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Figure 1. An illustration of standard knowledge distillation. De-

spite widespread use, an understanding of when the student can

learn from the teacher is missing.

Abstract

In this paper, we present a thorough evaluation of the ef-

ficacy of knowledge distillation and its dependence on stu-

dent and teacher architectures. Starting with the obser-

vation that more accurate teachers often don’t make good

teachers, we attempt to tease apart the factors that affect

knowledge distillation performance. We find crucially that

larger models do not often make better teachers. We show

that this is a consequence of mismatched capacity, and that

small students are unable to mimic large teachers. We find

typical ways of circumventing this (such as performing a se-

quence of knowledge distillation steps) to be ineffective. Fi-

nally, we show that this effect can be mitigated by stopping

the teacher’s training early. Our results generalize across

datasets and models.

1. Introduction

The past few years have seen dramatic improvements in

visual recognition systems, but these improvements have

been driven by deeper and larger convolutional network ar-

chitectures. The large computational complexity of these

architectures has limited their use in many downstream ap-

plications. As such, there has been a lot of recent research

on achieving the same or similar accuracy with smaller

models. Some of this work has involved building more effi-

cient neural network families [13, 7], pruning weights from

larger neural networks [10], quantizing existing networks to

use fewer bits for weights and activations [22] and distilling

knowledge from larger networks into smaller ones [12, 1].

The last of these, knowledge distillation, is a general-

purpose technique that at first glance is widely applicable

and complements all other ways of compressing neural net-

works [20]. The key idea is to use soft probabilities (or

‘logits’) of a larger “teacher network” to supervise a smaller

“student” network, in addition to the available class labels.

These soft probabilities reveal more information than the

class labels alone, and can purportedly help the student net-

work learn better.

The appeal of this approach is in its apparent generality:

any student can learn from any teacher. But does knowledge

distillation fulfill this promise of generality? Unfortunately,

in spite of the recent interest in variants of knowledge dis-

tillation [17, 24, 23, 21, 27, 26, 5, 14], an empirical answer

to this question is missing. Prior experiments have typically

looked at a small number of carefully chosen architectures,

with the implicit assumption that conclusions will general-

ize across student or teacher architectures. However, there

are a few isolated reports of failed experiments with knowl-

edge distillation that suggest that this might not be true. For

example, Zagoruyko and Komodakis observe that they are

“unable to achieve positive results with knowledge distilla-

tion on ImageNet” [26]. What characterizes this, and other

experiments where knowledge distillation does not seem to

improve performance? Are there student-teacher combina-

tions that perform better? And finally, is there something

we can do to improve performance for other combinations?

In this paper, we seek to answer these questions. We find

that in general, the teacher accuracy is a poor predictor of

the student’s performance. Larger teachers, though they are

more accurate by themselves, do not necessarily make for

better teachers. We explore the reasons for this and demon-

strate that as the teacher grows in capacity and accuracy, the

student often finds it difficult to emulate the teacher (result-

ing in a high KL divergence from the teacher logits even
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during training). We show that this issue cannot be miti-

gated by solutions suggested in prior work, such as using

a sequence of knowledge-distillation steps to increase the

student accuracy. Finally, we find an effective solution to

the problem: regularizing the teacher by stopping the train-

ing of the teacher early, and stopping knowledge distillation

close to convergence to allow the student to fit the training

loss better. Our solution is simple to implement and effec-

tive across the board at improving the efficacy of knowledge

distillation.

The rest of the paper is organized as follows. After

describing related work (Sec. 2), we first provide some

background on knowledge distillation and attention transfer

(Sec. 3). We then describe our experimental setting(Sec. 4).

In Sec. 5 we discuss our findings and the empirical evidence

for each.

2. Related Work

2.1. Knowledge distillation

The notion of training smaller, cheaper models (“stu-

dents”) to mimic larger ones (“teachers”) is an old one, first

described in a seminal paper on model compression by Bu-

ciluǎ et al [2]. This technique can be applied to deep neural

networks almost out of the box [1, 12]. In this paper, we use

the knowledge distillation framework described by Hinton

et al. [12]. A brief description of knowledge distillation is

provided in Section 3. The original paper on knowledge dis-

tillation experimented with the idea on a few small datasets,

but a thorough empirical evaluation of knowledge distilla-

tion is missing.

