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Abstract. The pairing heap is well regarded as an efficient data structure for implementing priority
queue operations. It is included in the GNU C++ library. Strikingly simple in design, the pairing
heap data structure nonetheless seems difficult to analyze, belonging to the genre of self-adjusting
data structures. With its design originating as a self-adjusting analogue of the Fibonacci heap, it has
been previously conjectured that the pairing heap provides constant amortized time decrease-key
operations, and experimental studies have supported this conjecture. This paper demonstrates,
contrary to conjecture, that the pairing heap requires more than constant amortized time to perform
decrease-key operations. Moreover, new experimental findings are presented that reveal detectable
growth in the amortized cost of the decrease-key operation.

Second, a unifying framework is developed that includes both pairing heaps and Fibonacci heaps.
The parameter of interest in this framework is the storage capacity available in the nodes of the data
structure for auxiliary balance information fields. In this respect Fibonacci heaps require log log n
bits per node when 7 items are present. This is shown to be asymptotically optimal for data structures
that achieve the same asymptotic performance bounds as Fibonacci heaps and fall within this
framework.
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1. Introduction

Pairing heaps were introduced [Fredman et al. 1986] as a self-adjusting alterna-
tive to Fibonacci heaps [Fredman and Tarjan 1987]. They are easy to code and
provably enjoy log n amortized costs for the standard heap operations. Although
it has not been verified that pairing heaps perform the decrease-key operation in
constant amortized time (the raison d’étre of Fibonacci heaps), this has been
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conjectured [Fredman et al. 1986] and extensive experimental evidence [Liao
1992; Stasko and Vitter 1987] supports this conjecture. These same experimental
studies suggest that pairing heaps are superior to Fibonacci heaps in practice.
The good observed behavior of pairing heaps has led to their wide-spread use;
they are included, for example, as one of several implementations of priority
queues in the GNU C++ library. However, as demonstrated in this paper,
pairing heaps do not accommodate decrease-key operations in constant amor-
tized time.

Apart from the practical usefulness of the pairing heap, the question of its
efficiency has theoretical interest deriving from the connection between pairing
heaps and splaying. The mechanism underlying the pairing heap can be viewed as
an application of the self-adjusting splay heuristic of Sleator and Tarjan [1985]. A
full explanation of this connection appears in Fredman et al. [1986]; we remark
here that in terms of its effect on the pointer structure of the pairing heap, the
deletemin operation (as described below) can be viewed as a splay operation.
The splay heuristic has been demonstrated to have surprising power in the
context of search trees [Sleator and Tarjan 1985]. A recent and notable example
concerns the work of Cole [1995] and Cole et al. [1995] on the dynamic finger
conjecture for splay trees. As an issue, the competitiveness of the pairing heap
thus constitutes an interesting and significant challenge for splaying, testing the
limits of this remarkable and powerful heuristic.

In the remainder of this section, we review the basic pairing heap data
structure and provide some intuition supporting our main result, that pairing
heaps do not accommodate decrease-key operations in constant amortized time.
In Section 2, we define a class of data structures, generalized pairing heaps, that
includes the pairing heap data structure and the variants of this data structure
that have been suggested [Fredman et al. 1986; Stasko and Vitter 1987]. We then
proceed to formally derive our lower bound, applicable to all data structures in
this class. We also develop a unifying framework that includes both generalized
pairing heaps and Fibonacci heaps. The parameter of interest in this framework
is the storage capacity available in the nodes of the data structure for auxiliary
balance information fields. In this respect, Fibonacci heaps require log log n bits
per node. This is shown to be asymptotically optimal for data structures that
achieve the same asymptotic performance bounds as Fibonacci heaps and fall
within this framework. In Section 3, we address the issue of whether our lower
bound for pairing heaps is subject to experimental detection. We present some
new experimental findings and contrast them with previous experimental results.

1.1. PAIRING HEAPS. We begin with a brief description of the pairing heap
data structure. (We refer the reader to Fredman et al. [1986] for more details.)
This structure is best viewed as a stripped-down, no-frills relative of the
Fibonacci heap, designed to be highly efficient from the standpoint of actual
implementation. The pairing heap uses a single tree structure to store the values
in the heap, one value per tree node. The placement of stored values respects the
heap-order condition: the value stored in the parent of a node is at most the value
stored in the node itself. We thus find the minimum heap value stored in the tree
root. There is no restriction on the number of children a node may have, and the
children of a node are maintained in a list of siblings. By design, pairing heaps
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maintain minimal structure. In particular, parent pointers are not present in the
tree nodes.

The heap operations for a pairing heap are implemented as a series of linking
operations. Let H, and H, be heap-ordered trees with respective roots x; and x,,
and respective root values v, and v,. A linking operation applied to the pair (x,,
X,) inserts H, into H, as the leftmost subtree of H, if v; = v,, and otherwise
inserts H, into H, as the leftmost subtree of H,. To perform an insertion of a
value v into a heap whose tree is H, a single node tree containing v is linked with
the root of H. To perform a decrease-key operation on the value v stored in a
node x of H which is not the root of H, we first remove the subtree rooted at x
from H by removing x from its list of siblings. Next, we link x with the root of H,
having first decreased the value v stored in x. (If the updated value v of x
happens to exceed the value stored in the parent of x, then in principle it would
not be necessary to remove x as a child of its parent. However, because the
pairing heap does not maintain parent pointers in the tree nodes, this condition
cannot be efficiently checked. As a consequence, the decrease-key operation
uniformly proceeds by removing x as a child of its parent.) If x is the root of H,
then we simply decrease v. To perform a deletemin operation, we remove the
root of H and proceed to perform linkings among the children of this root in a
certain prescribed order until a single root is restored. The order of the linkings
is as follows. Let x4, ..., x, be the children of the root in left-to-right order. We
start by linking the pairs (x;, x,), (x5, x4) .... Lety,, ..., y,, h = [k/20 be
the surviving roots. (If k is odd, then yy,,is x;.) We finish by linking the pair
(Yn—1> Yn), then linking y, _, with the root that results from the preceding
linking etc., until finally we link y,; with the root of the structure formed from the
linkings of y,, ..., y,.

Several variants of this data structure have been suggested [Fredman et al.
1986; Stasko and Vitter 1987]; the one we have described is the simplest. It bears
striking resemblance to the single tree variation of the Fibonacci heap [Fredman
and Tarjan 1987], but foregoes certain structural aspects of that data structure
that provably ensure asymptotically optimal amortized costs. In particular, with
its fixed pattern of node linkings during the deletemin operation, the node pairs
that get linked together are not selected on the basis of structural attributes (e.g.,
node rank), in contrast with the manipulation of Fibonacci heaps. As a conse-
quence, the pairing heap is considered to be a self-adjusting data structure.

1.2. MAIN RESULTS AND INTUITION. With its brazen abandonment of struc-
ture, the pairing heap enjoys local implementation efficiencies that explain the
excellent experimental results that have been obtained [Liao 1992; Stasko and
Vitter 1987]. Our main result, however, shows that asymptotic efficiency is
sacrificed; under some circumstances pairing heaps require (log log n) amor-
tized time per decrease-key operation. (This lower bound is not known to be
tight.) The demonstration of our lower bound stems from information-theoretic
considerations. In a nutshell, our argument ultimately captures the following
intuition. Consider the family of heap representations that (a) utilize heap-
ordered tree structures, (b) link tree roots to reduce the number of potential
locations of the minimum heap value, and (c) perform decrease-key operations
by repositioning the subtree of the affected node as a separate tree (if only
momentarily). In order that the heap operations take place with optimal
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asymptotic efficiency, a sizable fraction of the root linkings that take place must
be information-theoretically efficient. (Define the entropy of the data structure to
be the logarithm of the number of linear orderings of the heap nodes, consistent
with the heap-order condition. An efficient linking reduces this entropy by an
amount that is bounded away from 0.) A data structure in this family, such as the
pairing heap, that is constrained to a fixed pattern of node linkings, might
plausibly fail to perform a sufficient fraction of efficient node linkings as a
consequence of the scrambling impact of the decrease-key operations. Explicat-
ing this scrambling effect in the context of a lower bound argument requires that
we recognize a secondary function served by node pairings, apart from entropy
reduction: Node pairings serve to position nodes relative to one another so that
subsequent rounds of pairings are information-theoretically efficient. Our goal is
to demonstrate that this secondary effect is too limited to efficiently compensate
for the scrambling impact of the decrease-key operations.

Suppose we hypothesize that a sizable fraction of node pairings can be suitably
efficient only if the heap nodes are suitably arranged. Roughly speaking, each
decrease-key operation deforms this arrangement by more than a constant
number of bits, whereas each linking can reverse only one bit of deformation.
Moreover, these corrective linkings are information-theoretically inefficient.
Fibonacci heaps escape these conclusions; their patterns of node linkings are not
constrained and the hypothesis of suitable node arrangement is thus circum-
vented. For technical reasons, our arguments do not utilize the vocabulary of this
imagery, but they are nonetheless motivated by it.

Our second result concerns a class of data structures that includes both pairing
heaps and Fibonacci heaps, allowing the nodes in the data structure to include
balance fields with b bits of information. If b = (1 — ¢) log, log, n where ¢ >
0 is any fixed constant, then we find that any such data structure requires (log
log n) amortized time per decrease-key operation. As a point of contrast,
Fibonacci heaps only require log, log, n + O(1) bits per node. Thus, the lower
bound derived for pairing heaps cannot be circumvented, short of providing
sufficient node capacity to implement Fibonacci heaps.

