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In the framework of symmetric Cournot oligopoly, this paper provides two minimal sets of
assumptions on the demand and cost functions that imply respectively that, as the number of firms
increases, the minimal and maximal equilibria lead to (i) decreasing industry price and increasing
or decreasing per-firm output; and (ii) increasing industry price (and decreasing per firm output.)
In both cases, per-firm profits are decreasing.

The analysis relies crucially on lattice-theoretic methods and yields general, unambiguous
and easily interpretable conclusions of a global nature. As a byproduct of independent interest,
new insight into the existence of Cournot equilibrium is developed.

1. INTRODUCTION

The dependence of equilibrium outputs, price and profits on industry concentration is a
fundamental issue in economic analysis. Interest in this topic at various levels has tra-
ditionally extended to several subfields encompassing high theory and antitrust practice.
Conventional wisdom contends that with more firms, industry price must decline. This
corresponds to the so-called property of quasi-competitiveness for a Cournot oligopoly.
Likewise, per-firm output and profit ought to decrease with the number of firms.

The purpose of the present paper is to thoroughly examine the validity of these
assertions for a Cournot industry with symmetric firms. Our primary aim is to derive
precise and minimal sufficient conditions under which these conclusions—which are often
taken to be universally true—do, in fact, hold. Our findings only partly confirm conven-
tional wisdom. In order to provide a summary, let P ( · ) and C ( · ) denote the inverse
demand and the common cost function respectively. The key determinant of the overall
analysis is the sign of nĜAP ′ (z)CC″(x), where z and x stand for aggregate and single-
firm outputs, respectively.

If n is globally positive, there always exists at least one symmetric equilibrium and
no asymmetric ones. Furthermore, the extremal (i.e. maximal and minimal) equilibria call
for a total industry output which increases in the number of firms n, and hence for an
equilibrium price which decreases in n. This is the so-called property of quasi-competi-
tiveness. As n increases, per-firm equilibrium output decreases if demand is log-concave,
and it increases if demand is log-convex and production costs are zero. Apart from this
very last statement, the above results are perfectly intuitive and form the conventional
wisdom.
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On the other hand, when n is globally negative, two different types of Cournot
equilibrium can coexist. A monopoly equilibrium always exists, where one firm produces
the optimal monopoly output and the other (nA1) firms produce nothing. More generally,
whenever a symmetric Cournot equilibrium exists for an m-firm market, it remains an
equilibrium for an n-firm market for any nHm, with the additional (nAm) firms producing
no output. These equilibria are all clearly insensitive to the number of firms. Given quasi-
concave profit functions, a unique symmetric equilibrium also exists, which leads to per-
firm and industry outputs that are decreasing in the number of firms. The latter fact, or
quasi-anticompetitiveness, is highly counter-intuitive, particularly given its global nature:
industry prices rises in response to entry by a new firm, regardless of the initial number
of firms. Finally, with nF0, we show that no other type of equilibrium exists.

A key feature of the present paper is its reliance on the lattice programming method-
ology. This approach allows for a clear-cut separation of the overall analysis into two
mutually exclusive cases sharing no common extraneous assumptions that would have
(unessential) economic meaning. This allows for a very simple and clean interpretation of
the conditions (on the sign of ∆) that drive the comparative statics conclusions. See Section
2.4. Furthermore, simplicity and transparency of the analysis is nicely complemented by
the fact that the two possible global signs of ∆ also separate the issue of existence of
Cournot equilibrium into two natural cases.

As far as per-firm profits are concerned, conventional wisdom fully prevails. All the
Cournot equilibria discussed above give rise to equilibrium profits that are non-increasing
in the number of firms.

The results of the quasi-anticompetitive case can be usefully related to some of the
theories of industry structure, in particular to the theory of natural monopoly (Sharkey
(1982)). This is defined as any industry with a subadditive cost function, a purely supply-
side criterion. By contrast, one can present our condition ∆F0 as an alternative criterion
integrating demand and supply effects (through the terms P ′ and C″ respectively). Since
the monopoly outcome is a Cournot equilibrium of the oligopoly here, this criterion rests
on well-defined game-theoretic foundations. (This discussion is continued in Section 2.4.)

There is an extensive literature on the topics at hand, and our results have several
antecedents. Existence of a symmetric equilibrium when n is globally positive is an inter-
esting (though straightforward) extension of a classic result due to MacManus
(1962, 1964) and Roberts and Sonnenschein (1976) and relying on convex costs. On the
other hand, the existence question with n globally negative has not been analysed
previously.

As for quasi-competitiveness and profitability, several studies have developed results
that overlap with ours, including MacManus (1962, 1964), Frank (1965), Ruffin (1971),
Okuguchi (1973), Novshek (1980), and Seade (1980a). Since these studies relied on
methods based on the Implicit Function Theorem and signing derivatives, unnecessary
simplifying assumptions were typically made, such as concavity of payoffs in own output,
decreasing marginal revenue, differentiability of reaction curves, etc. Furthermore, unclear
or imprecise conclusions were sometimes derived, particularly in the presence of multiple
Cournot equilibria (see below).

In contrast, the approach of the present paper, based on lattice-theoretic methods as
developed by Topkis (1978, 1979), Vives (1990), Milgrom and Roberts (1990), Milgrom
and Shannon (1994) and Milgrom and Roberts (1994), leads to unambiguous, consistent
and meaningful statements about these issues. First, for the comparative statics questions
under consideration to even make sense, any set of sufficient conditions must include
provisions for a Cournot equilibrium to exist for any number of firms. Second, to account
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for possible multiplicity of Cournot equilibria, one must have a systematic and meaningful
way to make statements about equilibrium sets or well-defined equilibrium selections, as
the number of firms varies. Third, it is desirable to obtain tight comparative statics relying
only on critical or fundamentally needed conditions and not on convenient assumptions
imposed only by the use of an inappropriate methodology.1

For a thorough discussion of the merits of the lattice-theoretic methodology over the
traditional approach along the lines raised above, the reader is referred to Milgrom and
Roberts (1994). In the present context, due to the discrete nature of the parameter of
interest—the number of firms—some of the disadvantages of the previous studies are
magnified. For instance, consider the problem of multiple equilibria. Assume that for nG
2 (say), there are three (symmetric) equilibria, given by the intersection of the reaction
curve r( · ) with the 45° line, and that for nG3, there are five equilibria, given by the
intersection of r( · ) with the 22·5° line (see Figure 1).2 We prove that, as n increases, the

FIGURE 1

As n goes from 2 to 3, the external equilibrium values of Y (other firms output) shift up (a to d and c to h), but
no meaningful statement can be made about the shift b to {e, f, g}.

maximal and minimal equilibria call for the output by the other (nA1) firms to increase,
which is clearly true here. However, no meaningful statement can be made about the shift
of the middle equilibrium when nG2 to the three middle equilibria when nG3. Thus,
while our approach yields clear global statements about the extremal equilibria, the tra-
ditional approach gave rise to local statements that are not always well-defined. Moreover,
the latter also have the drawback of requiring exact knowledge of the equilibrium point
under consideration as they are expressed via an inequality condition at that point. How-
ever, with such knowledge, the comparative statics could also be checked directly by
evaluating the variation of the equilibrium point with respect to the number of firms.

