
2510 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

On the Eigenspectrum of the Gram Matrix and the
Generalization Error of Kernel-PCA
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Abstract—In this paper, the relationships between the eigen-
values of the Gram matrix for a kernel ( )
corresponding to a sample 1 . . . drawn from a density
( ) and the eigenvalues of the corresponding continuous eigen-

problem is analyzed. The differences between the two spectra are
bounded and a performance bound on kernel principal component
analysis (PCA) is provided showing that good performance can be
expected even in very-high-dimensional feature spaces provided
the sample eigenvalues fall sufficiently quickly.

Index Terms—Concentration bounds, Gram matrices, kernel
methods, principal components analysis (PCA), Rademacher com-
plexity, spectra of random matrices, statistical learning theory.

I. INTRODUCTION

OVER recent years there has been a considerable amount
of interest in kernel methods such as support vector

machines [1], Gaussian processes, and others in the machine
learning area. In these methods the Gram matrix plays an
important rôle. The Gram matrix has entries

, where is a
given dataset and is a kernel function. For Mercer kernels

is symmetric positive semidefinite. We denote its eigenvalues
and write its eigendecomposition as

where is a diagonal matrix of the eigenvalues
and denotes the transpose of matrix . The eigenvalues are
also referred to as the spectrum of the Gram matrix, while the
corresponding columns of are their eigenvectors.

A number of learning algorithms rely on estimating spectral
data on a sample of training points and using this data as input to
further analyses. For example, in principal component analysis
(PCA), the subspace spanned by the first eigenvectors is used
to give a -dimensional model of the data with minimal residual,
hence forming a low-dimensional representation of the data for
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analysis or clustering. Recently, the approach has been applied
in kernel-defined feature spaces in what has become known as
kernel-PCA [2]. This representation has also been related to
an information retrieval algorithm known as latent semantic in-
dexing, again with kernel-defined feature spaces [3].

Furthermore, eigenvectors have been used in the HITS [4] and
Google’s PageRank [5] algorithms. In both cases, the entries
in the eigenvector corresponding to the maximal eigenvalue are
interpreted as authority weightings for individual articles or web
pages.

The use of these techniques raises the question of how reliably
these quantities can be estimated from a random sample of data,
or phrased differently, how much data is required to obtain an
accurate empirical estimate with high confidence. Ng et al. [6]
have undertaken a study of the sensitivity of the estimate of the
first eigenvector to perturbations of the connection matrix. They
have also highlighted the potential instability that can arise when
two eigenvalues are very close in value, so that their eigenspaces
become very difficult to distinguish empirically.

Other authors have studied the concentration of linear func-
tionals of the spectral measure or single eigenvalues of random
matrices generated through distributions defined over their
entries, see for example Guionnet and Zeitouni [7] and Alon
et al. [8].

In this paper, we shift the emphasis toward studying the con-
centration of sums of eigenvalues of a Gram matrix gained from
a finite sample of vectors, so that the distribution over the ma-
trices is defined implicitly by a distribution over vectors. In par-
ticular, if we perform (kernel-) PCA on a random sample and
project new data into the -dimensional space spanned by the
first eigenvectors, how much of the data will be captured or,
in other words, how large will the residuals be. It turns out that
this accuracy is not sensitive to the eigenvalue separation, while
at the same time being the quantity that is relevant in a prac-
tical application of dimensionality reduction using kernel-PCA.
The result shows that we can expect good performance even in
very-high-dimensional feature spaces provided that the sample
eigenvalues fall sufficiently quickly. In this sense, the results
give a dimension independent bound on the performance of
kernel-PCA.

