location

and trajectory privacy are the ability to prevent unauthorized parties from learning indi-

vidual’s current or past location and current or past trip or parts of it, respectively. We

have observed from the above survey, range of studies are pointed out the importance of

preserving privacy of a user location trajectory and for this users’ location information
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have removed assuming privacy being preserved. Nevertheless, relevant information of

the trajectory such as turn instructions, distance and so forth retain with data sets that

may link to identify the user location at the end.
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Background

In the previous chapter, we underlined the importance of preserving the user’s trajectory

privacy whilst using LBSs. In this chapter, we study the problem of finding the shortest

path between two vertices (nodes) in a graph. Shortest path problems are inevitable in

road network applications such as drive guiding systems that include navigation direc-

tions. Basic concepts of network analysis in connection with traffic issues are explored.

City traffic conditions change frequently and using requests are made therefore, the guid-

ing system needs to find solutions rapidly. The above problems can be improved by using

a shortest path computation algorithm. The shortest path is the path of minimum weight

(can be based on distance, time etc) connecting two specified locations.

The shortest path problem is frequently encountered in our daily life. Let us consider

the example in Figure 3.1, Alice wishes to go to the “Royal Melbourne Hospital” from

her current location “Flinders Street Railway Station”, for a clinic appointment so she

needs to reach the hospital on time. Finding the shortest path is highly desirable for

Alice in this circumstance. Basically, our proposed work is based on the road network

and for this reason the shortest path problem needs to be addressed first. Road networks

are often represented by graphs. The shortest path problem is to find a path between

two nodes on a given graph, such that the sum of the weights on its constituent edges is

minimised. Numerous shortest path computation approaches [6, 20, 28, 45, 51, 86] have

been proposed for solving this important issue. In this chapter, we discuss five different

solutions in the context of computing shortest paths between two locations and they

are as follows: 1) Dijkstra’s Algorithm, 2) Bellman-Ford Algorithm, 3) Floyd-Warshall

Algorithm, 4) Johnson Algorithm and 5) A∗-Search Algorithm, respectively.
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The remaining part of this chapter incorporates six sections as follows: we present the

basic idea of graph representation in Section 3.1. We then discuss the above mentioned

five shortest path problem algorithms from Section 3.2 to Section 3.6. Finally, in Section

3.7, we discuss the analysis results of all the above shortest path computation algorithms.

Figure 3.1: Importance of choosing shortest path in the road network

3.1 Graph

Graph G represents the road network. It consists of a set of vertices or nodes (VG) and

a set of edges (EG) that connect a pair of nodes. When an edge connects two nodes,

we say that the nodes are adjacent to one another and that the edge is incident on both

nodes. Each edge of G has an associated numerical value, called a weight(w). Usually,

the edge weights are non-negative integers. The weight of an edge is often referred to as

the length or distance of the edge. The degree of a node (dG(n)) is the number of edges

incident on it. A path (P) in G from a node n1 to a node nk is a sequence of edges

(n1,n2), (n2,n3),...,(nk−1, nk). The length w(P) of a path P is the sum of the weights of

the edges that belong to P. We say that one node is connected to another if there exists

a path that contains both of them. P ∗ = (s, ..., t) is a shortest path if there is no path

P ′ from s to t such that w(P ′) < w(P ∗). G is connected if there is a path from every

node to every other node. The distance d(s, t) from s to t in G is the length of a shortest

path from s to t or∞, if there is no path from s to t. There are different types of graphs
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(e.g., undirected, directed, simple, multigraph etc.) that have different formal definitions,

depending on the kinds of edges that are allowed. Basically, the first two types of graphs

from the above example are used to represent networks of communication. An undirected

graph is a graph consisting of a set of objects (called vertices or nodes) that are connected

together, where all the edges are bidirectional. In contrast, a graph where the edges point

in a direction is called a directed graph.

3.2 Dijkstra’s Algorithm

Dijkstra’s algorithm [20] is a graph search algorithm that solves the single-source shortest

path problem for a graph with non-negative edge path costs. One of the main reasons

for the popularity of Dijkstra’s algorithm is that it is one of the most important and

useful algorithms available for generating optimal solutions to a large class of shortest

path problems. We choose Dijkstra’s algorithm for computing shortest paths in the road

network represented by a graph with non-negative edge path costs. Starting with the

source node s as root, Dijkstra’s algorithm grows a shortest path tree that contains

shortest paths from s to all other nodes. During this process, each node of the graph is

unreached, reached, or settled. A node that already belongs to the tree is settled. If a

node u is settled, a shortest path P ∗ from s to u is found and the distance d(s, u) = w(P ∗)

is known. A node that is adjacent to a settled node is reached. Note that a settled node

is also reached. If a node u is reached, a path P from s to u, which might not be the

shortest one, is found and a tentative distance δ(u) = w(P ) is known. A node u that is

not reached is unreached; for such a node, we have δ(u) =∞. The nodes that are reached

but not settled are managed in a set S and the distance is updated for it’s adjacent node.

When multiple distances are recorded in S, the smallest one is chosen by it. When all of

the nodes have been recorded in S and all paths in the diagram have been visited this

algorithm terminates.

Initially, s is inserted into the set S with the tentative distance 0. Thus, s is reached

and all other nodes are unreached. While S is not empty, the node u with the smallest

tentative distance is removed and added to the shortest path tree, i.e., u becomes settled.

Furthermore, u’s outgoing edges are relaxed:

• If an edge (u, v) leads to an unreached node v, v is added to the S ; now, v is
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reached;

• If an edge (u, v) leads to a queued node v, v ’s key in S is updated, if the length of

the path from s via u to v is less than v ’s old key;

• If an edge (u, v) leads to a settled node v, it is ignored.

Figure 3.2 depicts an example to show how the Dijkstra’s algorithm works to find the

shortest path in the road network. In this figure, circles correspond to location points or

points of interest (POI), i.e., cafes for example, and solid lines represent the link between

two location points. Suppose we want to find the shortest path from the location point

n1 to the location point n12. The process is as follows. Update all n1’s adjacent nodes

as its distance to n1. Set n2(1), n6(3). Then from n2, update all n2’s adjacent nodes as

its distance to n1 are n3(3), n7(2). Then from n6, update all n6’s adjacent nodes as its

distance to n1 are n7(5), n11(13) (ignore 5) . Then from n7, update all adjacent nodes as

its distance to n1 are n8(6), n12(3), n6(4). Update all distances (ignore 4). Finally, from

n11, update n12 as 13 + 3 = 16 (ignore 16 as it is larger than 3). The shortest path is n1

−→ n2 −→ n7 −→ n12, and the distance is 3.

Figure 3.2: An example of Dijkstra’s algorithm applied to a road network

Dijkstra’s algorithm has been classified based on efficiency compared with the original

version of Dijkstra’s algorithm (described above), i.e., how quickly they can compute

shortest path distances. The main focus of modified work on shortest paths has been
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how to reduce priority queue operations. The basic Dijkstra’s algorithm runs in O(|V |2).

This bound has been improved several times, e.g., to O(|E| log |V |) using binary heaps

[3], O(|E| + |V | log |V |) using Fibonacci heaps [29] etc. We adopt the basic Dijkstra’s

algorithm in our proposed work because our main intention is to show the extent to which

a users’ location privacy attack can occur while they choose their path, not to improve

the effectiveness of the shortest path algorithm.