1. Such convenient assumptions often cloud the economic intuition behind the conclusions and prevent a
clear-cut separation between different and potentially mutually exclusive cases of analysis (such as the cases
∆H0 and ∆F0 in the context at hand).

2. We argue later that with n firms, a symmetric equilibrium corresponds to an intersection of the (com-
mon) reaction curve r(Y ) and the line Yy(nA1) (see proof of Theorem 2.5).
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In the context of Cournot oligopoly, the two extremal equilibria enjoy particular
welfare properties. The largest [smallest] equilibrium output is most [least] preferred by
the consumers, but least [most] preferred by the firms. Nonetheless, under particular cir-
cumstances, one might be interested in the comparative statics of a nonextremal equilib-
rium. To such an end, the methodology of lattice programming may or may not be
invoked in a local sense (see Milgrom and Roberts (1994) for more on this).

This paper is organized as follows. Section 2 provides a description of the basic
model, a statement of our results, and several illustrative examples, followed by a dis-
cussion relating our results to the theory of industry structure. Section 3 contains the
proofs of this paper. Finally, a very simple and self-contained review of the lattice-theor-
etic notions and results needed here forms the Appendix.

2. THE MODEL AND THE RESULTS

This section provides a description of the Cournot model with identical firms, and a
statement of all our results. The fundamental questions under consideration here can be
simply phrased as follows: How do total equilibrium output (and hence industry price),
and per-firm profit and output vary with the number of firms in the industry? Alterna-
tively, what are the effects of entry on equilibrium outputs and profits?

We consider these fundamental questions in the framework of equilibrium compari-
sons (as in Milgrom and Roberts (1994)), the exogenous parameter being the number of
(identical) firms in the industry. The methodology for equilibrium comparison evoked
here rests on fundamental results from supermodular optimizationygames: Topkis
(1978, 1979), Milgrom and Roberts (1990, 1994), Sobel (1988) and Milgrom and Shannon
(1994). In particular, we build on the results of Amir (1996a) which relate supermodularity
analysis and Cournot oligopoly (also see Amir and Grilo (1999).)

We begin with some basic notation and definitions. A symmetric Cournot oligopoly
is fully described by the quadruplet (P, C, K, n) where P: R+→R+ is the inverse demand
function, KH0 is the production capacity of each firm, C: [0, K ]→R+ is the cost function
(common to all firms), and n is the number of firms in the industry. (Here, R+ stands for
the nonnegative reals.)

Let x denote the output variable for the firm under consideration, and let y be the
total output variable for the remaining (nA1) firms. The variable z will stand for cumulat-
ive industry output, i.e. zGxCy. In view of the (possible) nonuniqueness of Cournot
equilibria in our setting, the following notation is needed. Let Xn , Yn , Zn , Pn and Πn denote
the following sets respectively, given that the industry is comprised of n identical firms:
equilibrium outputs for a single firm (at a symmetric equilibrium), equilibrium total out-
put for the remaining (nA1) firms, equilibrium total output, equilibrium price, and equi-
librium (per-firm) profit. Whenever any of these sets is a singleton, it will be denoted by
the corresponding lower-case letter.

The profit function of the firm under consideration is

Π (x, y)GxP (xCy)AC (x). (2.1)

Alternatively, one may think of the firm as choosing total output zGxCy, given the
other firms’ cumulative output y, in which case its profit is given by

Π̃ (z, y)GΠ (zAy, y)G(zAy)P (z)AC (zAy). (2.2)

Let n(z, y) denote the cross-partial derivative of Π̃ with respect to z and y,

n(z, y)G−P ′ (z)CC″ (zAy). (2.3)
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Note that both Π̃ and n are defined on the lattice ϕ Ĝ{(z, y): yn0, zny}. The following
Standard Assumptions are in effect throughout the paper:

(A1) P ( · ) is continuously differentiable and P ′ ( · )F0.

(A2) C ( · ) is twice continuously differentiable and nondecreasing.

Note that, although convenient, the smoothness assumptions are by no means neces-
sary for our main results, as will be argued below.

Whenever well-defined, denote the maximal and minimal points of a set by an upper
and a lower bar, respectively. Thus, for instance, Zr n and Zn are the highest and lowest
total equilibrium outputs, with corresponding equilibrium prices Pn and Pr n , respectively.
Performing comparative statics on equilibrium sets will consist of predicting the direction
of change of these extremal elements as the exogenous parameter varies. Accordingly, the
usual notion of quasi-competitiveness from models with a unique equilibrium (Ruffin
(1971)) is extended as follows:

Definition. A symmetric Cournot model is said to be quasi-competitive [quasi-anti-
competitive] if the extremal equilibrium total outputs Zr n and Zn are nondecreasing [nonin-
creasing] in n.

The two mutually exclusive assumptions on P and C that respectively establish quasi-
competitiveness and quasi-anticompetitiveness are also those needed to separate the issue
of existence of a Cournot equilibrium into two distinct cases: ∆H0 globally on ϕ, and
∆F0 globally on ϕ. (The comparative statics of per-firm output xn requires additional
information.) Consequently, it is convenient to consider two distinct cases.

2.1. The quasi-competitive case

Here we provide conditions on P ( · ) and C ( · ) ensuring that (i) a symmetric Cournot
equilibrium exists for each nG1, 2, . . . , and (ii) the model is quasi-competitive, and leads
to extremal equilibrium profits which are nonincreasing in n. These properties are widely
believed to hold very generally—and indeed the conditions we provide are very natural—
although, as will be seen in Section 2.2, there are also plausible conditions under which
quasi-competitiveness fails to hold.

We begin with the existence result.

Theorem 2.1. In addition to the Standard Assumptions, suppose that n(z, y)H0 on ϕ.
Then, for each n∈N, the Cournot oligopoly has at least one symmetric equilibrium and no
asymmetric equilibria.

This theorem extends the classic MacManus (1962, 1964) result which assumes the
convexity of C instead of nH0, and which was also independently rediscovered by Rob-
erts and Sonnenschein (1976); see also Amir (1996a) for an alternative proof, based on
lattice-theoretic arguments. Since P ′F0, it is clear that the convexity of C implies nH0
on ϕ. An example is provided below illustrating that the conditions of Theorem 2.1 can
hold even when the cost function is everywhere concave, thereby establishing that the
extension embodied in our result here is meaningful.
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It is important to note that differentiability of the demand and cost functions is
assumed purely for convenience (and for ease of interpretation of the conditions on ∆).
As will become apparent in the proofs, the fundamentally needed assumption is the super-
modularity of Π̃ on ϕ (which, under smoothness conditions is equivalent to ∆n0,3 by
Topkis’s Characterization Theorem: see Appendix). Equivalently, all we definitely need
is4 (dropping the term zP (z) of Π̃):

yP (z)CC (zAy) is submodular on ϕ. (2.4)

The key consequence of this assumption is that the line segment joining any two points
on the graph of the reaction correspondence of a firm must have a slope nA1, which in
particular precludes downward jumps (while allowing for upward jumps).