2. Analysis

The first lower bound in this section applies to all data structures within the class
of generalized pairing heaps, a class of self-adjusting data structures which we
proceed to define. Generalized pairing heaps include as special cases the pairing
heap data structure and its variants that have been suggested [Fredman et al.
1986; Stasko and Vitter 1987]. A generalized pairing heap is represented as a
sequence of heap-ordered trees, referred to as the forest of the heap, along with
a control state referred to as the forest state of the heap. The heap structure refers
to both the forest state and the structures of the individual trees (indicated by
position) within the forest. More will be said about the forest state, but for the
present it is understood that it includes the number of trees in the forest and that
it gets updated as operations are performed. An insertion operation is performed
by inserting a tree consisting of one node at the end of the forest. A decrease-key
operation is performed by changing the value stored in the referenced node. If
this node is not a tree root, then the subtree rooted at this node is deleted from
the tree containing it and inserted as a new tree at the end of the forest.
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Decrease-key and insertion operations are both considered to have 0 actual cost.
A deletemin operation is executed by (a) performing a sequence of linking
operations among tree roots in the forest, simultaneously searching for the
minimum tree root; (b) removing the minimum tree root found in step (a),
placing its subtrees at the end of the forest as new trees (preserving their relative
order as subtrees of the minimum tree root); and (c) possibly performing further
linking operations among tree roots in the forest. (A single linking operation
combines two trees as described above. The tree, whose root becomes the child
of the other tree root, is removed from its position in the forest without
otherwise changing the ordering of the trees; likewise, for the tree whose root
gets deleted, and whose subtrees get relocated.) We define the actual cost of this
operation in terms of the number of comparisons performed, and note that this
quantity is at least the number of trees in the forest when the operation
commences, less one (the number of comparisons required to find the minimum
root in the forest).

It can be seen that the pairing heap data structure itself belongs to this class of
data structures, as thus far described, provided that we defer the linkings that are
performed when decrease-key and insertion operations are executed, performing
them in batch mode just as the next deletemin operation gets underway.
Although the above description seemingly limits the manner in which the trees in
the forest are potentially arranged or grouped, this is primarily a matter of
descriptive convenience and not in actuality functionally limiting; there is (as yet)
no constraint on the choices of node pairs that get linked during the execution of
deletemin operations.

The following constraints are assumed, and for our purposes sufficiently
capture the notion of uniformity, concomitant with the “spirit” of a pairing heap.
In the following F; and F, denote heaps, reflecting two instances of the data
structure that have identical forest states, and thus equal numbers of trees (but
possibly different heap structures). The position of a tree or an acknowledged
tree root refers to the position that the (associated) tree occupies within the
forest.

(a) If an insertion is performed into both F; and F,, then their respective forest
states remain identical.

(b) If decrease-key operations are performed on nonroot nodes x; in F; and x,
in F,, and these nodes belong to trees that are correspondingly positioned
within F; and F,, then the respective forest states remain identical.

(c) Consider the linkings that take place when a deletemin operation is per-
formed, but fix the root node that gets deleted. Then these linkings can be
modeled in terms of a binary linking-decision tree that specifies the adaptive
sequence of linkings that take place among the tree roots and the children of
the deleted root. (Each linking-decision involving the tree root being deleted
shows just one potential outcome: that consistent with this being the
minimum root.) In other words, upon fixing the root node that gets deleted,
the nonlinking comparisons that take place in search of the minimum tree
root do not affect the generation of linkings that take place when performing
a deletemin operation with a generalized pairing heap.

(d) Suppose that a deletemin operation is performed, respectively, on F'; and F,,
and that the minimum respective tree roots r; and r, being deleted are



478 MICHAEL L. FREDMAN

correspondingly positioned, respectively, within F; and F,, and moreover,
have identical numbers of children. Consider the respective linking-decision
trees that model these operations as described in (c), but suppress all names
of heap nodes within these linking-decision trees, replacing these references
with their corresponding positions as tree roots (so indicated), or their
corresponding relative positions among the children of the root which is
being deleted (so indicated). Then, the resulting linking-decision trees are
identical.

(e) Continuing with (d), suppose that the executions of these respective delet-
emin operations follow identical paths through this common linking-decision
tree. (It follows from this assumption that the numbers of remaining trees
within the respective transformed forests are identical. Moreover, tree roots
correspondingly positioned within the transformed forests would have occu-
pied either corresponding positions as tree roots within the original forests
or corresponding relative positions as children of r,, respectively r,.) Then,
the resulting respective forest states remain identical. In other words, the
resulting side-effects are a function only of the linking outcomes.

(f) The forest state of the empty heap is uniquely defined.

The pairing heap and its variants [Fredman et al. 1986] satisfy the above
constraints, simply choosing the forest state to consist of the number of trees in
the forest. The forest state of the heap can be used to effect the implementation
of various constructs, such as the technique of maintaining an auxiliary area,
introduced by Stasko and Vitter [1987]. In this instance the forest state indicates
the number of trees in the forest and also indicates which of these trees are
placed in the auxiliary area.

Our lower bound is established by considering sequences of operations
structured as follows: First, n insertions are performed so that n items are
present in the heap. The remaining operations are partitioned into multiple
rounds. Each round begins with at most L = E%log3 ndecrease-key operations
performed on the children of a specifically chosen root node ¢ in the forest, and
concludes with an insertion, followed by deletemin. The deletemin operation, as
a consequence of the adversary we define below, will result in the deletion of ¢
from the forest. Upon its conclusion, the execution of a round leaves unchanged
the number of items n in the heap. Operation sequences structured in this
manner, with certain additional requirements described below, are referred to as
O-sequences.

If generalized pairing heaps enjoyed constant amortized decrease-key costs
(and O(log n) amortized costs for the deletemin and insertion operations), then
the total amortized cost of executing a given round of an O-sequence would be
O(L), and the total execution cost of an O-sequence consisting of r rounds
would be bounded by O(r - L + n log n). We will see that this is not the case.
Before proceeding further with our description of O-sequences, we need to
describe the adversary that will be utilized to determine the outcomes of linkings
posed by a generalized pairing heap algorithm as well as the selections of nodes
deleted by the deletemin operations.

2.1. ADVERSARY. Our adversary for linking nodes is defined in terms of a
rank function assigning integer values to the nodes. For nodes v and w with
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respective ranks r, and r,, a linking of v and w, with v the left operand, will
place v in the root position if and only if r, > r,. We refer to this as the rank
rule. The rank function requires a nonnegative parameter d = d(n) chosen in a
manner depending on n. A node with no children has rank 0. As children
become linked to a node v, with each new child positioned as its leftmost child,
the rank of v gets incremented in accordance with the following two cases: First,
if v has rank k and a new child with rank = k — d is linked to v, then v’s rank
gets incremented. We refer to this linking as an efficient linking, and we describe
the child as being efficiently linked to v. Also, we define the efficiency of a linking
to be an indicator specifying whether or not the linking is efficient. Second, the
linking of a new child causes v’s rank to be incremented, irrespective of the
child’s rank, if the linking takes place immediately following 3¢ consecutive prior
linkings, none of which resulted in v’s rank being incremented. Observe that the
efficiencies of the linkings joining a node v to a specified sublist of its children, in
conjunction with the ranks of the remaining children of v, uniquely determine
the rank of v as well as the respective efficiencies of all linkings to the children of
V.

A linking is called incremental if it causes the rank of the parent node to be
incremented. An incremental linking that is not efficient is referred to as a
default incremental linking. Finally, the rank of a tree is defined to be the rank of
its root. Some properties of our adversary are embodied in the following lemmas.
They assume that trees have been formed by linking in accordance with the rank
rule.

LEMMA 1. A tree of rank k has at most 3* nodes.

ProOF. Let s, denote the maximum possible size of a tree of rank k. A tree
of this size is formed by starting with a maximal size tree of rank k — 1, adding
(with an incremental linking) a maximal size subtree of rank £ — 1, and then,
assuming k = d + 1, adding 3¢ maximal size subtrees of rank k — d — 1 (this
being the maximum allowable rank for nonincremental linkings). Thus, we obtain
sy = 2s,_, + 3%,_,_,. The conclusion follows by induction. [J

LEMMA 2. Let v be a node that has rank = k and exactly C - k children, where
C = (3 + 1)/2. Then v has at least k/2 efficiently linked children, each having
rank < k.

PROOF. Let u be the number of children joined to v with default incremental
linkings, so that the number of efficiently linked children with rank < k is at least
k — u. Each default incremental linking accounts for 3¢ + 1 children of v (the
linking itself and the immediately preceding 3¢ nonincremental linkings). Thus,
u=C-k/(3 + 1) = k/2. The lemma follows immediately. [

LEMMA 3. Among the efficiently linked children of a node at most d + 1 are of
the same rank.

Proor. This follows as a consequence of the facts that an efficient linking
increases the rank of the parent node, and that the rank of the child is within d
of the rank of the parent at the moment immediately preceding its linking. [J

We now complete our description of O-sequences. The individual rounds are
structured as follows: At the onset of a given round, let { be the root in the forest
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having maximal rank (the rightmost such node if there is more than one). Our
adversary selects the node ¢ to be deleted during this round, and ¢ is referred to
as the designated minimum root as the round gets underway. The decrease-key
operations of this round are performed on those children of ¢ that, at the onset
of the round, are efficiently linked to ¢ and have rank < L. If there are more
than L such nodes, then the decrease-key operations are confined to the
rightmost L of them. The order in which these decrease-key operations take
place is random (with uniform distribution). The adversary obeys the convention
that any linking operation involving ¢ has an outcome consistent with ¢ being the
minimum root node, overriding the rank rule as necessary. Our analysis will
estimate the expected execution cost of an O-sequence. We emphasize that the
criteria under which a given sequence of heap operations constitutes an O-
sequence, are intrinsically tied to the understanding that our adversary is invoked
during the execution of the sequence.