We also compute all possible shortest paths in a network by using Dijkstra’s algorithm;

but, we observe that Dijkstra’s algorithm is not feasible for identifying the most suitable

shortest path when the shortest paths in a graph are not unique. Figure 3.2 depicts the

problem that arises when Dijkstra’s algorithm finds more than one shortest path between

two location points. For example, two shortest paths are found from the location point

n3 to n9 (assigned by black solid and dashed arrows). In this situation, randomly any

of between two shortest paths is chosen by Dijkstra’s algorithm. Let us say that the

yellow shortest path is chosen and stored in the shortest path library; however, the green

shortest path is the more suitable shortest path from n3 to n9. We modify Dijkstra’s

algorithm by employing the A∗-Search algorithm (we will describe later in this chapter)

in the case of finding the most suitable shortest path among the multiple shortest paths

between two locations in the road network.

3.3 Bellman-Ford Algorithm

Bellman-Ford algorithm [6] is an algorithm that computes shortest paths from a single

source node to all of the other nodes in a weighted directed graph. Basically, the Bellman-

Ford algorithm is designed for directed graphs, but if the graph is undirected, substitution

are made i.e., every edge (u, v) is replaced with two directed edges (u, v) and (v, u), both

with weight w(u, v). It is slower than Dijkstra’s algorithm for the same problem but can

be used for graphs with negative edge weights, which does not apply to the problems

considered in this thesis. The algorithm requires that the graph does not contain any

cycles of negative length but if it does, the algorithm can detect them.

The Bellman-Ford algorithm is based on the relaxation operation. The relaxation

procedure takes two nodes as arguments and an edge connecting these nodes. If the

distance from the source to the first node (for example A) plus the edge length is less
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than the distance to the second node, then the first node is denoted as the predecessor

of the second node and the distance to the second node is recalculated (distance(A) +

edge.length). Otherwise no changes are applied. The path from the source node to any

other node can be at maximum |V | − 1 edges long, provided there is no cycle of negative

length; hence if we perform the relaxation operation |V | − 1 for all nodes, the algorithm

will find all shortest paths. We verify the output by running the relaxation once more;

if some edges are relaxed, the algorithm will contain a cycle of negative length and the

output is invalid. Otherwise the output is valid and the algorithm can return the shortest

path tree.

Figure 3.3 depicts the example of choosing the shortest path between two locations

in the road network (where paths are following directions) by using the Bellman-Ford

algorithm. For example, we wish to find the shortest path from location point n1 to

location point n12. The Bellman-Ford algorithm at first checks all adjacent nodes from the

source node n1 and updates their distances. Set n2(1) and n6(3) as they are adjacent nodes

of n1. From n2, update n2’s adjacent node as its distance to n1 is n6(2). Then from n6,

update n6’s adjacent node as its distance to n1 is n11(5). Then from n7, update all adjacent

nodes as its distance to n1 are n6(0), n12(3), n8(6). Update all distances (ignore 3 and

5). From n11, update n11’s adjacent node as its distance to n1 is n12(1) and ignore 3 as it

is larger than 1. The resulting shortest path is n1 −→ n2 −→ n7 −→ n6 −→ n11 −→ n12,

and the distance is 1.

Figure 3.3: An example of the Bellman-Ford algorithm
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The time complexity of the Bellman-Ford algorithm takes O(|V | |E|) time where |V |

and |E| are the number of nodes and edges. This time complexity is the best time bound

for the single source shortest path problem [11].

3.4 Floyd-Warshall Algorithm

The Floyd-Warshall algorithm was developed independently by Floyd and Warshall in

1962 [28, 86]. Instead of computing a path from a given start node to all other nodes (or

a single destination node), all shortest paths, from each node to all others, are computed

within a single loop. This algorithm works on directed graphs with positive or negative

edge weights (but with no negative cycle). The characteristics of the Floyd-Warshall

algorithm are not appropriate for the problem considered in our work.

The Floyd-Warshall algorithm uses a matrix of lengths d0 as its input. If there is an

edge between nodes i and j, then the matrix d0 contains its length at the corresponding

coordinates. The diagonal of the matrix contains only zeros. If there is no edge between

edges i and j, than the position (i, j) contains positive infinity. In other words, the

matrix represents lengths of all paths between nodes that do not contain any intermediate

nodes. In each iteration of the Floyd-Warshall algorithm this matrix is recalculated, so

it contains lengths of paths among all pairs of nodes using a gradually enlarging set

of intermediate nodes. The matrix d1, which is created by the first iteration of the

procedure, contains paths among all nodes using exactly one (predefined) intermediate

node. d2 contains lengths using two predefined intermediate nodes. Finally the matrix

dn uses n intermediate nodes. This transformation can be described using the following

recurrent formula:

dnij = min(dn−1
ij , dn−1

ik + dn−1
kj )

Because this transformation never rewrites elements, which are to be used to calculate

the new matrix, the same matrix can be used for both di and di+1. The time complexity

of the Floyd-Warshall algorithm is O(|V |3), where |V | is the number of nodes in the

graph. An example is shown in figure 3.4.

Another output matrix p (matrix of predecessors), has been constructed during trans-

formations of matrix dk in order to return shortest paths among all pairs of nodes. The

matrix can be read as follows: if we want to reconstruct the shortest path between nodes i
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Figure 3.4: An example of the Floyd-Warshall algorithm

and j, we look at the element at corresponding coordinates. If its value is 0, than there is

no path between these nodes, otherwise the value of the element denotes the predecessor

of j on the path from i to j. This procedure repeats while the preceding node is not

equal to i.

p
(0)
ij =







0 if i = j or dij =∞

i in all other cases.

p
(n)
ij =







p
(n−1)
ij if d

(n−1)
ij ≤ d

(n−1)
ik + d

(n−1)
kj

p
(n−1)
kj if d

(n−1)
ij > d

(n−1)
ik + d

(n−1)
kj

3.5 Johnson’s Algorithm

Johnson’s algorithm [51] was published by Donald B. Johnson in 1977. It solves all pairs

shortest paths in a sparse weighted, directed graph and allows some of the edge weights

to be negative numbers, but no negative-weight cycles can exist. It works by using the

Bellman-Ford algorithm to compute a transformation of the input graph that removes

all negative weights, allowing Dijkstra’s algorithm to be used on the transformed graph

[16, 8]. This algorithm may be faster than Floyd-Warshall algorithm on sparse graphs.
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According to [16, 8], the re-weighting technique is used in Johnson’s algorithm based

on the following four steps:

• Step 1: It adds a new node Q with zero weight edges from it to all other nodes.

• Step 2: Runs the Bellman-Ford algorithm starting from the new node Q, to find

each node v the minimum weight h(v) of a path from Q to v. The Bellman-Ford

algorithm is used to check for negative weight cycles. If this step detects a negative

cycle, the algorithm is terminated.

• Step 3: The edges of the original graph are re-weighted using the values computed

by the Bellman-Ford algorithm: an edge from u to v, having length w(u,v), is given

the new length w(u, v) + h(u)h(v).

• Step 4: Q is removed, and Dijkstra’s algorithm is used to find the shortest paths

from each node s to every other node in the re-weighted graph.

An example of Johnson’s algorithm is shown in Figure 3.5. The first three steps of

Johnson’s algorithm are depicted in the illustration. In Figure 3.5(a) the illustration has

two negative edges, but no negative cycles. Figure 3.5(b) shows new node Q, a shortest

path tree as computed by the Bellman-Ford algorithm with Q as the starting node, and

the values h(v) computed at each other node as the length of the shortest path from

Q to that node. Note that these values are all non-positive, because Q has a length-

zero edge to each node and the shortest path can be no longer than that edge. Figure

3.5(c) shows the re-weighted graph, formed by replacing each edge weight w(u, v) by

w(u, v) + h(u)h(v). In this re-weighted graph, all edge weights are non-negative, but the

shortest path between any two nodes uses the same sequence of edges as the shortest path

between the same two nodes in the original graph. The algorithm concludes by applying

Dijkstra’s algorithm to each of the four starting nodes in the re-weighted graph.