The second question that motivated the research reported in
this paper is the relation between the eigenvalues of the Gram
matrix and those of the underlying process. For a given kernel
function and density on a space , we can also write down
the eigenfunction problem

(1)
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Note that the eigenfunctions are orthonormal with respect to
, i.e.,

Let the eigenvalues of the underlying process be ordered so that
. This continuous eigenproblem can be approx-

imated in the following way. Let be a
sample drawn according to . Then

(2)

As pointed out in [9], the standard numerical method (see, e.g.,
[10, Ch. 3]) for approximating the eigenfunctions and eigen-
values of (1) is to use a numerical approximation such as (2) to
estimate the integral, and then plug in for
to obtain a matrix eigenproblem

Thus, we see that is an obvious estimator for
the th eigenvalue of the continuous problem. The theory of the
numerical solution of eigenvalue problems [10, Theorem 3.4]
shows that for a fixed will converge to in the limit as

.
For the case that is one dimensional and is Gaussian

and (the radial basis function (RBF)
kernel with length scale ), there are analytic results for
the eigenvalues and eigenfunctions of (1) as given in [11, Sec.
4]. To compare the process eigenvalues with empirical eigen-
values 1000 samples of size were used, with param-
eters and . The 1000 repetitions were
used to characterize the variability of the empirical eigenvalues.
For this case, we can therefore compare the values of with the
corresponding , as shown in Fig. 1(a). Fig. 1(b) plots the dif-
ference between the average (over 1000 samples) of the partial
sum of the first empirical eigenvalues against the same par-
tial sum of the process eigenvalues. These two plots show that
for , the average empirical eigenvalue overestimates ,
but that for , the converse is true. Fig. 1(b) also shows
that the empirical partial sum initially overestimates the process
partial sum, but that this gradually declines. One of the results
of this paper will be bounds on the degree of overestimation for
these partial sums in a fully general setting. Goltchinskii and
Gine [12] discuss a number of results including rates of conver-
gence of the -spectrum to the -spectrum. The measure they
use compares the whole spectrum rather than individual eigen-
values or subsets of eigenvalues. They also do not deal with the
estimation problem for PCA residuals.

Johnstone [13] studies the distribution of the largest eigen-
value of the Gram matrix of a set of vectors whose components
are independent Gaussians, though his is also an asymptotic
analysis as the dimension of the feature space and the number
of vectors tends to infinity at a fixed ratio greater than .

In an earlier version of this paper [14], we discussed the con-
centration of spectral properties of Gram matrices and of the

Fig. 1. (a) A plot of the log eigenvalue against the index of the eigenvalue.
The straight line is the theoretical relationship. The center point (marked with a
star) in the error bar is the log of the average value of � . The upper and lower
ends of the error bars are the 97.5% and 2.5% centiles of log(� ), respectively,
taken over 1000 repetitions. (b) A plot of the difference between the average of

� and � against i.

residuals of fixed projections. However, these results gave de-
viation bounds on the sampling variability of with respect to

, but did not address the relationship of to or the es-
timation problem of the residual of PCA on new data.

In order to state our main results, consider a general proba-
bility space and a measurable feature mapping

to a real Hilbert space . We assume a probability measure
on the space . Note that this implies a distribution on via
the measurable feature map . We will assume throughout that
the support of this distribution is bounded in a ball of radius
in . We draw an independent and identically distributed (i.i.d.)
sample of points
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from according to and form the Gram matrix of their
projections into

We refer to the composition of the inner product with the
projections as the kernel function

and, similarly, to the matrix as the kernel matrix. It is often
convenient to specify the kernel and define the feature space
implicitly by this choice. Such a feature space will exist pro-
vided the kernel is symmetric and has the property that all finite
kernel matrices are positive semidefinite (see [15] for details).
We refer to the eigenvalues of

as the empirical eigenvalues dropping the dependency on
if this is clear from the context.
There is a corresponding self-adjoint operator in the inner

product space defined by

We refer to the eigenvalues of this operator as the process eigen-
values and denote them by .