Meanwhile, the focus of past work has been either on

improving the quality of knowledge distillation or finding

new applications for the idea. On the former direction, prior

work has explored adding additional losses on intermediate

feature maps of the student to bring them closer to those

of the teacher [26, 15, 24]. Zhang et al. train a pair of

models, distilling knowledge bidirectionally at every epoch

[27]. Tarvainen et al. find that averaging consecutive stu-

dent models over training steps tend to produce better per-

forming students [21]. Yang et al. modify the loss function

of teacher network to be more “tolerant” (that is, by adding

more terms to make the model intentionally maintain high

energy, benefiting from teacher’s misclassified logits) [23].

A particular approach to improving knowledge distilla-

tion is to perform knowledge distillation repetitively (we

call it sequential knowledge distillation [23, 6, 17]). A

particular way of using sequential knowledge distillation

is as an alternative to ensembling to increase model ac-

curacy [17, 6]. For example, Furlanello et al. [6] sug-

gest training an ensemble of networks using a sequence of

knowledge-distillation steps where a network uses its own

previous version as a teacher. Interestingly, our results sug-

gest that this approach underperforms an ensemble trained

from scratch, and furthermore, such sequential knowledge

distillation reduces the ability of the network to act as a

teacher. More generally, we find that these methods are

highly dependent on the student capacity. In fact we find

them ineffective in many cases particularly when student

capacity is limited or the dataset is complex.

In terms of applications of knowledge distillation, prior

work has found knowledge distillation to be useful for se-

quence modeling [16, 4], semi-supervised learning [21], do-

main adaptation [19], multi-modal learning [9] and so on.

This wide applicability of the idea of knowledge distilla-

tion makes an exhaustive evaluation of knowledge distilla-

tion ideas even more important.

3. Background: Knowledge distillation

The key idea behind knowledge distillation is that the

soft probabilities output by a trained “teacher” network con-

tains a lot more information about a data point than just the

class label. For example, if multiple classes are assigned

high probabilities for an image, then that might mean that

the image must lie close to a decision boundary between

those classes. Forcing a student to mimic these probabili-

ties should thus cause the student network to imbibe some

of this knowledge that the teacher has discovered above and

beyond the information in the training labels alone.

Concretely, given any input image x the teacher

network produces a vector of scores st(x) =
[st1(x), s

t
2(x), . . . , s

t
K(x)] that are converted into prob-

abilities: ptk(x) = es
t
k
(x)

∑
j
e
st
j
(x)

. Trained neural networks

produce peaky probability distributions, which may be less

informative. Hinton et al [12] therefore propose to “soften”

these probabilities using temperature scaling [8]:

p̃tk(x) =
es

t
k(x)/τ

∑
j e

st
j
(x)/τ

(1)

where τ > 1 is a hyperparameter.

A student similarly produces a softened class probability

distribution, p̃s(x). The loss for the student is then a lin-

ear combination of the typical cross entropy loss Lcls and a

knowledge distillation lossLKD:

L = αLcls + (1− α)LKD

where LKD = −τ2
∑

k

p̃tk(x) log p̃
s
k(x)

α and τ are hyperparameters; popular choices are τ ∈
{3, 4, 5} and α = 0.9 [26, 14, 17, 12].

4. Methods

We perform experiments on both CIFAR10 and Ima-

geNet. In each case we keep the student the same and use
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multiple teachers of varying capacity to perform knowledge

distillation.

CIFAR10 For experiments on CIFAR10, we run each

model for 200 epochs using SGD with momentum 0.9 and

set the initial learning rate γ = 0.1, dropping 0.2 every

60 epochs. Standard data augmentation was applied to the

dataset. For the hyperparameters regarding knowledge dis-

tillation, we stayed consistent with the popular choice ([12],

[26]): Temperature τ = 4, α = 0.9, and β = 1000 for at-

tention transfer. The same experiment was repeated 5 times

and median, mean, and standard deviation are reported. We

consider three different network architectures: ResNet [11],

WideResNet [25], and DenseNet [13].

ImageNet For ImageNet experiments we followed

Zagoruyko et al. [26] closely since it was the first success-

ful work of knowledge distillation on ImageNet, to the best

of our knowledge. We used SGD with nesterov momentum

0.9, initial learning rate γ = 0.1, weight decay 1 × 10−4

, and dropped learning rate by 0.1 every 30 epochs. As

with CIFAR10, we set temperature τ = 4, α = 0.9, and

β = 1000 for attention transfer. For ImageNet experiments,

we consider ResNet [11].