The time complexity of Johnson’s algorithm, using Fibonacci heaps in the implemen-

tation of Dijkstra’s algorithm, is O(|V | 2log |V |+ |V | |E|): the algorithm uses O(|V | |E|)

time for the Bellman-Ford stage of the algorithm, and O(|V | log |V | + |E|) for each of

|V | instantiations of Dijkstra’s algorithm. Thus, when the graph is sparse, the total time

can be faster than the Floyd-Warshall algorithm, which solves the same problem in time

O(|V |3) [16].
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Figure 3.5: An example of Johnson’s algorithm

3.6 A∗-Search Algorithm

So far we have examined search techniques that can be generalised for any network (as

long as it does not contain negative length cycles); however, the physical nature of real

road networks motivates the investigation of the use of heuristic solutions that exploit

the near-Euclidean network structure to reduce solution times while hopefully obtaining

near optimal paths. For most of these heuristics the goal is to bias a more focused search

towards the destination. The A∗-Search algorithm by Hart and Nilsson [45] formalised

the concept of integrating a heuristic into a search procedure. Instead of choosing the

next node to label permanently as that with the least cost (as measured from the start

node), the choice of node is based on the cost from the start node plus an estimate of

proximity to the destination (a heuristic estimate). To build a shortest path from the

origin s to the destination t, using the original distance from s accumulated along the

edges (as in Dijkstra’s algorithm) plus an estimate of the distance to t. Thus, consider

global information about the network to guide the search for the shortest path from s to

t. This algorithm places more importance on paths leading towards t than paths moving

away from t.

In summary the A∗-Search algorithm combines two types of information:

• The current knowledge available on the upper bounds (given by the distance labels

d(i)), and

• An estimate of the distance from a leaf node of the search tree to the destination.

There are several ways to estimate the lower bound from a leaf node in the search

tree to the destination node. These estimations are carried out by “evaluation” functions.

The closer this estimate is to a tight lower bound on the distance to the destination, the
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better the quality of the A∗-Search; hence, the merits of an A∗-Search depends highly

on the evaluation function h(i, j). There are two main evaluation functions used in the

A∗-Search. A true lower bound between two points is the length of a straight line between

the two points (i.e. the Euclidean distance):

hE(i, t) =
√

(x(i)− x(t))2 + (y(i)− y(t))2

where x(i), y(i) and x(t), y(t) are the coordinates for the start node i and the destina-

tion node t respectively. The other commonly used evaluation function is the Manhattan

distance hM . In this case the estimated lower bound distance is the sum of distances in

the x and y coordinates.

hM(i, t) = |x(i)− x(t)|+ y(i)− y(t)

The Manhattan distance is not the true lower bound between two points, hence, will

typically produce non-optimal results. The time complexity of A∗-Search depends on the

heuristic. In the worst case scenario, the number of nodes expanded is exponential in

the length of the solution (the shortest path), but it is polynomial when the search space

is a tree, there is a single goal state, and the heuristic function h meets the following

condition: |h(x)− h∗(x)| = O(logh∗(x)) where h∗ is the optimal heuristic, the exact cost

to get from x to the goal. In other words, the error of h will not grow faster than the

logarithm of the “perfect heuristic” h∗ that returns the true distance from x to the goal

[73, 77].

3.7 Discussion

In summary, we have shown five important shortest path computation algorithms in this

chapter. Our main intuition was to find the suitable shortest path computation algorithm

in the context of our proposed work that can efficiently compute shortest path between

two locations in the road. We choose Dijkstra’s algorithm because it is more compatible

with our work. Bellman-Ford algorithm is more suitable for directed graphs and it also

works for undirected graph. In addition, it can work with negative weight and detect

negative cycle in the graph. However, it is slower than Dijkstra’s algorithm and our

proposed work is based on undirected graph with non-negative weight and cycle. Floyd-

Warshall algorithm works on directed graph with positive or negative edge weights but
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with no negative cycle. So, the characteristics of the Floyd-Warshall algorithm do not

match with the problem considered in our work. Johnson’s algorithm computes all pairs

shortest paths in a sparse weighted, directed graph and allows some of the edge weights to

be negative numbers, but no negative-weight cycles may exist. But, We consider single

source shortest paths computation in our proposed work. A∗-Search algorithm works

based on heuristic solutions that exploit the near-Euclidean network structure to reduce

solution times while hopefully obtaining near optimal paths. It also works for any types

of network except the network with negative cycle. We have incorporated the idea of

A∗-Search algorithm while shortest paths in a network are not identical. Our analysis

result of the above shortest paths computation algorithms is shown in Table 3.1.

Table 3.1: Analysis of different shortest path algorithms

Algorithms Single Source All Source Negative Edge Time Complexity

Dijkstra Y O(|E|+ |V |Log |V |)

Bellman-Ford Y Y O(|V | |E|)

Floyd-Warshall Y Y O(|V |3)

Johnson Y Y O(|V |2 Log |V |+ |V | |E|)

A∗-Search Y Depends on the heuristic

3.8 Summary

In this chapter, we have discussed the importance of finding the shortest paths for people

finding their destination by road. We have reviewed shortest path algorithms and anal-

ysed the characteristics of five different shortest path algorithms, summarised the results

in Table 3.1. Based on the in-depth analysis of the shortest path algorithms, we conclude

that the conventional Dijkstra’s algorithm is more suitable for computing shortest paths

in our network; however, it is not as efficient when the shortest paths in a network are

not unique. To overcome the problem of Dijkstra’s algorithm we utilize the concept of

A∗-Search algorithm.
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Proposed Methodology

Computing the shortest path between two given locations in a road network is an im-

portant problem. In the previous chapter, we discussed some popular shortest path

computation algorithms. In this chapter, we investigate the exchange of raw trajectory

data and its relation to privacy concerning an individual’s location trajectory. For exam-

ple, companies providing navigation instructions accumulate large amounts of trajectory

data, which they could sell; however, it is possible that they can not sell these data di-

rectly. They are therefore looking for ways to exchange data location information with

businesses across the globe. One method for them to generate revenue from these data

is to sell driving instructions rather than the location information of a user.

Navigation applications are one of the most popular LBS applications, but people have

to reveal their trajectory information to the service provider; however, such applications

may endanger users’ privacy by revealing their location and trajectory information. We

observe that trajectory information consists of individual location information along with

relevant trajectory facts such as navigation directions.The location information of a user

in their trajectory data is removed to preserve privacy; however, other information, such

as their navigation instructions, still remains within the raw trajectory data. In this

thesis, we look at one particular information that is generated with individual trajectory

data: driving instructions. Overall, we investigate the extent to which exchanging users’

raw trajectory information preserves privacy.

The rest of this chapter is organised as follows: In Section 4.1, we present the motiva-

tion for proposing a new method. Section 4.2 includes the basic idea of how to represent

road networks in our approach. Section 4.3 covers how we can generate turn instructions
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for a given trajectory. In Section 4.4, we determine that sets of turn instructions are

unique and thus could be used to identify a person’s trajectory. Finally, in Section 4.5,

we introduce a privacy level measurement based on the number of identical trajectories

found for a set of given turn instructions provided by a user.

4.1 Motivation

In previous chapters, we explained that a trajectory consists of GPS coordinates (latitude

and longitude) associates with the time period. Many studies [59, 60] have used Map-

matching method to convert a sequence of raw GPS data into a sequence of edges in the

road. Thus, our work is not based on GPS data but on sequences of edges. We utilise

the sequence of edges in the graph as input in our work.