Given a sequence of numbers , where
may be infinity, we use the notations

and

to denote the tail and initial sums, respectively.
We must introduce a further definition before quoting the

main results of the paper. This is concerned with the procedure
known as PCA that projects multidimensional data in the feature
space onto the subspace spanned by the first eigenvec-
tors of the correlation matrix

Note that we do not restrict the space to be finite dimensional.
However, for any finite set of points , the feature
vectors span a finite-dimensional subspace
of . Hence, by choosing a basis that spans this subspace and
extending to a basis of the whole space, the correlation matrix

becomes effectively finite dimensional.
We denote projection onto a subspace by . We

denote the projection onto the orthogonal complement of by
. If is a one-dimensional subspace with a nonzero

element of , we will also write in place of . The norm of
the orthogonal projection is also referred to as the residual since
it corresponds to the distance between the original point and its
projection.

We can now state the three main results of this paper. The
first is concerned with the residual projections and the sum of
the last eigenvalues.

Theorem 1: If we perform PCA in the feature space defined
by a kernel then, with probability greater than over

random -samples , for all , if we project new data
onto the space , the expected squared residual is bounded by

where the support of the distribution is in a ball of radius in
the feature space and and are the process and empirical
eigenvalues, respectively.

The theorem states that when projecting into the empirical
eigensubspace spanned by the first eigenvectors, the expected
squared residual of a randomly drawn test point can with high
probability be bounded by a minimum over of the sum of
all but the first empirical eigenvalues plus a complexity term
that scales like .

The last term on the right-hand side represents the usual de-
pendency on the confidence parameter . The expression inside
the minimization involves two terms. The first term is the em-
pirical estimate of the squared residual, which decreases as
increases. The second term is the complexity penalty that grows
with increasing . The expression will reach a minimum at a
value approximately where the two expressions have equal
values. Hence, the overall bound decreases as increases up to

and remains constant from that point onwards. In practice,
we expect that the left-hand side will continue to decline slowly
beyond this point as further dimensions are included. This effect
is indeed evident in the experiments reported in the final section.

For applications of kernel-PCA, the theorem suggests that
good capture of the data can be expected provided the empirical
eigenvalues decay before grows too big. Indeed, this can
be used as a criterion for deciding whether subspace projection
is justified based on the available training data.

The second theorem considers the sum of the first eigen-
values and the projections into the space spanned by the first .

Theorem 2: If we perform PCA in the feature space defined
by a kernel , then with probability greater than over
random -samples , for all , if we project new data
onto the space , the sum of the largest process eigenvalues
is bounded by

where the support of the distribution is in a ball of radius in
the feature space and and are the process and empirical
eigenvalues, respectively.
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This result is perhaps more interesting from the perspective
of the relation between process and empirical eigenvalues. In
particular, it implies a good fit between the partial sums of the
largest eigenvalues with indices for which is small.

The final result concerns the projections of data into the one-
dimensional subspace determined by a single eigenvector. In
this case, it is not possible to obtain a relationship with the
process eigenvalues, but the “generalization” of the empirical
projection obeys an even tighter bound than for the larger sub-
spaces.

Theorem 3: If we perform PCA in the feature space defined
by a kernel , then with probability greater than
over random -samples , for all , if we project
new data onto the one-dimensional subspace spanned by the

th eigenvector of , the expected value of the projection of
new data satisfies

where the support of the distribution is in a ball of radius in
the feature space and are the empirical eigenvalues.

The paper is organized as follows. In Section II, we give the
background results and develop the basic techniques that are
required to develop the necessary framework in Sections III
and IV. Section V then gives the main results of the paper.
We provide experimental verification of the theoretical findings
in Section VI, before drawing our conclusions.

II. BACKGROUND AND TECHNIQUES

We will make use of the following results that can be traced
back to the work of Hoeffding [16] and Azuma [17]. We
quote versions given by McDiarmid [18]. Results of this type
bounding the deviation of a random variable from its expected
value are often referred to as concentration inequalities. More
advanced results of this type due to Boucheron et al. and
Talagrand can be found in [19] and [20].