5. Results

5.1. Bigger models are not better teachers

The idea behind knowledge distillation is that soft prob-

abilities from a trained teacher reflect more about the data

than the true label alone. One might expect that as the

teacher becomes more accurate, these soft probabilities will

capture the underlying class distribution better and thus

serve as better supervision to the student. Thus, intuitively,

we might expect that bigger, more accurate models might

form better teachers.

We first evaluate if this is true on CIFAR10 dataset. In

Figure 2, The red and blue lines shows the accuracy for

different student networks trained from different teachers;

the left plot varies the “depth” of the teacher while the right

plot varies the “width”. From these experiments, we find

that the hypothesis that bigger, more accurate models make

better teachers is incorrect: although the teacher accuracy

continues to rise as the teacher becomes larger (see supple-

mentary for teacher accuracies), the student accuracy rises

and then begins to fall. One might wonder if this is an ar-

tifact of the CIFAR dataset. We repeated the experiment

on ImageNet, with ResNet18 as the student and ResNet18,

ResNet34, ResNet50, and ResNet152 as teachers. The re-

sults are shown in Table 1. As can be seen, as the teacher

becomes larger and more accurate, the student becomes less

accurate.

Teacher Teacher Error (%) Student Error (%)

- - 30.24

ResNet18 30.24 30.57

ResNet34 26.70 30.79

ResNet50 23.85 30.95

Table 1. Top-1 error rate for various teachers for a ResNet18 stu-

dent on ImageNet. The first row corresponds to training from

scratch.

Student Teacher KD Error KD Error

(%,Train) (%,Test)

WRN28-1

WRN28-3 0.23 4.05

WRN28-4 0.25 4.53

WRN28-6 0.23 4.54

WRN28-8 0.31 4.81

WRN16-1

WRN16-3 1.70 6.32

WRN16-4 1.69 6.52

WRN16-6 1.94 6.91

WRN16-8 1.69 7.01

Table 2. KD error on CIFAR10 for multiple teachers and students.

The supplementary shows similar results from teachers with in-

creasing depth.

What might be the reason for this decrease? One pos-

sibility is that as the teacher becomes both more confi-

dent and more accurate, the output probabilities start re-

sembling more and more a one-hot encoding of the true la-

bel, and thus the information available to the student de-

creases. However, softening the probabilities with high

temperature [12] did not change this result (detailed later

in Figure 6, Table 10), invalidating this hypothesis. Below,

we propose an alternative hypothesis.

5.2. Analyzing student and teacher capacity

There might be two reasons why a larger, more accurate

teacher doesn’t lead to better student accuracy:

1. The student is able to mimic the teacher, but this does

not improve accuracy. This would suggest a mismatch

between the KD loss and the accuracy metric we care

about.

2. The student is unable to mimic the teacher, suggesting

a mismatch between student and teacher capacities.

We evaluated these hypotheses on CIFAR10 and Ima-

geNet. In Table 2, we show the KD error for CIFAR: the

fraction of examples for which the student and teacher pre-

dictions differ. Odd rows in Table 3 show the KD loss on

ImageNet for a ResNet 18 student trained with different

teachers. (We show KD error instead of KD loss on CI-

FAR because of scale issues caused by peaky output distri-

butions).
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Figure 2. The error plot of student networks distilled from different teachers on CIFAR10. WideResNet [25] 16-1 (left/red, right/red),

28-1 (right/blue)), and DenseNet [13] 40-12 (left/blue) were used as the student networks. Increasing teacher capacity (depth: left, width:

right) and thus accuracy does not necessarily increase the accuracy of the student network, indicating that the accuracy of the teacher

network alone is not a valid metric to knowledge distillation.

In both cases, the KD Error/Loss is much higher for the

largest teacher, which in turn leads to the least accurate stu-

dent. This suggests that the student is unable to mimic large

teachers and points to the second hypothesis, namely, the is-

sue is one of mismatched capacity. We therefore posit that

on both ImageNet and CIFAR, due to much lower capac-

ity, the student is unable to find a solution in its space that

corresponds well to the largest teacher.