People create a vast amount of trajectory data everyday while they travel on the

road. Trajectory data discloses not only positional information of the user but also a

high level of detail regarding their lifestyle, preferences and habits. For example, if the

LBSs service providers collate an individual’s everyday data for a long period of time,

they can infer detailed knowledge about the user; therefore, it is highly susceptible to

privacy concerns. In this context, extensive research [2, 4, 10, 22, 34, 35, 36, 40, 50, 68]

has been conducted to develop privacy preserving techniques to hide users’ trajectory

data. A range of research groups [2, 4, 10, 22, 34, 35, 36, 40, 50, 68] have considered

these privacy issues and explored the option of suppressing trajectory information from

the data that users reveal while they are using LBSs; however, trajectory data sets contain

some location information at the end. For example, driving advice relevant to the specific

trajectory can include turn instructions given to a user for navigation purposes.

Let us assume that, in the road network in Figure 4.1, a user, Bob wishes to go

to a Hospital from his current position S. He may ask the LBS to provide a route to

the Hospital that follows straight, straight, left and left turn directions sequentially (red

arrow line). As we can see, even when removing the location points, just by using the city

map and such turn instructions, we reveal that Bob commenced from S and finished at

the nominated destination because this sequence is distinct for this city. Let us consider

another situation in the Figure 4.1: Bob requests the path from the same start point,

S, to the same destination, the Hospital, that follows straight and left turn sequences
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(red dashed arrow line). Two alternative paths (black dashed arrow lines), in addition

to Bob’s actual path (red dashed arrow line), exist inside the map that follow the same

turn instructions as Bob’s path. However, it may be possible to infer the user’s actual

trajectory even there are though multiple paths with the same turn instructions. For

example, it is possible to deduce that the actual path is the only one that ends at the

point of interest, i.e., the Hospital. For example, if Bob visits a cancer hospital, one

might infer that Bob has cancer. These two examples depict that it is possible to obtain

location information without using the positional information of a user.

Figure 4.1: Turn directions of a user reveal the user’s whereabouts

4.2 Road Network

A road network RN can be represented as an undirected graph GRN
= (VG, EG), where

VG is a set of nodes representing intersections and EG is a set of edges representing roads

i.e., EG ⊆ VG × VG consists of an edge ei,j = (ni, nj) where ni, nj are adjacent junctions

on a road. A function w : EG −→ R is used to associate a weight with each edge e. This

weight can be used to model proximity between nodes, including Euclidean distance or

travel time. We use dGRN
(n) to denote the degree of a node n with respect to the graph

GRN
. A route rp is a path on GRN

, i.e., a sequence of nodes from VG. The length l of

a route rp represents the total distance of this route. A shortest path Sp is a path that

minimizes the total length that needs to be covered from a given source to a destination.
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4.3 Computing Turn Instructions in a Road Network

In the previous section, we discussed the concept of road network formulation based on

graph data structure. In this section, we discuss how to generate turn instructions in a

road network environment. Therefore, generating turn instructions within a road network

is a preliminary step in our proposed methodology. We first describe how to compute

turn instructions for users’ trajectories or paths from the network. Then we explain all

the possible steps of the turn instructions generation algorithm in detail.

4.3.1 Generating Turn Instructions

In this section, we start by introducing the concept of turn instructions and how we

compute these instructions in the road network environment. Fundamentally, turn in-

structions indicate a person’s actions while they travel on a road; for example, left turn,

right turn or continue straight. Based on the definition in [19, 79, 84], turn instructions

are instructions on how to follow a route; they are task-oriented specifications of the

actions to be carried out to reach a specific destination. In our work we consider three

basic types of turn instructions without loss of granularity, namely left (δl), straight (δs)

and right (δr) (see in Figure 4.2). The turn concept at road intersection points and

conceptualize actions, is simply the direction to take at an intersections as opposed to

viewing the road network structure.

Figure 4.2: Basic turn instructions of a road network

A small set of trajectory finding turn instructions suffices to characterise most paths,

path directions and path finding actions in the road. These three distinct turn instructions

are considered to design our road network architecture for two reasons. Firstly, the
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average degree of node (dGRN
(n)) in the road network is not more than four, conceptually

(as we discussed in previous section), so the possible number of upcoming way directions

can not be more than three. For example, in Figure 4.3(a), Alice wishes to go to the

supermarket from her current location. The junction or intersection point is n1 and

n1 consists with four routes, including Alice’s route. Alice can reach her destination

by following any route from the three possible routes: i.e., left (δl), straight (δs) and

right (δr), respectively. Secondly, we have chosen minimal number of route finding turn

instructions in our model to preserve the users’ privacy, which is the most significant issue

in our work (described in detail later in this subsection). Consider the following scenario

in the Figure 4.3(b): n3 is an intersection node with six edges, n3n1, n3n2, n3n6, n3n7,

n3n8 and n3n4, respectively. We assume that n3n6 and n3n8 are aligned with edge n3n7

and therefore we remove these from the network. We could reach location n6 or even n8

without having these edges in the network. For this, we will be able to find out more

paths with the same turning patterns in the network, which could achieve more privacy

for the traveller in a real road network scenario.

Figure 4.3: (a)Three possible ways of path finding at decision (intersection) point and

(b) Set up decision point

In the following, we demonstrate how to figure out the exact turn directions at in-

tersection points and the basic design of the intersection point in the real road network

environment.

• Determining Turn Instructions: In a route direction context, however, people
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generally do not conceptualize possible directions as vectors that originate from the

centre of a decision point, i.e., the point that corresponds to the location where the

branches of the intersection meet. Rather, one route segment, the one that a nav-

igator is on, is picked out as the reference direction. On entering the intersection,

the reference direction branch is combined with the subsequent branch, namely the

branch that corresponds with the direction to be chosen next (see Fig 4.4). Three

directions are available for conceptualizing objective oriented actions (i.e. turning

or going straight). The reference direction perspective depicts the functionally rele-

vant parts of the spatial configuration. In total, turn instructions (Ti) are extracted

from the three direction model based on the reference direction perspective. Three

potential directions conceptualized in combination with the reference direction re-

sult in three path finding primitives: δl, δs and δr (see Figure 4.2). We set the range

for each reference direction between two lines to compute the turn instruction. We

divide each direction into two reference angles, they are α (right angle) and β (left

angle) (see in Table 4.1), we also set the range ∈ for them.

Table 4.1: Turn instructions with their reference angles

Turning Instruction(Ti) Reference Angles

δl αl,βl

δs αs,βs

δr αr,βr

Figure 4.4: Three potential directions for a path finding context

We assume that the intersection points of GRN
are aligned into the two dimensional
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Figure 4.5: An example of forming straight instruction

space based on the Cartesian coordinate system (also called a rectangular coordinate

system): horizontal and vertical lines refer to the X and Y axis respectively. An

ideal “straight” instruction is established with reference angles αs and βs in Figure

4.5(a), if any line or edge lying in this range (called ∈) is considered to be straight.

For example, an intersection node (circle) contains three edges or lines; the left hand

line fluctuates slightly left from our base perpendicular line (dashed line), but it lies

in the range of αs and it is assumed to be δs, as it fulfils the requirement of ∈ (Figure

4.5(b)). In Figure 4.5(c), the right hand line is considered to be δs even though it

shifts right from the baseline due to following the reference angle range. Another

situation could occur at the intersection point due to having multiple edges with

the same turn instructions. Consider the example in Figure 4.5(d): an intersection

point forms four edges, and two of them are aligned into δs. In this situation, we

assume that these two lines are identical. Based on the above consideration, we set

the left and right turn instructions.