We are now ready for the main result of this section.

Theorem 2.2. Under the hypothesis of Theorem 2.1, the following hold:

(a) The extremal equilibrium cumulative outputs of (nA1) firms, Yr n and Yn , are non-
decreasing in n;

(b) The extremal equilibrium total outputs Zr n and Zn are nondecreasing in n, and hence
the corresponding prices Pn and Pr n are nonincreasing in n;

(c) The extremal equilibrium profits Π̄n and Πn are nonincreasing in n.

Rephrasing these conclusions in terms of per-firm equilibrium outputs Xn , Parts (a)
and (b) would say that nXr n , nXn , (nA1)Xr n and (nA1)Xn are nondecreasing in n. Thus the
Cournot model is quasi-competitive here. Note that Xn is the Pareto-dominant Cournot
equilibrium for the firms while Xr n is the Pareto-preferred equilibrium for the consumers.
Theorem 2.2 contains no information about how these extremal values of Xn vary with n.
Both directions of change are possible, depending on whether the reaction correspon-
dences are downward or upward sloping: Theorems 2.3 and 2.4 provide sufficient con-
ditions for the two cases, respectively.

Theorem 2.3. In addition to the hypothesis of Theorem 2.1, assume that P ( · ) is log-
concave. Then, there exists a unique and symmetric Cournot equilibrium, with per-firm equi-
librium output xn nonincreasing in n.

The fact that the log-concavity of P ( · ) is sufficient to yield downward-sloping reac-
tion correspondences, and that uniqueness of Cournot equilibrium (without the symmetry
assumption) follows from the additional condition of convex costs, have been proved in
Amir (1996a). The uniqueness part of Theorem 2.3 may thus be viewed as an extension
of the latter result as it replaces the assumption of convex costs with the assumption ∆H0.
In view of these facts, it becomes obvious that Theorem 2.3 follows directly from Theorem
2.2(a) since xn is the best-response to yn here. Next, we state the result for the case of
upward-sloping reactions.

3. Furthermore, we would need to assume that Π̃ is strictly supermodular on ϕ to obtain the monotonicity
of every best-reply selection (as opposed to the two extremal selections only: see Topkis’s Theorem in Appendix),
which is weaker than ∆H0 on ϕ (under smoothness assumptions).

4. Alternatively, letting D denote the direct demand function so that pGP (z) iff zGD( p), (2.4) can also
be expressed as: ypCC [D(p)Ay] having nondecreasing differences on {(y, p): yoD(p)}. With smoothness, this
becomes C″ [D(p)Ay]D ′ (p)o1.



AMIR & LAMBSON EFFECTS OF ENTRY 241

Theorem 2.4. In addition to the hypothesis of Theorem 2.1, assume that P ( · ) is log-
convex and that C ( · ) ≡ 0. Then the extremal equilibrium per-firm outputs Xr n and Xn are
nondecreasing in n.

There are some major differences between the two cases. First, the presence of (non-
degenerate) production costs favours downward-sloping reactions, so that the condition
of zero costs is actually needed here (in particular, for the case of linear costs cx, Amir
(1996a) shows that P ( · )Ac cannot be a log-convex function, in nondegenerate cases).
Furthermore, while log-convexity is, in some sense, the dual notion to log-concavity, the
latter notion is much more widely satisfied as a condition imposed on a demand function.
It is easily seen via examples that log-convexity is a rather stringent requirement. These
points are discussed in great detail in Amir (1996a). Finally, note that the hypothesis of
Theorem 2.4 does not necessarily lead to a unique Cournot equilibrium, whence the need
to specify the extremal selections again.

We conclude this subsection with three illustrative examples. The first shows that our
results here can hold even when the cost function is everywhere concave. Recall that the
classic antecedent of the existence part of our results here required a cost function which
is everywhere convex (MacManus (1964) and Roberts and Sonnenschein (1976)).

Example 1. Consider a symmetric Cournot oligopoly with the inverse demand and
cost functions given by

P (z)G52Az,

0,

zo2,

zn2,
and C (x)GLog (xC1), xn0.

Assume that there are no capacity constraints here. The profit function is

Π (x, y)Gx(2AxAy)ALog (xC1), x, yn0, xCyo2.

The first-order condition for maxx Π (x, y), given y∈[0, 2], is 2A2xAyA1y(xC1)G0,
which reduces to 2x2CxyCyA1G0. Solving this quadratic equation, one arrives at the
following best-response function and monopoly output xM

r( y)G5
1
4 [−yC√y2A8yC8], if yo1,

0, if yn1,
and xMGr(0)G

√2

2
.

It is left to the reader to verify that r′ ( y)nA1 for y∈[0, 1]. Note also that Π is concave
in x for fixed y (in the relevant domain).

To compute per-firm equilibrium output, one solves the equation xGr [(nA1)x],
which leads to the quadratic equation (nC1)x2C(nA1)xA1G0, whose only valid root is

xnG
1

2(nC1)
[1AnC√n2C2nC5], nn1.

Then, clearly,

ynG
nA1

2(nC1)
[1AnC√n2C2nC5]

and

znG
n

2(nC1)
[1AnC√n2C2nC5].
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It is left to the reader to verify that xn is decreasing in n while yn and zn are both increasing
in n. In particular, this specification leads to a quasi-competitive outcome in spite of the
concavity of C. The key determinant is of course that

n(z, y)G−P ′ (z)CC″ (zAy)G2A(1y(zAyC1)2)H0 for 0oyozo2.

Finally, since P is clearly log-concave, this example satisfies Theorem 2.3 and not Theorem
2.4.

The remaining examples are of interest from a quantitative standpoint. The next
example shows that, in the context of Theorem 2.4, it is possible for π1yπ2 and x2yx1 to
be arbitrarily large.

Example 2. Consider the symmetric Cournot oligopoly with no production costs,
and inverse demand given by

P (z)G
1

(zC1)α , zn0, αH1.

The reaction curve is r( y)G( yC1yαA1), for yn0. The unique (symmetric) Cournot
equilibrium output, total equilibrium output and per-firm profit are respectively,

xnG5
1

αAn
if αHn,

CS if αon,

znG5
n

αAn
if αHn,

CS if αon,

πnG5
(αAn)αA1

αα if αHn,

0 if αon.

It is easily verified that the ratio of monopoly to (per-firm) duopoly profits π1yπ2

converges to CS as α→2, and that x2yx1 converges to CS as α→2 (note that xn is
increasing in n, as in Theorem 2.4).

The last example relates to both Theorems 2.3 and 2.4 and shows that strict monoton-
icity of xn in n does not hold (without additional hypothesis).

Example 3. Consider a symmetric Cournot oligopoly with no production costs and
inverse demand function

P (z)Ge−z, zn0.

