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ABSTRACT
All forecasts of Internet traffic point at a substantial growth
over the next few years. From a network operator perspec-
tive, efficient in-network caching of data is and will be a
key component in trying to cope with and profit from this
increasing demand. One problem, however, is to evaluate
the performance of different caching policies as the number
of available data items as well as the distribution networks
grows very large.

In this work, we develop an analytical model of an aggre-
gation access network receiving a continuous flow of requests
from external clients. We provide exact analytical solutions
for cache hit rates, data availability and more. This enables
us to provide guidelines and rules of thumb for operators
and Information-Centric Network designers.

Finally, we apply our analytical results to a real VoD
trace from a network operator and show that substantial
bandwidth savings can be expected when using in-network
caching in a realistic setting.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Information networks, Per-
formance evaluation

Keywords
Caching, Access aggregation network. Scalability

1. INTRODUCTION
Internet traffic forecasts point at a substantial growth over

the next few years and a major part of this traffic is expected
to be related to video [3, 8].

From an operators’ perspective, a problem is to manage
this new traffic at a reasonable cost. A possible solution
to this problem is the introduction of in-network caching as
has been proposed by the Information-Centric Networking
(ICN) community. However, it shall be remembered that
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in-network caching has benefits not only to operators but
also consumers and content providers may benefit from it.

While the amount of video related traffic is increasing,
so is the number of distinct available items. Recent stud-
ies show, e.g. , that there are on the order hundred million
different items available in BitTorrent networks [5]. Perfor-
mance analyses of systems handling such large amounts of
data are inherently difficult and mostly lacking.

The purpose of this paper is to introduce a tool or analyt-
ical model of in-network caching for truly large scale content
catalogues. The tool is then used to gain insights, provide
guidelines and, make predictions on the effects of in-network
caching that are of importance to the designers of future ICN
architectures.

Our aim is to provide a simple tool for assessing the load
on caches and links at various levels in the network as well
as estimating the availability of data. We remark that an
in-network caching architecture must also account for the
complex trade-offs between different kinds of hardware so-
lutions and their associated costs. Our tool can provide
valuable insights in this decision process.

The main contribution of this work is an analytical model
for the performance of caches in truly large scale hierarchical
access aggregation networks. The model is applicable to any
cache eviction policy and we study two benchmark policies
which yield estimates of:

• The hit rate at any level in the cache hierarchy as
well as for the access network as a whole for networks
containing of the order 108 distinct items.

• The specific content held at caches at various levels in
the cache hierarchy.

• The overhead costs due to redundant caching.

• The performance gains from varying cache sizes.

Finally, based on traffic data from the network operator
Orange, the tool is used in a realistic setting to show sub-
stantial bandwidths savings when in-network caching is ap-
plied to Video-on-Demand traffic (VoD).

2. BACKGROUND AND SCOPE
Access aggregation networks and cellular back-haul net-

works typically form tree-like topologies. In fixed networks
traffic ingress and egress tends to be concentrated to the
leaves and the root of the tree. In contrast to this, cellular
base stations are often co-sited with nodes in the tree and
traffic may enter or leave at any node in these networks.
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It is hard to give a specific number of child nodes per par-
ent node in the tree as this number depends on the underly-
ing transmission technology and the dimensioning margins
for the specific traffic mix, but a typical range is 3–10 and
we note that our model is flexible in this respect.

Because of space limitations, the discussion will be limited
to access aggregation networks in the fixed domain leaving
cellular networks for future work.

In general, we cannot predict topologies or usage patterns
of future networks. Nevertheless, we will make the assump-
tion that in-network caching can be deployed at any node in
our tree shaped networks.

3. RELATED WORK
The efficiency of caches has previously been subject to

benchmark studies in the context of disk accesses [9].
Analytical studies of caches also exist, in [4] the hit rate

performance of LRU is studied using an approximate model
for a single cache. Our approach is somewhat different in
that we are studying the exact solution and in the context
of a hierarchy of caches. Other work such as [11] analyze
worst (and best) case behavior of caches whereas we are
interested in the average case which will dominate for truly
large systems.