• Removing redundant edges: In our conceptual network model, the average de-

gree of a node is not more than four, i.e., AVG(dGRN
(n)) ≤ 4. We use the most

popular graph search algorithm, i.e., the Depth-first search (DFS) algorithm, to

traverse the graph data structure. DFS starts at the root and explores all nodes

along each branch before backtracking. DFS also checks the condition (i.e., what

we set for dGRN
(n)) for each node while exploring the GRN

and removes any redun-

dant edge if any node belongs to more than the designated degree. We describe

one of the conditions for amending the intersection point in Figure 4.3. We also

considered a more realistic example while designing our road network. Suppose we
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have an intersection point such as is shown in Figure 4.6(a), which contains five

edges (except the dashed line) i.e., dGRN
(n) > 4; we could choose any edge from

this intersection point randomly, delete it and check until the requirements for using

the DFS algorithm are fulfilled. For example, the right-hand sided edge is selected

and deleted from the junction point. Turn instructions are then computed based

on associated reference directions. Another scenario can be demonstrated in our

model, such as in Figure 4.6(b): the junction node corresponds with seven edges;

additional edges are removed randomly and then turn directions are generated.

Figure 4.6: Different types of intersection in a real road network

Some intersection points in the real road network, however, can have many edges,

but we assume a small number of direction instructions. As in [55, 56], a large

number of turn instructions can be chosen to model the road in the real road en-

vironment. These studies [55, 56] considered sharp right, right, half right, straight,

half left, left, sharp left slightly left and the like as path finding instructions (refer

to Figure 4.7). This large number of path finding instructions could be beneficial

in terms of having a more accurate path, but this large number of path finding

instructions would cause further issues with privacy. In this thesis, our main objec-

tive is that turn instructions provided by the service provider could lead to a user’s

trajectory privacy violation. From this point of view, we could not consider using

a large number of path finding instructions.
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Figure 4.7: Seven conceptual path finding instructions [56]

4.3.2 Remarks on directionality

We note that once we have (“Left”, “Right”) or (“Left”, “Straight”, “Right”), such

turning sequences can be travelled in both ways (except for one-way streets of course),

whereas, for example, if we have (“Left”, “Left”), (“Right”, “Right”) or even number of

“Left” and “Right” turn instructions combination, such turning sequences can usually not

be travelled in both directions. Consider the example in Figure 4.8, there are two different

paths with different turning sequences. The path in Figure 4.8(a) follows “Right” and

“Left” turn directions that can be travelled in both directions (black dashed and solid

arrow lines). However, the path in Figure 4.8(b) that follows “Left” and “Left” turn

directions which can not be mapped to “Right” and “Right” directions as the opposite

direction is “Right” and “Right”.

Generally, we advise people if they take longer sequence of turn instructions or trip

with the multiple intermediate destinations/states that should not be published as a

whole but only the subsequences because that will lead to a higher degree of a privacy

for the user location privacy.

4.3.3 Algorithm for Generating Turn Instructions

To derive turn instructions in a road network, we propose an algorithm for generating

turn instructions based on the concept above. Given a source, a destination and the
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Figure 4.8: Impacts on directionality

initial orientation of a navigator, a sequence can be trivially generated using the shortest

path algorithm and enumerated (the turn instructions per junction) with the above refer-

ence angle range concept. In this section, we describe the turning instructions generation

algorithm step-by-step. First of all, it starts from the start node of any trip and follows

the sequence of points and computes edges from that list. It then calculates the length

of each edge and returns a new path (Algorithm 1 line 2). The algorithm then computes

edges of the new path, calculates each edge’s turning direction and the angle between

them and finally checks all conditions (Algorithm 1 lines 3-6). Algorithm 1 highlights the

main steps of computing turning instructions.

4.3.4 Complexity Analysis

In order to get an estimate of the computational time complexity of the generate turn

instructions algorithm as presented in Algorithm 1, we begin with some notations: |EG|

is the number of edges present in the graph representing the road network (read from an

adjacency list); |VG| is the number of nodes. We assume the graph is not directed, so

the shortest path from a to b is the same as the shortest path from b to a, although it

would be simple to modify the algorithm to also deal with directed graphs. Consider line

2 of Algorithm 1 (which corresponds to the extract of minimum operations of Dijkstra’s

algorithm [20]), this operation would take |EG| steps as it will need to check all the edges of

the graph once to compute minimum distance amongst them. Let us assume |VG| = n and

so, |EG| = n2 as we know |EG| = |VG|
2 for a fully connected graph [76]. Similarly, the For
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Algorithm 1: GenerateTurnInstructions: Generate a sequence of turn in-

structions
Input: Starting point n0, destination point n1 and a road network graph

GRN
= (VG, EG)

Output: A sequence of turn instructions TS

1 TS ← ∅

2 rp ← shortestPath(n0, n1, GRN
)

3 for i← 0 to |rp| − 1 do

4 n0 ← ri, n1 ← ri+1

5 δ ← calculateTS(n0, n1)

6 TS ← TS ∪ δ

7 return TS

loop starting at line 3, would in a worst case in a fully connected graph, need to compute

the turn instruction for every consecutive two edges of the selected shortest path leads to

(4n+1) steps. An overall number of steps of this algorithm are (n2+4n+3) ≈ O(n2) that

leads to a computational complexity of O(|VG|
2) (the same computational complexity as

the conventional Dijkstra’s algorithm [20], where no computation of turn instruction is

used).

One way of improving the performance of the generate turn instructions algorithm is

to use a binary heap for the operation in line 2, which would lead to O(log |VG|
2) steps

instead of O(|VG|
2).

4.4 Possible Interpretation of Navigation Instructions

on actual road network

In the previous section, we discussed how to set up turning instructions and the comput-

ing of their associated instructions. In this section, we illustrate how to interpret turn

instructions on a real road network, i.e, we discuss the algorithm for translating turn

instructions into possible paths for the user during travel on the road.
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4.4.1 Matching Turning Instructions

At first, we generate all possible shortest paths by employing the Dijkstra algorithm offline

(as discussed in the previous section), and then we evaluate the turning instructions of

all shortest paths from the shortest path library by using Algorithm 1. Any combination

of turning instructions can be made from our turning instructions set (i.e., δl, δs and δr)

from any location in the road network. Suppose we have a set of turn instructions Ts:

a turn instruction is represented as a tuple comprising turn instructions tp (left, right,

straight) and a distance measure representing the distance travelled since the last junction

dt; thus, Ts contains a set of tuples (tp, dt). This is the most common method that is

available in online and in-car navigation systems.

Figure 4.9: A scenario of choosing path by using the FMP algorithm

For each possible source in a road network, we first traverse each connected edge and

derive the turn instruction and distance. Once derived, provided it is a match to the

first element of the set, we then traverse the connected edges of the corresponding edge

and look for a match to the second element in the set. This process is repeated until the

number of junctions followed is equal to the length of the given turn instructions set. Each

time the traversal leads to a complete match, an identical path counter is incremented.

The number of resulting identical paths indicates the privacy level of a user’s travelled

route as the user could have travelled on any one of them.

If only one candidate path is found, the route a targeted individual used is discovered.

If only a small number of paths are found, it is very likely that an adversary will be able to

infer the correct path by using additional background knowledge. This problem appears

to be infeasible if the given set of turn instructions is applied to a large city, we imagine

that there would be many matches for any given trip when it is follow as stripped down
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to its turn instructions, especially in grid-like downtown areas.