Theorem A: Let be independent random vari-
ables taking values in a set , and assume that ,
and that there exist for satisfying

then for all

Theorem B: Let be independent random vari-
ables taking values in a set , and assume that , for

then for all

We will also make use of the following theorem character-
ising the eigenvectors of a self-adjoint completely continuous
operator in a Hilbert space. This theorem is usually referred to
as the Courant–Fischer–Weyl theorem in its matrix version. We
quote it here in the more general form [21].

Theorem C [Courant–Fischer–Weyl Minimax Theorem]: If
is a self-adjoint completely continuous operator on a real

Hilbert space, then for

with the extrema achieved by the corresponding eigenvector.

The approach we adopt in the first stage of the analysis is to
relate the eigenvalues to the sums of squares of residuals. This is
well known particularly in the case of matrices, following from
consideration of the singular value decomposition. We sketch
the analysis in the more general operator form since we require
this for the process eigenvalues mentioned above. The matrix
form is a simple consequence of this general result.

Recall the operator of the form

in the space , where is some distribution over . Fur-
thermore, consider the self-adjoint operator

Let be an eigenfunction, eigenvalue pair for , that is,
. Consider the point

We have

It follows that is an eigenvector, eigenvalue pair for .
Furthermore, we have

in the norm determined by the distribution . Similarly, it is
easily verified that if is an eigenvector, eigenvalue pair for

the function
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is an eigenfunction for with eigenvalue and

Furthermore, we have that

and

It follows from this analysis that the two operators have the
same nonzero eigenvalues and there is a one to one correspon-
dence between the corresponding eigenvectors, eigenfunctions
given by the functions and .

If we consider the case where is the empirical distribu-
tion, that is, the uniform distribution on a fixed -sample ,
we will see that this analysis forms the basis of kernel-PCA. If
we choose to be the empirical distribution uniform on a fixed
sample , we will denote the operators and by and

, respectively.
If are the th normalized eigenvector, eigenvalue pair

of the operator in the feature space, this corresponds to the
th eigenvector of the correlation matrix

The PCA projection of an input onto is given by

where are the corresponding eigenfunction, eigen-
value pair of the operator . This equation forms the basis of
kernel-PCA, since it implies that the projection of a new point
into the space spanned by the th eigenvector can be computed
as

where are the th eigenvector and eigenvalue of the
kernel matrix .

Now consider the first eigenvalue of the operator for gen-
eral distribution . By Theorem C and the above observations
we have

where denotes expectation with respect to , since

It follows that the first eigenvector is characterized as the direc-
tion for which the expected square of the residual is minimal.

Applying the same line of reasoning to the first equality of
Theorem C, delivers the following equality:

(3)

Notice that this characterization implies that if is the th
eigenvector of , then

(4)

which in turn implies that if is the space spanned by the first
eigenvectors, then

(5)

It readily follows by induction over the dimension of that
we can equally characterize the sum of the first and last
eigenvalues by

(6)

(7)

(8)

Hence, as for the case when , the subspace spanned by the
first eigenvalues is characterized as that for which the sum of
the squares of the residuals is minimal.

In the case that is the empirical distribution, the results
correspond to the matrix form of the residual result, namely,
that projecting into the eigenspaces corresponding to the largest
eigenvalues minimizes the average squared residual. If we take

to be the data-generating distribution , the result describes
the fact that the eigenvectors of the operator characterize the
subspaces of capturing the largest expected squared residual

(9)

where is a linear subspace of the feature space and we use
to denote expectation with respect to . Similarly

(10)

(11)

One of the aims of this paper is to elucidate the relationship be-
tween these two projections, demonstrating conditions when the
quality of the empirical projection matches that of the “ideal”
process projection.
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We are now in a position to motivate the main results of the
paper. We consider the general case of a kernel-defined feature
space with input space and probability density . We fix a
sample size and a draw of examples
according to . We fix the feature space determined by the kernel
as given by the mapping . We can therefore view the eigenvec-
tors of correlation matrices corresponding to finite Gram ma-
trices as lying in this space. Further, we fix a feature dimension