The performance of LRU caches has also been studied by
Che et al. in [2] and in the context of hierarchical caching
in [6], where a very accurate hit rate approximation per con-
tent is given. However, solving the approximation equation
for millions of items is neither straight forward nor feasible
in practice.

A performance analysis of a two-layer hierarchy using the
Che approximation is given in [7] for moderately sized (104

items) systems.
Caches operating under continuous data flux have been

studied in the context of automatic control in [13], again
limited to single caches.

The performance of web caches has been well studied ex-
perimentally and using simulations. Few analytical studies
treating explicit eviction policies exist, however. A nice pre-
sentation of some general web caching techniques can be
found in [12].

4. THE NETWORK MODEL
We model an access network as a graph of interconnected

nodes (routers). Each node may have any number of clients
(hosts) attached which request and receive content. Clients
can only be connected to one node at the time. Nodes can
either serve requests immediately or relay them to other
nodes in the network.

To simplify the analysis we approximate the connection
topology of the nodes by a d-regular tree. Leaf nodes at
the bottom resemble access routers far out in the network
whereas the root is a member of the backbone or core net-
work providing connectivity to the Internet.

Due to the tree structure of the network, a node is con-
nected to one node higher up in the tree and d nodes below
except for the leaf nodes at the very bottom which only are
connected upwards. The level of a node indicates its dis-
tance plus one in hops from the leaf level hence the root
will have the highest level equal to the depth of the tree and
the leafs will be on level one. Each node also has a storage

Figure 1: Each leaf node receives a vector of external
requests r0 and relays the requests not served by its
cache r̄k to its parent node.

capacity or cache size C which determines the number of
cache items it can store locally.

Further we assume a fixed, large catalogue of N items
which can be requested by any node in the network. Content
requests can originate either from clients connected to the
node, or from other nodes in the network which are unable
to service the request from their local caches. In more detail,
a node serves all requests for which the content resides in its
cache, and relays all other requests to its parent node. This
is depicted in Fig. 1.

4.1 Continuous content flow
Rather than examining the behavior of the system at each

individual request, we are interested in the overall average
performance of the system as function of a few key parame-
ters. Given a probability distribution for the content request
rates, an eviction policy for the local caches and a particular
network topology, we would like to determine the bandwidth
usage and content availability for the entire network.

In order to do this, we study the system in the limit where
the number of requests per time unit is so large that we may
approximate the arrival process of discrete requests by a con-
tinuous flow which is specified as a rate of requests per unit
time. This approach is similar to fluid analysis of queuing
systems [10]. Our analysis then operates on distributions
of these flows rates rather than on discrete request events.
We thus assume that there exists a period of time where the
distribution of content requests is approximately static. We
further assume that the exchange rate of availble items is
such that it is approximately static as well.

In the continuous limit we define a request vector r as a
vector of average request rates for each available item,

r ≡ {µ0, µ1, . . . , µN}.

We further assume that two requests for a particular piece
of content are independent which motivates us to model the
continuous process of requests for item i as a Poisson process
with rate λi. This is indeed a simplification, but it will
provide us with a lower performance bound since correlation
among requests can be exploited by a clever caching strategy.

The requests received by a particular node k can then be
split up in two parts; one which contains requests from local
clients, r0, and another one which contains requests relayed
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from other nodes in the network, r̄k,

rk = r0 + r̄k. (1)

As suggested in various studies, e.g. [1], the aggregate
request intensities from external clients can be fairly well
approximated by a power law distribution. Here we assume
that intensities follow a Zipf distribution with parameter
α which determines the shape of the power law. Typical
values for the popularity of Internet content lies in the range
α = 0.6− 0.9 [1, 5].

λi(i, α,N) ∝ 1/iα∑N
n=1(1/nα)

≡ p(i) (2)

The item indexes are ordered by decreasing popularity
where item 1 is the most popular.

The first term in equation (1) represents requests issued
by clients locally at the node itself and is obtained as

r0 ≡ {λ0, λ1, . . . , λN}

where the rates are given by the Zipf distribution (2).
The second part of equation (1) represents the flows re-

layed from other nodes n,

r̄k ≡
∑
n∈Mk

r̄n→k. (3)

where Mk is the set of nodes which relay requests to node
k.