Following a simple computation, we have xnG1, ynGnA1 and znGn, for all n. The
reaction function of a firm is r( y)G1, ∀yn0, so that each firm has a dominant strategy
of unit output. Thus, this example fits Theorems 2.1–2.4.

2.2. The quasi-anticompetitive case

In this subsection, we provide (i) conditions on P ( · ) and C ( · ) ensuring that a Cournot
equilibrium, with one firm as a monopoly and the other firms not producing, always
exists, and (ii) stricter conditions under which a unique symmetric Cournot equilibrium
always exists. Furthermore, whenever a symmetric equilibrium for an m-firm oligopoly
exists, it is unique (say with per-firm output xm), and the following output configuration
is always an equilibrium of the n-firm market (for all nHm): m firms each produce xm

and the other (nAm) firms produce nothing. All the asymmetric equilibria here are
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(clearly) insensitive to the number of firms in the industry. On the other hand, the sym-
metric equilibrium reflects quasi-anticompetitiveness but still leads to per-firm profits that
are decreasing in the number of firms.

Naturally, quasi-anticompetitiveness is quite counter-intuitive. Most observers of
market behaviour would think of equilibrium prices that increase in the number of sellers
as pathological features. Nonetheless, although the associated assumptions are easily seen
to be rather restrictive, it is interesting to note that the above conclusions can hold under
a set of assumptions which is not degenerate. For a related result, also see Rosenthal
(1980).

For the case at hand, it will be convenient (though not essential) to assume that KG

+S, i.e. no capacity constraint. As will become apparent in the proofs (in Lemmas 3.1–
3.2), it would be sufficient to assume KnxM (xMGmonopoly output).

Let ȳ ĜP−1(C ′(0)) and A( · ) be the Average Cost curve, i.e. A(x)GC (x)yx, xH0. By
l’Hospital’s rule, we have P ( ȳ)GC ′ (0)GA(0), so that ȳ is that output by the other firms
that equates price and average cost when the responding firm produces nothing. We are
now ready for the existence result.

Theorem 2.5. In addition to the Standard Assumptions, suppose that n(z, y)F0 on ϕ.
Then, for any number of firms n∈N, the following hold:

(a) For any mFn, whenever a symmetric equilibrium exists for the m-firm oligopoly, it
must be unique (say with output xm ), and the following output configuration constitutes an
equilibrium for the n-firm oligopoly: Each of any m firms produces xm while the remaining
(nAm) firms produce nothing. In particular (with mG1), an n-firm equilibrium always exists
in which one firm produces the optimal monopoly output and the other (nA1) firms produce
nothing;5

(b) A unique symmetric Cournot equilibrium exits if Π (x, y) is strictly quasiconcave in
x for every y∈[0, ȳ ];

(c) No other Cournot equilibrium (than those of Parts (a) and (b)) can exist.

As in the other case, we remind the reader that smoothness assumptions are only
made for convenience. All we really need to have (for Parts (a) and (c)) is

yP (z)CC (zAy) is supermodular on ϕ. (2.5)

Furthermore, in the present case, this relaxation of a convenient assumption has import-
ant economic content in that it makes it clear that (avoidable) fixed-costs in production
are allowed here.6

As will be seen in the proofs, the key consequence of the assumption n(z, y)F0 (in
conjunction with the structural properties of the Cournot model) is that the interior part
of the best-response correspondence (i.e. the part of the graph with H0 values) has all its

5. Such an equilibrium can be characterized as follows: With (say) Firm 1 as the monopoly, x1
nGzn and

∑i≠1 xi
nG0 for all n (with superscripts indexing firms). Symmetry imposes, in the case of n firms, that each

possible permutation of this output vector constitute an equilibrium. Hence, there would be n such monopoly
equilibria.

In total, for a fixed pair (n, m) with mFn, there are (n
m ) asymmetric equilibria. Hence, for a fixed n, there

is a total of ∑n

mG1 (n
m ) of these equilibria that are possible.

6. Indeed, it is easy to see that if C (0)G0 and C(x)HεH0 for xH0 and some εH0, (2.5) is more easily
satisfied, since it requires in effect strong concavity of C ( · ). On the other hand, such a fixed-cost would typically
destroy the quasi-concavity of the profit function in own output, and might thus lead to nonexistence of the
symmetric equilibrium for some values of n. Note that in such a case, our equilibrium comparisons might be
rephrased as follows: xn decreases in n, for those n for which a symmetric Cournot equilibrium exists.
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slopes bounded above by A1. This means that as the joint output of the other (nA1)
firms is increased, the firm under consideration optimally reacts by contracting its output
so much that the resulting total output decreases. Hence, the best-responses are (strongly)
decreasing. Thus, for nG2, the Cournot oligopoly is a supermodular game (upon reversal
of one firm’s output ordering), independently of the symmetry of the game. This is no
longer true for nn3 (see Amir (1996a)).

A sufficient condition to ensure the existence of a symmetric equilibrium for all n
here is the quasi-concavity of a firm’s profit function in own output. This would lead to
the best-response being a (single-valued) continuous function. Without this condition, the
best-response may have a downward jump where it skips over the 45° line, thus implying
the absence of a symmetric equilibrium in the duopoly case (nG2). A similar remark can
be made for nn3, too.

The comparative statistics of the equilibrium outcomes as n varies is as follows.

Theorem 2.6.

(a) Under the hypothesis of Theorem 2.5(a), all the asymmetric Cournot equilibria for
all mFn are invariant in n, in the sense that all entering firms produce zero.

(b) Under the hypothesis of Theorem 2.5(b), the symmetric Cournot equilibrium satis-
fies: Other firms’ joint output Yn is nondecreasing in n, while per-firm output Xn ,
industry output Zn and per-firm profit Πn are nonincreasing in n. Hence equilibrium
price is nondecreasing in n.

Since for each mG1, 2, . . . , nA1, a subset of m firms produces the total output mxm

and all other firms produce zero output, Part (a) holds in an obvious way. Part (b) con-
tains all the nonintuitive results. Observe that there is no need for analogues to Theorems
2.3 and 2.4 here since xn is always strongly decreasing in n, which follows from the fact
that znGnxn is nonincreasing in n. In view of the counter-intuitive nature of these results,
an example illustrating the various points is highly desirable.

Example 4. Consider a symmetric Cournot oligopoly with the inverse demand and
cost functions given by

P (z)G54A6z, zo 2
3 ,

0, zn2
3 ,

and C (x)G3xA3x2A3x3, xoKG1
3 .

First, we compute, for yozo2
3 ,

n(z, y)G−P ′ (z)CC″ (zAy)G−18(zAy)o0.

The profit function is then

Π (x, y)Gx[4A6(xCy)]A3xC3x2C3x3, xo1
3 , xCyo2

3 .

The reaction function and the monopoly output are

r( y)G5
1
3 [1A√6y ], if yo1

6 ,

0, if yn1
6 ,

and xMGr(0)G1
3 .