. Let be the space spanned by the first eigenvectors of the
correlation matrix corresponding to the sample kernel matrix

with corresponding eigenvalues , while
is the space spanned by the first process eigenvectors with cor-
responding eigenvalues . Similarly, let
denote the expectation with respect to the sample or the em-
pirical mean

while, as before, denotes expectation with respect to .
We are interested in the relationships between the following

quantities:

and

Bounding the difference between the first and second will relate
the process eigenvalues to the sample eigenvalues, while the
difference between the first and third will bound the expected
performance of the space identified by kernel PCA when used
on new data.

Our first two observations follow simply from (10)

(12)

and

(13)

Our strategy will be to show that the right-hand side of in-
equality (12) and the left-hand side of inequality (13) are close
in value making the two inequalities approximately a chain of
inequalities. We then bound the difference between the first and
last entries in the chain.

First, however, in the next section we will examine averages
over random samples. We will use the notation to de-
note this type of average though we could equivalently write

in the sense that this is simply the expectation with re-
spect to the -fold product distribution.

III. AVERAGING OVER SAMPLES AND

POPULATION EIGENVALUES

The sample correlation matrix is with
eigenvalues . (If is a zero-mean random
variable then this is also the covariance matrix.) In the notation
of Section II, . The corresponding population
correlation matrix has eigenvalues and eigen-
vectors . Again by the earlier observations these are
the process eigenvalues.

Statisticians have been interested in the sampling distribu-
tion of the eigenvalues of for some time. There are two
main approaches to studying this problem, as discussed in [22,
Sec. 6]. In the case that has a multivariate normal distribution,
the exact sampling distribution of can be given [23].
Alternatively, the “delta method” can be used, expanding the
sample roots about the population roots. For normal populations
this has been carried out in [24] (if there are no repeated roots of
the population covariance) and [25] (for the general case), and
extended in [26] to the non-Gaussian case.

The following proposition describes how is related
to and is related to . It requires no assumption of
Gaussianity.

Proposition A [25, pp 145–146]:

and

Proof: By the results of the previous section we have

We now apply the expectation operator to both sides. On
the right-hand side we get

by (11), which completes the proof. Correspondingly. is
characterized by (minor compo-
nents analysis).

Interpreting this result, we see that overestimates ,
while underestimates .

Proposition A can be generalized to give the following result
where we have also allowed for a kernel-defined feature space
of dimension .

Proposition 4: Using the above notation, for any

and
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Proof: Let be the space spanned by the first process
eigenvectors. Then from the preceding derivations we have

Again, applying the expectation operator to both sides of
this equation and taking (11) into account, the first inequality
follows. To prove the second, we turn into into

and reverse the inequality. Again taking expectations of
both sides proves the second part.

Furthermore, [26] (2) gives the asymptotic relationship

(14)

where is the bivariate cumulant of order of the marginal
distribution of and (assumed finite).

Remark 5: Proposition 4 also implies that

if we sample points.
We can tighten this relation and obtain another relationship

from the trace of the matrix when the support of satisfies
, a constant. For example, if the kernel is stationary,

this holds since . Thus,

Also, we have for the continuous eigenproblem

Using the feature expansion representation of the kernel
and the orthonormality of the

eigenfunctions we obtain the following resul:t

Applying the results obtained in this section, it follows
that will overestimate , and the cumulative sum

will overestimate . This behavior
is illustrated in Fig. 1(b). At the other end, clearly for

is an underestimate of .

IV. CONCENTRATION OF EIGENVALUES

Section II outlined the relatively well-known perspective that
we now apply to obtain the concentration results for the eigen-
values of positive semidefinite matrices. The key to the results
is the characterization in terms of the sums of residuals given in
(3) and (8).