Further, we simplify the analysis by assuming that the
network is well balanced (which is only approximately true
in practice). The assumption lets us treat each node on the
same level interchangeably,

ri = rj ; ∀{i, j : level(i) = level(j)}. (4)

This means, due to symmetry of the tree, that the average
request pattern seen by a node at level x is the same for all
nodes at this level.

The probability that a node k holds an item in its cache
is given by the vector

ck ≡ {c0k, c1k, . . . , cNk }; cik ∈ [0, 1].

5. EVICTION POLICIES
There are two basic cache eviction algorithms known as

LFU (Least Frequently Used) and LRU (Least Recently
Used). Many modern eviction algorithms are variations of
these two and use combinations of frequency and recency in
their implementation.

The LFU eviction policy is to remove the item with the
smallest number of accesses. Unfortunately this means that
the algorithm can not be implemented in constant time
hence it is therefore mostly of theoretical importance when
applied to large caches.

The other, much simpler policy is LRU. It evicts the item
that has not been accessed in the longest time. LRU can
easily be implemented in constant time using a double linked
list.

Our main concern in this paper is to provide benchmark
points for our analytic model. For this reason we provide
analytic expressions for the performance of both LFU and
LRU under continuous content flow.

Thus, we study the system in steady-state and do not
consider temporal variations. This will lead to conservative

performance estimates, since variations in principle are ex-
ploitable by clever eviction policies.

5.1 Least Frequently Used (LFU)
In our model, when the cache eviction policy is based on

frequency information, the node will look at its incoming
request vector and compare the frequency of request for the
items held in the local cache with requests for other items.
The best option for the node, regarding its request vector
r is then to cache the items with maximal average request
rate. Let FC(r) be a function that returns the C largest
values from r. The cache probability vector for node k, ck
will then be given by.

cLFU
k = 1i∈FC(rk)

Where 1 is the indicator function. The intuitive interpre-
tation of this LFU model is that if average request rates are
static and known, the best policy in steady state is to cache
items with high average request rates. This is not however
an optimal strategy since temporal variation in requests can
motivate eviction of items which are popular in the long run.
This LFU model will thus provide us with an average case
estimate rather than an upper or lower performance bound.

5.2 Least Recently Used (LRU)
In order to calculate the probabilities for a node k to have

an item a in its cache while using the LRU policy we can do
this by calculating its complement, namely the probability
that the item will be evicted. The eviction probability is
determined by the probability the cache receives a sequence
of requests not containing a while at least K−1 other items
are requested. We denote this probability by R(a).

Consider a sequence of requests of length s. A configu-
ration of s is a vector K = {k1, k2, ·, kN} with the specific
number of requests, kj , issued for item j in this sequence.∑
j kj = s. If we denote the set of items different from a

by ā, the probability for a specific configuration K of the
s requests among the items ā is given by the multinomial
distribution

P (ā,K, s) =
s!∏
i∈ā kj !

∏
i∈ā

(p(i))kj (5)

Summing over all s we get

∞∑
i=C

P (ā,K, i) =
(
∑
j∈ā p(j))

C

1− (
∑
j∈ā p(j))

(6)

This is the probability that item a will not appear in the
sequence but we also need to make sure that at least C − 1
other items are requested. This will then cause item a to be
evicted.

LetQj(a) denote the set of all unique sequences of length s
where only j unique items are requested. The probability for
such a subset is again given by equation (6). We then need
to subtract all such sets where less than C − 1 unique items
are requested since these sets will for sure not cause a to be
evicted. However, in each Qj(a) we will over count a num-
ber of subsets of shorter length j − 1, j − 2, · · · . Therefore,
the correct probability is given by the inclusion-exclusion
equation below. Taken together the eviction probability for
an LRU cache is given by:
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R(a) = p(a)(
(1− p(a))C

p(a)
−Q(a)) = (1− p(a))C − p(a)Q(a)

(7)
where

Q(a) =

C−1∑
i=1

Qi(a) +

i−1∑
j=1

(−1)j+1

(
C − (N − 1)

N − 1− j

)
Qj(a) (8)

The probability that a given item resides in cache is then
given by:

cLRU
k =

1−R(k)∑
j 1−R(j)

(9)

Equation (9) can, for moderate number of items and cache
size, easily be verified by simulation.