It is easily checked that r′ ( y)oA1 for yo1
6 (i.e. whenever r( y)H0).
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Next, Xn solves xGr[(nA1)x]G1
3 [1A√6(nA1)x ]. This leads to

XnG
1
3 [nA√n2A1], YnG

nA1

3
[nA√n2A1] and ZnG

n

3
[nA√n2A1].

It is easily verified that Xn is a valid equilibrium (i.e. 0oXno
1
3), Xn and Zn are decreasing

in n, and Yn is increasing in n. Hence, the example is in accordance with the general results
of the quasi-anticompetitive case.

2.3. The hybrid case

We have so far derived general conditions under which the symmetric Cournot oligopoly
satisfies the natural properties of quasi-competitiveness and restrictive but nondegenerate
conditions under which the opposite property holds. The latter case requires strongly
increasing returns to scale in production, and is thus related to the literature on natural
monopoly and oligopoly (e.g. Baumol, Panzar and Willig (1982)), as described below.

Naturally, there are also hybrid cases, where the determinant n changes signs on ϕ.
Assuming the existence of Cournot equilibria, these cases would be characterized by a
lack of monotonic relationship between the number of firms and the endogenous variables
of interest (per-firm output, price level). The fact that a Cournot equilibrium may fail to
exist in this case is established by counter-example by Novshek (1985). We do not have
any general results regarding these hybrid cases, other than the following interesting unify-
ing observation about the existence of Cournot equilibrium in general symmetric settings,
which is a direct corollary of Theorems 2.1 and 2.5.

Proposition 2.7. In addition to the Standard Assumptions, suppose that n(z, y)≠0 for
all (z, y)∈ϕ. Then the symmetric Cournot oligopoly has a Nash equilibrium.

We close with an illustrative example now:

Example 5. Consider a symmetric Cournot oligopoly with

P (z)G
1

zC1
, zn0 and C (x)G1

2 Log (xC1), xn0.

Assume no capacity constraint. It is easily checked that n(z, y) takes on both signs on ϕ.
The profit function per firm is

Π (x, y)G
x

xCyC1
A1

2 Log (xC1), xn0, yn0.

The reaction function and monopoly output are, respectively:

r ( y)G5√1Ay2, if yo1

0, if yn1
and xMG1.

Thus, for yF1, r′ ( y)H(G) (F)A1 as yF(G) (H) (√2y2). Per-firm output xn solves xG
√1A(nA1)2x2, which leads to

xnG
1

√n2A2nC2
, ynG

nA1

√n2A2nC2
and znG

n

√n2A2nC2
.
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In particular, z1G1, z2G√2.1.41, z3G3y√5.1·34, z4G(4y√10).1·26 . . . Hence, the
model is not quasi-competitive for all nn1 (since z2Hz3H · · · and P2FP3F · · ·). However,
quasi competitiveness does hold for n∈{1, 2} only, as is easily verified. In view of this,
one can observe that quasi-competitiveness holds if and only if the sequence of equilibrium
outputs xn lies in the part of r ( · ) such that r′( y)nA1, i.e. for n∈{1, 2}.

For a thorough analysis of a general class of such hybrid cases characterized by
piecewise linear reaction functions, the reader should consult Novshek (1984).

2.4. Economic scope and iterpretation

As asserted before, the key advantage to using the lattice-theoretic approach, from the
applied economist’s standpoint, is that by casting the overall analysis in a framework of
fundamentally needed assumptions, it may often allow for a better intuitive understanding
of the economic driving forces behind the conclusions. In the present paper, this approach
naturally led to two separate cases based upon the global sign of ∆ only, and not on other
nonfundamental assumptions that would typically be common to the two cases, such as
concavity of profits in own output, decreasing marginal revenue, etc. . . .

Under this (new) perspective, the following simple and appealing interpretation can
be attributed to our main result: Industry (equilibrium) price decreases [increases] with
the number of competing firms whenever inverse demand or price decreases faster [slower]
at any given output level than does marginal cost at all lower output levels. (It is worth-
while to note the global nature of the condition: To check it at a fixed total output z, it
is necessary to know marginal cost at all output levels between 0 and z).

Further insight into the economic nature of this key condition can be gained by
breaking the overall effect (on the sign of ∆) into its two separate components. The first
is measured by the rate of change of the price function and may thus be termed the market
or demand-side effect, while the second is measured by the rate of change of marginal
cost and may thus be referred to as the production efficiency or supply-side effect. The
market effect always contributes to lowering industry price as the number of firms
increases. On the other hand, the production efficiency effect goes in the same [opposite]
direction whenever the cost function is convex [concave].

Under this perspective, the main result at hand can be succinctly reinterpreted as
follows: Industry price decreases with the number of firms if the market and efficiency
effects go in the same direction (which happens when costs are convex); otherwise, price
decreases [increases] with the number of firms whenever the market effect is stronger
[weaker] than the efficiency effect. (Which of the two effects dominates is clearly deter-
mined by the sign of ∆, in a global sense.)

We now turn to a discussion of the economic scope of the conclusions of this paper.
As far as the quasi-competitive case is concerned, the results are so natural and intuitive
that the only aspects one can stress are the level of generality of the analysis and the easy-
to-verify nature of the required condition. On the other hand, the other case can be viewed
in relation to some well-known developments in the theory of industry structure, in an
instructive way.

Recall that in the theory of contestable markets, natural monopoly is defined by the
subadditivity of the cost function (i.e. C (xCy)oC (x)CC ( y) for all x, yn0)). In other
words, a natural monopoly is one for which it is never cheaper to subdivide production
across several firms than to produce the whole output in one firm (see Baumol, Panzar
and Willig (1982) or Sharkey (1982)). This is clearly a purely supply-side criterion, as it
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implicitly applies regardless of the demand structure. In contrast, the second case here
may be regarded as a possible definition of natural monopoly that integrates demand and
supply effects. Such a criterion would clearly be more restrictive than the one offered by
contestability theory: A natural monopoly in the former sense remains one in the latter
sense, but not (necessarily) vice versa.7

Furthermore, in the present context, this criterion rests on clearly laid out game-
theoretic foundations in (at least) two different ways. First, we know from Theorem 2.5
that the natural monopoly constitutes a Cournot equilibrium (although the active firm is
unspecified, since it may be any one of the n firms). Second, the same situation may also
be regarded as the (unique) Stackelberg equilibrium of a game with sequential moves and
perfect information,8 involving an ordered line-up of the n firms. The designated first-
mover will obviously produce the monopoly output, and all subsequent firms will choose
to remain inactive. Such a sequential framework for quantity oligopoly (with U-shaped
average cost curves) has been proposed by Robson (1990).