Theorem 6: Let be a positive semidefinite kernel
function on a space , and let be a probability density
function on . Fix natural numbers and and
let be a sample of points drawn
according to . Then for all

where is the th eigenvalue of the matrix with
entries and .

Proof: The result follows from an application of Theorem
A provided

Let and let be the -dimensional subspace
spanned by the first eigenvectors of . Let correspond
to the feature mapping . Using times (3) for the empirical
distribution we have

Surprisingly, a very similar result holds when we consider the
sum of the last eigenvalues or the first eigenvalues.

Theorem 7: Let be a positive semidefinite kernel
function on a space , and let be a probability density
function on . Fix natural numbers and and
let be a sample of points drawn
according to . Then for all

where is the sum of (all but) the largest
eigenvalues of the matrix with entries

and .
Proof: The result follows from an application of Theorem

A provided

Let and let be the -dimensional subspace
spanned by the first eigenvectors of . Let correspond
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to the feature mapping . Using times (8) for the empirical
distribution we have

A similar derivation proves the second inequality.

Corollary 8: Consider a feature space defined by a kernel
in a space with a distribution density . Further-

more, let be the empirical eigenvalues. With
probability over the selection of a random sample of
points drawn according to

Our next result concerns the concentration of the residuals
with respect to a fixed subspace.

Theorem 9: Let be a probability density function on
. Fix natural numbers and a subspace and let

be a sample of points drawn
according to a probability density function . Then for all

Proof: Since we have that

the result follows from an application of Theorem B provided

Clearly, the largest change will occur if one of the points
and lies in the subspace and the other does not.

In this case, the change will be at most .

We apply the theorem to the subspace spanned by the first
process eigenvalues to obtain the following corollary.

Corollary 10: Consider a feature space defined by a kernel
in a space with a distribution density . Further-

more, let be the subspace of spanned by the first process
eigenvectors. With probability over the selection of a
random sample of points drawn according to

The concentration results of this section are very tight. In
the notation of the earlier sections they show that with high
probability

and

(15)

where we have used Theorem 7 to obtain the first approximate
equality and Theorem 9 with to obtain the second
approximate equality.

This gives the sought relationship to create an approximate
chain of inequalities

(16)

Notice that using Proposition 4 we also obtain the following
diagram of approximate relationships:

Hence, the approximate chain could have been obtained in
two ways. It remains to bound the difference between the first
and last entries in this chain. This together with the concentra-
tion results of this section will deliver the required bounds on
the differences between empirical and process eigenvalues, as
well as providing a performance bound on kernel-PCA.

V. LEARNING A PROJECTION MATRIX

This section will work up to a proof of the three main results
given in the Introduction. The key observation that enables the
analysis bounding the difference between

and is that we can view the projection norm
as a linear function of pairs of features from the

feature space .
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Proposition 11: Let be the subspace spanned by some
fixed subset of eigenvectors of the kernel matrix. The pro-
jection norm is a linear function in a feature
space for which the kernel function is given by

Furthermore the -norm of the function is .
Proof: Let be the singular value decomposi-

tion of the sample matrix in the feature space. The projection
norm is then given by

where is the matrix containing the columns of in the
set . Hence, we can write

where is the projection mapping into the feature space con-
sisting of all pairs of features and . The
standard polynomial construction gives

It remains to show that the norm of the linear function is . The
norm satisfies (note that denotes the Frobenius norm and

the columns of )

as required.

We are now in a position to apply a learning theory bound
where we consider a regression problem for which the target
output is the square of the norm of the sample point .
We restrict the linear function in the space to have norm .
The loss function is then the shortfall between the output of
and the squared norm.

The approach we adopt here makes use of the Rademacher
variables and the measure is therefore known as the Rademacher
complexity. We refer the reader to Ledoux and Talagrand [27]
as a core reference, though we will only be using the results and
approach described in [28].