We claim that the heap structure, as it appears between operations of an
O-sequence, is uniquely determined by the preceding operations of the sequence.
Moreover, the sequence of linkings that take place during the execution of an
O-sequence is uniquely determined by the O-sequence. This is established by
induction on the number of preceding operations of the sequence, using the
assumptions concerning the functioning of a generalized pairing heap and the
fact that our adversary is invoked. (It is important to recognize that our
adversary is incompletely defined relative to the manner in which this notion is
typically understood. Specifically, our adversary does not explicitly address
comparisons that do not result in linkings. Our claim holds, in essence, because
these non-linking comparisons are devoid of structural side-effects during the
execution of an O-sequence by a generalized pairing heap. “Implicit” data
structuring is in effect precluded.)

We demonstrate that our adversary can be invoked without violation of
consistency. This is accomplished by proving the following stronger assertion: Let
o be an arbitrary O-sequence, let o; consist of the initial portion of o ending with
the jth round of o, and let o, consist of the first n insertions of o (the operations
preceding the first round of o). Now let §; be the set of nodes in the heap upon
executing o;, and let p; be an arbitrary linear ordering of these nodes that
satisfies the heap-order condition for the tree structures in the heap that emerge
from this execution. Then for each j there exist key values for the decrease-key
and insertion operations of o; that are both consistent with the actions of our
adversary, and moreover, induce the linear ordering p; of S; upon executing o;.
We prove this by induction on j. Upon completing o, the heap consists of
singleton node trees, and indeed, key values can be assigned to these nodes as
they are inserted that induce any specified ordering of these nodes. Now assume
that our assertion holds when j = k, and that the nodes in S, are given by y,,

. » Y- Consider the situation upon executing o, , ;, at which point the nodes in
S+, are given by y,, ..., y, . (say); the node y, having been deleted and the
node y, , inserted. The tree structures of the heap at this point are obtained
from those present, upon executing o, by removing the root y,, adding the
singleton node tree consisting of y,,,;, and then performing just those linkings
that take place during the execution of the last round of o, ; that occur among
the roots of the remaining trees and the children of y, (but omitting those that
involve y,;). (We are using here the fact that the decrease-key operations of the
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(k + 1)st round are confined to the children of y,.) Let L,,, denote the
linkings just described. Now let p be an arbitrary linear ordering of the nodes in
S+ that satisfies the heap-order condition relative to these tree structures, and
extend this to an ordering p’ of the nodes y, ..., y, ., imposing the condition
that y, is the least among these nodes. The restriction p” of p’ to the nodes in S,
satisfies the heap-order condition, relative to the tree structures present upon
executing oy, since the linkings in L,,; only involve nodes that form an
anti-chain with respect to these tree structures, and the root y,; is not among
these nodes. Thus, by providing key values for the insertion and decrease-key
operations of o, to induce the ordering p” (which our induction hypothesis
enables), assigning a key value to the node y,,; consistent with p’ when this
node is inserted during the (k + 1)st round, and performing the decrease-key
operations of the (kK + 1)st round so as to not violate the ordering p’, we find
that the operations of the (k + 1)st round result in the deletion of y,, and
moreover, the ordering p is induced upon completion of the (k + 1)st round.

Armed with the above observations, we shall adopt the point of view that the
execution of an O-sequence is only a skeletal computation that performs
structural manipulations that are being governed by our adversary. With this in
mind we define the actual cost of a deletemin execution to be the maximum of (i)
the number of node linkings that take place, and (ii) the number of trees in the
forest when the execution commences less one. We note that this measure
provides a lower bound for the cost of a corresponding execution with actual key
values that realize the actions of the adversary.

The following observations will prove useful. Because decrease-key operations
are applied only to children of the designated minimum root (in an O-sequence),
a given node in the heap can only accumulate children until it finally becomes
the designated minimum root. Thus, until a node becomes the designated
minimum root, its rank can only increase over time. Moreover, because only root
nodes can be linked during the manipulations of generalized pairing heaps, the
subtree rooted at a given node which has a parent remains fixed (in structure)
until that parent becomes the designated minimum root.

We will find it useful to utilize a particular scheme for generating random
O-sequences. Let w = w,, w,, ... be a random source expressed as a sequence of
i.i.d. random variables uniformly distributed over the integers from 1 to L!. An
O-sequence is generated from w as follows. Assume that at the onset of the ith
round of the O-sequence being generated there are ¢ = L children of the
designated minimum root upon which decrease-key operations are to be per-
formed. The order in which these decrease-key operations are to take place is
given by w; mod ¢!, where it is understood that this quantity designates a
particular permutation from some specified enumeration of the g! possible
permutations; the identity permutation corresponding to a left-to-right process-
ing of these ¢ nodes. We readily observe that this scheme defines a uniform
distribution on the possible orders of the decrease-key operations of each round.
The following additional property of this scheme will meet a subsequent need.
Suppose that the source w from which the O-sequence is generated is fixed beyond
round i — 1, and suppose two distinct prefixes are given that result in the same
respective number q of nodes to be acted upon by the decrease-key operations of the
ith round. Then the permutation choice to be applied for this ith round will be the
same in both instances.
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2.2. SCHEDULE OF CHARGES. During the execution of an O-sequence, an
efficient event for a node, other than the designated minimum root, is said to take
place either when (i) the node becomes a child of another node, other than the
designated minimum root, with an efficient linking; or (ii) when a new child
becomes linked to the node, causing its rank to increase from L — 1 to L. An
efficient event of the form (ii) is referred to as a terminating event. Once a node
has had a terminating event, it cannot participate in a subsequent decrease-key
operation (in an O-sequence) since its rank is then = L.

At the onset of each round of an O-sequence, we associate with each node to
be acted upon by the decrease-key operations of the round (determined at the
onset) its individual schedule of charges that accounts for certain costs being
charged to the node. The schedule of charges specifies for each possible
continuation of the O-sequence a charge € which is defined in terms of three
cases. If the node has a subsequent efficient event during the specified O-
sequence continuation, then € is given by the number of subsequent linkings
involving that node, up to (and including) its next efficient event.

A given continuation of the O-sequence may not result in a subsequent
efficient event for our node, and we consider two additional cases, depending on
whether or not the node remains in the heap upon termination of the O-
sequence. If the node gets removed from the heap in a subsequent deletemin
operation, we say that the node experiences an early deletion and ¢ is defined to
be the actual cost of this deletemin operation. Finally, if the node remains in the
heap upon termination of the O-sequence, then, for the convenience of our
analysis, a stipulated charge is assigned (in the sequel) that has no connection
with actual manipulations that take place.

For a given O-sequence, we claim that between two successive decrease-key
operations acting upon a node x, there must occur an efficient event for x; a fact
which we refer to as the separation property. This follows from the requirement
that x must be efficiently linked to the designated minimum root at the onset of
the round in which each decrease-key operation takes place. The associated
linking thus takes place prior to when the new parent has become the designated
minimum root, and thus constitutes an efficient event for our node.

The following lemma establishes a relationship between the total execution
cost of an O-sequence and the schedules of charges. Given an O-sequence ¢ and
a decrease-key operation included in o, acting upon a node x, we let £, , denote
the charge for the unique continuation compatible with o, contained in the
schedule of charges associated with x at the onset of the round of o in which the
decrease-key operation takes place.

LEMMA 4.  Given an O-sequence o, let 2 denote the sum of the charges €, ,,
where the sum extends over all decrease-key operations included in o. Let u,, denote
the sum of all stipulated charges associated with nodes remaining in the heap at the
termination of o (the sum of those terms in Z{ such that €, is a stipulated charge),
and let C denote the total execution cost of o. Then C = %(E€ — Ug).

PrOOF. The quantity Q = (2€) — u, is given by € + 2¢® where the
first term sums the charges that reflect the linkings that precede efficient events,
and the second term sums the charges that reflect early deletions. The separation
property implies that the actual cost of a given deletemin operation contributes
at most one term to the sum 3¢®. Thus, C = 3¢, The separation property
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also implies that a given linking contributes at most two to the sum ¢
(potentially contributing one each to the charges to the two nodes involved in the
linking), and thus 2C = 3¢, The lemma follows by combining these two
inequalities. [

LEMMA 5. Given a node x and a continuation for which x experiences an early
deletion, the corresponding entry € in the schedule of charges for x satisfies £ = \/n.

PrROOF. At the onset of the round in which x is deleted its rank is at most L. —
1 (otherwise, x would have had a terminating event), and by the construction of
our adversary, all roots in the heap have rank at most L — 1 at this point. By
Lemma 1, no tree in the forest has more than 3“7 ! nodes, and the forest
therefore has at least n/3%~! trees. Including consideration of the node inserted
into the heap in this round, we conclude that ¢ = n/3“"' = Vn. (Recall L =

E%log3 nl) O

2.3. AN OVERVIEW. Imagine that our data structure is operating efficiently;
that despite the presence of the decrease-key operations, the current actual costs
of the deletemin operations are typically only O(log n) per operation. We would
thus find that the forest of the data structure typically has only O(log n) trees,
and moreover, that tree roots typically have only O(log n) children. Under these
circumstances, since the rank of a node grows at least logarithmically with the
size of its subtree (Lemma 1), some tree root in the forest must have rank at
least ((log n), and therefore the rank of this tree root is comparable to the
number of children it has. But then Lemma 2 implies that a positive fraction of
the children of this root are efficiently linked to it, and moreover, participate in
the decrease-key operations of the round during which this root is deleted. Now
Lemma 3 implies that the ranks of these efficiently linked children are reason-
ably scattered. Therefore, as a consequence of the subsequent random placement
of these nodes (due to the random ordering of the decrease-key operations), we
expect that each such node typically winds up in a context in which it must
participate in many subsequent linkings before encountering a linking partner
having similar rank. Those subsequent linkings that occur prior to this encounter
are inefficient. (This is where charge enters the picture.) In other words, when
our data structure is operating efficiently, seeds are inexorably being sewn that
give rise to a high frequency of inefficient linkings (per decrease-key operation),
inevitably slowing it down. Our task now centers upon the matter of charge
estimation.

