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ABSTRACT

Test-based automated program repair has been a proli�c �eld of re-

search in software engineering in the last decade. Many approaches

have indeed been proposed, which leverage test suites as a weak, but

a�ordable, approximation to program speci�cations. Although the

literature regularly sets new records on the number of benchmark

bugs that can be �xed, several studies increasingly raise concerns

about the limitations and biases of state-of-the-art approaches. For

example, the correctness of generated patches has been questioned

in a number of studies, while other researchers pointed out that

evaluation schemes may be misleading with respect to the process-

ing of fault localization results. Nevertheless, there is little work

addressing the e�ciency of patch generation, with regard to the

practicality of program repair. In this paper, we �ll this gap in the

literature, by providing an extensive review on the e�ciency of test

suite based program repair. Our objective is to assess the number of

generated patch candidates, since this information is correlated to

(1) the strategy to traverse the search space e�ciently in order to

select sensical repair attempts, (2) the strategy to minimize the test

e�ort for identifying a plausible patch, (3) as well as the strategy to

prioritize the generation of a correct patch. To that end, we perform
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a large-scale empirical study on the e�ciency, in terms of quantity

of generated patch candidates of the 16 open-source repair tools

for Java programs. The experiments are carefully conducted under

the same fault localization con�gurations to limit biases. Eventu-

ally, among other �ndings, we note that: (1) many irrelevant patch

candidates are generated by changing wrong code locations; (2)

however, if the search space is carefully triaged, fault localization

noise has little impact on patch generation e�ciency; (3) yet, cur-

rent template-based repair systems, which are known to be most

e�ective in �xing a large number of bugs, are actually least e�cient

as they tend to generate majoritarily irrelevant patch candidates.
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1 INTRODUCTION

In the last decade, Automated Program Repair (APR) [11, 26, 41]

has extensively grown as a prominent research topic in the soft-

ware engineering community. Figure 1 overviews the research ac-

tivities of this topic. The associated literature includes a broad

https://doi.org/10.1145/3377811.3380338
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range of techniques that use heuristics (e.g., via random muta-

tion operations [25]), constraints solving (e.g., via symbolic execu-

tion [44]), or machine learning (e.g., via building a code transfor-

mation model [13]) to drive patch generation. A living review of

automated program repair research appears in [42], which shows

that the research in this �eld has been revived with the seminal

work, ten years ago, of Weimer et al. [56] on generate-and-validate

approaches. Patches are generated to be applied on a buggy pro-

gram until the patched program meets the desired behaviour. In

the absence of formal speci�cations of the desired behaviour, test

suites are leveraged as a�ordable partial speci�cations for validat-

ing generated patches. Over the years, the community has incre-

mentally advanced the state-of-the-art with numerous test-based

approaches that have been shown e�ective in generating valid

patches for a signi�cant fraction of defects within well-established

benchmarks [16, 27, 36, 49].
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Figure 1: APR research publications since 20091.

Several studies have revisited the constraints and performance

of program repair systems, and have thus contributed to shaping

research directions towards improving the state-of-the-art. For

example, Qi et al. [48] have early shown that repair tools generate

mostly over�tting patches (i.e., patches that pass the incomplete

test suites) but are actually incorrect. Their study led to assessment

results being now carefully presented in a way that highlights the

capability of new approaches to correctly repair programs. Motwani

et al. [43] then questioned whether state-of-the-art approaches can

deal with hard and important bugs. Liu et al. [29] recently revealed

signi�cant biases with fault localization con�gurations in APR

system evaluations. More recently, Durieux et al. [7] have shown

that state-of-the-art tools may actually be over�tting the associated

study benchmarks.

Performance measurement of repair systems has evolved to pro-

gressively consider the number of correctly-�xed bugs or the di-

versity of benchmark bugs [7] that are �xed. Another performance

aspect that deserves investigation is the e�ciency of the patch

generation system. It is however mentioned in only a few assess-

ment reports [12, 63]. Yet, e�ciency is a key property for bringing

program repair into general use within practitioners’ settings. In-

deed, APR aims to alleviate the manual e�ort involved in resolving

software bugs, and holds this promise in two scenarios: in pro-

duction, it is expected to drastically reduce the time-to-�x delays

and minimize downtime; in a development cycle, APR can help

suggest changes to accelerate debugging. Yet, until now, literature

approaches [15, 31, 31, 51, 63] have mainly focused on highlighting

the increased performance on eventually �xing more and more

benchmark bugs. In recent work, Ghanbari et al. [12] raised the e�-

ciency issue and built on the time cost criterion to demonstrate the

e�ciency of their PraPR tool (which does not require re-compiling

1Data are extracted from Monperrus’s living review on APR [42].

source code). This criterion, which was already mentioned in a

few of the previous work [33, 57, 63], however, has limitations

with respect to generalizability (cf. Section 2): execution time is (1)

dependent on many variables that are unrelated to the approach

implemented in the repair system; and (2) is generally unstable.

We postulate that the e�ciency of test-based program repair

should be assessed along with the following question: how many

attempts does the repair systemmake before catching a valid

patch? In previous work, Qi et al. [47] have formulated this ques-

tion into a metric that served to assess the e�ectiveness of fault

localization techniques in a platform-agnostic manner. To the best

of our knowledge, little attention has been paid to measuring repair

e�ciency by estimating the number of validated patch candidates.

In this paper, we report on the results of a large scale empiri-

cal study on the e�ciency of test-based program repair systems.

Our study considers 16 APR systems targeting Java programs, and

performs a systematic assessment under identical and controlled

fault localization con�gurations. The objective of this work is to

contribute a comprehensive analysis of repair e�ciency to the lit-

erature with respect to generated patches for a large spectrum of

APR systems. Eventually, we gather insights on how the strategies

of approaches in the literature a�ect repair e�ciency. Overall, we

mainly �nd that:

F0: So far, e�ciency is not a widely-valued performance target.

We found that state-of-the-art APR tools are the least e�-

cient. This calls for an industry investigation of the impact

of e�ciency on adoption (or lack thereof).

F1: Across time, repair tools subsume each other in terms of

which benchmark bugs can be �xed. Unfortunately, e�ective-

ness (i.e., how many bugs are eventually �xed) is increased

at the expense of e�ciency (i.e., how many repair attempts

are made before a given bug is �xed).

F2: Template-based repair systems are generally ine�cient as

they produce too many patch candidates. However, when the

templates are mined from clean datasets or are specialized

to speci�c bugs, e�ciency can be substantially improved.

F3: Literature approaches develop a few strategies, such as con-

straint solving or donor code search, which contribute to

drastically reducing the nonsensical or in-plausible patches.

F4: APR systems that implement random search over the repair

search space require large sets of patch candidates to increase

the likelihood of hitting a correct patch.

F5: Implementation details can diversely in�uence the repair

e�ciency of an APR approach.

2 BACKGROUND AND MOTIVATION

Test suite based program repair systems commonly implement a

three-step pipeline as illustrated in Figure 2: fault localization,

which produces a ranked list of suspicious code locations that

should be modi�ed to �x the bug; patch generation, which im-

plements the change operators that are applied on the buggy code

locations; and patch validation, which executes the test cases to

check that the patched program meets the behaviour (approxima-

tively) speci�ed by the test suite.

If a patch candidate can pass all the given test cases (both previously-

passing and previously-failing test cases on the buggy version), it is
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Figure 2: Standard steps in a pipeline of Automated ProgramRepair.

regarded as a valid patch. This criterion was �rst used by Weimer

et al. [56] in their seminal work on GenProg, and has become the

de-facto metric of repair performance [26]. Nevertheless, as later

studies have revealed, even if a generated patch can pass all test

cases, it might break a necessary behaviour or introduce other

faults, which are not covered by the given test suite [52]. Besides,

a developer may not accept the patch due to several reasons such

as coding convention [17, 40]. All such valid patches in terms of

the test suite are therefore now referred to as plausible since they

require further investigations to ensure that they are correct, i.e.,

acceptable to developers. In the literature, correctness is generally

assessed manually by comparing the APR-generated patch against

the developer-provided patch available in the benchmark.

Studies in the literature, such as the recent work of Durieux et al. [7]

on benchmark over�tting, generally focus on information about

plausible patches given that correctness is hard to assess. Our work

is the �rst to explore artifacts from the literature, where researchers

provide correctness labels of their generated patches, in order to

extract and categorize implicit rules used by the community to

de�ne correctness. We expect that these rules will be studied and

augmented by the community to enable systematic assessment of

correctness.