5.3. Distillation adversely affects training

Note that knowledge distillation performs particularly

poorly on ImageNet, where all teachers lead to lower stu-

dent accuracy than a student trained from scratch (Table 1).

While the previous section suggests that the student may

not have enough capacity to match a very large teacher, it

is still a mystery why no teacher improves accuracy on Im-

ageNet. Despite multiple recent papers in knowledge dis-

tillation, experiments on ImageNet are rarely reported. The

few that do report find that standard setting of knowledge

distillation fails on ImageNet [26] or perform an experiment

with a small portion of ImageNet [21]. But the reason for

this has not been explored.

We dug deeper into the result. Figure 3 shows a com-

parison of validation accuracy plots between ResNet18

trained from scratch and using knowledge distillation with

ResNet34. We find that while the KD loss improves vali-

dation accuracy initially, it begins to hurt accuracy towards

the end of training.

We hypothesized that because ImageNet is a more chal-

lenging problem, the low-capacity student may be in the

underfitting regime. The student may not have enough ca-

pacity to minimize both the training loss and the knowledge

distillation loss, and might end up minimizing one loss (KD

loss) at the expense of the other (cross entropy loss), espe-

Figure 3. Imagenet result of error plot of full knowledge distilla-

tion and training from scratch. In the figure the student is trained

with ResNet34. Knowledge distillation helps initially but starts to

hurt accuracy later in training. The same behavior occurs in the

plots with different teachers (more plots in Supplementary).

cially towards the end of training.

This hypothesis suggests that we might want to stop the

knowledge distillation early in the training process, and do

gradient descent only on the cross-entropy loss for the rest

of the training. We call this process “Early-stopped” knowl-

edge distillation (“ESKD”) as opposed to standard knowl-

edge distillation (“Full KD”).

Table 3 shows how this version compares to standard

knowledge distillation, and also shows the loss values at the

end of training. We find that the early-stopped version is

better for all three teachers. We also find that, consistent

with our hypothesis, the early-stopped version achieves a

lower training cross-entropy loss and a higher KD loss than

the baseline version suggesting that the latter models are in-

deed trading off one loss against the other. Note also that
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Teacher Top-1 Error CE KD KD

(%, Test) (Train) (Train) (Test)

ResNet18 30.57 0.146 2.916 3.358

ResNet18 (ES KD) 29.01 0.123 2.234 2.491

ResNet34 30.79 0.145 1.357 1.503

ResNet34 (ES KD) 29.16 0.123 2.359 2.582

ResNet50 30.95 0.146 1.553 1.721

ResNet50 (ES KD) 29.35 0.124 2.659 2.940

Table 3. Early-stopping the knowledge distillation can prevent

the student from degrading its classification performance on Im-

ageNet.

this simple trick of stopping knowledge distillation early

now gives us the promised benefit of knowledge distilla-

tion: all the early-stopped students in Table 3 perform bet-

ter than a model of similar architecture trained from scratch

(30.24% accuracy).

However, early stopping does not change our original ob-

servation: that larger, more accurate teachers don’t result in

more accurate students. Even with early sstopping, we find

that the KD loss on the test set increases with increasing

teacher size, suggesting that the student is still struggling to

mimic the teacher, and that it is indeed an issue of student

capacity.

5.4. The efficacy of repeated knowledge distillation

If the difference between teacher and student capacities

is very large, one possibility is to first distill from the large

teacher to an intermediate teacher and then distill to the stu-

dent, so that each knowledge distillation step has a better

match between student and teacher capacity. This notion of

sequential knowledge distillation has been proposed in the

literature in other contexts. Recently Furlanello et al [6] at-

tempted to train a sequence of models, with the i-th model

in the sequence being trained with knowledge distillation

with the i − 1-th model as the teacher. They find that such

sequential knowledge distillation may improve the perfor-

mance compared to a model trained from scratch, and en-

sembling the sequence produces a better model.

We first test this claim on CIFAR with multiple net-

works and with both knowledge distillation and attention

transfer (Table 4). We find that there are several caveats to

Furlanello et al.’s result. First, for some models (ResNet

8 and ResNet 14), the last student in the sequence actu-

ally underperforms a student model trained from scratch.