The above scenario would seem equally plausible, if, as an alternative, we were
to define the rank of a node to be simply the logarithm of its subtree size, and
consider a linking to be efficient when the ranks of the involved nodes are
appropriately close. The difficulty with this more natural approach is that node
context, as considered above, seems to be an elusive notion. We avoid having to
explicitly grapple with this notion by exploiting a particular property enjoyed by
our original rank function:

(**) The rank of a node is uniquely determined by the efficiencies of the linkings
to its children.

2.4. 8-WAY LINKING-DECISION TREE. At the onset of a given round of an
O-sequence, round m (say), let vy, ..., v, be among the nodes upon which
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decrease-key operations are scheduled to take place during this round. Fix the
order (in which they are operated upon) of all the nodes participating in the
decrease-key operations of round m, but leave unspecified the placement of these
p nodes apart from specifying the set of their p positions within this order. There
are p! possible placements of these nodes, and each placement determines the
positions where the nodes vy, ..., v, arrive as new roots in the forest (as it
appears just prior to the next deletemin operation), within a fixed set of p
positions. Similarly, the other tree roots of the forest occupy fixed positions
independently of these v; placements. Number these p particular positions from
1 to p, and let U, be a variable whose value is the node v; arriving in position i.
Now fix the random source from which the O-sequence is generated beyond
round m, and let R denote the restrictions we have defined; the O-sequence is
completely determined from R if we additionally specify the assignment of the
v;’s to the variables U,. Consider the moment that the next efficient event takes
place for one of these v;. Subsequent to this moment we say that v, is
post-efficient, and up to this moment we say that v; is pre-efficient. The number of
linkings involving v; while it is pre-efficient represents the entry in the associated
schedule of charges for v; corresponding to the specified O-sequence continua-
tion, assuming that v, has a subsequent efficient event. In the sequel, we bound
the expected total of the charges to the v,’s, averaging over the p! possible
assignments to the U,’s.

We need the following notation. Given heap nodes x; and x,, the expression,
link(x,,x,), denotes the operation that links x, to x, with x, as the leftmost child
of x,. The expression b-link(x,,x,) represents a binary decision for the linking of
x, and x,; the outcome is either link(x,,x,) or link(x,,x,). Given a node in the
heap, its position in the heap refers to its position in the tree that contains the
node and the position of that tree in the forest of the heap.

Assume restrictions R are in effect and let « be a specified assignment of the
v;’s to the variables U;. As the subsequent operations of the specified O-
sequence take place, starting with the deletemin operation of round m, their
combined execution can be expressed as a directed path consisting of linking-
decision nodes, b-link(x,,x,), with adjoining edges indicating the actual out-
comes of these decisions (as dictated by the adversary), where the operands x;,
and x, may consist of:

(a) a variable U,

(b) anode which is a proper descendant of some v; node at the onset of round 7,
specified as being in a designated position (at the onset of round m) of the
subtree rooted at the value of a designated variable U, (e.g., the node which
is the second child of the third child of U,’s assigned value, at the onset of
round 7),

(c) a node which is in the heap at the onset of round m, but not in the subtree of
any v; node, specified by its position in the heap at the onset of round 7,

(d) a node specified as being the jth node inserted since the onset of round =,
for some j = 1.

b-link nodes reflecting linkings that involve the designated minimum root (as
determined for the round during which the linking takes place) are omitted from
this path. Thus, the outcome of any linking on this path is determined by the
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ranks of the nodes involved. Provided that the ranks of the v;’s are suitably
spaced, our goal is to utilize these execution paths to construct an encoding
scheme for assignments « belonging to an appropriate subset of the possible
assignments.

To achieve this encoding, we augment the execution path corresponding to a
given assignment « as follows. Define the expression 8-link(x,y), where x and y
are of the form (a)-(d) above, to denote an eight-fold decision for the linking of
x and y: the resulting outcome includes the result of the corresponding b-link, an
indicator specifying whether or not the linking is efficient, and an indicator
specifying whether or not the linking constitutes a terminating event for the node
that becomes the parent: eight possible outcomes in all. Now for each node
b-link(x,y), we replace the b-link with the corresponding 8-link and augment the
outgoing edge of this node to indicate which of the eight possible outcomes apply
for this linking. Let m, denote the resulting augmented path.

For a fixed assignment «, each node in the heap at the onset of round 7, or
subsequently inserted, has a unique description in terms of (a)-(d) above. We
refer to this description as the specification of the node (relative to the
assignment «); by definition, it remains fixed even as subsequent heap operations
take place.

DiscussioN. Assume that the ranks of the v,’s are separated by large gaps,
and for the moment assume that node ranks are static entities. Also assume that
each v; eventually has an efficient event. When the (unknown) assigned value of
a specified variable U; has an efficient event, the constraint on node rank
required in order for this to happen uniquely determines the particular value v,
assigned to U;. Thus, our data structure, operating in conjunction with the
adversary, is effectively solving the problem of determining the assignment of the
v;’s to the U;’s. Using the facts that node ranks are static (assumed for now) and
that our adversary makes its decisions on the basis of rank, and appealing to the
decision-tree complexity of this assignment determination problem, we are
tempted to conclude that a super-linear number of linkings are required, even if
we are only counting the linkings that involve at least one U, whose assigned value
hasn’t yet been deduced (thus remaining pre-efficient). We thereby infer a noncon-
stant lower bound on the average charge to the v,’s.

Now there are difficulties with this approach as it applies to our situation: (i)
the node ranks change as linkings take place, and (ii) there is the possibility that
an “unseen hand” might simply present to each U, a linking in which its assigned
value has an efficient event, effectively solving our problem non-deterministi-
cally. (This is what Fibonacci heaps do!) In disposing of this latter concern
(Lemma 7, below), we exploit the uniformity characteristic of a self-adjusting
data structure, incorporated within our definition of generalized pairing heap. As
for the first concern, we can assume that the ranks of the v,’s change little while
these nodes remain pre-efficient, since many linkings involving a node are
required to substantially change its rank. But there are two interesting issues in
connection with the non-v; and post-efficient v; nodes. First, does our device
actually solve the assignment determination problem? Even if the unknown
assigned value of U; has an efficient linking, becoming a child of x (say), we
cannot deduce its approximate rank if the rank of x has been changing, unless we
have been monitoring these changes. Our encoding scheme, which includes all
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(relevant) linkings that take place, enables this monitoring (part (a) of Lemma 6)
due to the added presence of the efficiency indicators. (Property (**) implies
that the efficiencies of the linkings constitute the sole source of variability in
rank changes as the linkings take place.)

The second issue centers on the possibility that information about U;’s
assigned value is being “leaked” when it becomes linked to another node x, as
reflected by the change (or absence of change) in the rank of x. Since operations
among the non-v; and post-efficient v, nodes are “free” in terms our cost
measure (charge), and because these nodes can potentially carry information
about the assigned values of the U,’s as a consequence of this information
leakage, our lower bound is conceivably at risk. However, our encoding scheme
effectively discounts the potential impact of leakage (part (b) of Lemma 6); the
efficiency indicators fully account for it.

LEMMA 6. Assume that the minimum gap between the respective ranks of the
nodes vy, . .., v, is g with g > d. Let A be a set of assignments « such that in the
course of the execution ,, no v; node has its rank increase by as much as g — d
while remaining pre-efficient, and such that no v, experiences an early deletion from
the heap. Let o, and o, be two assignments in A. Suppose that the first k nodes and
decision outcomes of the execution paths m, and T, are identical for some k = 0.
Then

(a) Let Ty consist of the variables U; whose assigned values v; are post-efficient
following the kth linking. With respect to both assignments o, and «,, the set
I’y is the same, and the respective assignments to the variables in T'; are

identical.

(b) Suppose that the (k + 1)st nodes of m, and m, are identical and neither of
the operands of this node are U, variables whose assigned values are pre-
efficient at this point of the computation. (In other words, U; can be an
operand of this (k + 1)st node only if U; € I'y..) Then the respective outcomes

for the (k + 1)st node on the paths m, and m, are identical.

PrOOF. We first establish that for assignments « in 4, a node x, that has
some v, as a proper ancestor (at the onset of round m), can participate in a
linking only if this v, ancestor has had a prior efficient event. In order for x to be
participating in a linking it must be the case that the v, ancestor of x has either
been previously deleted, or has become the designated minimum root (and a
decrease-key operation has since been performed on x). Since by assumption v,,
does not experience an early deletion for assignments in 4, we conclude in either
case that v, has had an efficient event prior to the linking in question involving x.

We next establish the following: Let x be a node in the heap and assume that
with respect to both assignments, «; and «,, x has the same specification.
Consider a point in time along the common portion of the paths m, and m,, such
that for both assignments, «; and a,, x is in the heap and not the designated
minimum root. Then, at this point in time, the rank of x is independent of the
applicable assignment, «; or «,. First, we note that the children of x, at the
specified point in time, consist of those that were originally present and those
subsequently linked to x as indicated by the computation path. (Because x is not
the designated minimum root, all of the linkings to x of these subsequently linked
children are accounted for by the computation path. Moreover, all nodes that
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were originally or subsequently linked to x remain linked to x.) Now the rank of
x is uniquely determined by the efficiencies of the linkings to these subsequently
linked children (provided by the computation path), along with the ranks of the
children that were initially present, which remain fixed. We conclude that the
rank of x is fixed, independently of the applicable assignment, a; or «,. Note that
in applying this claim to a node specified by an operand of a linking-decision
node, the requirement that the specified node is not the designated minimum
root is satisfied at the corresponding point in time (since the execution paths
omit linkings involving the designated minimum root).