Take Figure 4.9 as an example. The “FindMatchingPaths” algorithm (FMP algo-

rithm) finds start node n1 and then checks adjacent nodes n2, n6 and checks their adjacent

nodes n3, n7 and n7, n11 respectively. It is for checking the direction of every two seg-

ments in a graph. If the calculated direction matches the given direction, the algorithm

adds those nodes in a path, otherwise it discards it from the path. Here, (n1, n2, n3) and

(n1, n6, n11) match with the first instruction from the turning sequence list so, the FMP

algorithm adds (n1, n2, n3) and (n1, n6, n11) to the path. Then it checks for the next

instruction that matches the (n1, n2, n3, n4) and appends it to the path. Thus checking

continuous until the last match is found for the instruction. Finally, it returns the nodes

(n1, n2, n3, n4, n9) as the path and gives this path to the user. Algorithm 2 describes the

FMP algorithm. The most efficient part of this algorithm is that it can predict the route

for the user without using their exact location information. Since, the FMP algorithm

only requires a set of turn instructions for getting a number of suitable routes in the road

network. However, a set of turn instructions rely on positional information of a user (i.e.,

start and end location points) to compute turn instructions of the specific route. But,

the number of resulting equivalence routes indicates the privacy level of a user’s travelled

route as the user could have travelled on any one of them.

Algorithm 2 describes our approach to find matching paths given a sequence of turn

instructions.

4.4.2 Computational complexity

The computational complexity of the “FindMatchingPaths” algorithm (FMP algorithm)

is the same as that for the generate turn instructions algorithm as discussed in Section

4.3.2. However, it is slightly faster than Algorithm 1, as it would only need to match the

specific path/paths in the network for a given set of turn instructions. Consider the For

loops staring at line 4 and line 6 in the Algorithm 2, would in a worst case, need to match

the equivalent turn instructions based paths for a given turn instructions based path that

leads to (n + 1) steps and n(n + 1) steps, respectively. An overall number of steps of

this algorithm are (2n2 + 5n + 4) ≈ O(n2) that leads to a computational complexity of

O(|VG|
2).

64



Chapter 4. Proposed Methodology

Algorithm 2: FindMatchingPaths: Returns the matching candidate paths

given a set of turn instructions

Input: A sequence TS = {(tp1, dt1), (tp2, dt2), . . .}, a road network graph

GRN
= (VG, EG) and a counter c

Output: A list of paths with matching turn instructions to TS

1 P ← ∅

2 if c > |TS| then

3 return P

4 for all verticies v0 ∈ GRN
do

5 C ← connectedEdges(v0, GRN
)

6 for all connected vertices (v0, v1) ∈ C do

7 δ0 ← TSc, δ1 ← calculateTS(v0, v1)

8 if δ0 ≡ δ1 then

9 P ← P ∪ FindMatchingPaths(TS, GRN
, c+1)

10 return P

4.5 Proposed Privacy Measurement

In summary, we have proposed a new method that can reconstruct a trajectory for a

given set of turn instructions provided by a user. In this section, we introduce a privacy

level that measures the uniqueness of a trajectory for a given set of turn instructions

provided by a user. Let us assume GRN
represents a road network, Ti denotes a set

of turn instructions i.e., Ti = {‘straight’, ‘straight’, ‘right’} or any combination of turn

instructions, P is the path with Ti given by a user and Pl is the privacy level. The Pl is

defined as follows.

Definition 2. Let P1 and P2 are two paths in GRN
and there turn instructions are Ti1 and

Ti2, respectively. P1 and P2 are turn instruction equivalent if and only if (Ti1 == Ti2).

The Pl of a given path P is the number of turn instruction equivalent paths.

The privacy level is determined based on the number of equivalent turn instructions

paths, i.e., the higher the number of equivalent turn instructions paths, the higher the

privacy for a user. For example, consider the path of a user that has left, left, right,
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straight and straight turn instructions. A service provider would like to exchange this

path directions with a third party for the revenue. At first, the service provider may

examine the number of equivalent turn instructions paths for the above path to see if the

location of the user would be compromised if these path directions were exchanging with

others. Let us assume there are 10 alternative paths, i.e., 10 equivalent turn instructions

paths exist in the network for the given set of turn instructions. That means that the

service provider can exchange this trip data without any worry.

4.6 Summary

We have proposed a novel approach that pinpointed without sharing trajectory location

information of a user by turn instructions privacy can be breached. At first, we considered

known road networks and then computed turning instructions based on turning primitives

for given trajectories. We argued that the efficiency of choosing a small number of turn

instructions is improved in comparison to using a larger number of turn instructions in

our approach. We also described how to generate paths based on turning instructions in

a real road network environment. We validate our theoretical approach through extensive

experiments, which are presented in the next chapter.
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Experiments

In the previous chapter, we developed a technique that takes turn instructions and con-

verts them into a trajectory. In this chapter, we will evaluate the efficacy of our proposed

approach by considering for a given path, i.e., a set of turn instructions, how unique this

trajectory is. The higher the number of trajectories there are for a given set of turn

instructions in the road network, the more private it is considered to be. Important pa-

rameters here are node degree, trip length, trip types and grid area size. We will evaluate,

in different sets of experiments, to what extent location privacy is affected. We use graph

to represent road network, where nodes and edges are considered as intersections and

roads between two intersections (see Section 4.2). We use both synthetic and real data

sets in our experimental analysis.

The remainder part of this chapter is organized as follows: in Section 5.1, we present

an extensive experimental evaluation of our proposed approach based on synthetic data

sets, to evaluate the effectiveness by considering different parameters. We measure the

privacy level based on the number of paths are found for a given set of turn instructions

by a user. Then in Section 5.2, we evaluate the efficiency of our proposed algorithm by

considering real data sets to measure the above mentioned privacy level.

5.1 Experimental Evaluation based on Simulated Data

Sets

In this section, we discuss the setting of the experiment’s environment for evaluation based

on our proposed work efficiency. Furthermore, we define a set of parameters to measure
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the privacy level (as discussed in Chapter 4), which affects the algorithm’s accuracy.

5.1.1 Experimental Setup

First, we evaluate our algorithm for synthetic data sets. We consider a 20× 30 grid that

consists of 600 nodes, with an average node degree of four. We also consider average

node degrees of three and two by pruning some edges from the network. We randomly

generate 100 of the shortest paths by using Dijkstra’s algorithm in our graph area and

apply the methods to obtain the turn instructions between a source and destination and

then reverse engineer them.

We define the parameters we have considered for evaluating our approach based on

synthetic data sets. Node degree, trip length, trip types and grid area size are the

parameters associated to the experiments. Table 5.1 summarizes the values used for each

parameter in our experiments and their default values.

• Node degree

We assume a graph to represent a road network that consists of a set of edges and

a set of nodes. Node degree refers to the number of edges that belong to a node.

For example, intersection of a road may consist of 2 or more road links.

• Trip length

We calculate turn instructions for every trip in a graph by utilizing a turn in-

structions generation algorithm. We define the trip length as the number of turn

instructions that belong to a trip. For example, if we consider a trip that follows

straight, straight and left turn instructions, then this trip has a trip length of three.

• Trip types

Trip types define how many points of interest a user visited during one trip. For

example, if a user goes to the kindergarten from her home to pick up her child,

but she stops at point of interest, say a coffee shop, and then goes to her main

destination, i.e., kindergarten, her trip is to be considered as one stop type trip.

• Grid area size

Grid area size refers to the size of each grid, i.e., graph network area. For example,

3× 2 grid area consists 6 nodes, 3× 3 grid area consists 9 nodes, etc.
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Table 5.1: Experimental setup

Parameter Value of a Parameter Default

Node Degree 2, 3, 4 4

Trip length 10, 20, 30, 40, 50 20

Trip Types 0 stop, 1 stop, 2 stops 0 stop

Grid area size 20× 30, 30× 20 20× 30

Our algorithm was implemented in Python programming language. We ran the ex-

periments on a desktop with a Pentium 3.40 GHz CPU and 8 GByte RAM. We present

experimental results of our proposed algorithm based on simulated data sets in Section

5.1.2.