Interestingly, similar remarks apply likewise to what may be termed natural oligo-
poly. According to Theorem 2.5, with n firms in the market, m firms producing xm (the
symmetric Cournot equilibrium for the m-firm oligopoly, for any mFn) with the remain-
ing (nAm) firms inactive constitutes a Cournot equilibrium for the n-firm industry.
Furthermore, this outcome may also be viewed as a Stackelberg equilibrium where the m
firms are (simultaneous) first-movers and the remaining (nAm) firms are followers or
second-movers (who may move in any order after observing the first movers’ actions).
Clearly, the preceding discussion does not extend to the quasi-competitive case. Indeed,
with a total output of mXm already in the market, the (mC1)-st firm would find it profit-
able to produce some output.

As a final part of this discussion, we now relate our conclusions to some recent
developments in game theory itself. The main issue here is equilibrium selection in the
quasi-anticompetitive case. It is well-known that the symmetric equilibrium is unstable in
the sense of not being the limit of Cournot (best-reply) dynamics, see Seade (1980b). On
the other hand, the monopoly equilibrium is locally stable (in the same sense). Plausibility
of the symmetric equilibrium emerges then as a natural question, the importance of which
is enhanced by the fact that it is the only equilibrium outcome leading to economically
counter-intuitive results.

Interestingly, none of the standard Nash equilibrium refinements for one-shot games
(such as normal form perfection, stability in the sense of Kohlberg and Mertens
(1986), . . .) could be invoked to rule out unstable equilibria (in the sense of Cournot
dynamics). On the other hand, these equilibria could clearly be ruled out by some conver-
gence criteria based on adaptive learning (Milgrom and Roberts (1991)), which includes
Cournot dynamics, fictitious play, . . . , or on some selection criteria developed in the the-
ory of evolutionary games (see e.g. Kandori, Mailath and Rob (1993)).

Finally, recent behavioural studies have also addressed the issue of equilibrium
plausibilityyselection in the very setting of a Cournot output game. Experimental evidence
suggests that the interior equilibrium (with strictly positive outputs) predicts play well if
the equilibrium is stable (Holt (1995)) and poorly if the equilibrium is unstable (Cox and
Walker (1997)). More precisely, the latter study is based on a Cournot duopoly with linear
reaction curves with slopes oA1 (whenever interior) and reports no regular pattern of

7. Even in the limit case (of the present framework) where inverse demand is flat, the criterion ∆o0 is
equivalent to the concavity of the cost function C, which implies (but is not implied by) the subadditivity of C.

8. We continue to use the term ‘‘Stackelberg equilibrium’’ from the classical oligopoly literature, although
the term subgame-perfect equilibrium (of the game with sequential moves) would be more precise.
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(laboratory) behaviour that supports any of the three equilibria, one of which is stable
and interior and the other two unstable and on the boundaries.

3. PROOFS

This section contains all the proofs of this paper (with a summary of the lattice-theoretic
facts in the Appendix). We begin by setting the relevant notation. A firm’s best-response
correspondence is defined as usual by (for 0oyo (nA1)K )

r ( y)Garg max {xP (xCy)AC (x): 0oxoK}. (3.1)

It will often be convenient to think of a firm as choosing cumulative output z, given the
other (nA1) firms’ total output y, instead of simply choosing its own output x. With
z ĜxCy, the objective (3.1) can be rewritten as

max {(zAy)P (z)AC (zAy): yozoyCK}. (3.2)

The following mapping, which can be thought of as a normalized cumulative best-
response correspondence, is the key element in dealing with symmetric equilibria for
any n

Bn : [0, (nA1)K ]→ 2[0,(nA1)K ],

y→
nA1

n
(x′Cy). (3.3)

Here, x′ denotes a best-response output level by a firm to a joint output y by the
other (nA1) firms. It is readily verified that the (set-valued) range of Bn is as given, i.e. if
x′∈[0, K ] and y∈[0, (nA1)K ], then ((nA1)yn)(x′Cy)∈[0, (nA1)K ]. Also, a fixed-point of
Bn is easily seen to yield a symmetric Cournot equilibrium, for it must satisfy ȳG((nA1)y
n)(x̄ ′Cȳ), or x̄ ′Gȳy(nA1), which says that the responding firm produces as much as each
of the other (nA1) firms.

Proof of Theorem 2.1.

The cross-partial derivative of the maximand in (3.2) with respect to z and y is easily seen
to be given by n(z, y), which is assumed H0 here. Hence, the maximand in (3.2) has
strictly increasing differences on the lattice

ϕG{(z, y): 0oyo (nA1)K, yozoyCK}.

Furthermore, the feasible correspondence y→ [y, yCK ] is ascending in y. Hence, by
Theorem A.1 (see Appendix), every selection from the arg max, Z*, of (3.2) is nondecreas-
ing in y. Since Z*( y)Gx′Cy, this is equivalent to saying that, for each fixed n, every
selection of Bn (as defined in (3.3)) is nondecreasing in y. Hence, by Tarski’s fixed-point
theorem (Theorem A.3), Bn has a fixed-point, which is a symmetric Cournot equilibrium,
as argued above.

Next, we show that no asymmetric equilibrium exists. To this end, it suffices to show
that the mapping y→Z* (the arg max in (3.2)) is strictly increasing (in the sense that all
its selections are strictly increasing). For then, to each z′∈Z* corresponds (at most) one
y, such that z′Gx′Cy with z′ being a best-response to y (see Novshek (1984)). In other
words, for each total equilibrium output z′, each firm must be producing the same x′G
z′Ay, with yG(nA1)x′.
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Let z̃ be an arbitrary (single-valued) selection of Z*. Proceed by contradiction and
assume that z̃( y1)Gz̃( y2) for some y1Hy2 (recall that z̃ is nondecreasing by the first part
of this proof). Then, it is easily seen that z̃( y1) and z̃( y2) can w.l.o.g. be taken to be
interior in the maximization of (3.2) and satisfy the first-order conditions

P [z̃(yi )]C[z̃(yi )Ayi ]P ′ [z̃(yi )]AC ′ [z̃(yi )Ayi ]G0, iG1, 2. (3.4)

Since z̃(y1)Gz̃(y2) G
∧ z, (3.4) implies

Ay1P ′ (z)AC ′ (zAy1)G−y2P ′ (z)AC ′ (zAy2),

or

AP ′ (z)C
C ′(zAy1)AC ′ (zAy2)

y2Ay1

G0.

Since this equality holds for all y∈[y2 , y1] (as a result of the fact that z̃( y)Gz for all y∈
[y2 , y1] since z̃ is nondecreasing), we can take limits as y2→y1 to obtain
AP ′ (z)CC″ (zAy1)G0, a contradiction to n(z, y)H0 on ϕ.

Hence, z̃ is strictly increasing and an asymmetric equilibrium cannot exist. u u

Proof of Theorem 2.2.

(a) The maximal and minimal selections of Bn denoted Br n and Bn respectively, exist
(by Topkis’s Theorem). Furthermore, the largest equilibrium value of the output of (nA1)
firms, i.e. Yr n , is the largest fixed-point of Br n (see (3.3)). Since (nA1)yn is increasing in
n, Br n( y) is nondecreasing in n, for every fixed y. Hence, from Theorem A.4, the largest
fixed-point Yr n is also nondecreasing in n. A similar argument, using the selection Bn ,
establishes that Yn is also nondecreasing in n.