We proceed to establish (a). The 8-link outcomes on the common portion of
the paths m, and m,, uniquely determine the occurrences, if any, in which the
assigned value of a U, variable has an efficient event. We refer to the first such
occurrence, for a given U; variable, as its critical event; up to this point U;’s
assigned value remains pre-efficient. In particular, this establishes the uniqueness
of I'y.

Next, we demonstrate that the respective assignments to the variables in I';, are
fixed, independently of «; and a,. We refer to the assumptions concerning the
minimum gap between the (initial) ranks of the v,’s and the limit on the extent to
which these ranks can grow, while the nodes remain pre-efficient, as the rank
constraints. Suppose first that the critical event for U,’s assigned value is a
terminating event. In order to have a terminating event, a node must have rank
L — 1. Since our v,, nodes initially have rank < L, the rank constraints imply
that only one can gain sufficient rank for this to happen while remaining
pre-efficient; namely, the one having largest rank. Thus, there can be only one U,
to which this discussion applies, and its value is fixed. Next, assume that the
critical event for U;’s assigned value is indicated by the outcome of an 8-link
node with operands U, and x, in which U;’s assigned value becomes the child of x
with an efficient linking. The operand x cannot have the form U; since the rank
constraints keep the ranks of the respectively assigned values of U; and U, too far
apart for the linking to be efficient. We can now argue that the node specified by
x is independent of the applicable assignment, a; or a,. This is obvious unless x is
specified as being a proper descendant of the value assigned to some variable U;.
Considering this possibility, since x is participating in a linking, the v, ancestor of
x assigned to U; has had a prior efficient event, from which it follows that U,
belongs to I', _;. By induction on k, this uniquely identifies v,, from which it
follows that x is uniquely identified. As previously established, it now follows that
the rank of the node specified by x is independent of the applicable assignment,
oy or a,. Now the rank of U,’s assigned value is within d of the rank of the node
specified by x since the linking taking place is efficient. The rank constraints
therefore serve to fix the assigned value of U;, independently of the applicable
assignment «; or «,. This completes the proof of part (a).

We turn next to part (b). Consider the (k + 1)st node of our common portion
of the paths 7, and m, . Unless an operand x of this linking-decision node is a U;
variable, the node specified by x is uniquely determined, as argued in the proof
of part (a) (invoking here the fact that the variables in I'; are uniquely assigned).
On the other hand, if x is a U; variable, then by assumption, this variable belongs
to I';, and it likewise follows that the node specified by x is uniquely determined.
Since x specifies a unique node it follows, as previously established, that the rank
of this node is independent of the applicable assignment «; or a,. Moreover, for
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each operand, the efficiencies of the linkings to the children of the specified
node are independent of the applicable assignment, «; or a,. Now the outcome
of the linking decision (which node becomes the parent) is dictated strictly by the
ranks of these operands since our adversary is defined this way, the efficient
linking indicator is uniquely determined by these ranks, and the terminating
event indicator for the node becoming the parent is uniquely determined by the
efficiencies of the linkings to its current children and the rank of the new child
(the other operand). Thus, the outcome of this 8-link node is independent of the
applicable assignment, o or a,. [

The following corollary is established in our proof of Lemma 6.

COROLLARY 1. Suppose that A, oy, ey, 7, , 7, and the v/s are as in Lemma 6.
Let x be a node in the heap and assume that with respect to both assignments, o,
and a,, x has the same specification. Consider a point in time along the common
portion of the paths w, and m,, such that for both assignments, a; and a,, x is in
the heap and not the designated minimum root. Then, at this point in time, the rank
of x is independent of the applicable assignment, o, or .

LEMMA 7. Assume that A and the v;’s are as in Lemma 6. Let 1 be an execution
path such that w = m, for some unspecified assignment o in A. Then the content of
each node on the execution path , and the point of termination of i, are uniquely
determined by the prior nodes and decision outcomes on this path.

ProoF. First, some terminology. A node specification is said to be unambig-
uous at a given point along the execution path = provided that the node that it
specifies is uniquely determined by the prior linking-decision nodes and out-
comes along the execution path. The following are consequences of Lemma 6
and our assumption that none of the v,’s experience an early deletion for
assignments in A. First, a node specification, corresponding to a node which
happens to be a tree root at a given point along r, is unambiguous at that point,
unless the specification is given as a U, variable whose assigned value remains
pre-efficient. Second, given a point along the computation path 7 and a node
specification that is unambiguous at that point and that doesn’t refer to the
designated minimum root, the number of children of this uniquely specified node
x (say) is fixed, and moreover, these children have specifications that are
uniquely determined as a function of relative position. (The execution path
uniquely determines the specifications of the children linked to x subsequent to
the onset of this execution.) Furthermore, the positions of the efficiently linked
children of x are uniquely determined and their specifications are unambiguous
at this point. (Those children efficiently linked to x during the computation
either have unambiguous specifications prior to this linking, or, for the case in
which the child’s specification is given as a U, variable, its assigned value is
post-efficient following this linking.)

The heap structure is said to be semidetermined at a specified point of the
computation provided that the following hold, given the linking-decision nodes
and outcomes along the execution path 7 that precede this point:

(i)  the forest state of the heap is uniquely determined,
(ii)  the specification of each tree root in the forest is uniquely determined
by its position in the forest, and
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(iii)  the position and identity of the designated minimum root are uniquely
determined, and the number of children it has, and their specifications
by relative position, are uniquely determined.

Now we argue by induction on k, for k not exceeding the number m of
remaining deletemin operations of the O-sequence encompassed by the compu-
tation r, that upon partitioning the path = into & + 1 segments, such that each
of the first k& segments corresponds to the execution of a single deletemin
operation, we find that (a) the content of each node of 7 appearing within these
first k segments is uniquely determined by the prior linking-decision nodes and
decision outcomes on this path; (b) the point of termination of the kth segment
is uniquely determined by the prior nodes and decision outcomes on the path;
and (c) if K < m, then the heap structure is semidetermined at the point
immediately preceding the execution of the first deletemin operation of the (k +
1)st segment. (When k reaches its maximum value m, the (k + 1)st segment is
empty.)

Consider first the case k = 0. The heap structure and the designated minimum
root are uniquely determined at the onset of the round that includes the first
deletemin operation encompassed by the computation . Also, the ordering of
the decrease-key operations that are performed in this round is such that the
above conditions (ii) and (iii) are satisfied at the point immediately prior to the
first deletemin operation. Moreover, the constraints (a) and (b) satisfied by a
generalized pairing heap imply that the forest state is uniquely determined at this
point, implying that the heap structure is semi-determined immediately preced-
ing the first deletemin operation. The conditions (a) and (b) of our claim are
vacuous when k£ = 0, and the claim is thus established in this instance.

Now assume that the claim holds for & = j with j < m. Just as the (j + 1)st
deletemin execution gets underway, the conditions required for the heap struc-
ture to be considered semi-determined, in particular conditions (i) and (iii),
imply that the binary linking-decision tree that models the execution of this
deletemin operation, defined in the constraint (c) satisfied by a generalized
pairing heap, is uniquely determined in the sense conveyed by the constraint (d).
Now all of the nodes participating in the linkings of the ensuing deletemin
execution are either tree roots or children of the designated minimum root, and
since the specifications of these nodes are uniquely determined as a function of
position (respectively, relative position), as indicated by conditions (ii) and (iii),
it follows that we can uniquely substitute node specifications into our binary
linking-decision tree. Thus, the content of each node of 7 and the point of
completion of the (j + 1)st deletemin operation are uniquely determined by the
preceding nodes and outcomes along 7 during this phase of the computation. It
follows that condition (ii) is satisfied upon completion of the execution of this
deletemin operation, and moreover, constraint (e) implies that the condition (i)
is also satisfied.

Now assuming that there is a subsequent round in the O-sequence (j + 1 <
m), the designated minimum root for this subsequent round is a node whose
specification is not given as a U; variable, where the assigned value of U; is
pre-efficient, since none of the v,’s experience an early deletion. Thus, it is a
node whose specification is unambiguous at this point. It follows that the
designated minimum root and its position (the rightmost root having maximal
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rank) are uniquely determined for this subsequent round since the above
corollary implies that the ranks of all of the potentially eligible roots are uniquely
determined. Moreover, the above corollary implies that the efficiently linked
children of the designated minimum root for this subsequent round (all of which
have unambiguous specifications), that participate in the decrease-key operations
of this subsequent round, are uniquely determined (the rightmost L that have
rank < L). The order in which these decrease-key operations take place is
uniquely determined since this is specified by the restrictions R. (Here is where
we make use of our particular scheme for generating random O-sequences.)
Condition (ii) thus remains satisfied just prior to the execution of the deletemin
operation of this subsequent round, and also the position of the designated
minimum root remains uniquely determined. Constraints (a) and (b) also imply
that condition (i) remains satisfied at this point. Moreover, the specifications of
the remaining children of the designated minimum root (those not having been
removed by the decrease-key operations) are uniquely determined by relative
position. Thus, condition (iii) is satisfied just prior to the execution of the
deletemin operation of this subsequent round, and we conclude that the heap
structure is semi-determined at this point. Thus, our claim is established for k =
j+ 1.0

Remark 1. Lemma 7 represents the crucial point of departure between
generalized pairing heaps and Fibonacci heaps, upon which our analysis rests.

Assume that the v,’s and the set of assignments 4 are as described in Lemma
6. Assume additionally that for each assignment in 4 each v, eventually has an
efficient event. We now proceed to embed the paths 7, for « € A4 within an
8-way linking-decision tree 7 that satisfies the following properties:

(i) The set of paths m, for « € A and the set of paths in 7 terminating at
its leaves are the same. Moreover, 7 has |4| distinct leaves.