Definition 12: Given a sample generated
by a distribution on a set and a real-valued function class

with domain , the empirical Rademacher complexity of
is the random variable

where are independent uniform -
valued (Rademacher) random variables. The Rademacher com-
plexity of is

Note that we denote the input space with in the theorem, so
that in the case of supervised learning we would have

. The following theorem follows closely the Proof of Theorem
8 in Bartlett and Mendelson [28], the small changes allow us
to obtain slightly tighter bounds for our special case. We omit
the details just noting that bounding in terms of the empirical
Rademacher complexity follows from one further application
of Theorem B.

Theorem D [28]: Let be a class of functions mapping from
to and let be drawn independently ac-

cording to a probability distribution and fix . Then
with probability at least over samples of length every

satisfies

(17)

Given a training set the class of functions that we will pri-
marily be considering are linear functions with bounded norm

where is the feature mapping corresponding to the kernel
.

Note that although the choice of functions appears to depend
on , the definition of does not depend on the particular
training set. Bartlett and Mendelson [28] bound the empirical
Rademacher complexity of this function class.

Theorem E [28]: If is a kernel, and
is a sample of points from , then the empirical

Rademacher complexity of the class satisfies

The final ingredient that will be required to apply the tech-
nique are the properties of the Rademacher complexity that
allow it to be bounded in terms of large classes. The following
standard theorem summarizes the properties of the empirical
Rademacher complexity that we require.
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Theorem F: Let and be classes of real functions. Then
we get the following.

1) If , then .
2) For every .

The proofs of these results are immediate consequences of
the definition of empirical Rademacher complexity. We can now
apply these results to the approximation of the norm of the vari-
able by a linear function of bounded norm.

Theorem 13: If we perform PCA on a randomly drawn
training set of size in the feature space defined by a kernel

and project new data onto the space spanned by a
subset of eigenvectors, with probability greater than
over the generation of the sample the expected squared
residual is bounded by

where the support of the distribution is in a ball of radius in
the feature space.

Proof: As indicated in Proposition 11, we consider the
function class with respect to the kernel

with corresponding feature mapping . Note that the weight
vectors considered satisfy the special condition that they are
positive semidefinite, that is, that

for all . Furthermore, the function corresponds to the norm
squared of a projection mapping. We will denote the subset of
functions satisfying this condition by . We augment the cor-
responding primal weight vectors with one further dimension
while augmenting the corresponding input vectors with a feature

that is, the norm squared in the original feature space divided by
the fourth root of . We now apply Theorem D to the class

where we have restricted the inputs to images of points in the
input space as indicated. The squared norm of the image of
the input under this feature mapping is .
The theorem is applied to the function where is the projec-
tion function of Theorem 11. We must first verify that the range
of the function class on the restricted inputs is . Since we

have restricted ourselves to positive semidefinite weight vectors
, so that

Furthermore, since we have restricted to only contain func-
tions that correspond to taking the norm squared of projection
mappings in the original feature space, we have that

so that as required. We can therefore apply The-
orem 11. First note that for the function , the left-hand side of
the expression is equal to

where is the space spanned by the eigenvectors in the set
. Hence, to obtain the result it remains to evaluate the two ex-

pressions on the right-hand side of (17). The first is a scaling of
the empirical squared residual when projecting into the space

, that is,

The second expression is which by Theorem F parts
1 and 2 can be bounded by . Next we apply

Theorem E to obtain

Assembling all the components and multiplying through by
gives the result.

We can apply the bound times to obtain a Proof of
Theorem 1.

Proof of Theorem 1: We apply Theorem 13 taking
, for , in each case replacing by .

This ensures that with probability the assertion holds for
all applications. The second inequality of Theorem 1 follows
from the observation that for

while the first inequality follows from the last inequality
of (16).

A similar argument applies for Theorem 2.