(b) The fact that Zr n is decreasing in n follows from the fact that Yr n is nondecreasing
in n and the fact that every selection of the arg max of (3.2) is nondecreasing (from the
proof of Theorem 2.1). A similar argument applies to Zn .

(c) First, we observe that Π̄n and Πn are the equilibrium profit levels corresponding
to the equilibrium outputs Xn and Xr n , respectively. This follows from the fact that the
profit function of a firm, Π (x, y), is (strictly) decreasing in y. Thus, Π̄n is the optimal
profit a firm gets by optimally reacting to (nA1)Xn , and similarly for Πn . Hence, we have

Π̄ GXnP (nXn )AC (Xn )

GXnP [XnC(nA1)Xn ]AC (Xn)

nXnC1P [XnC1C(nA1)Xn ]AC (XnC1), by the Cournot property

nXnC1P [XnC1CnXnC1]AC (XnC1), since (nA1)XnGYnoYnC1GnXnC1 from Part (a).

GXnC1P [(nC1)XnC1]AC (XnC1)GΠ̄nC1 .

A similar argument for Πn (using Xr n ) completes the proof of Part (c). u u

Proof of Theorem 2.3.

We first argue that uniqueness of Cournot equilibrium holds here. From [Amir (1996a),
Theorem 2.1], we know that every selection of the best-response correspondence r ( · ) is
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nonincreasing, given that P ( · ) is log-concave (this is true for any nondecreasing left-
continuous cost function). Moreover, the fact that every selection from the arg max of
(3.2) is nondecreasing in y (see the proof of Theorem 2.1) is equivalent to the fact that
every selection from r ( · ) has all its slopes bounded below by A1, since Z*( y)Gr ( y)Cy.
All together then, all the slopes of every selection from r ( · ) lie in [−1, 0]. This leads to the
uniqueness of Cournot equilibrium through a well-known argument, a proof of which is
given in [Amir (1996b), Lemma 2.3, p. 127] in a different context (see also [Amir (1996a),
Theorem 2.3]). Symmetry of this Cournot equilibrium follows from Theorem 2.1.

Now, the fact that xn is nonincreasing in n follows from the facts that xnGr ( yn), yn

is nondecreasing in n, and r’s selections are all nonincreasing. This completes the proof
of Theorem 2.3. u u

Proof of Theorem 2.4.

From [Amir (1996a), Theorem 3.2], we know that every selection from r ( · ) is nondecreas-
ing as a consequence of the log-convexity of P ( · ) and the absence of costs (this follows
from Log Π (x, y) having nondecreasing differences in (x, y) and Topkis’s Theorem). Then,
the fact that Xr n and Xn are nondecreasing in n follows from the facts that Xr nGr (Yr n ),
XnGr (Yn ), Yr n and Yn are nondecreasing in n (Theorem 2.2(a)), and r’s selections are all
nondecreasing. This completes the proof of Theorem 2.4. u u

The proof of Theorem 2.5 requires two intermediate results. The first says that when-
ever interior, r’s slopes are all below A1 (Also, recall that since KG+S here, the domain
of y is, a priori, [0,S)).

Lemma 3.1. Under the assumption of Theorem 2.5(a), there holds (r1Ar2)y
( y1Ay2)oA1 for all y1 , y2n0 and all r1∈r (y1), r2∈r (y2) with r1 , r2H0.

Proof. The cross-partial of the maximand in (3.2) with respect to z and y is given
by n(z, y) which is assumed F0 here. Hence, the maximand in (3.2) has strictly decreasing
differences in (z, y). However, the feasible set [y,S ) is ascending (and not descending) in
y. Nevertheless, from Topkis’s Theorem, we can still conclude that every selection of the
arg max, Z*, of (3.2) is nonincreasing whenever its graph is contained in a rectangle that
is fully inscribed in ϕ, i.e. if y1ny2 , z1∈Z*( y1), z2∈Z*(y2), then z1oz2 , provided the four
points (y1 , z1), (y2 , z2), (y1 , z2) and (y2 , z1) are all contained in ϕ. Call this property
Rectangle Monotonicity or RM for short.

Next, we show that if y0∈Z*(y0) for some y0n0, then Z*(y)G{y} for all yHy0 (or,
in words, if the graph of Z* ever hits the diagonal, it coincides with it thereafter). Suppose
not, i.e. there is ỹHy0 and z̃∈Z*( ỹ) such that z̃Hỹ. Since y0∈Z*(y0), the optimal profit of
responding to y0 is Π̃ (y0 , y0)GΠ (0, y0)G0. But Π (z̃Aỹ, y0)HΠ (z̃Aỹ, ỹ)n0GΠ̃ (y0, y0)G
Π (0, y0), where the first inequality follows from P being strictly decreasing in y (when
PH0), and the second from the contradiction hypothesis z̃∈Z*( ỹ). The fact that
Π (z̃Aỹ, y0)H0 is a contradiction to the facts that y0∈Z*(y0) and Π̃ (y0, y0)GΠ (0, y0)G
0. Hence, we conclude that Z*(y)G{y} for all yHy0 .

Since the optimal monopoly outputs are finite (i.e. all elements of Z*(0) are finite),
RM clearly implies that the graph of Z* eventually intersects the 45° line, and then, as
shown above, the graph of Z* will coincide with the 45° line. Going back to the reaction
correspondence r( · ), via r (y)GZ*(y)Ay, the conclusion of Lemma 3.1 clearly follows. u u
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Lemma 3.2. Under the assumptions of Theorem 2.5(b), r ( · ) is a continuous function
such that r ( y)H0 for y∈[0, ȳ ), and r (y)G0 for yn ȳ, where ȳ ĜP−1(C ′ (0)).

Proof. Since Π is strictly quasi-concave in own output, r must be a (single-valued)
continuous function. From Lemma 3.1 (and its proof), we then know that r decreases at
a rate greater than one (in absolute value) from the unique monopoly output xM to 0. We
now show that 0∈r ( ȳ ). The first-order condition to maxx Π (x, ȳ ), which is also sufficient
for a global maximum in view of the quasi-concavity of Π in x, is
P (xCȳ )CxP ′ (xCȳ )AC ′ (x)o0. Since P ( ȳ ) ĜC ′ (0), it is easy to see that xG0 satisfies
the first-order condition with equality, and hence that ȳ is the smallest y for which r (y)G
0 (as seen in the proof of Lemma 3.1, r (y )G0 for all yn ȳ ). This completes the proof of
Lemma 3.2. u u

Proof of Theorem 2.5.