E�ciency of APR tools has been assessed in the literature [12,

14, 57, 63] via measuring the time-to-generate-and-validate patches.

Table 1 presents the time cost of the PraPR [12] state-of-the-art

repair tool on Defects4J [16] program samples. On average, for

each Closure bug, PraPR generated and validated more than 29

thousand patches, approximately 10 times more than the average

number of patches that are generated and validated for each Chart

bug. Yet, the time cost for Closure bugs is 20 times more than the

time cost for Chart bugs. This suggests that it is challenging to

de�ne a generically-suitable time budget for repairing bugs. We fur-

ther note that correlation tests did not reveal any linear correlation

between the time cost of repairing a bug and benchmark properties

such as the number of test cases or program sizes. Consequently,

time cost may not be a reliable metric for e�ciency.

Table 1: Average PraPR time cost (s) & # patches per bug [12].

Subjects # Validated Patches Time cost (s)

Chart 2,827.6 157.8

Closure 29,849.9 3,027.3

To further highlight the biases that execution time may carry, we

refer to literature settings of time budgets for running APR systems:

ACS [63] and SimFix [15] are evaluated with repair time budgets

of 30 minutes and 5 hours, respectively. Furthermore, in [15], as-

sessment comparison between ACS and SimFix does not consider

the bias related to the di�erence between the execution platforms.

A comparison of performance (in terms of how many bugs each

tool can �x) may, therefore, be misleading: a given bug may have

been �xed by one tool because the time budget is su�cient while it

cannot be �xed by the other due to lack of time.

With two simple experimental runs of compiling and testing

Defects4J samples, we con�rm our concerns: time budgets could

introduce biases for di�erent bugs. Indeed, as revealed in Figure 3,

di�erent machine con�gurations may lead to drastically diver-

gent compiling and testing time: irrespectively of projects. The

Mann–Whitney–Wilcoxon tests [37, 60] con�rm that the �rst ma-

chine consumes statistically signi�cantly more CPU time than the

second machine either for compilation or for testing Defects4J

buggy programs. These results de�nitively suggest that time cost

is not a reliable metric to enable reproducible and comparable ex-

periments on the e�ciency of program repair.
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Figure 3: Distribution CPU times for compiling and testing De-

fects4J programs.

• Machine 1 runs OS X El Capitan 10.11.6 with 2.5 GHz Intel Core i7, 16GB 1600MHz DDR3 RAM.

• Machine 2 runs macOS Mojave 10.14.1 with 2.9 GHz Intel Core i9, 32 GB 2400MHz DDR4 RAM.

Instead, we propose to rely on the metric of number of gener-

ated patch candidates, which should be intrinsic to the approach

and agnostic of machine con�guration variabilities.

3 STUDY DESIGN

This section presents the design details of this empirical study.

3.1 Research Questions

Overall, our investigation into the e�ciency of test-based APR

systems seeks answers for the following research questions (RQs):

(1) RQ1. Repairability across time: We �rst revisit the classical

performance criterion of APR systems, which is about the re-

pairability (i.e., e�ectiveness): howmany bugs can be �xed by test

suite based repair approaches? Our investigation goes beyond

previous studies in the literature by (i) systematically assessing

a large range of repair systems under the same con�gurations

(see Section 3.3.2); and (ii) exploring not only plausibility but

also the correctness of patches (see Section 3.3.3). Eventually,

we investigate the evolution across time of e�ectiveness to bet-

ter discuss the need for revisiting e�ciency as an important

complementary performance criterion.

(2) RQ2. Patch generation e�ciency: Based on the experimen-

tal outputs of benchmarking repair systems in RQ1, we can

investigate the e�ciency of test-based repair: how many patch

candidates are generated and checked before �xing a given bug?

Although program repair is often regarded as a background/of-

�ine task, e�ciency remains critical since resource budgets are

limited. Therefore, e�ciency may have adverse e�ects on the

adoption of the repair system and even on its e�ectiveness. In

this RQ, we extensively review two cases of invalid patches
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whose generation may undermine e�ciency: nonsensical and

in-plausible patches (see Section 3.5).

(3) RQ3. Fault Localizationnoise impact on e�ciency: Finally,

given that fault localization is known to provide noisy inputs

to repair, we investigate its impact on e�ciency to highlight

repair directions for mitigations. Mainly, we question whether

some repair strategies are more or less resilient to repair attempts

on wrong code locations. Our study di�ers from recent work [29]

in the literature, which explores the bias of fault localization on

repairability with only one repair system.

3.2 Subject Selection

Our study focuses on APR systems targeting Java programs. Java is

indeed today the most targeted language in the community of pro-

gram repair. Furthermore, a well-formed dataset of real-world Java

program bugs is available, with the necessary tool support to read-

ily compile and execute programs. Although we initially planned

to consider all repair approaches proposed in the last decade, we

were limited by the fact that many APR tools are not open-source

or even publicly available.

In the end, APR systems considered for our study are systemati-

cally selected based on the following criteria:

(1) Availability: our study involves the execution of APR tools, thus

APR approaches without publicly available tools are excluded.

(2) Executability: some APR approaches provide publicly available

tools, which however cannot be executed as-is for diverse issues

(e.g., ssFix [61] failed to execute because of an online connection

to a private search engine fails). We exclude such approaches

from the study.

(3) Con�gurability: to limit biases, we need to con�gure the dif-

ferent tools to use the same input information (e.g., fault local-

ization details). We, therefore, exclude APR approaches whose

tools cannot be readily con�gured. For example, HDRepair [22]

implementation is tied to an assumption that exact information

on the faulty method is �rst available.

(4) Standalone: �nally, our selection ensures that we focus on APR

approaches where the tools can be run if provided with Java

program source code and the available test suite. Therefore, any

tool that would require extra data is excluded (e.g., LSRepair [32]

requires run-time code search over Github repositories).

We consider two sources of information to identify Java APR

tools: the community-led program-repair.org website and the living

review of APR by Monperrus [42]. As of July 2019, 31 APR tools

were targeting Java programs listed in the literature. After system-

atically examining these tools, 16 are found to satisfy our criteria

and are therefore �nally selected. Table 2 enumerates all Java-based

APR tools and provides arguments for rejection/consideration. We

categorize them into three main categories: heuristic-based [26],

constraint-based [26], and template-based [17] repair approaches.

Heuristic-based repair approaches. These approaches construct

and iterate over a search space of syntactic program modi�ca-

tions [26]. Associated tools include jGenProg [38], GenProg-A [67],

ARJA [67], RSRepair-A [67], SimFix [15], jKali [38], Kali-A [67], and

jMutRepair [38]. jGenProg and GenProg-A are Java implementa-

tions of GenProg [56], which generates patches by searching donor

code from existing code with the genetic programming method.

Table 2: Included and excluded APR tools for our study.

Selected Reason APR Tools for Java Programs

No Not public
PAR [17], xPAR [22], JFix/S3 [21], ELIXIR [50],

Hercules [51], SOFix [33], CapGen [57], PraPR$ [12].

No
Faulty method
required

HDRepair [22], JAID [4], SketchFix [14].

No Other LSRepair∗ [32], ssFix⋆ [61], DeepRepair† [59], NPEFix‡ [6].

Yes
Open-source
& working

jGenProg [38], jKali [38], jMutRepair [38], Cardumen [39],
DynaMoth [8], Nopol [64], ACS [63], SimFix [15],
kPAR [29], FixMiner [19], AVATAR [30], TBar [31],

ARJA [67], GenProg-A [67], Kali-A [67], RSRepair-A [67].

$PraPR was not available before August 2019. ∗LSRepair relies on the data from the run-time
GitHub repositories and needs a private deep learning model [28] and an online code search en-
gine [18] to search syntactically- or semantically-similar code, which would be biased to assess its

repair e�ciency. ⋆ssFix fails to execute as it relies on a private code search engine that is failed

to connect. †DeepRepair is not working, thus it is not selected. ‡NPE�x is not selected as it does
not use any fault localization technique.