This suggests that the network architecture heavily deter-

mines the success of sequential knowledge distillation. Sec-

ond, we find that although an ensemble of the student mod-

els from the entire sequence outperforms a single model

trained from scratch, it does not outperform an ensemble

of an equal number of models trained from scratch. This

might be because the students obtained through a sequence

of knowledge distillation steps may be correlated with each

other and therefore may not produce a strong ensemble.

If sequential knowledge distillation does indeed improve

the accuracy of a model, a natural question to ask is if the

resulting model forms a better teacher. To evaluate this, we

conducted the following experiment. We chose WRN16-

1 as the student model and WRN16-3 as the teacher (note

that this is the optimal teacher for this student as suggested

by Figure 2). We then trained the teacher using a sequence

of 5 iterations of knowledge distillation. We compared the

efficacy of this model as a teacher compared to a teacher

trained from scratch. As shown in Table 5, a teacher trained

with a sequence of knowledge distillation iterations, though

more accurate, is not in fact a better teacher.

As discussed above, we might be interested in a variant

of this idea where we first attempt to distill from a “large”

model to a “medium” model, and then from the “medium”

model to a “small” model. If this worked, it might help

us avoid the issue of differing student and teacher capaci-

ties. We compare this step-wise knowledge distillation to

directly distilling from the large model to the small model,

or from the medium model to the small model. This might

be a way to get around the effect we observed in Figure 2,

where the larger models were not necessarily better teach-

ers. We performed this experiment using WRN16-1 as the

small model, WRN16-3 (the optimal teacher for WRN16-

1) as the medium model and WRN16-8 as the large model.

We find that such a step-wise distillation does not work: it

performs almost exactly the same as directly using the large

model for distillation with the small model (Table 6). Se-

quential distillation cannot help make large models better

teachers.

We repeat some of these experiments on ImageNet and

show the results in Table 7. We use early-stopping when

performing knowledge distillation based on results from

the previous section. Sequential knowledge distillation

is in fact ineffective on ImageNet, too. The best result

corresponds to a single knowledge distillation from the

“small” model to another “small” model, where “small” is

ResNet18, “Med.” is ResNet50, and “Large” is ResNet152.

All these results suggest that despite the initial promise of

sequential distillation, it is not a panacea and it especially

does not help us use a large teacher to train a small student

of significantly different capacity.

5.5. Early-stopped teachers make better teachers

In the previous section we have shown that sequential

knowledge distillation is ineffective. This might be because

it doesn’t address the core problem: the solution the large

teacher has found is simply not in the solution space of the

small student. The only solution is to find a teacher whose

discovered solution is in fact reachable by the student.
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Model # Params Method Last Gen. Err. All Gen. Ensmeble Err. Scratch Err. Scratch Ensemble Err.

ResNet8 0.07M AT+KD 13.469 12.786 12.569* 10.176

ResNet14 0.17M AT+KD 9.226 8.653 9.078* 6.675

WRN16-2 0.69M KD 6.101 5.181 6.428 4.865

WRN16-2 0.69M AT+KD 5.696 5.310 6.418 5.003

Table 4. 5 generations of knowledge distillation were done, and the errors for the last generation of distillation sequence (“Last Gen. Err.”),

ensemble of all generations (“All Gen. Ensemble Err.”), first generation (“Scratch Err.”), and the ensemble of the same number of scratch

models (“Scratch Ensemble Err.”) were reported. Errors with (*) show the cases where repeating knowledge distillation even decreased

the performance, and for all models support the claim that repeating knowledge distillation is ineffective.

Teacher Teacher Student

Training Error (%) Error (%)

Scratch 5.34
7.61

(7.68 ± 0.259)

5 KD iterations 4.89
7.79

(7.67 ± 0.19)

Table 5. Sequential knowledge distillation does not make better

teachers even when it improves accuracy. The student is WRN16-

1, which achieves an error of (8.759 ± 0.129) when trained from

scratch. The teacher is WRN16-3.

Training Procedure
Large Medium Small

Error (%) Error (%) Error (%)

Large→Med.→ Small 4.41 4.80
8.04

(7.99± 0.24)

Med. → Small - 5.34
7.614

(7.68± 0.26)

Large → Small 4.41 -
7.98

(8.03± 0.14)

Table 6. Using sequential knowledge distillation to distill from

a large model (WRN16-8) to a medium model (WRN16-3), and

from the latter to a small model (WRN16-1) does not help. The

optimal approach still is to distill directly from the medium model

to the small model, even though the teacher in this case has lower

accuracy.