(ii) A node of 7 can have two or more children only if it contains an
operand consisting of some U, variable whose assigned value is pre-
efficient (as determined by the path leading to the node).

The construction commences by setting 7 to consist of a single leaf. We
proceed to build 7, replacing a leaf with a node at each step. Our inductive
hypothesis is that after each step the following assertion (H) holds: For each
assignment « € A, some initial portion of w, (linking-decision nodes and their
outcomes) coincides with a path in T ending at a leaf. Conversely, the path through
T terminating at a given leaf coincides with an initial portion of w , for some a € A.

For each leaf € of 7, as constructed thus far, let A, denote the nonempty subset
of @ € A associated with € in accordance with (H). Lemma 7 implies that either
(a) each 7, for « € A, terminates at €, or (b) these paths continue with identical
successor nodes. If (b) holds let 6 be the common subsequent node on these
paths. We then replace ¢ with 6. The leaves connected to & correspond to the
realizable outcomes as reflected by the paths m, for « € A,. Clearly (H) holds
after each step. The construction of 7 terminates when (a) holds for each leaf.
Part (a) of Lemma 6 implies that for each leaf ¢ of our completed tree we have
|4, = 1 (since each v, is post-efficient when , terminates, by assumption).
Thus, 7 has |A4] distinct leaves, establishing property (i).
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Now consider any node v in 7 that involves the linking of two heap nodes,
neither of which is represented by some U, variable whose assigned value
remains pre-efficient. Lemma 6, part (b) implies that v has only one child since
only one outcome of the linking associated with v can be realized. Thus, property
(ii) holds.

Property (ii) implies that the number of branch points on a given path p of 7
constitutes a lower bound for the total number of linkings that involve at least
one pre-efficient v;, for the assignment corresponding to p. The following lemma
summarizes our construction:

LEMMA 8. Assume that restrictions R apply and that the minimum gap between
the respective ranks of the nodes vy, ..., v, is g with g > d. Let A be a set of
assignments « such that in the course of the execution ,, no v; node has its rank
increase by as much as g — d while remaining pre-efficient, and such that each v,
eventually has an efficient event. Then the executions ,, for « € A can be embedded
within an 8-way linking-decision tree T, satisfying the two properties stated above.
For a given assignment «, the number of branch points on the path in T coinciding
with ,, provides a lower bound for the total number of linkings that involve at least

one pre-efficient v,.

LEMMA 9. Assume that restrictions R apply and that the minimum gap g
between the ranks of the nodes v, ..., v, satisfies g — d = p*”. Assume that we
stipulate a charge = [p**Ofor each v, that does not have a subsequent efficient event
and remains in the heap at the termination of the O-sequence corresponding to a
given assignment. Then upon averaging over the p! possible assignments, the
expected total of the charges to these p nodes, as specified in their associated
schedules at the onset of round m, is bounded by Q(p log p).

PROOF. An assignment « of the v;’s to the U,’s is said to have jumps provided
that one or more of the v;’s has a gain of at least p*? in rank while remaining
pre-efficient, during the execution of the corresponding O-sequence continua-
tion. Consider an assignment for which each v; has a subsequent efficient event.
If additionally this assignment has jumps, then it results in a charge of at least
p*’ for at least one of the v;, since a single linking can increase the rank of a
node by only one unit. Let 4 consist of the assignments for which no v; has an
associated charge as large as p*>. Without loss of generality, we may assume that
at least one-half of the p! assignments belong to 4. For each assignment in 4, no
v; experiences an early deletion; otherwise, Lemma 5 implies that its associated
charge would be = p*? since p = L. For each assignment in A4, each v; has a
subsequent efficient event; an exceptional v; would have a stipulated charge =
p*3. No assignment in A has jumps. Therefore 4 satisfies the hypothesis of
Lemma 8 since g — d = p*?. We apply Lemma 8 to the set A, obtaining the
8-way tree T which embeds the executions =, for the assignments « € A4, and
which has |4]| leaves. The average number of branch points on the paths of 7
bounds from below the total of the charges to the p nodes averaged over the
assignments in 4. Upon collapsing all links in 7 for which the parent node has
just one child, we conclude that this average number of branch points is given by
the average path length in this transformed tree. This latter quantity is at least
logg |4| = Q(p log p). The conclusion of the lemma follows immediately. [



492 MICHAEL L. FREDMAN

2.5. SUMMING

LeEmMMA 10. Assume that at the onset of a given round there are q nodes to be
acted upon by the decrease-key operations of that round, where ¢"* = 4(d + 1).
Assume that we stipulate a charge of "> Ufor each of these selected nodes that does
not have a subsequent efficient event and remains in the heap at the termination of
the corresponding O-sequence continuation. Then for a random continuation of the
O-sequence the expected total of the charges to these q nodes, as specified in their
associated schedules at the onset of this round, is bounded by Q(q log q).

PrOOF. Let p = ["*00 We begin by constructing disjoint subsets of the g
nodes, with each subset having size p, such that the union of these subsets
consists of = g/2 nodes, and such that the ranks of the nodes in each subset are
separated by gaps of at least 2p?. These sets are constructed inductively as
follows: Suppose that at least 2(d + 1)p* nodes among the initial ¢ nodes
remain, not having been placed in the subsets thus far constructed. By Lemma 3,
there are at most d + 1 nodes of any given rank among the g nodes. Thus, the
ranks of the remaining nodes comprise = 2p* distinct values, and it follows that
we can select a subset of p nodes from these remaining nodes whose ranks are
separated by gaps of at least 2p2. When this process finally stops, it is because
there are fewer than 2(d + 1)p® remaining nodes, and our assumption implies
that this quantity is = ¢/2. Let g = 2p? denote our guaranteed gap between
ranks. Then, g — d = p?, and it follows that each of the selected sets of p nodes
satisfies the hypothesis of Lemma 9. Let §;, j = 1, denote the subsets of p nodes
that we have constructed. If we now fix j, then averaging over the assignments of
the nodes in §;, conditioning upon an arbitrary instantiation of the restrictions R
defined at the start of our section on the 8-way linking-decision tree, we conclude
from Lemma 9 that the expected total of the charges to these nodes is bounded
by Q(|S;| log [S;]) = Q(|S;| log g), provided that we stipulate a charge of
[4'*0= p*3Ofor each node of S ; that fails to have a subsequent efficient event,
remaining in the heap at the termination of the O-sequence. Thus, the uncondi-
tional expected total of the charges to the nodes in §; is bounded by Q(|S;| log
q). Summing over j we obtain our (g log ¢) bound. [J

THEOREM 1. Assume n > 9 and choose C = logs L and d = [og,(2C)0 Using
a generalized pairing heap to implement the operations, let T, denote the total

expected cost of executing a random O-sequence consisting of r rounds. Then T, =
Q(r+ L log L) — O(nL'?). (Recall L = [}log; n0)

ProoOF. Given an arbitrary O-sequence and a round of this O-sequence in
which (say) g decrease-key operations are to be performed (determined at the
onset of the round), we choose [ff'*0as the common value for all stipulated
charges associated with this round. Defined in this way, the schedules of charges
associated with a given round are uniquely determined by the operations that
precede the round. (This is the setting in Lemma 10.)

For a random O-sequence o, let €; denote the sum of the charges €, ,, where
the sum extends over the decrease-key operations that take place during the ith
round of o7 let ¢; denote the actual cost of the deletemin operation of the ith
round, and let d; denote the number of children of the designated minimum root
at the onset of the ith round. We consider three cases relative to the onset of the
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ith round of o (reflecting the operations that precede the round). The first case
assumes that d; = C - L.

The second case assumes that d; < C - L and that the designated minimum
root has rank = L. Lemma 2 implies that there are ¢ = L/2 children efficiently
linked to this root with ranks < L that participate in the decrease-key operations
of the round. The condition ¢"* = 4(d + 1) of Lemma 10 trivially holds when
q = L/2 (for n sufficiently large). It follows from Lemma 10 that the expected
value of ¢;, conditioned on the assumptions that define this case, is bounded by
Q(L log L).

The third case considers the remaining possibility, for which the designated
minimum root has rank < L. In this case Lemma 1 implies that ¢, = n/3%"! =
Q(L log L).

Combining the above cases and considering the unconditioned expected values
of the quantities d;, €;, and c;, we conclude that

E[d] + E[{;]] + E[c;] = Q(L log L). (1)

Each of the d; children of the designated minimum root, as i ranges over the
rounds of o, uniquely represents a linking that has occurred during the execution
of o, and it follows that

Zcizz:d,«. (2)

Summing over the rounds of o and applying Lemma 4, we have

(Z4; —u,)

Zcizf. 3)

Combining (2) and (3) we conclude that
5 cc=>di+ > 6+ ¢~ u,. 4)

Because no node remaining in the heap at the termination of an O-sequence has
a stipulated charge exceeding [L'?0] we have u, = n[L'?0 (The separation
property implies that a given node contributes at most one charge term to the
quantity u.) Substituting into (4) and applying (1), we conclude that the total
expected cost of executing a random O-sequence consisting of r rounds is
bounded by Q(r - L log L) — O(nL'?). O

COROLLARY 2. Given any generalized pairing heap, it is not the case that
insertion and deletemin operations have O(log n) amortized costs, and decrease-key
operations have constant amortized cost, where n is the number of items in the heap.