ARJA is also a genetic programming approach to optimizing the

exploration of the search space by combining three di�erent ap-

proaches. RSRepair-A is a Java implementation of RSRepair [46],

a Random-Search-based Repair tool, which tries to repair faulty

programs with the same mutation operations as GenProg but uses

random search, rather than genetic programming, to guide the

patch generation process. SimFix utilizes code change operations

from existing patches and similar code to build two search spaces,

of which intersection is further used to search �x ingredients for re-

pairing bugs. jKali and Kali-A are Java implementations of Kali [48]

that �xes bugs with three actions: removal of statements, modi�ca-

tion of if conditions to true/false, and insertion of return statements.

jMutRepair implements the mutation-based repair approach [5]

for Java programs, with three kinds of mutation operators (i.e.,

relational, logical and unary) to �x buggy if-condition statements.

Constraint-based repair approaches. These approaches generally

focus on �xing a single conditional expression that is more prone

to defects than other types of program elements. Nopol [64], Dy-

naMoth [8] ACS [63], and Cardumen [39] are dedicated to repairing

buggy if conditions and to adding missing if preconditions. Nopol

relies on an SMT solver to solve the condition synthesis problem.

DynaMoth leverages the runtime context, which is a collection of

variable and method calls, to synthesize conditional expressions.

ACS is proposed to re�ne the ranking of ingredients for condition

synthesis. Cardumen repairs bugs by synthesizing patch candi-

dates at the level of expressions with its mined templates from the

program under repair to replace the buggy expression.

Template-based repair approaches. These approaches are also of-

ten referred to as pattern-based and include kPAR [29], AVATAR [30],

FixMiner [19] and TBar [31]. kPAR is the Java implementation of

PAR [17] that repairs bugs with �x patterns manually summarized

from human-written patches. FixMiner automatically mines �x pat-

terns from the code repository for patch generation. AVATAR relies

on the �x patterns for static analysis violations. TBar combines

diverse �x patterns collected from the literature.

Note that, technically, template-based repair approaches can be

viewed as heuristics-based approaches. In this study, however, we

separate them in their category to highlight their speci�city. Finally,

there exist some repair approaches that are enhanced by machine

learning techniques. Le Goues et al. [26] refer to them as learning-

based repair approaches. One example of such approaches is the

Prophet tool by Long and Rinard [35]: it learns from a corpus of code

a model of correct code, which indicates how likely a given piece

of code is w.r.t. the code corpus. Our criteria of subject selection

http://program-repair.org/
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however excluded all learning-based repair as they are generally

not “standalone”.

Our study considers the most diverse set of repair tools in the litera-

ture for a systematic assessment of APR. Notably, we cover di�erent

categories of repair approaches, while the previous record for a large

scale study, which is held by Durieux et al. [7] on APR benchmark

over�tting, did not consider the most widespread template-based

tools. Furthermore, their study did not include ACS and SimFix from

the current state-of-the-art in Java APR.

3.3 Experiment Settings

We now overview the inputs (i.e., buggy programs and fault local-

ization information) and the validation process used in our study.

3.3.1 Defect Benchmark. TheAPR literature includes several bench-

marks [16, 17, 36, 49]. In recent work, Durieux et al. showed that

APR systemmay over�t the study benchmarks in terms of repairabil-

ity. Since our objective is on e�ciency, we focus on a single com-

monly used benchmark in the literature. We consider Defects4J [16]

as it has been widely employed to assess approaches [15, 22, 32, 57],

or to conduct various APR studies [34, 53, 55, 58], as well as other

software engineering research [2, 3, 45, 47]. Defects4J consists of

395 bugs across six Java open source projects. Its dissection infor-

mation [53] shows that the dataset contains a diversity of bug types.

Our experiments thus consist of running each selected APR tool

to generate patches in an attempt to �x each Defects4J bug. Over-

all, our experiments led to 347,603 repair attempts (each attempt

requiring program compilation and testing against the test suite).

3.3.2 Fault Localization. As reported by Liu et al. [29], repair per-

formance of APR tools could be biased by fault localization settings.

To minimize such potential bias, we take on the challenge and im-

plementation e�ort to re-con�gure all APR tools so that they are

using the same fault localization information for each Defects4J bug.

In our experiments, we employ the latest release of GZoltar v1.7.2,

an on-hand test automation framework. Note that early versions of

this tool were widely used in the APR community [15, 38, 57, 63].

However, Liu et al. revealed that the new version yields better re-

sults in the context of program repair [29]. For sorting suspicious

statements, we use the Ochiai[1] ranking metric. Eventually, APR

tools are fed with a ranked list of suspicious source code statements

that should be changed within the buggy program to repair it.

3.3.3 Patch Validation. Patch validation is performed by APR sys-

tems based on the execution outcome of regression and bug-triggering

test cases, i.e., test cases that are passed by the buggy program and

those that, because they are not passed, reveal the existence of a bug.

If a patch candidate can make the revised buggy program pass the

entire test suite successfully, it is considered as a valid patch. Such

a patch, however, could be incorrect if it is just over�tting the test

suite [48, 62]. Thus, the community has adopted the terminology

of plausible [48] patches to refer to patches that pass all test cases.

In recent literature, following the criticism on over�tting, re-

searchers are shifting towards investigating correctness [20, 62]. So

far, this has been a manual e�ort based on a recurrent criterion: a

plausible patch is considered as correct when it is semantically similar

to the developer’s patch in the benchmark. Unfortunately, the scope

of semantics for APR is not explicitly de�ned as it is subjective.

Table 3: Example rules that the community applies to con�rm se-

mantic similarity between tool-generated and developer-provided

patches.
Rule ID Rule description Illustrations

R1

Di�erent �elds with the
same value (or alias)

- return cAvailableLocaleSet.contains(locale);

+ return availableLocaleList().contains(locale);

e.g., AVATAR→Chart-7 + return cAvailableLocaleList.contains(locale);

R2

Same exception but
di�erent messages

+ throw new NumberFormatException(str +

" is not a valid number.");

e.g., ACS→Time-15 + throw new NumberFormatException();

R3

Variable initialization
with new rather than a
default value

+ if (str == null) str = "";

e.g., TBar→Lang-47 + if (str == null) str = new String();

R4

if statement instead + classes[i] = array[i] == null ? null : array[i].getClass();

of a ternary operator + if (array[i] == null) continue;

e.g., TBar→Lang-33 + classes[i] = array[i].getClass();

R5

Unrolling a method
- this.elitismRate = elitismRate;

+ setElitismRate(elitismRate);

+ if (elitismRate>(double)1.0){throw ...;}

e.g., ACS→Math-35 + if (elitismRate<(double)0.0){throw ...;}

R6

Replacing a value
without a side e�ect

- int g = (int) ((value - this.lowerBound) / (this.upperBound

+ int g = (int) ((v - this.lowerBound) / (this.upperBound

e.g.,
FixMiner→Chart-24

- v = Math.min(v, this.upperBound);

+ value = Math.min(v, this.upperBound);

R7
Enumerating

- if (fa * fb >= 0.0 ) {

+ if (fa * fb > 0.0 ) {

e.g., ACS→Math_85 + if (fa * fb >= 0.0 &&!(fa * fb==0.0))

R8
Unnecessary code
uncleaned

- boolean wasWhite= false;

for(int i= 0; i<value.length(); ++i) {

- if(Character.isWhitespace(c)) { ...... }

- wasWhite= false;

e.g.,
AVATAR→Lang-10

- if(Character.isWhitespace(c)) { ...... }

- wasWhite= false;

R9
Return earlier instead of
a packaged return

- return foundDigit && !hasExp;

+ return foundDigit && !hasExp && !hasDecPoint;

e.g., ACS→Lang-24 + if (hasDecPoint==true){return false;}

R10 More null checks
+ if (searchList[i] == null || replacementList[i] == null)

+ { continue; }

e.g., SimFix→Lang-39
+ if(noMoreMatchesForReplIndex[i]||searchList[i]==null

+ ||searchList[i].length()==0||replacementList[i]==null)

+ { continue; }

We applied these rules to determine whether a plausible patch is a correct one when it is syntactically di�erent
from the patch that a developer wrote. In the second column, “tool_name→bugID” denotes that the patch
generated by the tool is identi�ed as correct. The patches in the grey background are generated by APR tools
while the patches in the white background are patches written by the developers.