Training procedure 1st Teacher 2nd Teacher Student

Error (%) Error (%) Error (%)

Large →Small→ Small 21.69 29.45 29.41

Med. →Small→ Small 23.85 29.35 29.35

Small →Small→ Small 30.24 29.01 29.15

Small →Small → Small [23] - - 30.12∗

Small →Small×5 [23] - - 29.60∗

Table 7. Imagenet experiment of sequential early-stopped knowl-

edge distillation (ESKD). “2nd Teacher” is first distilled from “1st

Teacher”, and then “Student” is trained with the “2nd Teacher”.

The last two lines compare with other variants of sequential knowl-

edge distillation. [*] indicates that the number is inherited from the

original paper.

Method Teacher Top-1 Error (%)

Scratch - 30.24

Full KD [12] ResNet18 30.57

Full KD [12] ResNet34 30.79

Full KD [12] ResNet50 30.95

Seq. Full KD [23] 3 Gen. 30.12∗

Seq. Full KD [23] 6 Gen. 29.6∗

KD+ONE [17] 3 Branches 29.45 ±0.23∗

Full KD + AT [26] ResNet34 30.94

Full KD + AT [26] ResNet34 29.3∗

ESKD ResNet18 29.01

ESKD ResNet34 29.16

ESKD ResNet50 29.35

ESKD ResNet152 29.45

ESKD ResNet34 (50) 29.02

ESKD ResNet50 (35) 29.05

ESKD ResNet152 (35) 29.26

Seq. ESKD L →S→S 29.41

Seq. ESKD M→S→S 29.35

Seq. ESKD S →S→S 29.15

ESKD + AT ResNet34 28.84

ESKD + AT ResNet34 (50) 28.61

Table 8. Overall result of ImageNet experiments. ESKD: Early-

stopped knowledge distillation, AT: Attention transfer [26]. The

number inside the parentheses is the total number of epochs if

teacher training is early-stopped.*Numbers reported in paper.

We may perform grid-search to find the optimal teacher

network architecture, but that is too expensive. Instead, we

propose to regularize the teacher when training it. In par-

ticular, we propose to stop the training of the large teacher

early. There is some evidence that a large network trained

with only a few epochs behaves as a small network, while

still encompassing a greater search space than small net-

work [3, 18]. This method is extremely simple and cheap,

since only a third to fourth of the total number of epochs

are needed. We evaluate the effectiveness of this idea in

both CIFAR10 and ImageNet. Figure 4 plots the error

rates vs. total epochs on CIFAR10, where the x-axis rep-

resents the total number of epochs each teacher is trained.

The same hyperparameters as other CIFAR10 experiments

are used for the training teacher, except the total number
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Figure 4. CIFAR10 result to examine the effectiveness of the

knowledge distillation with early-stopped teachers. For both stu-

dent types (WRN16-1 and WRN28-1), there are clear “sweet

spots” which optimize the performance of student network.

of epochs and the learning rate schedule. For training the

teacher network, the learning rate is dropped by 0.2 every

⌊n−5
3 ⌋ where n is the total number of epochs. We chose

n ∈ {35, 50, 65, 80}. Notice that for both student models

(WRN16-1 and WRN28-1), all early-stopped teachers pro-

duce better students than the optimal fully-trained teacher

(WRN16-3 and WRN28-3).

Given these promising results, we next turn our atten-

tion to ImageNet. We choose n ∈ {35, 50} and learning

rate drop schedule of (15, 25, 30) for 35 and (20, 35, 45)
for 50. Other hyperparameters and settings are the same

with those of the previous ImageNet experiments. Table 8

shows results on ImageNet, where we also compare our

results with prior results using knowledge distillation or

its variants. Simply early-stopping the knowledge distilla-

tion with the largest, fully-trained teacher outperforms most

prior work (≈ 29.45%). Our best teachers are the early-

stopped ResNet34 and fully-trained ResNet18, (≈ 29.01%)

which has ≈ 1.23 point performance gain over the model

trained from scratch and ≈ 0.2% from the best known re-

sult for this architecture from [17].