Figure 5.1: Impact in privacy level by varying node degree for a given turn instructions

(1-10, 10-20, 20-30, 30-40, 40-50)

5.1.2 Experimental Results for Simulated Data

In this section, we analyse the results obtained for synthetic data based experiments. Each

graph below represents the privacy level measurement reported for each experiment.
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Effect of Node Degree

In this set of experiments, we vary the node degree from 2 to 4 in the network. A large

number of identical paths for a given set of turn instructions represent a more precise

location of the user and thus ensures a higher level of privacy.

Figure 5.1 shows the result of measuring privacy level by comparing the total number

of identical trips with the average node degree 4, 3 and 2 in the graph network. We

observe that the higher number of paths are found for a given set of turn instructions

when the average number of node degrees is 4. This is due to the existence of more

edges for each intersection when the average node degree is 4 in the graph. We see that

a significantly higher number of identical paths are found for a given small set of turn

instructions. For example, the given set of turn instructions 1 − 10 in the figure. On

the other hand, a low number of identical paths are returned for a given large set of

turn instructions, for example, the given set of turn instructions 40 − 50 in the figure.

We also observe with a decrease of the average number of node degree the number of

identical paths are found by a given set of turn instructions, is lower than that of the

average number of node degree 4. Number of edges are pruned from each intersection for

considering the number of average node degree criteria for validating our arguments and

therefore the number of paths are significantly low. However, the number of identical

paths for a given large set of turn instructions are higher than the average number of

node degree 4.

Figure 5.2: Impact in privacy level by varying trip length
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Effect of Trip Length

We vary the trip length of the synthetic data sets as 10, 20, 30, 40 and 50, and observe

that our proposed algorithm can efficiently find out the number of identical paths for a

given set of turn instructions considering the trip length variation. We consider that the

maximum number of trip length is 50, due to having difficulty finding a trip with a higher

trip length; in the worst case, it is possible to find a minimum of one path for a provided

set of turn instructions.

In Figure 5.2, 40 identical paths are found among 100 paths for a given set of turn

instructions or trip length ranging from 1 to 10. In contrast, less than 10 identical paths

are found for a given trip length of 40 to 50. That means that the longer the trip length,

the lower the number of trips found in the network.

Figure 5.3: Impact in privacy level by comparing trip types with the number of identical

paths are found for a given turn instructions(1-10, 10-20, 20-30, 30-40, 40-50)

Effect of Trip Types

In this set of experiments, we observe the privacy level by varying trip types when a

number of identical trips are found. We consider three types of trip such as 0 stop, 1

stop and 2 stops for evaluating the performance of our proposed algorithm. Figure 5.3

delimits the result of measuring privacy level by comparing the total number of trips with

the trip types of those trips in the network. We observe that the number of identical

trips for a given set of turn instructions decreases with an increase in the number of stop

points. For example, the number of trips are found is high and low while we consider the
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0 stop trip type and the 2 stops trip type, respectively. The higher the number of trips,

the higher the level of privacy in terms of trip types. We also observe that trips with a

small trip length are more frequent in terms of trip types because most of the shorter

trips consist with 0 stop type trips. For example, if we consider a trip with trip length 3,

say straight, straight and left turn instructions, then this trip is considered as a short trip

and it has less potential to contain a high number of stop points. We see in the figure

that most of the paths with path length 1 - 10 are produced in 0 stop type trip. On the

other hand, trips with a higher number of trip length are not as frequent in terms of trip

types. We also see that the number of trips with a longer trip length is higher in 2 stop

trip types compared with 0 stop trip type because it is has possible to have multiple stop

points for a longer trip with a high trip length. However, a longer trip with a higher trip

length returns fewer identical paths, i.e., privacy level is low, which indicates that the

privacy of a user is preserved when there is a large number of trips along with the same

trip instructions.

Figure 5.4: Impact in privacy level by comparing trip types with the number of identical

paths are found for a given turn instructions(1-10, 10-20, 20-30, 30-40, 40-50)

Effect of Grid Area Size

In these experiments, we observe the effect of the grid area size on the level of privacy.

We consider 20 × 30 and 30 × 20 grid area sizes for evaluating the performance of our

proposed approach. The effect of varying grid area size is not significant in terms of

getting the number of identical paths for a given set of turn instructions. However, it
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Figure 5.5: Melbourne downtown area Figure 5.6: Essendon inner suburb

affects the patterns of the turn instructions, along with the path. For example, consider

two small grid areas: 3× 4 and 4× 3. One path has the same trip length, say 3, and has

the same start and destination point. The path in the former grid area is straight, right

and straight, whereas this same path follows straight, straight and right in the latter one.

We observe in Figure 5.4 that the ratio of the level of privacy between 20 × 30 and

30 × 20 grid areas is nearly same for any size trip length; the higher the trip length the

lower the number of identical paths are found, which indicates a lower level of privacy. In

contrast, the lower the trip length, the higher number of identical trips, which indicates

higher level of privacy for a user. We also observe that the number of longer trips with

the longer trip length for a given set of trip instructions slightly increases in the latter

grid area than the former grid area.

In summary, a significant number of trips, even in populated areas with grid like

infrastructure, can be disclosed easily without the need of additional background infor-

mation. We also evaluate our proposed algorithm performance, considering real road

network in the next section.

5.2 Experimental Evaluation based on Real Data sets

In the previous section, we observed the performance and behaviour of our proposed

method in a synthetic data sets setting. In this section, we evaluate the effectiveness of

our proposed algorithm based on real-life data sets. In our evaluation of real road network

data, we consider the privacy level to be based on the measurement of finding the number
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Figure 5.7: Lilydale outer suburb Figure 5.8: Healesville rural area

of paths with unique turn instructions of a specified path, given a road network (see our

paper [47]).

We considered a real road network where we have considered Euclidean distance be-

tween two locations in the road. However, we did not consider distances in synthetic

data. Because, in synthetic data setting, we just wanted to see how many simple in-

structions it takes to reverse engineer a path. With realistic data, if we do not consider

distance between two locations then it may be possible to get a very long path for a

given long set of turn instructions that is inapplicable. Let us assume, we have a set of

turn instructions without considering distances, it may possible to get a very long path

for example from the centre of the city to the rural area which is not acceptable to the

user. We considered the city of Melbourne area for the evaluation of our algorithm and

evaluated the performance of the algorithm by comparing the number of occurrences of

the path can be found in the network for a given path i.e., a set of turn instructions. Our

observation is that even when a seemingly large number of combinations possible, user

paths are still unique on average i.e., only one path is available for the given set of turn

instructions.

The main objective of our evaluation was to determine the conditions that can lead

to turn instructions exposing the route of a user travelled and what circumstances allow

for turn instructions to be safely exchanged. We found that there are many situations

where user privacy is exposed if turn instructions are shared.

We considered the city of Melbourne, Australia. This is due to the road network in

the inner city approximating a grid while in the suburbs the road network is more sparse
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Figure 5.9: Melbourne downtown - average number of identical paths found for generated

paths by the number of turn instructions (1-10, 10-20, 20-30, 30-40)

which is general in many cites around the world.

The actual trajectory of a user can be indirectly determined in instances where only

a few identical paths can be identified. Moreover, the privacy of a user is preserved when

a large number of paths have the same turn instructions.

Figure 5.10: Essendon - average number of identical paths found for generated paths by

the number of turn instructions (1-10, 10-20, 20-30)

Paths residing in Melbourne’s inner city and surrounding were generated with turn

sequences and used to search for identical sequences. The road OpenStreetMap [43].