We propose in this work to provide a �rst attempt of explicitly

determining semantic similarity among patches. Our objective is

to reduce the threat of subjectivity and enable reproducible experi-

ments. To that end, we call on the community and consider labels of

patches within APR research artifacts. We manually revisit patches

that are generated by APR tools and which researchers have con-

sidered as correct in the literature. The objective is to unveil the

implicit rules that researchers use to make the decisions on correct-

ness. We �nd that there are broadly two scenarios when comparing

a generated patch against the developer-provided patch:

(1) Identical patches: in this case, the two patches are exactly

identical, excluding variations in whitespace, layout, and com-

ments.

(2) Semantically-similar patches: in this case, the patches are

not identical, although developers regard that they have the

same e�ect on the program behavior. In Table 3 we summarize a

taxonomy of correctness decision based on our study of patches

labeled as correct by the research community. This taxonomy

is based on the patches generated by ACS, SimFix, AVATAR,

FixMiner, kPAR, and TBar whose authors investigated correct-

ness and provided their manually labeled patches as research

artifacts.

In the remainder of this paper, for the experiments with the 16

APR tools, we will systematically build on the rules of Table 32 to

label plausible patches as correct. Thus, unless a generated patch is

2We enumerated only 10 rules in this paper due to space limitation. Please visit https:
//github.com/SerVal-DTF/APR-E�ciency for more rules and detailed descriptions.

https://github.com/SerVal-DTF/APR-Efficiency
https://github.com/SerVal-DTF/APR-Efficiency
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identical to the developer patch, it must fall under rules R1-10 to

be labeled as correct. Our rules are certainly not exhaustive neither

for de�ning semantic similarity nor for de�ning patch correctness.

We call on a community e�ort to augment these rules to enable

reproducible research.

Due to space constraints, we only detail here a single rule. Con-

sider rule R5: In the illustration example, the developer patch en-

sures that boundaries are checked by calling a function that imple-

ments it. In contrast, a patch generated by ACS [63] directly inserts

the necessary code to check the boundary. Both patches, which are

not syntactically identical, are semantically similar.

In the end, plausible and correct patches have the following

relationship: Let P and C be sets of plausible and correct patches,

respectively. It always holdsC ⊆ P . We compute
|C |
|P |

as theCorrect-

ness Ratio (CR) of generated plausible patches that are correct.

3.3.4 Halting Threshold. In the APR community, it is commonly

accepted that patch generation processes are halted if a system runs

out of the time budget before being able to �nd a valid patch. As

discussed in Section 2, time can be a biased metric. Therefore, in this

study, we propose to halt the repair systems by setting a threshold

of repair attempts for a given bug. We set the threshold of attempts

as 10,000. This number is selected based on the reported average

number (9,696.5) of patch candidates generated by PraPR [12] for

its �xed bugs. Given that PraPR works at the mutation level and

does not require re-compilation, the number of attempts could be

higher than that of other tools and it is high enough for the 16 APR

tools employed in this study.

3.4 Terminology

Given that correct patches are �rst and foremost plausible patches,

we propose in this work to use the term valid patches when re-

ferring to all plausible patches (including correct ones). Unless

otherwise speci�ed, we will also refer to as plausible all valid

patches that have not yet been manually assessed as correct. We

consciously avoid the term incorrect since the de�nition of correct-

ness in Section 3.3.3 is sound, to some extent3, but is not complete

(i.e, there are some cases of semantic similarity that are missed).

3.5 E�ciency Metric: NPC

As motivated in Section 2, we employ as e�ciency metric in this

study the number of patch candidates (NPC) generated by APR tools

until the �rst plausible patch is found. This metric was initially pro-

posed byQi et al. [47] as a proxy tomeasure the performance of fault

localization techniques based on program repair tools. JAID [4] and

PraPR [12] recently used them to highlight the performance of their

approaches. Nevertheless, e�ciency has not been systematically

assessed before. In this study, we further di�erentiate generated

patches that turn out to be invalid into two groups:

(1) Nonsensical patch: Such a patch cannot evenmake the patched

buggy program successfully compile [17, 40].

(2) In-plausible patch: Such a patch lets the patched buggy pro-

gram successfully compile, but fails to pass some test cases in

the available test suite.

3The developer-patch provided in the benchmark, which we use as ground truth, may
be erroneous as well.

Our e�ciency metric is then computed by summing the number of

patches in each category:

NPC = NPCnonsensical + NPCin−plausible + NPCvalid

In practice, NPCvalid == 1 since the generation of patches is

halted as soon as the �rst valid patch is found. In this study, since

we aim to investigate the repair e�ciency, we focus on bugs for

which the repair attempts were successfully concluded. Thus, our

experimental data do not mention the cases where many patch

candidates are generated but none of them was valid. We leave this

investigation as a future study.

4 STUDY RESULTS

We now provide experimental data as well as the key insights that

are relevant to our research questions.

4.1 RQ1: Repairability Across Time

Table 4 provides execution outcomes of 16 repair tools on the De-

fects4J benchmark. We count the number of bugs that are plausibly

�xed by each tool implementation, and further provide the number

of plausible patches that can be considered as correct following the

rules of patch validation (cf. Section 3.3.3).

Table 4: Numbers of Defects4J bugs that are correctly (plausibly)

�xed by the di�erent APR tools.

APR Tool C Cl L M Mc T Total CR(%)

jGenProg 0 (5) 0 (2) 0 (2) 3 (11) 0 (0) 0 (0) 3 (20) 15
GenProg-A 0 (5) 2 (15) 0 (1) 0 (9) 0 (0) 0 (0) 2 (30) 6.7
jMutRepair 1 (4) 2 (5) 0 (2) 2 (11) 0 (0) 0 (0) 5 (22) 22.7
kPAR 3 (13) 2 (10) 1 (18) 4 (22) 0 (0) 0 (1) 10 (63) 15.9
RSRepair-A 0 (4) 2 (22) 0 (3) 0 (12) 0 (0) 0 (0) 2 (41) 4.9
jKali 0 (4) 1 (8) 1 (4) 2 (9) 0 (0) 0 (0) 4 (25) 16
Kali-A 0 (6) 2 (48) 0 (0) 1 (10) 0 (1) 0 (0) 3 (65) 4.6
DynaMoth 0 (6) N/A 0 (2) 1 (13) 0 (0) 0 (1) 1 (22) 4.5
Nopol 0 (6) N/A 1 (6) 0 (18) 0 (0) 0 (1) 1 (31) 3.2
ACS 2 (2) 0 (0) 3 (3) 10 (16) 0 (0) 1 (1) 16 (22) 72.7
Cardumen 1 (4) 0 (2) 0 (0) 1 (6) 0 (0) 0 (0) 2 (12) 16.7
ARJA 1 (10) 2 (29) 0 (3) 4 (15) 0 (1) 0 (0) 7 (58) 12.1
SimFix 3 (8) 7 (19) 5 (16) 10 (25) 0 (0) 0 (0) 25 (68) 36.8
FixMiner 5 (14) 0 (2) 0 (2) 7 (15) 0 (0) 0 (0) 12 (33) 36.4
AVATAR 5 (12) 7 (15) 4 (13) 3 (17) 0 (0) 0 (0) 19 (57) 33.3
TBar 7 (16) 3 (12) 6 (21) 8 (23) 0 (0) 0 (0) 24 (72) 30.8

∗The numbers outside the parentheses indicate the bugs �xed with correct patches while the
numbers inside parentheses indicate the number of plausible patches. The missing numbers are
marked with N/A as we failed to change the fault localization input for Closure program bugs
for DynaMoth and Nopol, of which fault localization is tightly tied with GZoltar-0.0.1. “C, Cl,
L, M, Mc, and T” represent Chart, Closure, Lang, Math, Mockito and Time, respectively. The
same as Table 8.

• [Template-based repair tools are the most e�ective.] We observe

that kPAR, FixMiner, AVATAR and TBar, which are template-based

repair tools, present better repair performance than other tools in

terms of the number of �xed bugs. The state-of-the-art, SimFix,

also performs among the top. Note that, although it is classi�ed

as heuristics-based, and does not use templates explicitly, it per-

forms transformations based on similar changes, and thus has been

presented in previous studies [31] as template-based.

• [Patch ordering strategies are necessary to increase the likelihood

of hitting correct patches.] Among the 16 repair tools, ACS exhibits

the highest ratio of plausible patches that are found to be correct.