Proof of Theorem 2: We apply Theorem 13 taking
, for , in each case replacing by
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Fig. 2. (a) Plot of the projected squared norm plotted against the projection dimension. The plot shows three curves, i) expected squared norm for training set
when projected into empirical eigenspace averaged over 20 random splits, ii) expected squared norm for the true process eigenspectrum, and iii) expected squared
norm for empirical eigenspace again averaged over 20 random splits. (b) Zooms in on plot (a) by displaying the differences between i) and ii) and between iii)
and ii).

. This ensures that with probability the assertion
holds for all applications together with the assertion that

This final inequality follows from a straightforward appli-
cation of McDiarmid’s inequality. The second inequality of

Theorem 2 follows from the observations above together with
the fact that

while the first inequality again follows from the last inequality
of (16).

Finally we give the Proof of Theorem 3.
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Proof of Theorem 3: Consider applying Theorem 13
taking , and replacing by . This ensures
that with probability the assertion holds for all appli-
cations together with the assertion that

This final inequality follows from a straightforward applica-
tion of McDiarmid’s inequality. The inequality of Theorem 3
follows from the observations above together with the fact that

VI. EXPERIMENTS

To illustrate the results described in this paper experiments
were carried out with the breast cancer data set [29] which
contains 683 data points. This dataset is available from the
University of California, Irvine (UCI) machine learning reposi-
tory. A normalized cubic polynomial kernel was chosen

(18)

from a range of other kernels, based on the empirical observa-
tion that the process eigenspectrum did not decay too fast.

We compare three quantities

i) ,
ii) ,
iii) .

From inequality (13) we have ii) ii) and from Proposi-
tion 2 we have i) iii) in the expectation with respect to
the product distribution.

We randomly selected 50% of the data as a “training” set. The
process eigenspectrum was obtained by performing an eigen-
value decomposition of the kernel matrix constructed from the
entire dataset. Similarly, the spectrum was obtained from
an eigendecomposition of the appropriate submatrix. The com-
putation of is carried out as explained in [15].

Fig. 2(a) shows the projected squared norm plotted against
for these three quantities. Curves i) and iii) have been averaged
over 20 random choices of the training set. The error bars give
one standard deviation. Notice the close agreement between the
curves i) and iii), indicating that the subspace identified as op-
timal for the training set is indeed capturing almost the same
amount of information for all data points. The very tight error
bars show clearly the very tight concentration of the sums of tail
of eigenvalues as predicted by Theorem 7. In order to amplify
the information depicted in Fig. 2(a) and (b) plots the differ-
ences i)–ii) and iii)–ii). As expected, we see that i) ii)
and iii) ii) . For larger projection dimensions, the theory
predicts that the accuracy will level off and remain constant and
this effect can be observed in Fig. 2(b).

VII. CONCLUSION

The paper has shown that the eigenvalues of a positive
semidefinite matrix generated from a random sample is con-

centrated. Furthermore, the sum of the last eigenvalues
is similarly concentrated as is the residual when the data is
projected into a fixed subspace.

Furthermore, we have shown that estimating the projection
subspace on a random sample can give a good model for future
data provided the number of examples is much larger than the di-
mension of the subspace that captures most of the training data.
The results provide a basis for performing PCA or kernel-PCA
from a randomly generated sample, as they confirm that the
subspace identified by the sample will indeed “generalize” in
the sense that it will capture most of the information in a test
sample provided that the dimension is small compared to the
sample size and that the subspace captures most of the variance
in the training data. The result is somewhat counter-intuitive in
that the dimension of the feature space does not appear explic-
itly. The critical quantity is the ratio of the empirical or “effec-
tive” dimension of the sample data to the number of examples
it comprises.

Experiments are presented that confirm the theoretical pre-
dictions on a real-world dataset for small projection dimensions.
For larger projection dimensions, the theory predicts that the ac-
curacy will level off and remain constant. In practice, there is
a slow attenuation with increasing projection dimension. This
is not inconsistent with the theory and agrees with intuitive
expectations.
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