For very large numbers of available contents the exact so-
lution is intractable due to the fact that we need to calculate
each term in eq (8). However, since each Q(a) only contains
at most N − 1 terms, each less than 1 we will when C >> 1
be able to approximate the cache probability by

c(k) ' 1− (1− p(a))C (10)

6. BOTTOM-UP REQUEST ROUTING
In the following, content will not be allowed to flow up the

tree. Due to the symmetry property of the request vectors
(Eq. (4)), we denote the requests from a node at level j,
which is same for all nodes at this level, by rj . Further, due
to the regular degree of the tree, the residual flow equation
(3) simplifies to

r̄j = dr̄j−1 (11)

The nodes at level 1 (the leafs) will in the bottom-up case
only see requests from external client r1 ≡ r0 since no relay
traffic reaches the leafs.

The residual flow out of level j is the flow not absorbed
by the cache at that level and is given by

r̄j = rj · (1− cj) (12)

Using equation (4) again, the request vector for nodes at
higher levels becomes

rj = r0 + dr̄j−1 = r0 + d(rj−1 · (1− cj−1)) (13)

Solving this recursion relation using equation (11) and (12)
gives

r̄j = r0 +

j∑
i=1

di−1
j∏

n=j+1−i

(1− cn) (14)

and the residual flows

r̄j = r0d
i−1

j∏
n=1

(1− cn). (15)
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Figure 2: Aggregate hit rate as function of cache
size for LFU and LRU.

7. RESULTS AND OBSERVATIONS
Next we solve the equations for a tree of degree d = 10

and a three levels for various catalog sizes N and cache sizes
C. Requests will be Zipf distributed using α = 0.7.

In Figure 2 we plot the aggregate hit rate for the whole
cache hierarchy for three different catalogue sizesN = 103, 104

and 105. In each setup we vary the cache size from 0.1 to
10 percent of the catalogue size. We note that the hit rate
of LFU is almost twice that of LRU and that the benefit of
increasing cache size grows faster. In both cases we note a
diminishing return of cache size to hit rate as the catalog
grows large. Cache size has to grow super linear in order to
achieve a linear gain in hit rate. This is also consistent with
observations made by others e.g [1].

Figure 3 shows the hit rate of individual levels for a very
deep tree network of 10 levels and a cache size of 0.1%
(C/N = 0.001). We note that the first level (leaf) cache
is the most important one. Caches at higher levels can still
contribute to the aggregate cache effect, but only to a much
smaller extent (this is not additive). Thus, when designing
future in-network caching architectures, one should consider
using either larger caches at higher levels or creating groups
of collaborating creates to form larger virtual caches (pay-
ing the internal communication costs but increasing content
availability). This holds for the whole parameter range but
the relative performance of level 1 decreases with catalog
size. This is intuitive since, for a very large N , each level in
the cache will store very popular items and will be of similar
importance to performance.

Next we examine what items will likely be cached by the
two eviction policies. A rank plot of popular items and the
probability of finding them cached is given in Figure 4. Here
we see the difference between LRU and LFU clearly. LFU
caches only the most popular items (head of the distribu-
tion) whereas LRU will cache all items with a non zero prob-
ability. An interesting effect of this is that if caches did col-
laborate, LFU would still have to request many items from
outside of the tree whereas LRU could almost surely find
the item somewhere locally. Thus, collaborative caching can
also be used to improve availability in the case of network
problems or failures of external links.

7.1 A realistic example
Next we will apply the analytic model on a fictitious ac-
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cess aggregation network. The network will consist of three
levels of routers each with a fan-out (degree) of 10. The
topmost (root) router is directly connected to the opera-
tors’ metropolitan network and the remaining routers form
a tree below the root. A possible interpretation of this sam-
ple network is one hundred Digital Subscriber Line Access
Multiplexer (DSLAM) pools that in turn are connected to
ten Broadband Remote Access Servers (BRAS) that are con-
neced to the root router.