This experimental �nding con�rms the strategy used by the authors

to increase “precision”4 in patch generation: these are dependency-

based ordering, document analysis, and predicate mining.

4Precision is the terminology employed by its authors to refer to the ratio of correct
patches to plausible patches.
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Table 5: Number of overlapped �xed bugs per repair tool.

jGenProg GenProg-A jMutRepair kPAR RSRepair-A jKali Kali-A DynaMoth Nopol ACS Cardumen ARJA SimFix FixMiner AVATAR TBar

jGenProg 5.0% (1) 40.0% (8) 45.0% (9) 55.0% (11) 45.0% (9) 40.0% (8) 40.0% (8) 35.0% (7) 25.0% (5) 20.0% (4) 30.0% (6) 60.0% (12) 80.0% (16) 45.0% (9) 60.0% (12) 85.0% (17)
GenProg-A 26.7% (8) 0.0% (0) 36.7% (11) 46.7% (14) 90.0% (27) 33.3% (10) 80.0% (24) 23.3% (7) 20.0% (6) 16.7% (5) 10.0% (3) 96.7% (29) 40.0% (12) 30.0% (9) 43.3% (13) 53.3% (16)
jMutRepair 40.9% (9) 50.0% (11) 4.5% (1) 68.2% (15) 50.0% (11) 59.1% (13) 54.4% (12) 31.8% (7) 22.7% (5) 18.2% (4) 13.6% (3) 63.6% (14) 77.3% (17) 45.5% (10) 86.4% (19) 90.9% (20)
kPAR 17.5% (11) 22.2% (14) 23.8% (15) 6.3% (4) 25.4% (16) 25.4% (16) 25.4% (16) 22.2% (14) 25.4% (16) 11.1% (7) 7.9% (5) 39.7% (25) 49.2% (31) 34.9% (22) 57.1% (36) 74.6% (47)
RSRepair-A 22.0% (9) 65.9% (27) 26.8% (11) 39.0% (16) 2.4% (1) 26.8% (11) 75.6% (31) 19.5% (8) 22.0% (9) 12.2% (5) 7.3% (3) 85.4% (35) 29.3% (12) 19.5% (8) 39.0% (16) 41.5% (17)
jKali 32.0% (8) 40.0% (10) 52.0% (13) 64.0% (16) 44.0% (11) 8.0% (2) 56.0% (14) 40.0% (10) 24.0% (6) 8.0% (2) 12.0% (3) 56.0% (14) 56.0% (14) 20.0% (5) 76.0% (19) 68.0% (17)
Kali-A 12.3% (8) 36.9% (24) 18.5% (12) 24.6% (16) 47.7% (31) 21.5% (14) 23.1% (15) 13.8% (9) 9.2% (6) 3.1% (2) 1.5% (1) 63.1% (41) 21.5% (14) 15.4% (10) 29.2% (19) 27.7% (18)
DynaMoth 31.8% (7) 31.8% (7) 31.8% (7) 63.6% (14) 36.4% (8) 45.5% (10) 40.9% (9) 0.0% (0) 54.5% (12) 13.6% (3) 9.1% (2) 50.0% (11) 54.5% (12) 50.0% (11) 54.5% (12) 59.1% (13)
Nopol 16.1% (5) 19.4% (6) 16.1% (5) 51.6% (16) 29.0% (9) 19.4% (6) 19.4% (6) 38.7% (12) 19.4% (6) 12.9% (4) 6.5% (2) 25.8% (8) 25.8% (8) 19.4% (6) 38.7% (12) 35.5% (11)
ACS 18.2% (4) 22.7% (5) 18.2% (4) 31.8% (7) 22.7% (5) 9.1% (2) 9.1% (2) 13.6% (3) 18.2% (4) 40.9% (9) 13.6% (3) 36.4% (8) 22.7% (5) 18.2% (4) 31.8% (7) 40.9% (9)
Cardumen 50.0% (6) 25.0% (3) 25.0% (3) 41.7% (5) 25.0% (3) 25.0% (3) 8.3% (1) 16.7% (2) 16.7% (2) 25.0% (3) 8.3% (1) 25.0% (3) 58.3% (7) 50.0% (6) 50.0% (6) 83.3% (10)
ARJA 20.7% (12) 50.0% (29) 24.1% (14) 43.1% (25) 60.3% (35) 24.1% (14) 70.7% (41) 19.0% (11) 13.8% (8) 13.8% (8) 5.2% (3) 6.9% (4) 31.0% (18) 25.9% (15) 39.7% (23) 43.1% (25)
SimFix 23.5% (16) 17.6% (12) 25.0% (17) 45.6% (31) 17.6% (12) 20.6% (14) 20.6% (14) 17.6% (12) 11.8% (8) 7.4% (5) 10.3% (7) 26.5% (18) 19.1% (13) 25.0% (17) 39.7% (27) 58.8% (40)
FixMiner 27.3% (9) 27.3% (9) 30.3% (10) 66.7% (22) 24.2% (8) 15.2% (5) 30.3% (10) 33.3% (11) 18.2% (6) 12.1% (4) 18.2% (6) 45.5% (15) 51.5% (17) 9.1% (3) 54.5% (18) 75.8% (25)
AVATAR 21.1% (12) 22.8% (13) 33.3% (19) 63.2% (36) 28.1% (16) 33.3% (19) 33.3% (19) 21.1% (12) 21.1% (12) 12.3% (7) 10.5% (6) 40.4% (23) 47.4% (27) 31.6% (18) 5.3% (3) 78.9% (45)
TBar 23.6% (17) 22.2% (16) 27.8% (20) 65.3% (47) 23.6% (17) 23.6% (17) 25.0% (18) 18.1% (13) 15.3% (11) 12.5% (9) 13.9% (10) 34.7% (25) 55.6% (40) 34.7% (25) 62.5% (45) 5.6% (4)

The intersection of tool X (row) and tool Y (column) contains the percentage of bugs �xed by X which are also �xed by Y. For instance, 40% of the bugs �xed by jGenProg (row 1) are also �xed by GenProg-A
(column 2). On the contrary, 26.7% of the bugs �xed by GenProg-A (row 2) are also �xed by jGenProg (column 1). While the diagonal cells present the number of bugs exclusively �xed by each repair tool.
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Figure 5: Repairing exclusivity of each APR tool (correct patches).

• [Through time, repair tools tend to subsume their predecessors

in terms of which bugs are �xed.] Table 5 provides statistics on the

percentage of �xed bugs that are overlapping between two repair

tools. In this table, the tools in column headers and row headers are

ordered chronologically concerning the date of approach publica-

tion. Note that jGenProg ranked based on the GenProg publication

year although the tool itself was implemented years later. We note

that the upper-right side of the table is relatively darker than the

rest: the percentages of overlapping are higher for these cells. These

results suggest that, overall, the bugs that are �xed by earlier tools

are also generally covered by more recent tools. Besides, evolution

trends presented in Figure 4 show that, although the number of

bugs that are �xed by the di�erent tools over the years is increasing,

the number of new bugs is increasing with small increments. This

result suggests that the strategies implemented in new approaches

tend to have similar outcomes as merging past techniques to cover

previous bug sets that were �xed each via di�erent approaches.

• [Recent APR tools tend to correctly �x more bugs than their

predecessors.] In the right part of Figure 4, a visible breakthrough

is the sharp increase of the light grey area indicating that recent

tools increasingly correctly �x bugs which have not been �xed

by previous tools. We further summarize in Figure 5 the number

of bugs that each tool can correctly �x exclusively or not. SimFix,

ACS, AVATAR, and TBar are leading repair tools that generate

correct �xes for more bugs. In contrast, jGenProg, GenProg-A,

jMutRepair, RSRepair-A, jKali, Kali-A, DynaMoth, and Cardumen

do not correctly �x any Defects4J bug that is not also correctly

�xed by another tool.

• [Implementation details can make a di�erence.] Finally, we ob-

serve that Java-targeted implementations of GenProg (i.e, jGenProg

and GenProg-A) and Kali (i.e., jKali and Kali-A) by di�erent research

groups yield diverging repair performance on the same benchmark.