(a) For the monopoly equilibrium or mG1, it suffices to show that xM∈r (0) and 0∈
r (xM ), for then one firm is producing its optimal monopoly output and all the other firms
are best-responding with a zero output. Note that xM∈r (0) is true by definition of xM.
We now show 0∈r (xM). Suppose not. Then every point in r (xM) isH0. Let x′ be such a
point. We then have

x′AxM

xMA0
G

x′
xM

A1HA1,

which says that although r (xM)H0 and r (0)H0, there is one slope in the graph of r
( joining images of 0 and xM) which exceeds A1, a contradiction to Lemma 3.1. Hence
0∈r (xM ). The proof for the other values of m (i.e. 1FmFn) is similar and left to the
reader (note though that existence of a symmetric equilibrium for the m-firm market needs
to be assumed here). This completes the proof of Part (a).

(b) An n-dimensional vector (x, x, . . . , x) is a symmetric Cournot equilibrium if and
only if yG(nA1)x satisfies r (y)Gyy(nA1), which says that each firm’s best reaction is to
produce as much as each of the other (nA1) firms. Clearly, in view of Lemmas 3.1 and
3.2, the functions r ( · ) and yy(nA1) have an intersection for every nn2. Uniqueness (for
each n) follows in an obvious way from the facts that the two functions are strictly decreas-
ing (whenever interior) and increasing, respectively. This ends the proof of Part (b).

(c) Proceed by contradiction and suppose that another equilibrium (than those of
Parts (a) and (b)) exists. Then it must be asymmetric and have at least 2 firms producing
unequal nonzero outputs. Denote this equilibrium output vector by (x1, x2, . . . , xn ) and
let zG∑i xi be the total output. Assume that (say) x1Hx2H0 to reflect asymmetry. Define
yi by xiGr (yi ), iG1, 2. We must have x1Cy1Gx2Cy2Gz, with y2Hy1 (since x1Hx2). But
this contradicts the fact that the mapping y→Z*Garg max in (3.2) is strictly decreasing
as long as Z*H0 (the latter point follows from an analogous argument to that of the
second part of the proof of Theorem 2.1). u u

Proof of Theorem 2.6.

(a) Since all entering firms produce no output, it is obvious that all the equilibria at
hand here are invariant in n.

(b) We first show that yn is nondecreasing in n (recall that the symmetric Cournot
equilibrium is unique here.) Since a firm’s profit function is strictly quasi-concave in its
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own output, r and B ar continuous functions here. Since (nA1)yn is increasing in n, Bn (y)
is nondecreasing in n, for each fixed y. Hence, the (unique) fixed-point yn (equilibrium
joint output of (nA1) firms) is nondecreasing in n (by Theorem A.4).

The fact that equilibrium total output zn is nonincreasing in n follows now from
the fact that the mapping y→Z*Garg max in (3.2) is nonincreasing (from the proof of
Theorem 2.5(c)) and the above conclusion on yn . The fact that per-firm equilibrium output
xn is nonincreasing in n follows from the fact that xnGr (yn ) and r ( · ) is strictly decreasing
(as long as r is interior).

Finally, the fact that π n is nonincreasing in n follows from the proof of Theorem
2.2(c), upon dropping the ‘‘bars’’ due to uniqueness here. This completes the proof of
Theorem 2.6. u u

Proof of Proposition 2.7.

If n(z, y)≠0 on ϕ, then n(z, y) is either F0 everywhere or H0 everywhere, so that either
Theorem 2.1 or Theorem 2.5 applies, and existence of a Cournot equilibrium follows. u u

APPENDIX

A survey of the lattice-theoretic framework

In an attempt to make this paper self-contained, we provide a summary of all lattice-theoretic notions and
results invoked here, in the simplest framework for our needs. Dealing with real decision and parameter spaces
results in a simple presentation. Every theorem presented here is a special case of the original.

A function F: R2
+→R is supermodular [submodular] if, for x1nx2 , y1ny2

F (x1 , y1)AF (x2 , y1)n [o ]F (x1 , y2)AF(x2 , y2). (1.1)

If F is twice continuously differentiable, Topkis’s (1978) Characterization Theorem says that super-
modularity [submodularity] is equivalent to (∂2Fy∂x∂y)n0 [o0], for all x, y. Furthermore, (∂2Fy∂x∂y)H0 [F0]
implies that F is strictly supermodular [submodular], the latter notion being defined by a strict inequality in
(1.1).

F has the single-crossing property of SCP [dual SCP] in (x, y) if

F (x1 , y2)AF (x2 , y2)n [o ]0 ⇒ F (x1 , y1)AF(x2 , y1)n [o ] 0. (1.2)

It is obvious that (1.1) implies (1.2), while the converse is generally not true. Note that (1.1) is a cardinal
notion, while (1.2) is ordinal. Thus, the SCP is sometimes also referred to as ordinal supermodularity. No
smooth characterization of the SCP is known.

For x∈R+ , let A(x)G[a1(x), a2(x)]⊂R+ , with a1( · ) and a2( · ) being real-valued functions. A(x) is ascending
[descending] (in x) if a1 and a2 are nondecreasing [nonincreasing] in x. The following results on monotone
maximizers are central to our approach.

Theorem A.1. (Topkis (1978)). If F is upper semi-continuous (or u.s.c.) and supermodular [submodular], and
A( · ) is ascending [descending], then the maximum and minimum selections of y*(x) Ĝarg maxy∈A(x) F(x, y) are
nondecreasing [nonincreasing] in x. If F is strongly supermodular [submodular], then every selection of y*( · ) is
nondecreasing [nonincreasing].

Theorem A.2. (Milgrom and Shannon (1994)). If F is u.s.c. and has the SCP [DSCP], and A( · ) is ascending,
then the conclusion of Theorem A.1 holds.

If F has the strong SCP [strong DSCP], defined by (1.2) with a strict inequality on the RHS of the ⇒ sign,
then the conclusion of Theorem A.2 holds for every selection of y*( · ).

The main fixed-point theorem within this framework is due to Tarski (1955).

Theorem A.3. Let C⊂R+ be a compact interval, and B: C→C be a nondecreasing function. Then B has a
fixed point.
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FIGURE 2

The extremal fixed-point increase as we shift from B1 to B2 (a to d and c to h), but no meaningful statement can
be made about the shift b to {e, g, g}

Our equilibrium comparisons rest on the following result due to Milgrom and Roberts (1990, 1994) and
Sobel (1988): See Figure 2 for an illustration.

Theorem A.4. Let C⊂R+ be a compact interval, and Bt : C→C be a nondecreasing function (∀tn0) such
that Bt (x) is also nondecreasing in t, ∀x. Then the minimal and maximal fixed-points of Bt are nondecreasing in t.

We close with the following terminology. A function F: R+→R is log-concave [convex] if the function Log
F is concave [convex]. Similarly, a function G: R+BR+→R is log-supermodular if Log G is supermodular.

A game with compact real action spaces is supermodular [ordinally supermodular] if each payoff function
is supermodular [ordinally supermodular], under a specified order on each of the action spaces, and u.s.c. in
own actions. Supermodularity is typically interpreted as a complementarity property: The marginal returns to
increasing a player’s strategy are higher if the other player uses a higher strategy. Naturally, if the order on one
player’s action set is reversed, supermodularity then characterizes a substitutability property in two-player games.
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