Table 8 also shows variants using attention transfer [26],

Method Teacher Top-1 Error (%) Top-5 Error (%)

Scratch - 47.38 18.51

ESKD ResNet18 47.09 18.13

Full KD ResNet34 47.86 18.61

ESKD ResNet34 (50) 47.14 18.32

Full KD ResNet50 47.92 18.72

ESKD ResNet50 (35) 47.02 18.14

ESKD ResNet152 (35) 47.25 18.25

Table 9. Each student network from ImageNet experiments is fine-

tuned to Places-365 dataset for 12 epochs with initial learning rate

γ = 0.1 and weight decaying 10−1 every 3 epochs.

Method Teacher Top-1 Error (%) Top-5 Error (%)

Scratch - 30.24 10.92

Full KD ResNet18 30.75 11.11

Full KD ResNet50 30.98 10.20

Full KD ResNet152 31.27 11.59

ESKD ResNet18 29.00 9.91

ESKD ResNet50 29.00 9.76

ESKD ResNet50 (35) 28.89 9.76

Table 10. Experiments with temperature τ = 20 on IamgeNet

dataset. High temperature increased overall results for ESKD

methods (lower half) whereas had no difference for Full KD meth-

ods (upper half).

an improvement over knowledge distillation. Early stop-

ping of the teacher and of the student are both very compat-

ible with attention transfer, leading to improvements of 1.6

points over the baseline and 0.7 points over the best num-

bers obtained with attention transfer [26].

5.6. Other factors impacting knowledge distillation

Different configurations In experiments above, we drew

both the student and the teacher from the same model

family. We now experiment with teachers and students

drawn from other, posssibly different, model families. Fig-

ure 5 shows various combinations of DenseNets and Wide

ResNets as students and teachers. Our conclusions, both

the inefficacy of knowledge distillation from large teachers

and the benefits from early stopping, are appaarent in these

results.

Impact of α and τ Till now we have fixed the tradeoff be-

tween KD and cross entropy, α = 0.9 and the temperature

τ = 4. Although the standard choice of the temperature is

τ ∈ {3, 4, 5}, one might wonder if our conclusions about

early stopping are sensitive to these choices. As shown in

Figure 6 we find that the early-stopped teacher consistently

outperforms the fully-trained teacher across a range of these

hyperparameter values on CIFAR10. We further investigate

the high temperature case on ImageNet dataset (Table 10);

we use τ = 20. High temperature can theoretically mitigate
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Figure 5. In all different student and teacher configurations, students trained from early-stopped teacher consistently outperforms those

trained from regular teacher. DenseNet40-12 and WideResNet16-1 were used as student network and DenseNet and WideResNet models

with varying width and depth were used as teachers (x-axis) [13, 25]. More results are in Supplementary.

Figure 6. CIFAR10 result to examine that the effectiveness of

using early-stopped network as a teacher is consistent to different

hyperparameter settings. WRN16-8 (ES) has the same/better error

compared to the optimal teacher WRN16-3. WRN16-1 is chosen

as the student network.

the peakiness of the teacher logits and may result better per-

formance. We find that high temperature does increase the

overall performance for early-stopped knowledge distilla-

tion (“ESKD”) but had no visible difference for full knowl-

edge distillation (“Full KD”). The early stopped teacher still

performed the best.

Generalizability for transfer learning Although we

have seen variations in accuracies on ImageNet, a big as-

pect of convolutional networks is how well they transfer to

other tasks. In the table 9 we examine whether the distilled

network can be fine-tuned for classification on Places365

for a variety of students from the previous experiments.

The results of transfer learning are consistent with the CI-

FAR and ImageNet experiments (full KD vs. early-stopped

KD, small vs. large teachers, and regular vs. early-stopped

teachers), proving that our findings also apply to transfer.

6. Conclusion

In this paper, we have presented an exhaustive study of

the factors influencing knowledge distillation. Our key find-

ing is that knowledge distillation is not a panacea and can-

not succeed when student capacity is too low to success-

fully mimic the teacher. We have presented an approach

to mitigate this issue by stopping teacher training early, to

recover a solution more amenable for the student. Finally

we have shown the benefits of this approach on CIFAR10

and ImageNet and also on transfer learning on Places365.

We believe that further research into the nuances of distil-

lation are necessary before it can succeed as a general and

practical approach.
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