Overall the systematic study of repairability of APR tools across

time reveals that (1) recent tools tend to �x more bugs than their

predecessors; (2) each newly-proposed repair tool however plausibly

�x few bugs that were not �xed by other tools; (3) more bugs can be

correctly-�xed by lately-proposed APR tools; and (4) template-based

repair tools are the most e�ective to eventually produce plausible

patches. It thus remains unclear whether the strategies proposed

by record-setting tools are improving the state-of-the-art of patch

generation. We propose to focus on e�ciency as a complementary

metric to assess performance gains.

4.2 RQ2: Patch Generation E�ciency

Following our motivation argument in Section 2, we use the NPC

scores (i.e., number of generated patch candidates that are checked

until a valid patch is found) to measure repair e�ciency of APR

tools. For each tool, the results focus on Defects4J bugs that are

�xed (i.e., a valid patch was eventually found). Indeed, through

e�ciency, we attempt tomeasure the ability of the APR tool to

avoidwasting computing resource, time and energy in patch

validation towards generating a valid patch.

Figure 6 overviews the general distributions of NPC scores of

the 16 repair tools on the Defects4J benchmark. For all tools, the

median NPC is lower than 250 patch candidates. However, the

distribution spread among bugs is not only signi�cant for several

(8 out of 16) tools but also varies across tools.

•[E�ciency is not yet a widely-valued performance target.] SimFix,

TBar and kPAR exhibit the highestNPC scores which can go beyond

1,000 patch candidates for some bugs. Correlating this data with

repairability �ndings (Section 4.1), we note that tools with highest

repairability scores also have the highest NPC scores (hence, lower

e�ciency). In particular, we note that APR approaches, which rely

on change patterns (i.e., standard template-based tools) or heuristi-

cally search for donor code based on code similarity (e.g., SimFix),
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Figure 6: The distribution of NPC scores for 16 APR tools.

produce the largest number of patch candidates. They are e�ective

since they end-up �nding a valid patch, but they are not e�cient

as they generate too many patches (comparing against other ap-

proaches) for repair attempts. On the other hand, constraint-based

APR tools (e.g., ACS) have the lowest NPC scores. There is, there-

fore, an insight that constraint-solving and synthesis strategies,

although they might require more computing e�ort to traverse the

search space, eventually yield patches which waste less resource

during test-based validation.

• [The state-of-the-art can avoid generating nonsensical patches.]

Figure 7 illustrates the contribution of nonsensical and in-plausible

patches to the NPC scores. The distributions of nonsensical patches

are interesting with respect to di�erent claims in the literature. In-

deed, to motivate their seminal work on template-based program

repair, Kim et al. [17], authors of the PAR tool, stated that pioneer

genetic programming based repair tools had the limitation that

it could generate nonsensical patches. Our empirical assessment

results back up this claim. However, our results also reveal that

template-based repair tools (e.g., kPAR and TBar) have not ful�lled

the claimed promise since they produce the largest numbers of non-

sensical patches. This �nding calls for a triaging strategy targeting

nonsensical patches within the search space. In this regard, our

experimental results highlight three tools (i.e., DynaMoth, Nopol,

and SimFix), which do not generate any nonsensical patches.

Nopol uses an SMT solver to address the condition patch synthe-

sis problem. DynaMoth leverages the runtime context, collects vari-

able and method calls to synthesize conditional expression patches.

SimFix heuristically searches similar code from the intersection of

two search spaces: one is for donor code and the other one is for

code change actions, to generate patches. A noteworthy result is

that, while Nopol and DynaMoth overall generate few candidates,

SimFix generates the largest number of patch candidates, none of

which is ever found nonsensical. This �nding suggests that code

similarity has a large in�uence and can be useful for e�ectively

triaging the repair search space.

Besides Nopol, Dynamoth, and SimFix, �ve repair tools (i.e,

jMutRepair, jKali, Kali-A, Cardumen and ARJA) generate signi�-

cantly more in-plausible patches than nonsensical ones. jMutRepair,

jKali and Kali-A are implemented with simple mutation operators

that are unlikely to prevent the programs from compiling. However,

these mutation operations can lead to test failures. ARJA’s e�ciency
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Figure 7: Distributions of NPCnonsensical and NPCin−plausible
scores for each APR tools.

w.r.t. nonsensical patch generation is likely due to the combination

of di�erent search strategies that drive its genetic programming.

• [The more templates an APR system considers, the more nonsen-

sical and in-plausible patches it will generate.] TBar contains more

�x templates than kPAR, FixMiner and AVATAR since it merges

all literature templates. Therefore, each suspicious buggy location

has a higher probability in TBar to be matched with more tem-

plates, leading to more patch candidates than other tools. This

�nding highlights the importance of strategies for �x template

matching and donor code searching to improve the repair e�ciency

of template-based repair tools.

• [Specialized templates increase the e�ciency of APR tools.]

Among the template-based repair tools, kPAR has the smallest

number of templates. Indeed it includes 10 templates manually pre-

pared by Kim et al. [17], while AVATAR includes 11, TBar integrates

35 and FixMiner considers 28. Nevertheless, experimental results

for NPC scores (cf. Figure 6) and the dissection in non-sensical and

in-plausible categories (cf. Figure 7) reveal that kPAR is the least e�-

cient. According to the authors’ source code of the tools, these tools

use the same search space traversal strategy and implementation.

Therefore, the only di�erence being about the included templates,

we can safely conclude that the nature of these templates is driving

the e�ciency performance. AVATAR indeed focuses on templates

obtained by curated datasets of �xes: all mined code changes are for

static analysis violations which are systematically validated as ac-

tual �xes. FixMiner, on the other hand, augments its templates with

relevant contextual information to ensure that they are applied on

code locations that are syntactically similar to the locations where

the templates where mined.

• [Correct patches are sparse in the search space.] Long et al. [34]

presented an initial study which revealed that correct patches can

be considered as sparse in the search space and that over�tting

patches [20, 23, 48, 62] (i.e., only plausible but not correct) are vastly
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more abundant. We extend their study to consider the cases of in-

plausible patches that are produced "before any plausible patch"

(i.e., including if it is correct) vs. "before a correct patch" (i.e., only

if the plausible is correct). Figure 8 illustrates the distributions of

NPCin−plausible scores for all �xed bugs and only correctly-�xed

ones. We observe that for tools such as TBar, AVATAR, FixMiner,

and kPAR, the median of NPCin−plausible scores for correctly-

�xed bugs is lower than the median for all �xed bugs. This means

that, when a correct patch can be found, the number of in-plausible

patches that are generated before is fewer than when only a plau-

sible patch can be found. The situation is the converse for SimFix

and ARJA. Therefore, we note that for most tools, a correct patch

is more e�ciently found when the search space is less noised (i.e.,

fewer in-plausible patches).
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Figure 8: Number of in-plausible patch candidates generated before

the �rst plausible patch.

Table 6 provides more detailed statistics to drive an in-depth

correlation study around e�ciency and correctness. Based on the

mean values, except for ACS, ARJA, and AVATAR, APR tools tend

to generate more patch candidates when considering all bugs than

when considering only the correctly-�xed ones. This tendency

is much more apparent for search-based APR techniques such as

jGenProg [38], GenProg-A [67], SimFix [15], and RSRepair-A [67].

Although TBar is a template-based approach, it has characteristics

of search-based tools since its search-space has been enlarged by

incorporating any �x templates in the literature.
The previous experimental data overall suggest that simply giv-

ing more time to the APR tool to repair a buggy program does not

guarantee to �nd correct patches. On the contrary, it seems that

when allowing less attempts, the correctness ratio is improved. We

propose to simulate a simple strategy of threshold setting to investi-

gate the impact on the correctness ratio (i.e., ratio of correctly-�xed

bugs to plausibly-�xed bugs). We consider a scenario where the

APR tool is halted when a certain number of in-plausible patches is

checked.

Table 6: Upper whisker, median and mean values of NPC

(NPCin−plausible ) scores in Figures 6 and 8.