2.6. A UNIFYING FRAMEWORK FOR PAIRING HEAPS AND FIBONACCI HEAPS.
We proceed to bridge the gap separating generalized pairing heaps from
Fibonacci heaps in order to determine precisely what is necessary to attain the
performance bounds achieved by Fibonacci heaps. We extend the scope of our
analysis to include data structures that allow for the nodes to contain balance
information. The class of generalized pairing heaps with balance fields is defined in
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the same way that generalized pairing heaps are defined, but with the following
differences (again, F, and F, denote heaps, reflecting two instances of the data
structure that have identical forest states, but possibly different heap structures):

—Each node in the data structure contains a dynamic auxiliary information field
referred to as its balance field, consisting of b bits of information, where b is a
parameter of this computational model. The balance field of a node is uniquely
determined by its subtree, and is defined inductively as follows:

(i) The balance field of a node with no children is given by some constant c.

(i) Letx and y be two nodes having respective balance fields b, and b,,.
Upon linking x to y as its leftmost child, the balance field of y becomes
by, = g(b,, by), where g is a fixed function.

—In considering the implementation of the decrease-key operation, we do not
speak to how this is generally done. Instead, we impose the restriction that if
the affected node happens to be a child of the root of a tree in the forest, then,
as is the case for generalized pairing heaps, we remove the subtree rooted at
this node, inserting it at the end of the forest (a restriction satisfied by
Fibonacci heaps). Now consider the constraint (b) from the definition of
generalized pairing heaps. With the understanding that x; and x, are children
of the roots in their respective trees, this constraint holds in the present
context. (With respect to O-sequences, this does not represent a change.)

—We replace the constraint (d) with the following:

(d") Suppose that a deletemin operation is performed, respectively, on F
and F,, and that the minimum respective tree roots r; and r, being
deleted are correspondingly positioned, respectively, within F, and F,,
and moreover, have identical numbers of children. Consider the respec-
tive linking-decision trees that model these operations as described in
(c), but suppress all names of heap nodes within these linking-decision
trees, replacing these references with their corresponding positions as
tree roots (so indicated), or their corresponding relative positions among
the children of the root which is being deleted (so indicated). Provided
that the correspondingly positioned tree roots and the correspondingly
positioned children of r, and r, have identical balance fields, the resulting
linking-decision trees are identical.

With Fibonacci heaps, the balance field of a node, referred to as its rank
[Fredman and Tarjan 1987] is defined to be the number of children of the node.
Defining the forest state to consist of the number of trees, it is readily verified
that Fibonacci heaps fall within this framework. As for generalized pairing heaps,
by assigning dummy balance fields (having fixed value) to the nodes in the data
structure, we find that these data structures likewise fall within this framework.

Our treatment of generalized pairing heaps with balance fields exactly parallels
the preceding analysis, up to and including Lemma 6. The only difference is that
the induction argument, showing that the structural manipulations that take
place during the execution of an O-sequence are uniquely determined by the
sequence, takes into consideration the fact that the balance field of a node is
uniquely determined by its subtree. (This is necessary to justify the application of
the constraint (d’) in place of the constraint (d).)
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If we add to the statement of Lemma 7 the assumption that the balance fields
of the respective v;’s are identical, then we find that the lemma holds true, as we
now demonstrate. Referring to the original proof of Lemma 7, the application of
constraint (d) takes place in a context under which the heap structure is
semi-determined. However, the additional precondition, necessary to justify an
application of constraint (d’), asserts that the very nodes, whose specifications by
(relative) position must be uniquely determined in order for the heap structure
to be considered semidetermined, must also have uniquely determined balance
fields. To demonstrate that this is indeed the case, we need the following lemma.

LEMMA 11. Assume that A and the v/’s are as in Lemma 6, and moreover, that
the respective balance fields of the v’s are identical at the onset of the round m in
which the decrease-key operations acting upon the v’s take place. Let  be an
execution path such that w = 1, for some unspecified assignment o« in A. Let x be
node specification that specifies a node that is either (a) a tree root other than the
designated minimum root, or (b) a child of another node whose specification is
unambiguous, at a given point of the computation encompassed by . Then at this
point of the computation, the balance field of the node specified by x is uniquely
determined by the linking-decision nodes and outcomes along the execution path
that precede this point.

ProOOF. First, we establish the result for the case (a), for which x specifies a
tree root at the given point ¢ of the computation. We argue by induction on the
number k of linkings of = that precede . We observe first that x is either given as
a U, variable or is unambiguous at this point of the computation. (This holds as a
consequence of Lemma 6 and the assumption that none of the v;’s experience an
early deletion for assignments in A.) The balance field of the specified node, as
defined at the point immediately prior to the first linking of m, is uniquely
determined, either because the specified node is one of the v,’s or because the
node and its subtree are uniquely determined. (This settles the case k = 0.) The
path 7 provides the specifications of all children linked to the node specified by
x during the portion of the computation up to the point # of interest (since x does
not specify the designated minimum root). At the moment of each such linking,
the induction hypothesis implies that the balance field of the specified child is
uniquely determined since the specified child is a tree root just prior to the
linking. Now property (ii), satisfied by the balance fields, implies that the balance
field of a node is uniquely determined, given its value at some initial point and
the balance fields of its subsequently linked children. Applying this to the
situation at hand, we conclude that the balance field of the node specified by x is
uniquely determined at the point ¢.

Now consider a node specification x that specifies a node which is a child of
another node whose specification is unambiguous at a given point ¢ of the
computation 7 (case (b)). If the presence of the child specified by x precedes the
computation , then the specification of x is unambiguous at the point ¢, and
moreover, the balance field of the specified node, as defined at the onset of the
computation 4, is uniquely determined. Its balance field at the point ¢ remains
unchanged. Otherwise, the linking of the child specified by x takes place
subsequent to the onset of the computation 7, and case (a) implies that the
balance field of this node is uniquely determined at that prior point (whereupon
it remains fixed). O
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Returning to the proof of Lemma 7, modified so that the respective v,’s are
assumed to have identical initial balance fields, Lemma 11 nearly fulfills the
added precondition necessary for the application of constraint (d'); only the
uniqueness of the balance field of the designated minimum root remains to be
demonstrated. However, the balance fields of the children (by relative position)
of the designated minimum root are uniquely determined when the heap
structure is semidetermined (as just demonstrated). Since properties (i) and (ii),
satisfied by the balance fields, imply that the balance field of a node is uniquely
determined given those of its children (by relative position), we conclude that the
balance field of the designated minimum root is uniquely determined when the
heap structure is semidetermined. Lemma 7, modified as described, therefore
holds.

With the added assumption that the balance fields of the respective v,’s are
identical, Lemmas 8 and 9 likewise hold since these follow directly from the
lemmas that precede them. Considering the statement of Lemma 10, if we
modify the meaning of g so that it refers to the nodes acted upon by the
decrease-key operations that have respective balance fields given by a common
specified value, then with this modification the lemma holds (again, since it is a
direct consequence of the lemmas that precede it). Building upon Lemma 10, as
modified, we proceed as follows:

LEMMA 12. Suppose that there are f possible values for the balance field of a
node and that at the onset of a given round there are q nodes to be acted upon by the
decrease-key operations of that round, where q = 2f + (4(d + 1))*. Assume that we
stipulate a charge of [§'"*Ofor each of these selected nodes that does not have a
subsequent efficient event and remains in the heap at the termination of the
corresponding O-sequence continuation. Then for a random continuation of the
O-sequence the expected total of the charges to these q nodes, as specified in their
associated schedules at the onset of this round, is bounded by Q(q log(q/f)).

PrOOF. Assume that the possible balance fields for a node ranges over the
integers from 1 to f, and let ¢; be the number of nodes to be acted upon by the
decrease-key operations having balance field i, so that =, g; = ¢g. For a given
threshold ¢, we have

> qi=q—ft. (5)

it qi>t

Choosing t = (4(d + 1))*, the condition ¢; > ¢ is equivalent to ¢;/* > 4(d +
1), and from Lemma 10, modified as described above, it follows that when ¢, >
t, the expected total of the charges to the nodes reflected by g; is bounded by
QO(q; log q;). Applying Jensen’s inequality and using (5), we conclude that the
expected total of the charges to all g of the nodes is bounded by Q(Z;. , -, g; log
q;) = Q((q — fr) log(q/f — 1)). For ¢ = 2f(4(d + 1))* = 2ft, we have (¢ —
ft) log(q/f — t) = Q(q log(q/f)), completing the proof. (Note that the
stipulated charge ['/?[is at least as large as any of the stipulated charges ;0
required for the application of Lemma 10.) [

The following theorem generalizes Theorem 1.
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THEOREM 2. Let ¢ be a fixed positive constant, assume n > 9 and choose C =
logy L and d = [og,;(2C)0 Using a generalized pairing heap with balance fields to
implement the operations, where the number b of bits in a balance field is at most
(1 — ¢) log, log, n, let T, denote the total expected cost of executing a random
O-sequence consisting of r rounds. Then T, = Q(r + L log L) — O(nL'"?). (Recall

L= E%log3 n)

PROOF. We observe first that when ¢ = L/2, f = 2°, and b = (1 — ¢) log,
log, n, the condition ¢ = 2f + (4(d + 1))* of Lemma 12 is satisfied (for n
sufficiently large). Moreover, g log(q/f) = Q(L log L). Our proof now proceeds
exactly as the proof of Theorem 1, except that we use Lemma 12 in place of
Lemma 10. [J

3. Experimental Findings

The lower bound established in Theorem 1, which implies that the expected
amortized cost of a round of an O-sequence is Q(log n - log log n), stands in
contrast with experimental results [Liao 1992; Stasko and Vitter 1987], that
suggest that pairing heaps perform decrease-key operations in constant amor-
tized time. One set of experiments, undertaken by Stasko and Vitter [1987],
involves runs that perform a sequence of operations subdivided into multiple
rounds, acting upon an initial structure, a binomial heap with n nodes. Each
round contains a single insertion, log, n — 1 decrease-key operations, and a
single deletemin operation. No increase in the quantity

average round cost

logon

is observed between the cases n = 2'% versus n = 2'®, Now the quantity log log
n grows with sufficient rapidity that one might plausibly expect an experiment of
this sort to distinguish between these two choices for the parameter n, provided
that the experiment captures the underlying mechanism responsible for this
growth. (Seriously—as we shall see!) Because this experimental setup is very
similar to the framework of the analysis in Section 2, we feel compelled to
address this matter.