A bounding box with an area of 4km2 was placed around areas of consideration. We

generated 100 paths within the test areas. Paths were generated randomly selecting

a source and destination pair. The shortest path is then computed using Dijkstra’s
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algorithm and the turn sequences are derived.

The Melbourne downtown is arranged in a grid like manner with many intersections

leading into main arterials as well as smaller streets and lanes as can be seen in Figure

5.5. Our results demonstrated in Figure 5.5 that even when a apparently large number

of combinations possible, user paths are still unique on average.

Such results were found in the inner city suburb of Essendon and suburbs in its

extended area in Figure 5.10. Essendon is organized in a grid like structure as can be

seen in Figure 5.6 and has a reasonably high population density for an inner city suburb.

Figure 5.11: Lilydale - average number of identical paths found for generated paths by

the number of turn instructions (1-10, 10-20)

In the outer suburbs, it is easier to determine a path a user takes due to the graph

being less interconnected. Consider the suburb of Lilydale in Figure 5.7, it can be seen

that there are sections of the road network that are not interconnected. The results

charted in Figure 5.11 indicate that at most nine identical turn sequences can be derived

and this reduces down to two identical sequences for longer turn instruction sequences.

Rural areas unlike city areas have simplified road networks. Consider the map of

Healesville, a semi-rural town. It can be seen in Figure 5.8 that the road network for

Healesville is simplified compared to the areas closer to the city. Our results given in

Figure 5.12.

From experiments, we conclude that a large number of paths, even in reasonably

populated areas with grid like infrastructure, can be revealed easily without the need

of additional background information. Our findings indicate that data providers that
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Figure 5.12: Healesville - average number of identical paths found for generated paths by

the number of turn instructions (1-10, Note: paths with longer turn instructions could

not satisfy the road network)

wish to exchange turn instructions information in a privacy-preserving manner need to

consider adding noise using techniques such as differential privacy [26] to ensure privacy

is protected.

5.3 Summary

In this chapter, we evaluated the accuracy and robustness of our algorithm based on

synthetic and real data sets. Algorithm accuracy based on synthetic data was evaluated

for node degree, trip length, trip types and grid area size. We observed that a high level

of privacy is gained for shorter trips rather than longer trips in the network. We also

evaluated our proposed method by considering real-life data sets. However, we set-up the

real data sets environment slightly differently than the synthetic data set environment

due to the adaptability with our method to the real road map. We observed that even

without location data of a user, privacy can be breached by analysing turn instructions.

We found that there are many situations where user privacy is exposed if turn instructions

are shared. To the best of our knowledge, this is the first work to address the problem of

keeping turn instructions with the user profile without having the location information

of a user.
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Conclusion and Future Work

6.1 Conclusion

In this thesis, we have presented and systematically highlighted that even without the

location data of a user, privacy can be violated by using turn instruction data.

We introduced a turn instructions based approach that shows that an individual’s

location can be revealed from his/her profile without using their actual location informa-

tion. Removing location information from the user profile could be considered as privacy

preserving; however, a number of significant aspects related to a user’s position, such as

navigation instructions, can still be stored in the user’s profile. We demonstrate here that

it is possible to reconstruct a path based on the user’s navigation instructions; therefore,

the user’s location privacy is at risk.

We have described our approach for deriving the turn instructions between a source

and destination. This approach uses a set of turn instructions, traverses every node in a

road network and incrementally expands until a match, i.e., a path or paths based on the

given turn instructions, can be found. We also propose a method that helps to reverse

engineer the path based on the set of turn instructions.

We have tested our algorithm for both synthetic and real data. We have used synthetic

data to test the algorithm’s behaviour and accuracy for various trajectory parameters.

The parameters evaluated were trip length, trip types, average node degree and grid area

size. We have shown that by considering the above parameters, our proposed algorithm

can successfully reconstruct routes for given turn instructions. We also observe that

paths with fewer turn instructions are more private than longer paths with longer turn
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instructions.

We used real-life data to observe the applicability of our algorithm in the real road

network environment. In this experiment setting, we considered Euclidean distance be-

tween two locations in the road; however, we did not consider any distances in synthetic

data. We just wanted to see how many simple instructions it takes to reverse engineer

a path. Using real data, we have shown that our proposed algorithm can efficiently re-

build paths for given turn instructions. We observed that the paths with longer turn

instructions are infrequent in the network.

The main intention of our evaluation was to determine the conditions that can lead

to turn instructions, exposing the user’s route and circumstances that allow for turn

instructions to be safely exchanged. We found that there are many situations where user

privacy is exposed if turn instructions are shared.

LSPs need to exchange navigation or turn instructions with partners with care, as the

original path of a user can be inferred in the majority of cases despite the fact that the

data is cleansed of GPS traces such as source and destination locations. We suggest that

LSPs use our proposed algorithm to observe the number of outcome paths (no. of path >

1) for a given set of navigation instructions before they exchange navigation instructions

with third parties. On the basis of this evaluation, they may release the user’s turn

instructions data, which gives multiple paths and avoids disclosing turn instructions data

sets that return fewer distinct paths.

6.2 Future Work

In the future, we intend to explore the following research directions in the context of pre-

serving the user’s trajectory privacy with the aim of enhancing the accuracy of navigation

instructions and user location privacy.

6.2.1 Integration with a Large Number of Turn Instructions

One promising research direction is to determine the appropriate number of turn in-

structions and the utility of those instructions in the real road network, since the real

road network consists of different types of intersection points, for example, t-intersection,

3-way intersection, 4-way intersection, roundabouts, etc. Roundabout intersections can
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include more than four routes; therefore, a large number of turn instructions are re-

quired for reconstructing the route accurately. In this thesis, we have considered three

basic types of turn instructions for demonstrating situations violating user’s trajectory

location privacy. A number of existing approaches [55, 56] use a large number of turn

instructions instead of using coarse turn instructions. In the future, we plan to integrate

a large number of turn instructions into our approach; therefore, we will examine the

efficacy of our approach based on a large number of turn instructions. A large number

of turn instructions can be chosen to model the road if it achieves a more accurate path;

however, improved path accuracy could endanger the user’s location privacy.

Consider the example in Figure 6.1. We assume that seven different types of turn

instructions, as described in [56], manipulate this road network. A user wants to go to

the hospital (H1) from his current position S by requesting a path that follows straight

and half right turn instructions. As we can see, there is only one path (large dashed line)

that follows the designated turn instructions given by the user, but any person with a

city map and the turn instructions can determine the user’s position. Alternatively, the

user can consider a path based on straight, straight and right turn instructions, which

generates three alternative routes, i.e., route 1, route 2 and route 3. Route 1 leads

to the hospital (H1), i.e., the user’s desired destination; route 2 leads to a cafe, and

route 3 ends up at the hospital (H2). In this scenario, it is very difficult to any third

person to determine the user’s actual position, though the turn instructions information

of the user has already been inferred. As a result, obtaining multiple paths from turn

instructions, given by a user, achieved more privacy for that user. We aim to examine

the above challenges while incorporating different types of turn instructions in the real

road network setting.

6.2.2 Privacy-preserving Methods

We plan to investigate privacy-preserving methods that can allow for the exchange of turn

instructions safely. For example, instead of releasing the entire path, we could utilise the

sub-paths and study their effect on privacy integrity. Another possible method is that,

in exchange for revealing every turn instruction in a path, we could consider some turn

instructions as unidentified. For example, consider a path that follows left, straight,

straight and right turn instructions; instead of releasing the same turn instructions se-
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Figure 6.1: A scenario of choosing a large number of turn instructions

quentially, we release ?, straight, straight, right or left, ?, straight, right or left, straight,

?, right or left, straight, straight, ?. We aim to utilise the above mentioned methods to

extend our proposed approach in future.
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