APR Tools
Upper Whisker Median Mean #

bugsAll Correct All Correct All Correct

jGenProg 803 (247) 191 (79) 50 (34) ↑ 127 (73) 670 (436) 108 (51) 3
GenProg-A 235 (76) 139 (40) 34 (11) ↑ 75 (41) 187 (81) 75 (40) 2
jMutRepair 67 (77) 33 (27) 20 (14) ↑ 28 (13) 43 (36) 32 (27) 5
kPAR 2377 (844) 992 (383) 269 (134) 130 (68) 879 (480) 600 (298) 10
RSRepair-A 208 (65) 103 (26) 34 (10) ↑ 62 (17) 250 (81) 62 (17) 2
jKali 92 (83) 17 (16) 14 (13) 7 (5) 35 (31) 27 (25) 4
Kali-A 43 (38) 4 (3) 8 (7) 2 (1) 12 (10) 3 (2) 3
Dynamoth 1 (0) 1 (0) 1 (0) 1 (0) 2 (1) 1 (0) 1
Nopol 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1
ACS 15 (4) 15 (3) 2 (0) 2 (0) 15 (4) ↑ 18 (4) 16
Cardumen 966 (965) 141 (68) 87 (50) 77 (40) 479 (454) 77 (40) 2
ARJA 362 (302) ↑ 686 (648) 38 (22) ↑ 87 (83) 142 (117) ↑ 181 (170) 7
SimFix 3801 (3800) 2274 (2273) 164 (163) ↑ 447 (446) 1168 (1167) 895 (894) 25
FixMiner 546 (147) 357 (99) 111 (24) 77 (24) 754 (189) 656 (87) 12
AVATAR 1624 (512) ↑ 2426 (511) 164 (65) 136 (33) 478 (145) ↑ 530 (150) 19
TBar 2958 (1262) 1806 (1031) 240 (118) 120 (53) 818 (444) 620 (306) 24

∗The upper whisker value is determined by 1.5 IQR (interquartile ranges) where IQR = 3rd Quartile -
1st Quartile, as de�ned in [9]. “All” denotes all �xed bugs, and “Correct” denotes correctly �xed bugs.
The numbers outside the parentheses indicate the related NPC score values and the numbers inside
the parentheses indicate the related NPCin−plausible score values. ↑ implies that the NPC and

NPCin−plausible values of “Correct” are higher than those of “All”. “# bugs” denotes the number
of bugs correctly �xed by each repair tool.

Table 7: CR after setting a NPCin−plausible threshold.

Tool TH∗ # �xed
bugs

CR(%) Tool TH∗ # �xed
bugs

CR(%)

jGenProg 80 3 (14) +6.4 Nopol 0 1 (31) 0
GenProg-A 80 2 (25) +1.3 ACS 32 16 (22) 0
jMutRepair 70 5 (20) +2.3 Cardumen 70 2 (7) +11.9
kPAR 300 8 (42) +3.1 ARJA 650 5 (56) +0.4
RSRepair-A 26 2 (27) +2.5 SimFix 3800 24 (61) +4.0
jKali 80 4 (22) +2.2 FixMiner 100 11 (23) +11.4
Kali-A 3 3 (26) +6.9 AVATAR 511 19 (55) +0.2
Dynamoth 0 1 (21) +0.2 TBar 1230 24 (66) +5.6

∗The threshold (TH) for each repair tool is set with its upper-bound
NPCin−plausible score shown in Figure 8.

Table 7 presents the results on how correctness ratio is in�uenced

when we set a threshold on the number of in-plausible patches:

basically, we propose to stop the repair attempts by a given tool if a

certain number of generated patches turned out to be in-plausible

(i.e., do not pass the test cases). We observe that the ratio of gener-

ated plausible patches to be correct is increased at varying degrees

for 14 (out of 16) repair tools. Nopol and ACS do not show any

improvement: initially, they produce few in-plausible patches. It

should be noted that this result should be put in perspective as when

discussing precision and recall: threshold setting, while useful to

increase correctness ratio, may also lead to an overall reduction of

the number of bugs that are correctly �xed.

Overall our systematic study of patch generation e�ciency reveals

that (1) e�ciency is not yet a widely-valued performance target;

(2) state-of-the-art can avoid generating nonsensical patches; (3)

the more templates an APR system considers, the more nonsensical

and in-plausible patches it will generate; (4) specialized templates

increase APR tool e�ciency; and (5) correct patches are sparse in

the search space.

4.3 RQ3: Impact of Fault Localization Noise

A recent study by Liu et al. [29] has reported empirical results

suggesting that fault localization results can adversely a�ect the

performance of the repair. The authors experimented on a single

tool, kPAR, and focused on repairability (i.e., how many bugs are

not �xed due to localization errors). Our study already takes steps

to avoid the bias of presenting various experimental results with

APR tools which use di�erent fault localization inputs. Thus, we
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have put an e�ort to harmonize all fault localization con�gurations

for the 16 APR tools under study (cf. Section 3.3.2).

To evaluate the impact of fault localization noise for di�erent

tools, we propose to compare results obtained so far with our stan-

dard spectrum-based fault localization (GZoltar+Ochiai) against

experimental results where the APR systems are directly given the

ground-truth �x locations. We compare the results both in terms

of repairability and repair e�ciency.

4.3.1 Impact of fault localization noise on repairability. First, we

measure the impact on repairability, where we estimate for each

repair tool how many bugs can be �xed by each APR system

if it is precisely pointed to the ground-truth �x locations?

Table 8 illustrates the details on the impact of repairability. Except

for Cardumen, we observe that in general the correctness ratio

improves (by up to 30 percentage points) if the �x locations are

provided. It suggests that false-positive bug locations, hence fault lo-

calization noise, has an impact on the likelihood to generate correct

patches. There are however anecdotical cases that are noteworthy:

• [Ground truth incompleteness.] Although our con�guration of

fault localization did not yield the developer-provided �x position

for bug Lang-35, ACS patch generation eventually produced a cor-

rect patch for this bug. This patch, which targets a di�erent code

location, was found semantically-similar to the developer-provided

patch following rule R2 (cf. Section 3.3.3). This �nding reminds us

that the benchmark that is used is not a complete ground-truth, nei-

ther for repair-oriented fault localization nor for patch generation.

Table 8: Impact† on repairability∗ when ground-truth �x locations

are directly given to the APR system.

APR Tool C Cl L M Mc T Total CR (%)

jGenProg +1 (-3) +1 (0) 0 (-2) +1 (+1) 0 (0) 0 (0) +3 (-4) +22.5
GenProg-A 0 (-2) +2 (+1) +1 (+2) +2 (-2) 0 (0) 0 (0) +5 (-1) +17.4
jMutRepair 0 (-3) 0 (-1) 0 (-2) 0 (-5) 0 (0) 0 (0) 0 (-11) +22.8
kPAR +3 (-5) +9 (+11) +3 (-5) +2 (-6) 0 (0) +3 (+4) +20 (0) +31.7
RSRepair-A 0 (-2) +2 (-6) +1 (+1) +5 (0) 0 (0) 0 (0) +7 (-7) +24.5
jKali 0 (-3) +1 (-6) -1 (-4) -2 (-4) 0 (0) 0 (0) -2 (-17) +9
Kali-A 0 (-5) +2 (-18) +1 (+3) 0 (-2) 0 (-1) 0 (0) +3 (-23) +9.7
DynaMoth 0 (-5) N/A +2 (+2) 0 (-5) 0 (0) 0 (-1) +2 (-9) +18.6
Nopol 0 (-5) N/A 0 (-3) +1 (-13) 0 (0) 0 (-1) +1 (-22) +19
ACS 0 (0) 0 (0) -1 (-1) +1 (0) 0 (0) 0 (0) 0 (-1) +3.5
Cardumen 0 (+2) 0 (-2) 0 (+1) 0 (+3) 0 (0) 0 (0) 0 (+4) -4.2
ARJA 0 (-8) +2 (-13) -1 (+2) +2 (-2) 0 (-1) 0 (0) 5 (-22) +21.2
SimFix 0 (-4) 0 (-2) 0 (-10) +2 (-4) 0 (0) 0 (0) +5 (-18) +19.2
FixMiner +2 (-5) +6 (+13) +3 (+7) +5 (+10) +2 (+2) +3 (+3) +21 (+30) +14.6
AVATAR +1 (-4) +3 (-2) +1 (-2) +4 (-4) +2 (+2) +2 (+3) +13 (-7) +30.6
TBar +4 (-3) +11 (+12) +4 (-3) +5 (-1) +3 (+3) +3 (+5) +30 (+13) +32.7

†This table shows variations of repairability w.r.t. results of our generic con�guration of fault
localization provided in Table 4. ∗+x(-y) means that, if given exact �x locations, the tool can
correctly �x x more bugs, but plausibly �xes y less bugs

• [Fix location is di�erent from bug location.] We observe that

jKali now fails to correctly �x respectively 2 when it is given the

developer-provided �x locations. This �nding suggests that the

repair tool is rather misled, in the cases of speci�c bugs, when it is

given the right bug positions. Instead, some sibling positions are

better inputs to drive correct �xing. However, data in Table 8 show

fault localization has di�erent impacts on performance for plausible

�xing than for correct �xing.