The best performance for this experimental setup is achieved [Stasko and
Vitter 1987] by a clever variation of the pairing heap referred to as the auxiliary
twopass method, introduced by Stasko and Vitter [1987]. We proceed to describe
this method. (The reader is referred to Stasko and Vitter [1987] for more
details.) The auxiliary twopass method always completes a deletemin operation
with a single tree remaining, referred to as the main tree. Between successive
deletemin operations, the nodes and subtrees resulting from insertions and
decrease-key operations are stored in what is referred to as the auxiliary area.
When the next deletemin operation takes place, the trees in the auxiliary area
are coalesced into a single tree using what is referred to as the multipass method
[Fredman et al. 1986] (to be described shortly). This tree is then combined with
the main tree using a linking operation. The root of the resulting tree is then
removed, and its subtrees are then combined in the same manner as for the
pairing heap described in Section 1.
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The multipass method for coalescing a list of trees begins by linking the trees
in pairs. This is now repeated for the list of trees resulting from this first pass (of
which there are half as many as initially present), and then repeated again, as
necessary, until a single tree remains. (An alternative and preferable implemen-
tation places the result of each linking at the end of a queue consisting of the
trees being linked, proceeding with the linkings in a round robin manner until a
single tree remains.)

The Stasko-Vitter [1987] experiment under consideration uses the following
greedy heuristics in designing an adversary for testing the performance of the data
structure. First is the matter of determining the outcomes of linking decisions.
Quoting from Stasko and Vitter [1987]:

No key values were ever assigned to nodes. Instead, we used a “greedy”
heuristic to determine the winners of comparisons, in hopes of causing a worst
case scenario. Every time a comparison-link operation was performed, the
node with more children won the comparison: that is, it was judged to have the
smaller key value.

This heuristic bears similarity to our rank rule in Section 2, particularly when
choosing a small value for the parameter d in its definition.

In selecting operands for the decrease-key operations, the Stasko—Vitter
experiment (again, quoting from Stasko and Vitter [1987]):

utilized greedy decrease-key operations in which the node with the most
children was chosen for the operation. Nodes such as the root and children of
the root, whose choice would have no effect on the heap structure, were
excluded from being candidates.

In assessing this heuristic, we speculate, borrowing terminology from the
analysis in Section 2, that a substantial fraction of the linkings taking place
among the subtrees placed in the auxiliary area might well be efficient, as a
consequence of choosing greedy decrease-key operations that select these sub-
trees on the basis of having largest, hence similar, ranks. This might explain the
absence of growth observed in the Stasko—Vitter data. In the sequel, we refer to
the use of these greedy heuristics as strategy G.

We now present some new experimental results. As with the Stasko—Vitter
experiments, we likewise test the performance of the auxiliary twopass method
on runs that perform a sequence of operations subdivided into multiple rounds
(as described above), acting upon an initial structure, a binomial heap with n
nodes. As an alternative to strategy G, these experiments use information-
theoretic heuristics. These heuristics are similar to and perhaps more natural
than the rank and efficiency constructs from the analysis in Section 2, and serve
to motivate those constructs.

Linking outcomes are determined on the basis of tree size; the root of the
larger tree wins the comparison. An exception, however, is that the root of the
main tree at the onset of a round of operations wins the single comparison in
which it participates during the deletemin operation that ends the round. (This
exception corresponds to our adversary’s override of the rank rule in Section 2.)

The operands selected for decrease-key operations are children of the root of
the main tree, selected on the following basis. Associate with each link in the
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main tree an efficiency value defined as

size of child tree

. 2
size of parent tree

where the size values are assessed just prior to the linking. In view of the basis
for our linking decisions, the efficiency value associated with a link cannot
exceed 1. We choose the decrease-key operands for a round of operations to
consist of those children of the main tree root whose links to the root have the
highest efficiency values. The decrease-key operations on these nodes are
performed in random order. (Observe that a high efficiency value corresponds to
the notion of efficient linking used in our analysis.) In the sequel, we refer to the
use of these information-theoretic heuristics as strategy I-T.

Contrasting our experiment with the Stasko—Vitter experiment, one difference
is particularly noteworthy. Whereas strategy G selects its decrease-key operands
from the lower levels of the tree, strategy I-T selects these operands from among
the children of the root of the main tree. In terms of immediate impact on the
cost of the deletemin operation that ends a particular round, under strategy G
each decrease-key operation in the round increases the cost of this deletemin
operation, whereas under strategy I-T, this differential cost is zero. In this sense,
strategy I-T yields an advantage to strategy G since our goal is to maximize the
observed performance costs.

We have implemented both strategies G and I-T, measuring the resulting
performance costs as follows: Our measure of performance is in terms of average
round cost, where the cost associated with a given round of operations is defined
to be the number of linkings that take place, when executing the round, divided
by log, n, n = heap size. The results of the Stasko—Vitter [1987] experiments are
reported in terms of a work ratio definition, which differs from average round
cost by almost a constant factor (plus a constant offset). Comparing the results
we have obtained for strategy G with the previously reported results [Stasko and
Vitter 1987], we find that our implementation yields slightly greater work ratios,
but happily quite close to those previously reported (within 4.5%). (The descrip-
tion of the greedy strategy [Stasko and Vitter 1987], quoted above, allows for a
small amount of variation in its implementation.)

Our experiments evaluate average round costs over intervals consisting of 7/16
rounds (n = heap size). Our runs consist of 32 intervals, so that 2n rounds are
executed in each run. Strategy G is deterministic, and we have executed a run for
each of the cases n = 2'? and n = 2'® (the values used in Stasko and Vitter
[1987]), as well as for the additional intermediate case n = 2'5. For each run, we
compute the quantities g;, 1 = i = 32, where ¢, is defined to be the average of
the values (round cost)/log, n, where the average is taken over all rounds in the
ith interval. Strategy I-T uses randomization, and we have executed 100 runs for
each of the cases n = 2'2, and n = 2'8 as well as for the additional
intermediate case n = 2'°. For each of these three values for n, we compute for
the rth run the 32 interval averages, g, ,, 1 =i = 32, for 1 = r = 100. Then,
for each i, we compute the average and standard deviation of the 100 quantities,
qi.» 1 = r = 100, obtaining values ¢; and o;,, 1 = i = 32. The quantities c;
reflect average round costs during corresponding stages of the data structure
evolution, for the ensemble of 100 runs. For cases n = 2'% and 2'%, the plots
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FIG. 1. n = 2'2 and 2'8.

shown in Figure 1 display the quantities g;, associated with strategy G, and the
corresponding quantities ¢; associated with strategy I-T.

Although we have not presented a plot for the case, n = 2'°, we find that the
q; values for strategy G settle into a range from 2.71 to 2.72. Thus, strategy G
reveals no increase in the observed costs as n ranges over the three values, 212,
215 and 2'8.

When n = 2'5, strategy I-T generates ¢, values close to 2.81. Thus, strategy
I-T reveals an increase in the observed costs as n ranges over the three values,
212 215 and 2'8, generating respective costs, 2.59, 2.81, and 2.98, and overtakes
strategy G at n = 2'°. The standard deviations o;, 1 =i = 32, for the 32 sets
of corresponding interval data are small, being uniformly bounded, respectively,
by 0.02, 0.005, and 0.003, for the respective cases, n = 212,215 and 28,

4. Concluding Remarks and Open Problems

We have shown that generalized pairing heaps do not perform decrease-key
operations in constant amortized time, contrary to conjecture and experimental
evidence. More precisely, we have established that the amortized cost of the
decrease-key operation can be as high as (log log n) when n items are present
in the heap. The particular variants of pairing heaps that have been suggested in
Fredman et al. [1986] and Stasko and Vitter [1987] are all instances of general-
ized pairing heaps, and therefore subject to this lower bound. We have further
demonstrated that even if we allow (1 — ¢) log, log, n bits of balance
information in the tree nodes, the same result holds. Additionally, we have
presented experimental findings concerning pairing heaps, suggesting that growth
in the amortized cost of decrease-key operations is a detectable phenomenon.
We mention a positive result in connection with pairing heaps. Consider
performing a sequence of m = n heap operations, beginning with an initially
empty heap, which includes at most n deletemin operations, and such that the
heap size does not exceed n at any point. Then the total execution cost of the
sequence does not exceed O(m log,,,,, n). Thus, under these circumstances
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pairing heaps are at least as efficient as d-heaps [Johnson 1975]. In particular, for
applications involving graph algorithms (e.g., shortest path, minimum spanning
tree) on dense graphs, where the number of edges grows as n' "¢, this result
implies that the decrease-key operations contribute only constant cost per
operation to the total execution cost. This result is derived by using the same
potential function used for the analysis of pairing heaps in Fredman et al. [1986],
but within the context of a nonlinear amortized analysis; a deletemin operation
with actual cost ¢ decreases the potential by at least ¢ log(#/log n) — log n.

Our lower bound analysis does not readily generalize to include the following
modification of the pairing heap data structures. Consider maintaining parent
pointers in the data structure; when performing a decrease-key operation a check
is first performed to determine whether heap-order is violated by the new key
value, performing a cut only in this instance. It should be noted, however, that
this modification, even if theoretically fruitful, diminishes the practical effective-
ness of these data structures.

We close with two open problems. First, the analysis of pairing heaps is far
from complete; the gap between the upper and lower bounds remains large. The
second problem is to analyze pairing heaps, modified to include parent pointers
in the nodes as described above, for which our lower bound analysis is not
applicable.
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