Each router is equipped with 360 Gbytes of flash memory
to be used for in-network caching. We pick 360 Gbytes be-
cause there is a standard PCI-Express card that currently
costs 700 EUR with this amount of memory. The card pro-
vides 540 Mbytes/s of sustained read capacity. For simplic-
ity all routers are equipped with the same amount of cache
memory.

Duration 8 days
Requests 29,707 5,199 clients 5.7 reqs/client
Catalog 3,518 items 2,473 GB 703 MB/item

The average content size is 703 Mbytes which with a 360
Gbyte cache corresponds to a cache capacity of 512 items.
In this example we want to calculate lower bounds on cache
hit rates and will consequently use the LRU eviction policy,

which in our model does not benefit from correlations in the
requests stream.

With these parameters as input to the analytic model we
expect a hit rate of 45% at the routers closest to the termi-
nals. At the next level hit rate will be 26% and at the root
22%. Taken together this represents an aggregate cache hit
rate of 68%, i.e only 32% of the VoD traffic is expected to
be visible outside the tree.

The results (hit rates) of the calculations are summarized
for three different xache sizes below.

Level 256GB 360GB 512GB
Root router 0.184 0.218 0.260
Middle (BRAS) 0.223 0.264 0.315
Leaf (DSLAM) 0.376 0.448 0.523
Total 0.604 0.683 0.758

An important question to consider is if flash memory will
provide enough capacity to satisfy all read traffic.

To this end, we first note that from the trace data we
can deduce an average VoD rate of 30 Mbyte/s of which
45% or 13.5 Mbyte/s should be read from our cache. In our
experience, peak VoD load can be as much as 5 times the
average load. In this case, there is plenty of spare capacity
to satisfy the demand.

Similarly, at the root level we must read data from the
cache at an average rate of 265 Mbyte/s. Although this value
may be possible, the same does not apply to peak loads as
much as 5 times the average load, in which case we need
to use flash memory with higher read performance. Such
memory exists and considering that this router should be a
high end one, the additional cost can likely be motivated.

In June 2011 Cisco reported [3] Internet video is now 40
percent of consumer Internet traffic, and will reach 62 per-
cent by the end of 2015, not including the amount of video
exchanged through P2P file sharing. The sum of all forms of
video (TV, video on demand [VoD], Internet, and P2P) will
continue to be approximately 90 percent of global consumer
traffic by 2015.

If we assume Internet video accesses to be similar in char-
acter to our VoD data, it should be within reach to save some
27% of all consumer Internet traffic and this should extend
to 42% savings by the end of 2015. Also, remember that
our model is conservative and does not benefit from request
correlations. Bandwidth savings should thus be expected to
be larger than this.

8. CONCLUSION AND FUTURE WORK
In this paper we have developed an analytical model of

an access aggregation network with in-network caches and
we have given exact analytical expressions for the perfor-
mance of LRU and LFU caches. Using these results we were
able to derive probabilities that given items reside in partic-
ular caches, determine cache efficiencies in terms of hit rates
and network loads. The model enabled us to study systems
scaling to millions of data items and thousands of nodes,
something that is often impossible using simulations.

In the context of Zipf distributed accesses we have ob-
served that LRU is better at caching items across the cat-
alog making it a better candidate for collaborative caching
and improvements in availability. On the other hand LFU
can achieve better cache hit rates.

For practical purposes, one needs to strike a balance be-
tween frequency and recency in the eviction policies to meet
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expectations of availability and cache hit rate. The analyti-
cal model can aid in striking this balance.

Finally, in a realistic example we showed that it should
be possible to save 68% of VoD traffic using inexpensive
caches. As of today this corresponds to approximately 27%
of all consumer Internet traffic [3].

Future directions of this work will be to analyze other
eviction policies using the same basic, model and to extend
it to study the impact of intra network cache collaboration.
We intend to extend the analysis to more realistic request
patterns containing temporal correlations among requests as
well as time varying popularity distributions.
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