Furthermore, based on results of overlapping in repairability (in

terms of plausible patches) performance as depicted in Figure 9,

we note that many bugs are only �xed (plausibly) when the fault

localization does not precisely point to the �x locations. This is

a surprising but interesting �nding to be investigated by APR-

targeted fault localization research.

• [Mockito bugs are not repairable.] Another immediate observa-

tion that we make from the experimental results in Table 8 is that
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Figure 9: Overlap and di�erence between normal fault localization

and given �x positions for repair tools.

bugs from the Mockito project are not easy to �x. According to

reported results in Table 8, only three tools (i.e., FixMiner, AVATAR,

and TBar) are able to �x Mockito bugs even if ground-truth �x

locations are provided. We carefully proceed to investigate the pos-

sible reasons for this situation: 13 Mockito bugs (i.e., bug IDs 1-10

and 18-20) are associated to program code that cannot be compiled

under JDK 7 (which is the JDK that is mentioned in the require-

ments of Defects4J). Our results further con�rm a recent study [55]

by Wang et al., who reported that the state-of-the-art SimFix and

CapGen are not able to �x any Mockito bugs even when provided

with ground-truth �x locations. Our study enlarges the scope of

their studies. In the end, our systematic assessment results for all

bugs better sheds light on a common phenomenon in the literature

where Mockito project bugs are not considered when reporting

repair performance. These results call for modular con�guration of

execution environment as well as for better integration of advances

in fault localization to support APR systems. Besides Mockito bugs,

many bugs in other projects cannot be �xed since they are not

precisely localized. Overall, consider again Figure 9. For all tools

(except jMutRepair), we observe that some bugs are �xed only when

the actual �x locations are directly given to the system.

4.3.2 Impact of fault localization noise on repair e�iciency. We

investigate the NPC scores, i.e., the number of patch candidates

that are generated by the di�erent APR systems when they are

pointed to the developer-provided �x locations. Figure 10 shows

the corresponding distribution of NPC scores for each repair tool.

• [Template-based program repair tools are highly sensitive to

fault localization noise.] We observe from Figure 10 that, except for

DynaMoth, Nopol, and ACS, the remaining 13 repair tools have

signi�cantly smaller distribution ranges of NPC scores than the dis-

tribution ranges when the APR system was run under our generic

fault localization con�guration (cf. Figure 6). A straightforward

explanation is that, under a typical fault localization con�guration,

a repair tool will attempt to generate patch candidates for each sus-

picious statement that is ranked by the fault localization. When the

fault localization is noisy (i.e., top suspicious statement(s) are false

positives), more in-plausible and even non-sensical patches might

be generated. In particular, for repair tools that are based on pattern

matching and code similarity (i.e., SimFix, and the template-based

repair tools) the gap of repair e�ciency has reduced substantially

by an order of magnitude when correct �x locations are given to

the tool. For example, the median NPC score of SimFix is around

200 when using our generic con�guration of fault localization,

but is around 20 when using directly correct �x locations. Such

tools are thus more sensitive to fault localization noise than other

tools. In conclusion, we con�rm the �nding of the study of Liu et

al. [29]. However, we delimitate its validity to template-based repair

tools. Other tools, e.g., constraint-based repair tools such as ACS or
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Nopol, which use speci�c techniques to triage the search space do

not present any increase in repair e�ciency when pointed to the �x

locations. This �nding suggests that they have limited sensitivity

to fault localization noise.
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Figure 10: NPC score distribution of each tool given �x positions.

Fault localization is an important step in a repair pipeline. Its false

positives, however, have a signi�cant impact on both repairability

and repair e�ciency. In particular, we found that accurately local-

izing the bug can reduce the number of generated patches by an

order of magnitude, thus drastically enhancing e�ciency. From the

perspective of repairability, better fault localization will increase the

probability to generate correct patches (i.e., the correctness ratio).

5 THREATS TO VALIDITY

External validity.Our study considers only the Defects4J benchmark

and only java repair tools. All �ndings might thus be valid only

for this con�guration. Nevertheless, this threat is mitigated by

the fact that we use a large set of repair tools and a renowned

defect benchmark to study a performance criterion that was largely

ignored in the literature.

Internal validity. Our implementation of fault localization as well

as the manual assessment of patch correctness may threaten the va-

lidity of some of our conclusions. We mitigate this threat by reusing

common fault localization components from the repair literature as

well as by enumerating and sharing the rules for de�ning patch cor-

rectness. Two authors were in charge of assessing the correctness

and they cross-reviewed each other’s decisions. In case of con�ict

other authors were called to create a consensus.

Construct validity. By construct, to limit resource exhaustion, we

added a threshold on the number of patches to validate. However,

this threshold may penalize some tools. We mitigate this threat by

carefully selecting a threshold based on empirical results on PraPR,

a recent related work which mutates directly bytecode, allowing it

to generate many more patches (since no compilation is needed).

6 RELATED WORK

Performance Evaluation. Initially, evaluation of test-based

program repair was focused on counting the number of bugs �xed

by a repair tool out of all bugs in a benchmark [17, 22, 25, 56].

However, valid patches are sometimes incorrect as they over�t on

incomplete test suites [48], and might cause issues during main-

tainance [10, 52]. Thus, plausibility and correctness became widely

accepted to de�ne metrics for assessing repairability of repair

tools [4, 12, 14, 19, 29–32, 50, 51, 57, 63]. In this study, we also

follow the metric to revisit the repairability of repair tools. Never-

theless, we di�er from studies in the literature by ensuring that APR

tools use the same controlled con�guration for fault localization.

Repair E�ciency. Along with the performance evaluation, ser-

val studies simply reported the repair e�ciency in terms of CPU

time consumption of �xing bugs [12, 14, 56, 57, 63]. However, it

could be biased to assess the e�ciency with time cost for various

reasons (cf. Section 2). Instead, we leverage the number of patch can-

didates generated by repair tools to measure the repair e�ciency,

which should be intrinsic to the repair approaches. Ghanbari et

al. [12] provided information on the number of patch candidates

generated by PraPR. This information, however, could not be put

into perspective against other tools. Our study �lls this gap.

Empirical Study. To boost the development of program repair,

various empirical studies have been conducted in this direction.

Le Goues et al. [24] re-assessed GenProg on real bugs, while sev-

eral studies on over�tting followed [20, 23, 47, 48, 54, 62]. Yang

et al. [65] explored better test cases for better program repair. Yi

et al. [66] empirically investigated the e�ectiveness of test-suite

metrics in controlling the repairing reliability of GenProg. Mot-

wani et al. [43] investigated to what extent important bugs can

be �xed by 9 APR tools. Liu et al. [29] investigated the FL bias

in benchmarking APR tools with only one APR tool. Durieux et

al. [7] conducted a large-scale empirical study for Java APR tools to

investigate their repairability on di�erent benchmarks. Empirical

studies for APR tools have been studied from di�erent scenarios in

the literature, but these studies mainly focus on the traditional APR

tools and the latest state-of-the-art tools (e.g., ACS [63], SimFix [15]

and TBar [31]) have not been studied systematically. Our study �lls

this gap by looking back at 10 years of test-based program repair

research and focusing on the under-valued performance criterion

that is e�ciency.

7 CONCLUSION

This paper reports on a large-scale study on the e�ciency of test

suite based program repair. E�ciency is de�ned based on the num-

ber of patch candidates that are generated before a repair system

can hit a valid patch. Our study comprehensively runs 16 repair

systems from the literature under identical con�guration of fault

localization. Our experiments explore repairability (i.e., repair e�ec-

tiveness), repair e�ciency as well as the impact of fault localization

on both performance criteria. Beyond the statistical data, we call

on the community to invest in strategies for making repair ef-

�cient in order to facilitate adoption in a software industry where

computing resources are managed sometimes with parsimony.

Artefacts: All data and tool support for replication are available at

https://github.com/SerVal-DTF/APR-E�ciency.git
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